Sample records for high-temperature electrical conductivity

  1. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  2. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  3. Electrical conductivity of high-purity germanium crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  4. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  5. High temperature electrical conductivity of rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1984-03-01

    The temperature dependence of the electrical conductivity of three rigid polyurethane foams prepared using different formulations was measured to approx. 320 C. The materials exhibit similar conductivity characteristics, showing a pronounced increase in conductivity with increasing temperature. The insulating characteristics to approx. 200 C are better than that for phenolic materials (glass fabric reinforced), and are similar to those for silicone materials (glass microsphere reinforced). At higher temperatures (500 to 600 C), the phenolics and silicones are better insulators.

  6. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.

    1993-12-21

    High-temperature electrically conducting polymers are described. The in situ reactions: AgNO[sub 3] + RCHO [yields] Ag + RCOOH and R[sub 3]M [yields] M + 3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R[sub 3]M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrone.

  7. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, Raimond; Jorgensen, Betty S.; Liepins, Leila Z.

    1993-01-01

    High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.Ag.degree.+RCOOH and R.sub.3 M.fwdarw.M.degree.+3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.

  8. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, Raimond; Jorgensen, Betty S.; Liepins, Leila Z.

    1989-01-01

    High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.AG.sup.0 +RCOOH and R.sub.3 M.fwdarw.M.sup.0 3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.

  9. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.

    1987-08-27

    High-temperature electrically conducting polymers. The in situ reactions: AgNO/sub 3/ + RCHO ..-->.. Ag/sup 0/ + RCOOH and R/sub 3/M ..-->.. M/sup 0/ + 3R, where M = Au or Pt have been found to introduce either substantial bulk or surface conductivity in high- temperature polymers. The reactions involving the R/sub 3/M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone. 3 tabs.

  10. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2017-03-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  11. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass

    ERIC Educational Resources Information Center

    Chiaverina, Chris

    2014-01-01

    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  12. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Sun, Wenqing; Li, Heping; Hu, Haiying; Wu, Lei; Jiang, Jianjun

    2018-03-01

    The electrical conductivity of gneiss samples with different chemical compositions (WA = Na2O + K2O + CaO = 7.12, 7.27 and 7.64 % weight percent) was measured using a complex impedance spectroscopic technique at 623-1073 K and 1.5 GPa and a frequency range of 10-1 to 106 Hz. Simultaneously, a pressure effect on the electrical conductivity was also determined for the WA = 7.12 % gneiss. The results indicated that the gneiss conductivities markedly increase with total alkali and calcium ion content. The sample conductivity and temperature conform to an Arrhenius relationship within a certain temperature range. The influence of pressure on gneiss conductivity is weaker than temperature, although conductivity still increases with pressure. According to various ranges of activation enthalpy (0.35-0.52 and 0.76-0.87 eV) at 1.5 GPa, two main conduction mechanisms are suggested that dominate the electrical conductivity of gneiss: impurity conduction in the lower-temperature region and ionic conduction (charge carriers are K+, Na+ and Ca2+) in the higher-temperature region. The electrical conductivity of gneiss with various chemical compositions cannot be used to interpret the high conductivity anomalies in the Dabie-Sulu ultrahigh-pressure metamorphic belt. However, the conductivity-depth profiles for gneiss may provide an important constraint on the interpretation of field magnetotelluric conductivity results in the regional metamorphic belt.

  13. High electric field conduction in low-alkali boroaluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  14. Detection of temperature distribution via recovering electrical conductivity in MREIT.

    PubMed

    Oh, Tong In; Kim, Hyung Joong; Jeong, Woo Chul; Chauhan, Munish; Kwon, Oh In; Woo, Eung Je

    2013-04-21

    In radiofrequency (RF) ablation or hyperthermia, internal temperature measurements and tissue property imaging are important to control their outputs and assess the treatment effect. Recently, magnetic resonance electrical impedance tomography (MREIT), as a non-invasive imaging method of internal conductivity distribution using an MR scanner, has been developed. Its reconstruction algorithm uses measured magnetic flux density induced by injected currents. The MREIT technique has the potential to visualize electrical conductivity of tissue with high spatial resolution and measure relative conductivity variation according to the internal temperature change based on the fact that the electrical conductivity of biological tissues is sensitive to the internal temperature distribution. In this paper, we propose a method to provide a non-invasive alternative to monitor the internal temperature distribution by recovering the electrical conductivity distribution using the MREIT technique. To validate the proposed method, we design a phantom with saline solution and a thin transparency film in a form of a hollow cylinder with holes to create anomalies with different electrical and thermal conductivities controlled by morphological structure. We first prove the temperature maps with respect to spatial and time resolution by solving the thermal conductivity partial differential equation with the real phantom experimental environment. The measured magnetic flux density and the reconstructed conductivity distributions using the phantom experiments were compared to the simulated temperature distribution. The relative temperature variation of two testing objects with respect to the background saline was determined by the relative conductivity contrast ratio (rCCR,%). The relation between the temperature and conductivity measurements using MREIT was approximately linear with better accuracy than 0.22 °C.

  15. Temperature-Dependent Electrical Conductivity of GeTe-Based RF Switches

    DTIC Science & Technology

    2015-03-31

    Short, high temperature pulses result in a melt -quench cycle, amorphizing the GeTe and leaving the switch in the electrically insulating OFF state...Longer, lower temperature pulses result in the recrystallization of the GeTe, leaving the switch in the electrically conductive ON state. The...shown to vary only weakly with temperature. OFF-state S-parameters also exhibit slight temperature variation, with an inflection point of ~175

  16. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.

    PubMed

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-22

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  17. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    PubMed Central

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-01-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839

  18. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi

    2010-09-01

    AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.

  19. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  20. Metal-like electrical conductivity in LaxSr2-xTiMoO6 oxides for high temperature thermoelectric power generation.

    PubMed

    Saxena, Mandvi; Maiti, Tanmoy

    2017-05-09

    Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency. In the present work, environmentally friendly non-toxic double perovskite La x Sr 2-x TiMoO 6 (LSTM) ceramics were synthesized using a solid-state reaction route by optimizing the sintering temperature and atmosphere for high temperature thermoelectric applications. Rietveld refinement of XRD data confirmed a single-phase solid solution with a cubic structure in these double perovskites with the space-group Pm3[combining macron]m. SEM studies showed a highly dense microstructure in these ceramics. High electrical conductivity on the order of 10 5 S m -1 and large carrier concentration (∼10 22 cm -3 ) were obtained in these materials. The temperature-dependent electrical conductivity measurement showed that the LSTM ceramics exhibit a semiconductor to metal transition. Thermopower (S) measurements demonstrated the conductivity switching from a p-type to n-type behavior at higher temperature. A temperature dependent Seebeck coefficient was further explained using a model for coexistence of both types of charge carriers in these oxides. A conductivity mechanism of these double perovskites was found to be governed by a small polaron hopping model.

  1. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  2. Electrical Conduction of Ba(Ti0.99Fe0.01)O3- δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-07-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3- δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3- δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3- δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3- δ , the electrical modulus curve versus frequency displayed two peaks.

  3. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  4. A nonconjugated radical polymer glass with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  5. Extraction of temperature dependent electrical resistivity and thermal conductivity from silicon microwires self-heated to melting temperature

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena

    2012-09-01

    Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.

  6. Electrical conductivity measurement of granulite under mid- to lower crustal pressure-temperature conditions

    NASA Astrophysics Data System (ADS)

    Fuji-ta, K.; Katsura, T.; Tainosho, Y.

    2004-04-01

    We have developed a technique to measure electrical conductivity of crustal rocks with relatively low conductivity and complicated mineral components in order to compare with results given by magneto-telluric (MT) measurements. A granulite from Hidaka metamorphic belt (HMB) in Hokkaido, Japan at high temperature and pressure conditions was obtained. The granulite sample was ground and sintered under the conditions similar to those of mid- to lower crust. We have observed smooth and reversible change of conductivity with temperature up to about 900 K at 1 GPa. The results were consistent with the electrical conductivity structures suggested by the MT data analysis. Considering pore fluid conduction mechanism or the role of accessory minerals in the rock, the mechanisms of electrical conductivity paths in dry or basic rocks should be reconsidered.

  7. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  8. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  9. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  10. Electrical Conductivity Measurement of Granulite Under Mid to Lower Crustal Pressure-Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Fuji-Ta, K.; Katsura, T.; Tainosho, Y.

    2003-12-01

    We have developed a technique to measure electrical conductivity of crustal rocks with relatively low conductivity and complicated mineral components in order to compare with results given by Magneto-Telluric (MT) measurements. A granulite from Hidaka Metamorphic Belt (HMB) in Hokkaido, Japan at high temperature and pressure conditions was obtained. The granulite sample was ground and sintered under the conditions similar to those of mid to lower crust. We have observed smooth and reversible change of conductivity with temperature up to about 900 K at 1 GPa. Through the qualitative and quantitative evaluations using Electron Probe Micro Analysis (EPMA), microstructures of the sintered sample were inspected. This inspection is essential to confirm the sample was not affected by chemical interaction of minerals. We also examined the role of accessory minerals in the rock, and the mechanisms of electrical conductivity paths in _gdry_h or _gbasic_h rocks should be reconsidered. Finally, results from electrical conductivity measurements were consistent with the electrical conductivity structures suggested by the former MT data analysis.

  11. Design of a low-cost system for electrical conductivity measurements of high temperature

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2018-05-01

    It is always a curiosity and interest among researchers working in the field of material science to know the impact of high temperature on the physical and transport properties of the materials. In this paper, we report on the design and working of a system for the measurements of electrical resistivity with high temperature. It was designed at our place and successively used for these measurements in the temperature range from room temperature to 500 ˚C.

  12. Temperature profiles in the earth of importance to deep electrical conductivity models

    NASA Astrophysics Data System (ADS)

    Čermák, Vladimír; Laštovičková, Marcela

    1987-03-01

    Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.

  13. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

    PubMed Central

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445

  14. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions.

    PubMed

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.

  15. Program for the development of high temperature electrical materials and components

    NASA Technical Reports Server (NTRS)

    Neff, W. S.; Lowry, L. R.

    1972-01-01

    Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.

  16. Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites

    NASA Astrophysics Data System (ADS)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-02-01

    Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.

  17. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    PubMed

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  18. Temperature dependence of electrical conduction in PEMA-EMITFSI film

    NASA Astrophysics Data System (ADS)

    Zain, N. F.; Megat Hasnan, M. M. I.; Sabri, M. F. M.; Said, S. M.; Mohamed, N. S.; Salleh, F.

    2018-04-01

    Transparent and flexible film of poly (ethyl methacrylate) incorporated with 1-ethyl-3-methyl imidazolium bis(trifluorosulfonyl) imide ionic liquid (PEMA-EMITFSI) with thickness between 100 and 200 µm was fabricated by using solution casting technique. From the ionic transport measurement, it is confirmed that the electrical conduction in PEMA-EMITFSI film is mainly contributed by ionic transport. Moreover, the temperature-dependence of electrical conductivity measurement for 7 days reveals that the electrical properties of PEMA-EMITFSI film could be able to withstand a number of thermal cycles and be lasting for a period of time for potentially used as thermoelectric material through thermal heating.

  19. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  20. Influence of temperature on the electrical conductivity of leachate from municipal solid waste.

    PubMed

    Grellier, Solenne; Robain, Henri; Bellier, Gérard; Skhiri, Nathalie

    2006-09-01

    A bioreactor landfill is designed to manage municipal solid waste, through accelerated waste biodegradation, and stabilisation of the process by means of the controlled addition of liquid, i.e. leachate recirculation. The measurement of electrical resistivity by Electrical Resistivity Tomography (ERT) allows to monitor water content present in the bioreactors. Variations in electrical resistivity are linked to variations in moisture content and temperature. In order to overcome this ambiguity, two laboratory experiments were carried out to establish a relationship between temperature and electrical conductivity: the first set of measurements was made for leachate alone, whereas the second set was made with two different granular media saturated with leachate. Both experiments confirm a well known increase in conductivity of about 2% degrees C(-1). However, higher suspended matter concentrations lead to a lower dependence of electrical conductivity on temperature. Furthermore, for various porous media saturated with an identical leachate, the higher the specific surface of the granular matrix, the lower the effective bulk electrical conductivity. These observations show that a correct understanding of the electrical properties of liquids requires the nature and (in particular) the size of the electrical charge carriers to be taken into account.

  1. Equation of State and Electrical Conductivity of Helium at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    McWilliams, R. S.; Eggert, J. H.; Loubeyre, P.; Brygoo, S.; Collins, G.; Jeanloz, R.

    2004-12-01

    Helium, the second-most abundant element in the universe and giant planets, is expected to metallize at much higher pressures and temperatures than the most abundant element, hydrogen. The difference in chemical-bonding character, between insulator and metal, is expected to make hydrogen-helium mixtures immiscible throughout large fractions of planetary interiors, and therefore subject to gravitational separation contributing significantly to the internal dynamics of giant planets. Using laser-driven shock waves on samples pre-compressed in high-pressure cells, we have obtained the first measurements of optical reflectivity from the shock front in helium to pressures of 146 GPa. The reflectivity exceeds 5% above \\ensuremath{\\sim} 100 GPa, indicating high electrical conductivity. By varying the initial pressure (hence density) of the sample, we can access a much wider range of final pressure-temperature conditions than is possible in conventional Hugoniot experiments. Our work increases by nine-fold the pressure range of single-shock measurements, in comparison with gas-gun experiments, and yields results in agreement with the Saumon, Chabrier and Van Horn (1994) equation of state for helium. This changes the internal structures inferred for Jupiter-size planets, relative to models based on earlier equations of state (e. g., SESAME).

  2. Estimating the stability of electrical conductivity of filled polymers under the influence of negative temperatures

    NASA Astrophysics Data System (ADS)

    Minakova, N. N.; Ushakov, V. Ya.

    2017-12-01

    One of the key problems in modern materials technology is synthesis of materials for electrotechnical devices capable of operating under severe conditions. Electrical and power engineering, in particular, demands for electrically conductive composite materials operating at high and low temperatures, various mechanical loads, electric fields, etc. Chaotic arrangement of electrically conductive component in the matrix and its structural and geometrical inhomogeneity can increase the local electric and thermal energy flux densities up to critical values even when their average values remain moderate. Elastomers filled with technical carbon being a promising component for electrotechnical devices was chosen as an object of study.

  3. High-temperature electrically conductive ceramic composite and method for making same

    DOEpatents

    Beck, David E.; Gooch, Jack G.; Holcombe, Jr., Cressie E.; Masters, David R.

    1983-01-01

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  4. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    NASA Astrophysics Data System (ADS)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  5. Effect of Temperature on Electrical Conductivity of Guaiacol-Guanidine Hydrochloride-Formaldehyde Copolymer Resin

    NASA Astrophysics Data System (ADS)

    Kukade, S. D.; Bawankar, S. V.

    2018-02-01

    The purpose of the present paper is to report temperature dependence of electrical conductivity on Guaiacol-guanidine hydrochloride-formaldehyde copolymer resin. By using a microwave irradiation technique, various ratios of copolymer resin were synthesized from the reacting monomers, i.e., guaiacol, guanidine hydrochloride and formaldehyde. The characterization of the copolymer resins has been fulfilled by spectral methods viz. ultraviolet visible (UV visible), infrared and proton nuclear magnetic spectroscopy (1H-NMR). The solid state direct current electrical conductivity of synthesized copolymer resins has been measured as a function of temperature. The electrical conductivity values of all the copolymers have been found in the range of a semiconductor.

  6. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOEpatents

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  7. Temperature correction in conductivity measurements

    USGS Publications Warehouse

    Smith, Stanford H.

    1962-01-01

    Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.

  8. Origin of temperature dependent conduction of current from n-4H-SiC into silicon dioxide films at high electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, An; Xu, Xingliang; Zhang, Lin; Li, Zhiqiang; Li, Juntao; Dai, Gang

    2018-02-01

    The conduction of current from n-4H-SiC into pyrogenic and dry oxidized films is studied. Anomalous current conduction was observed at a high electric field above 8 MV/cm for dry oxidized metal-oxide-semiconductor (MOS) capacitors, which cannot be interpreted in the framework of pure Fowler-Nordheim tunneling. The temperature-dependent current measurement and density of interface trap estimated from the hi-lo method for the SiO2/4H-SiC interface revealed that the combined current conduction of Fowler-Nordheim and Poole-Frenkel emission is responsible for the current conduction in both pyrogenic and dry oxidized MOS capacitors. Furthermore, the origin of temperature dependent current conduction is the Poole-Frenkel emission via the carbon pair defect trap level at 1.3 eV below the conduction band edge of SiO2. In addition, with the dry oxidized capacitors, the enhanced temperature dependent current above 8 MV/cm is attributed to the PF emission via a trap level at 1.47 eV below the conduction band edge of SiO2, which corresponds to another configuration of a carbon pair defect in SiO2 films.

  9. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  10. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones

    NASA Astrophysics Data System (ADS)

    Hu, Haiying; Dai, Lidong; Li, Heping; Hui, Keshi; Sun, Wenqing

    2017-04-01

    The anomalously high electrical conductivities ( 0.1 to 1 S/m) in deep mantle wedge regions extensively detected by magnetotelluric studies are often associated with the presence of fluids released from the progressive dehydration of subducting slabs. Epidote minerals are the Ca-Al-rich hydrous silicates with huge stability fields exceeding those of amphibole (>70-80 km) in subducting oceanic crust, and they may therefore be transported to greater depth than amphibole and release water to the mantle wedge. In this study, the electrical conductivities of epidote were measured at 0.5-1.5 GPa and 573-1273 K by using a Solartron-1260 Impedance/Gain-Phase Analyzer in a YJ-3000t multianvil pressure within the frequency range of 0.1-106 Hz. The results demonstrate that the influence of pressure on electrical conductivity of epidote is relatively small compared to that of temperature. The dehydration reaction of epidote is observed through the variation of electrical conductivity around 1073 K, and electrical conductivity reaches up to 1 S/m at 1273 K, which can be attributed to aqueous fluid released from epidote dehydration. After sample dehydration, electrical conductivity noticeably decreases by as much as nearly a log unit compared with that before dehydration, presumably due to a combination of the presence of coexisting mineral phases and aqueous fluid derived from the residual epidote. Taking into account the petrological and geothermal structures of subduction zones, it is suggested that the aqueous fluid produced by epidote dehydration could be responsible for the anomalously high conductivities in deep mantle wedges at depths of 70-120 km, particularly in hot subduction zones.

  11. Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumina package with platinum conductor for 500 C low-power silicon carbide (SiC) integrated circuits. The design and electrical performance of this package including parasitic capacitance and parallel conductance of neighboring I/Os from 100 Hz to 1 MHz in a temperature range from room temperature to 550 C are discussed in detail. The parasitic capacitance and parallel conductance of this package in the entire frequency and temperature ranges measured does not exceed 1.5 pF and 0.05 microsiemens, respectively. SiC integrated circuits using this package and compatible printed circuit board have been successfully tested at 500 C for over 3736 hours continuously, and at 700 C for over 140 hours. Some test examples of SiC integrated circuits with this packaging system are presented. This package is the key to prolonged T greater than or equal to 500 C operational testing of the new generation of SiC high temperature integrated circuits and other devices currently under development at NASA Glenn Research Center.

  12. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.

    PubMed

    Jung, Inhwa; Dikin, Dmitriy A; Piner, Richard D; Ruoff, Rodney S

    2008-12-01

    Step-by-step controllable thermal reduction of individual graphene oxide sheets, incorporated into multiterminal field effect devices, was carried out at low temperatures (125-240 degrees C) with simultaneous electrical measurements. Symmetric hysteresis-free ambipolar (electron- and hole-type) gate dependences were observed as soon as the first measurable resistance was reached. The conductivity of each of the fabricated devices depended on the level of reduction (was increased more than 10(6) times as reduction progressed), strength of the external electrical field, density of the transport current, and temperature.

  13. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  14. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  15. Electrical conductivity of low-temperature NaCl-KCl-ZrCl4 melts

    NASA Astrophysics Data System (ADS)

    Salyulev, A. B.; Khokhlov, V. A.; Red'kin, A. A.

    2014-08-01

    The dependences of the electrical conductivity of NaCl-KCl-ZrCl4 molten mixtures with a molar ratio NaCl : KCl = 8 : 29 on the temperature (temperature range of 300-540°C) and the ZrCl4 concentration (54.3-75.2 mol %) have been measured for the first time using unique cells.

  16. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum.

    PubMed

    Sakai, C; Takeda, S N; Daimon, H

    2013-07-01

    We have developed the new in situ electrical-conductivity measurement system which can be operated in ultrahigh vacuum (UHV) with accurate temperature measurement down to 20 K. This system is mainly composed of a new sample-holder fixing mechanism, a new movable conductivity-measurement mechanism, a cryostat, and two receptors for sample- and four-probe holders. Sample-holder is pushed strongly against the receptor, which is connected to a cryostat, by using this new sample-holder fixing mechanism to obtain high thermal conductivity. Test pieces on the sample-holders have been cooled down to about 20 K using this fixing mechanism, although they were cooled down to only about 60 K without this mechanism. Four probes are able to be touched to a sample surface using this new movable conductivity-measurement mechanism for measuring electrical conductivity after making film on substrates or obtaining clean surfaces by cleavage, flashing, and so on. Accurate temperature measurement is possible since the sample can be transferred with a thermocouple and∕or diode being attached directly to the sample. A single crystal of Bi-based copper oxide high-Tc superconductor (HTSC) was cleaved in UHV to obtain clean surface, and its superconducting critical temperature has been successfully measured in situ. The importance of in situ measurement of resistance in UHV was demonstrated for this HTSC before and after cesium (Cs) adsorption on its surface. The Tc onset increase and the Tc offset decrease by Cs adsorption were observed.

  17. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity

    PubMed Central

    Nakamura, Yoshiaki

    2018-01-01

    Abstract The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies. PMID:29371907

  18. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    PubMed

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  19. New Method for Electrical Conductivity Temperature Compensation

    USGS Publications Warehouse

    McCleskey, R. Blaine

    2013-01-01

    Electrical conductivity (κ) measurements of natural waters are typically referenced to 25 °C (κ25) using standard temperature compensation factors (α). For acidic waters (pH < 4), this can result in a large κ25 error (δκ25). The more the sample temperature departs from 25 °C, the larger the potential δκ25. For pH < 4, the hydrogen ion transport number becomes substantial and its mode of transport is different from most other ions resulting in a different α. A new method for determining α as a function of pH and temperature is presented. Samples with varying amounts of H2SO4 and NaCl were used to develop the new α, which was then applied to 65 natural water samples including acid mine waters, geothermal waters, seawater, and stream waters. For each sample, the κ and pH were measured at several temperatures from 5 to 90 °C and κ25 was calculated. The δκ25 ranged from −11 to 9% for the new method as compared to −42 to 25% and −53 to 27% for the constant α (0.019) and ISO-7888 methods, respectively. The new method for determining α is a substantial improvement for acidic waters and performs as well as or better than the standard methods for circumneutral waters.

  20. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  1. Composite lead for conducting an electrical current between 75--80K and 4. 5K temperatures

    DOEpatents

    Negm, Y.; Zimmerman, G.O.; Powers, R.E. Jr.; McConeghy, R.J.; Kaplan, A.

    1994-12-27

    A composite lead is provided which electrically links and conducts a current between about 75-80K and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizational arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained. 12 figures.

  2. Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures

    DOEpatents

    Negm, Yehia; Zimmerman, George O.; Powers, Jr., Robert E.; McConeghy, Randy J.; Kaplan, Alvaro

    1994-12-27

    A composite lead is provided which electrically links and conducts a current between about 75-80K. and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizationl arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained.

  3. Synthesis, thermal expansion and high-temperature electrical conductivity of Co-doped (Y,Ca)FeO{sub 3−δ} with orthorhombic perovskite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyuzhnaya, A.S.; Drozhzhin, O.A.; Istomin, S.Ya., E-mail: istomin@icr.chem.msu.ru

    Highlights: • (Y,Ca)(Fe,Co)O{sub 3−δ} was prepared via citrate-based route with annealing at 1150–1200 °C. • Y{sub 0.9}Ca{sub 0.1}Fe{sub 0.8}Co{sub 0.2}O{sub 3−δ} demonstrates low thermal expansion coefficient of 11.9 ppm K{sup −1}. • Oxides do not react with YSZ and GDC up to 1000 °C and 1100 °C, respectively. • Compounds demonstrate higher electrical conductivity in comparison with Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}. • Pr-doped (Y,Ca)(Fe,Co)O{sub 3−δ} demonstrate both higher electrical conductivity and TEC. - Abstract: Orthorhombic perovskites Y{sub 1−x}Ca{sub x}Fe{sub 1−y}Co{sub y}O{sub 3−δ} (0.1 ≤ x ≤ 0.2, 0.1 ≤ y ≤ 0.2 and x = 0.1, y = 0.3) weremore » synthesized in air by the citrate route at 1150–1300 °C. High-temperature X-ray powder diffraction (HT XRPD) data for Y{sub 0.9}Ca{sub 0.1}Fe{sub 0.8}Co{sub 0.2}O{sub 3−δ} at 25–800 °C showed no phase transition with calculated thermal expansion coefficient (TEC) of 11.9 ppm K{sup −1}. High-temperature electrical conductivity measurements revealed almost composition independent conductivity values of 22–27 S/cm at 900 °C. No chemical interaction of Y{sub 0.8}Ca{sub 0.2}Fe{sub 0.9}Co{sub 0.1}O{sub 3−δ} with (Zr,Y)O{sub 2−x} (YSZ) or (Ce,Gd)O{sub 2−x} (GDC) was observed up to 1000 °C and 1100 °C, respectively. Partial replacement of Y by Pr according to formula Y{sub 0.8−z}Pr{sub z}Ca{sub 0.2}Fe{sub 0.7}Co{sub 0.3}O{sub 3−δ}, 0.1 ≤ z ≤ 0.35, leads to an increase of both electrical conductivity up to 50 S/cm (z = 0.3) at 900 °C and dilatometry measured TEC up to 15.1 ppm K{sup −1}. Moderate values of electrical conductivity in combination with low TEC and stability towards chemical interaction with typical SOFC electrolytes make Co-doped Y{sub 1−x}Ca{sub x}FeO{sub 3−δ} promissing cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)« less

  4. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  5. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature

    NASA Astrophysics Data System (ADS)

    Pascal, Andre; William, Bussiere; Alain, Coulbois; Jean-Louis, Gelet; David, Rochette

    2016-08-01

    During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.

  6. Calibration of a modified temperature-light intensity logger for quantifying water electrical conductivity

    NASA Astrophysics Data System (ADS)

    Gillman, M. A.; Lamoureux, S. F.; Lafrenière, M. J.

    2017-09-01

    The Stream Temperature, Intermittency, and Conductivity (STIC) electrical conductivity (EC) logger as presented by Chapin et al. (2014) serves as an inexpensive (˜50 USD) means to assess relative EC in freshwater environments. This communication demonstrates the calibration of the STIC logger for quantifying EC, and provides examples from a month long field deployment in the High Arctic. Calibration models followed multiple nonlinear regression and produced calibration curves with high coefficient of determination values (R2 = 0.995 - 0.998; n = 5). Percent error of mean predicted specific conductance at 25°C (SpC) to known SpC ranged in magnitude from -0.6% to 13% (mean = -1.4%), and mean absolute percent error (MAPE) ranged from 2.1% to 13% (mean = 5.3%). Across all tested loggers we found good accuracy and precision, with both error metrics increasing with increasing SpC values. During 10, month-long field deployments, there were no logger failures and full data recovery was achieved. Point SpC measurements at the location of STIC loggers recorded via a more expensive commercial electrical conductivity logger followed similar trends to STIC SpC records, with 1:1.05 and 1:1.08 relationships between the STIC and commercial logger SpC values. These results demonstrate that STIC loggers calibrated to quantify EC are an economical means to increase the spatiotemporal resolution of water quality investigations.

  7. Measuring nanowire thermal conductivity at high temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m-1 K-1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  8. Lunar electrical conductivity, permeability,and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate and electrical conductivity profile for the moon, and those profiles were used to calculate the lunar temperature for an assumed lunar material of olivine. Simultaneous measurements by magnetometers on the lunar surface and in orbit around the moon were use to construct a whole-moon hysteresis curve, from which the global lunar magnetic permeability is determined. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) was calculated for two assumed compositional models of the lunar interior. Other lunar models with an iron core and with a shallow iron-rich layer also discussed in light of the measured global lunar permeability. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Velocities and thicknesses of the earth's magnetopause and bow shock were also estimated from simultaneous magnetometer measurements.

  9. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less

  10. Highly Flexible and Conductive Glycerol-Doped PEDOT:PSS Films Prepared Under an Electric Field

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroyuki; Aizawa, Kengo; Chonan, Yasunori; Komiyama, Takao; Aoyama, Takashi; Sakai, Eiichi; Qiu, Jianhui; Sato, Naoki

    2018-06-01

    Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films doped with several sugar alcohols, viz. xylitol (XL), glycerol (GL), and polyglycerol (PG), at various levels have been synthesized and their thermoelectric properties studied. Among these specimens, 2.5 vol.% GL-doped films showed the best performance with electrical conductivity σ, Seebeck coefficient S, and power factor S 2 σ at room temperature reaching 1040 S/cm, 19 μV/K, and 37 μW/m-K2, respectively. Next, we synthesized films under an electric field E pr for the purpose of crystal growth. GL-doped films showed σ enhancement with increase of E pr. The highest σ value of 1300 S/cm was attained at E pr = 4 kV/cm. S and thermal conductivity κ values were almost independent of E pr. The ZT value was calculated to be between 0.017 and 0.101 at room temperature. We also examined film flexibility. High flexibility was achieved on GL doping, and it was not deteriorated when synthesized under an electric field.

  11. Highly Flexible and Conductive Glycerol-Doped PEDOT:PSS Films Prepared Under an Electric Field

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroyuki; Aizawa, Kengo; Chonan, Yasunori; Komiyama, Takao; Aoyama, Takashi; Sakai, Eiichi; Qiu, Jianhui; Sato, Naoki

    2018-04-01

    Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films doped with several sugar alcohols, viz. xylitol (XL), glycerol (GL), and polyglycerol (PG), at various levels have been synthesized and their thermoelectric properties studied. Among these specimens, 2.5 vol.% GL-doped films showed the best performance with electrical conductivity σ, Seebeck coefficient S, and power factor S 2 σ at room temperature reaching 1040 S/cm, 19 μV/K, and 37 μW/m-K2, respectively. Next, we synthesized films under an electric field E pr for the purpose of crystal growth. GL-doped films showed σ enhancement with increase of E pr. The highest σ value of 1300 S/cm was attained at E pr = 4 kV/cm. S and thermal conductivity κ values were almost independent of E pr. The ZT value was calculated to be between 0.017 and 0.101 at room temperature. We also examined film flexibility. High flexibility was achieved on GL doping, and it was not deteriorated when synthesized under an electric field.

  12. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    NASA Astrophysics Data System (ADS)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  13. Effect of orientation on electrically conducting thermoplastic composite properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genetti, W.B.; Grady, B.P.

    1996-10-01

    Properties of electrically conducting composites made from low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene (PP) filled with nickel flake are being studied as a function of nickel concentration and draw ratio. The effect on electrical conduction, crystallinity, melt temperature, tensile modulus, and elongation at break are being tested. The melt temperature increases with increasing nickel concentration. The electrical conduction increases slowly with increased nickel concentration to the percolation volume fraction, then increases sharply. Orientation by uniaxial stretching of the films should allow conductive pathways to form throughout the polymer more easily by forcing particles closer together, thusmore » reducing the percolation volume fraction. This process could be caused by both alignment of the polymer chains and by stress induced crystallization that forces the particles into smaller amorphous regions.« less

  14. Intrinsic high electrical conductivity of stoichiometric SrNb O3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Oka, Daichi; Hirose, Yasushi; Nakao, Shoichiro; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-11-01

    SrV O3 and SrNb O3 are perovskite-type transition-metal oxides with the same d1 electronic configuration. Although SrNb O3 (4 d1 ) has a larger d orbital than SrV O3 (3 d1 ), the reported electrical resistivity of SrNb O3 is much higher than that of SrV O3 , probably owing to nonstoichiometry. In this paper, we grew epitaxial, high-conductivity stoichiometric SrNb O3 using pulsed laser deposition. The growth temperature strongly affected the Sr/Nb ratio and the oxygen content of the films, and we obtained stoichiometric SrNb O3 at a very narrow temperature window around 630 °C. The stoichiometric SrNb O3 epitaxial thin films grew coherently on KTa O3 (001) substrates with high crystallinity. The room-temperature resistivity of the stoichiometric film was 2.82 ×10-5Ω cm , one order of magnitude lower than the lowest reported value of SrNb O3 and comparable with that of SrV O3 . We observed a T -square dependence of resistivity below T*=180 K and non-Drude behavior in near-infrared absorption spectroscopy, attributable to the Fermi-liquid nature caused by electron correlation. Analysis of the T -square coefficient A of resistivity experimentally revealed that the 4 d orbital of Nb that is larger than the 3 d ones certainly contributes to the high electrical conduction of SrNb O3 .

  15. Grain boundary dominated electrical conductivity in ultrananocrystalline diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiora, Neda; Mertens, Michael; Bruhne, Kai

    Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less

  16. Grain boundary dominated electrical conductivity in ultrananocrystalline diamond

    NASA Astrophysics Data System (ADS)

    Wiora, Neda; Mertens, Michael; Brühne, Kai; Fecht, Hans-Jörg; Tran, Ich C.; Willey, Trevor; van Buuren, Anthony; Biener, Jürgen; Lee, Jun-Sik

    2017-10-01

    N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H2, CH4 and NH3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10-2 to 5 × 101 S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown by systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300-1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.

  17. Grain boundary dominated electrical conductivity in ultrananocrystalline diamond

    DOE PAGES

    Wiora, Neda; Mertens, Michael; Bruhne, Kai; ...

    2017-10-09

    Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less

  18. Low temperature thermal conductivity of alloys used in cryogenic coaxial cables

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Kasai, Soichi

    2014-03-01

    We have developed thin seamless coaxial cables applied for readout in low temperature experiments below liquid helium temperature. Stainless steel employed as the center and outer electrical conductors of the coaxial cable has adequately low thermal conductivity compared to pure metals and can be used when heat penetration into low temperature stages through cables should be lowered however it has large electrical resistivity which can disturb sensitive measurements. Superconducting NbTi alloy has good performance with rather low thermal conductivity and high electrical conductivity. Meanwhile coaxial cables using normal conducting copper alloys such as cupro-nickel, brass, beryllium-copper, phosphor-bronze are advantageous with their good electrical, thermal and cost performances. We investigated thermal conductivity of such alloys after the drawing process into coaxial cables, and compared to expected values without drawing.

  19. Ceramics at High Temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Zhang, Rui-zhi; Chen, Hao-ying; Hao, Wen-tao

    2014-06-01

    The Seebeck coefficient and electrical conductivity of CaCu3Ti4O12 (CCTO) ceramics were measured and analyzed in the high temperature range of 300°C to 800°C, and then the electrical conduction mechanism was investigated by using a combination of experimental data fitting and first-principles calculations. The Seebeck coefficient of the CCTO ceramic sintered at 1050°C is negative with largest absolute value of ˜650 μV/K at 300°C, and the electrical conductivity is 2-3 orders greater than the value reported previously by other researchers. With increasing sintering temperature, the Seebeck coefficient decreases while the electrical conductivity increases. The temperature dependence of the electrical conductivity follows the rule of adiabatic hopping conduction of small polarons. The calculated density of states of CCTO indicates that the conduction band is mainly contributed by the antibonding states of Cu 3 d electrons, therefore small-polaron hopping between CuO4 square planar clusters was proposed. Possible ways to further improve the thermoelectric properties of CCTO are also discussed.

  20. Investigation of transient temperature's influence on damage of high-speed sliding electrical contact rail surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Sun, Shasha; Guo, Quanli; Yang, Degong; Sun, Dongtao

    2016-11-01

    In the high speed sliding electrical contact with large current, the temperature of contact area rises quickly under the coupling action of the friction heating, the Joule heating and electric arc heating. The rising temperature seriously affects the conductivity of the components and the yield strength of materials, as well affects the contact state and lead to damage, so as to shorten the service life of the contact elements. Therefore, there is vital significance to measure the temperature accurately and investigate the temperature effect on damage of rail surface. Aiming at the problem of components damage in high speed sliding electrical contact, the transient heat effect on the contact surface was explored and its influence and regularity on the sliding components damage was obtained. A kind of real-time temperature measurement method on rail surface of high speed sliding electrical contact is proposed. Under the condition of 2.5 kA current load, based on the principle of infrared radiation non-contact temperature sensor was used to measure the rail temperature. The dynamic distribution of temperature field was obtained through the simulation analysis, further, the connection between temperature changes and the rail surface damage morphology, the damage volume was analyzed and established. Finally, the method to reduce rail damage and improve the life of components by changing the temperature field was discussed.

  1. Conductivity Analysis of Membranes for High-Temperature PEMFC Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, R.; Turner, J.A.

    2005-01-01

    Low-temperature operation requirements for per-fluorinated membranes are one factor that limits the viability of current fuel cell technology for transportation and other uses. Because of this, high-temperature membrane materials are being researched. The protonic conductivity of organic/inorganic hybrid composites, Nafion® analog material, and heteropoly acid doped Nafion membranes were studied using a BekkTech® conductivity test cell as a hydrogen pump. The goal was to find a high-temperature membrane with sufficient enough conductive properties to replace the currently implemented low-temperature membranes, such as Nafion. Four-point conductivity measurements were taken using a hydrogen pump experiment. Results showed that one of the organic/inorganicmore » membranes that we tested had similar protonic conductivity to Nafion. Nafion analog membranes were shown to have similar to slightly better conductivity than Nafion at high-temperatures. However, like Nafion, performance dropped upon dehydration of the membrane at higher temperatures. Of the heteropoly acid doped Nafion membranes studied, silicotungstic acid was found to be, overall, the most promising for use as a dopant.« less

  2. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  3. Electrical conductivity of Icelandic deep geothermal reservoirs: insight from HT-HP laboratory experiments

    NASA Astrophysics Data System (ADS)

    Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah

    2016-04-01

    Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and

  4. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    PubMed

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  5. Consideration of Conductive Motor Winding Materials at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C., III

    2015-01-01

    A brief history of conductive motor winding materials is presented, comparing various metal motor winding materials and their properties in terms of conductivity, density and cost. The proposed use of carbon nanotubes (CNTs) and composites incorporating CNTs is explored as a potential way to improve motor winding conductivity, density, and reduce motor size which are important to electric aircraft technology. The conductivity of pure Cu, a CNT yarn, and a dilute Cu-CNT composite was measured at room temperature and at several temperatures up to 340 C. The conductivity of the Cu-CNT composite was about 3 percent lower than pure copper's at all temperatures measured. The conductivity of the CNT yarn was about 200 times lower than copper's, however, the yarn's conductivity dropped less with increasing temperature compared to Cu. It is believed that the low conductivity of the yarn is due primarily to high interfacial resistances and the presence of CNTs with low, semiconductor like electrical properties (s-CNT). It is believed the conductivity of the CNT-Cu composite could be improved by not using s-CNT, and instead using only CNTs with high, metallic like electrical properties (m-CNT); and by increasing the vol% m-CNTs.

  6. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  7. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    NASA Astrophysics Data System (ADS)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  8. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    PubMed

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  9. Electrical conductivity during incipient melting in the oceanic low-velocity zone.

    PubMed

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-05-01

    The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.

  10. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  11. Effect of Ni and Ti substitutions on Li1.05Mn2O4-δ electrical conductivities at high temperature

    NASA Astrophysics Data System (ADS)

    Abe, Satoko; Iwasaki, Shoko; Shimonishi, Yuta; Komine, Shigeki; Munakata, Fumio

    2016-10-01

    Samples of Li1.05Mn2O4-δ, Li1.05Mn1.5Ni0.5O4-δ, and Li1.05Mn1.0Ni0.5Ti0.5O4-δ were prepared by a solid-state reaction technique and ultimately refined to a space group Fd-3m of spinel structure by the Rietveld method using synchrotron powder X-ray diffraction data. Comparison of lattice constants suggested that Ni-substitution increased the covalency in the bonding of MO6 (M: metal ion at 16d site) octahedrals, but Ni/Ti co-substitution decreased the covalency of M-O bonds and introduced structural distortion. Electrical conductivity measurements by a four-probe method resulted in the determination that electrical conduction (within all samples) exhibits a nonadiabatic hopping process at high temperatures. The activation energies of Li1.05Mn2O4-δ and Li1.05Mn1.5Ni0.5O4-δ were found to be of similar values. The Ni/Ti co-substituted sample of Li1.05Mn1.0Ni0.5Ti0.5O4-δ, on the other hand, showed the highest activation energy among all the measured samples. Substitution reduced the electrical conductivity relative to Li1.05Mn2O4-δ; furthermore, both the substituted samples (Li1.05Mn1.5Ni0.5O4-δ and Li1.05Mn1.0Ni0.5Ti0.5O4-δ) were found to exhibit functional independence from oxygen partial pressure (PO2).

  12. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  13. Electrical conductivity of the plagioclase-NaCl-water system and its implication for the high conductivity anomalies in the mid-lower crust of Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Ping; Guo, Xinzhuan; Chen, Sibo; Wang, Chao; Yang, Junlong; Zhou, Xingfan

    2018-02-01

    In order to investigate the origin of the high conductivity anomalies geophysically observed in the mid-lower crust of Tibet Plateau, the electrical conductivity of plagioclase-NaCl-water system was measured at 1.2 GPa and 400-900 K. The relationship between electrical conductivity and temperature follows the Arrhenius law. The bulk conductivity increases with the fluid fraction and salinity, but is almost independent of temperature (activation enthalpy less than 0.1 eV). The conductivity of plagioclase-NaCl-water system is much lower than that of albite-NaCl-water system with similar fluid fraction and salinity, indicating a strong effect of the major mineral phase on the bulk conductivity of the brine-bearing system. The high conductivity anomalies of 10-1 and 100 S/m observed in the mid-lower crust of Tibet Plateau can be explained by the aqueous fluid with a volume fraction of 1 and 9%, respectively, if the fluid salinity is 25%. The anomaly value of 10-1 S/m can be explained by the aqueous fluid with a volume fraction of 6% if the salinity is 10%. In case of Southern Tibet where the heat flow is high, the model of a thin layer of brine-bearing aqueous fluid with a high salinity overlying a thick layer of partial melt is most likely to prevail.

  14. Electrical conductivity of aluminum hydride AlH3 at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir; Khrapak, Aleksei

    2009-06-01

    A study of electrophysical and thermodynamic properties of alane AlH3 under multi shock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa have been measured. High pressures and temperatures were obtained with explosive device, which accelerates the stainless impactor up to 3 km/sec. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30 1/Ohm*cm. In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500 1/Ohm*cm at 80-90 GPa. In this region conductivity is interpreted in frames of the conception of the ``dielectric catastrophe'', taking into consideration significant difference between electronic states of isolated AlH3 molecule and condensed alane.

  15. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    NASA Astrophysics Data System (ADS)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-11-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  16. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    NASA Astrophysics Data System (ADS)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2018-06-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  17. A transient hot-wire instrument for thermal conductivity measurements in electrically conducting liquids at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Alloush, A.; Gosney, W. B.; Wakeham, W. A.

    1982-09-01

    This paper describes a novel type of transient hot-wire cell for thermal conductivity measurements on electrically conducting liquids. A tantalum wire of 25 μm. diameter is used as the sensing element in the cell, and it is insulated from the conducting liquids by an anodic film of tantalum pentoxide, 70 nm thick. The cell is suitable for measurements on conducting liquids at elevated temperatures. The results of test measurements on liquid water at its saturation vapor pressure are reported in order to confirm the correct operation of the thermal conductivity cell. The data, which have an estimated accuracy of ±3%, depart by less than ±1.8% from the correlation proposed by the International Association for the Properties of Steam. Results are also presented for concentrated aqueous solutions of lithium bromide, which are frequently used in absorption refrigerator cycles.

  18. Temperature Dependence of Density, Viscosity and Electrical Conductivity for Hg-Based II-VI Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.

  19. Electrically conductive ceramic powders

    NASA Astrophysics Data System (ADS)

    Lu, Yanxia

    1999-11-01

    Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and

  20. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  1. The electrical conductivity during incipient melting in the oceanic low velocity zone

    PubMed Central

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-01-01

    A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219

  2. High-Temperature Switched-Reluctance Electric Motor

    NASA Technical Reports Server (NTRS)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  3. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

    NASA Astrophysics Data System (ADS)

    Schubert, Michael; Leupold, Nico; Exner, Jörg; Kita, Jaroslaw; Moos, Ralf

    2018-04-01

    Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10-12 S/cm before annealing up to 5.6 × 10-13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

  4. The electrical conductivities of candidate beam-waveguide antenna shroud materials

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.

    1994-01-01

    The shroud on the beam-waveguide (BWG) antenna at DSS 13 is made from highly magnetic American Society for Testing and Materials (ASTM) A36 steel. Measurements at 8.42 GHz showed that this material (with paint) has a very poor electrical conductivity that is 600 times worse than aluminum. In cases where the BWG mirrors might be slightly misaligned, unintentional illumination and poor electrical conductivity of the shroud walls can cause system noise temperature to be increased significantly. This potential increase of noise temperature contribution can be reduced through the use of better conductivity materials for the shroud walls. An alternative is to attempt to improve the conductivity of the currently used ASTM A36 steel by means of some type of plating, surface treatment, or high-conductivity paints. This article presents the results of a study made to find improved materials for future shrouds and mirror supports.

  5. Study on a Haptic Sensor Using MCF (Magnetic Compound Fluid) Electric Conductive Rubber

    NASA Astrophysics Data System (ADS)

    Zheng, Yaoyang; Shimada, Kunio

    To provide a new composite material having a high degree of sensitivity regarding both electrical conduction and temperature for the field of robotics or sensing, we have developed magnetic rubber that contains a network-like magnetic cluster. We compared the temperature response of MCF rubber with others rubbers made under various experimental conditions, allowing us to find an optimum condition for making MCF rubber. The temperature response was obtained by an experimental equation. We also compared the electric conductivity of MCF rubber with that of ordinary electric conductive rubber and found that its electric sensitivity was lower at a small deformation, but increased at larger deformations. Therefore, MCF rubber has proven itself effective as a switching sensor when a small deformation is applied.

  6. Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C

    USGS Publications Warehouse

    McCleskey, R. Blaine

    2011-01-01

    The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) mol•kg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.

  7. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  8. Free-standing nanocomposites with high conductivity and extensibility.

    PubMed

    Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H; Kim, Seon Jeong

    2013-04-26

    The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene-polyisoprene-polystyrene having a high electrical conductivity of 3700 S cm(-1) that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices.

  9. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd

    2017-09-01

    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  10. Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.

  11. Techniques for Measuring Solubility and Electrical Conductivity in Molten Salts

    NASA Astrophysics Data System (ADS)

    Su, Shizhao; Villalon, Thomas; Pal, Uday; Powell, Adam

    Eutectic MgF2-CaF2 based salt containing YF3, CaO and Al2O3 additions were used in this study. The electrical conductivity was measured as a function of temperature by a calibration-free coaxial electrode setup. The materials selection and setup design were optimized to accurately measure the electrical conductivity of the highly conductive molten salts (>1 S/cm). The solubility and diffusion behavior of alumina and zirconia in the molten salts were investigated by drawing and holding the molten salt for different lengths of time within capillary tubes made of alumina and zirconia, respectively. After the time-dependent high temperature holds, the samples were cooled and the solubility of the solute within the molten salt was determined using scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis and wavelength-dispersive X-ray spectroscopy analysis.

  12. Electrical Conductivity in Textiles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  13. Correction of temperature and bulk electrical conductivity effects on soil water content measurements using ECH2O EC-5, TE and 5TE sensors

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Ulrike; Huisman, Sander; Vrba, Jan; Vereecken, Harry; Bogena, Heye

    2010-05-01

    For a monitoring of dynamic spatiotemporal soil moisture patterns at the catchment scale, automated and continuously measuring systems that provide spatial coverage and high temporal resolution are needed. Promising techniques like wireless sensor networks (e.g. SoilNet) have to integrate low-cost electromagnetic soil water content sensors [1], [2]. However, the measurement accuracy of such sensors is often deteriorated by effects of temperature and soil bulk electrical conductivity. The objective of this study is to derive and validate correction functions for such temperature and electrical conductivity effects for the ECH2O EC-5, TE and 5TE sensors. We used dielectric liquids with known dielectric properties for two different laboratory experiments. In the first experiment, the temperature of eight reference liquids with permittivity ranging from 7 to 42 was varied from 5 to 40°C. All sensor types showed an underestimation of permittivity for low temperatures and an overestimation for high temperatures. In the second experiment, the conductivity of the reference liquids was increased by adding NaCl. The highest deviations occurred for high permittivity and electrical conductivity between ~0.8 and 1.5 dS/m (underestimation from 8 to 16 permittivity units depending on sensor type). For higher electrical conductivity (2.5 dS/m), the permittivity was overestimated (10 permittivity units for the EC-5 and 7 for the 5TE sensor). Based on these measurements on reference liquids, we derived empirical correction functions that are able to correct thermal and conductivity effects on measured sensor response. These correction functions were validated using three soil samples (coarse sand, silty clay loam and bentonite). For the temperature correction function, the results corresponded better with theoretical predictions after correction for temperature effects on the sensor circuitry. It was also shown that the application of the conductivity correction functions improved

  14. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination ofmore » high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.« less

  15. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  16. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  17. Electric conductivity of high explosives with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rubtsov, I. A.; Pruuel, E. R.; Ten, K. A.; Kashkarov, A. O.; Kremenko, S. I.

    2017-09-01

    The paper presents a technique for introducing carbon nanotubes into high explosives (HEs). For a number of explosives (trinitrotoluene, pentaerythritol tetranitrate, benzotrifuroxan), it was possible to achieve the appearance of conductivity by adding a small amount (up to 1% by mass) of single-walled carbon nanotubes TUBALL COATE H2O (CNTs) produced by OCSiAl. Thus it is possible to reduce the sensitivity of explosives to static electricity by adding an insignificant part of conductive nanotubes. This will increase safety of HEs during production and application and will reduce the number of accidents.

  18. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  19. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  20. Electrical characterization of glass, teflon, and tantalum capacitors at high temperatures

    NASA Technical Reports Server (NTRS)

    Hammoud, A. N.; Baumann, E. D.; Myers, I. T.; Overton, E.

    1991-01-01

    Dielectric materials and electrical components and devices employed in radiation fields and the space environment are often exposed to elevated temperatures among other things. Therefore, these systems must withstand the high temperature exposure while still providing good electrical and other functional properties. Experiments were carried out to evaluate glass, teflon, and tantalum capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. The DC leakage current measurements were also performed in a temperature range from 20 to 200 C. The obtained results are discussed and conclusions are made concerning the suitability of the capacitors investigated for high temperature applications.

  1. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals

    PubMed Central

    Zhao, Yao; Wei, Jinquan; Vajtai, Robert; Ajayan, Pulickel M.; Barrera, Enrique V.

    2011-01-01

    Creating highly electrically conducting cables from macroscopic aggregates of carbon nanotubes, to replace metallic wires, is still a dream. Here we report the fabrication of iodine-doped, double-walled nanotube cables having electrical resistivity reaching ∼10−7 Ω.m. Due to the low density, their specific conductivity (conductivity/weight) is higher than copper and aluminum and is only just below that of the highest specific conductivity metal, sodium. The cables exhibit high current-carrying capacity of 104∼105 A/cm2 and can be joined together into arbitrary length and diameter, without degradation of their electrical properties. The application of such nanotube cables is demonstrated by partly replacing metal wires in a household light bulb circuit. The conductivity variation as a function of temperature for the cables is five times smaller than that for copper. The high conductivity nanotube cables could find a range of applications, from low dimensional interconnects to transmission lines. PMID:22355602

  2. Temperature-dependent electrical conductivity of soda-lime glass

    NASA Technical Reports Server (NTRS)

    Bunnell, L. Roy; Vertrees, T. H.

    1993-01-01

    The objective of this educational exercise was to demonstrate the difference between the electrical conductivity of metals and ceramics. A list of the equipment and supplies and the procedure for the experiment are presented.

  3. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    PubMed

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  4. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  5. Ohmic Heating of an Electrically Conductive Food Package.

    PubMed

    Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya

    2016-12-01

    Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.

  6. Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.

    2018-01-01

    The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.

  7. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  8. High temperature electrical energy storage: advances, challenges, and frontiers.

    PubMed

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  9. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    NASA Astrophysics Data System (ADS)

    E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi

    2016-07-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.

  10. Highly Conducting Molecular Crystals.

    NASA Astrophysics Data System (ADS)

    Whitehead, Roger James

    Available from UMI in association with The British Library. Requires signed TDF. As the result of a wide ranging effort towards the preparation of new electrically conducting molecular crystals, high quality samples were prepared of the organic radical-ion salt (TMTSF)_2SbCl _2F_4 {bis-tetramethyltetraselenafulvalene-dichlorotetrafluoroantimonate(V) }. A collaborative effort to investigate the electronic and structural properties of this material has yielded the necessary depth of information required to give a satisfactory understanding of its rather complicated behaviour. The combination of x-ray structural studies with d.c. transport, reflectance and magnetic measurements has served to underline the importance of crystalline perfection, electronic dimensionality and conduction electron correlation in determining the materials overall behaviour. This thesis describes the method of preparation and characterization of (TMTSF)_2SbCl _2F_4 and the experimental arrangements used to determine the temperature dependence of its ambient pressure electrical conductivity, thermopower and electron spin resonance spectra. The crystal structure and optical reflectance measurements at room temperature are also presented. The results into a study of the low temperature diffraction pattern are described along with the temperature dependence in the static magnetic susceptibility and in the conductivity behaviour under elevated hydrostatic pressures. These findings are rationalized by reference to other materials which show similar behaviour in their electronic and/or structural properties, and also to the various theoretical models currently enjoying favour.

  11. Rapidly curable electrically conductive clear coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  12. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jason; Yu, Wensong; Sun, Pengwei

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling andmore » simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.« less

  13. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.

  14. Electrical conductivity of SiO2 at extreme conditions and planetary dynamos

    PubMed Central

    Scipioni, Roberto; Stixrude, Lars; Desjarlais, Michael P.

    2017-01-01

    Ab intio molecular dynamics simulations show that the electrical conductivity of liquid SiO2 is semimetallic at the conditions of the deep molten mantle of early Earth and super-Earths, raising the possibility of silicate dynamos in these bodies. Whereas the electrical conductivity increases uniformly with increasing temperature, it depends nonmonotonically on compression. At very high pressure, the electrical conductivity decreases on compression, opposite to the behavior of many materials. We show that this behavior is caused by a novel compression mechanism: the development of broken charge ordering, and its influence on the electronic band gap. PMID:28784773

  15. Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojo, Gen; Shono, Yohei; Ushiyama, Hiroshi

    The proton-conducting properties of lanthanum tungstates (LWOs) with high La/W ratios were investigated using electrochemical measurements and quantum chemical calculations. Single phases of LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized by high-temperature sintering at around 1700 °C. The electrical conductivity of LWO increased with increasing La/W ratio in the single-phase region. The LWO synthesized at the optimum sintering temperature and time, and with the optimum La/W ratio gave the maximum conductivity, i.e., 2.7×10{sup −3} S cm{sup −1} with La/W=6.7 at 500 °C. Density functional theory calculations, using the nudged elastic band method, were performed to investigate the proton diffusionmore » barrier. The results suggest that the proton diffusion paths around La sites have the lowest proton diffusion barrier. These findings improve our understanding of LWO synthesis and the proton-conducting mechanism and provide a strategy for improving proton conduction in LWOs. - Graphical abstract: The LWOs with high La/W ratios were synthesized for the first time. The optimum La/W ratio gave the maximum conductivity with La/W=6.7 at 500 °C. The proton diffusion paths were also considered with density functional theory calculations. - Highlights: • The proton-conducting properties of lanthanum tungstates (LWOs) were investigated. • Single phase LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized successfully. • LWOs with the high La/W ratios showed high proton conductivity. • The DFT calculation suggested the lowest proton diffusion barrier in the path around La sites.« less

  16. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  17. Effect of Samarium Oxide on the Electrical Conductivity of Plasma-Sprayed SOFC Anodes

    NASA Astrophysics Data System (ADS)

    Panahi, S. N.; Samadi, H.; Nemati, A.

    2016-10-01

    Solid oxide fuel cells (SOFCs) are rapidly becoming recognized as a new alternative to traditional energy conversion systems because of their high energy efficiency. From an ecological perspective, this environmentally friendly technology, which produces clean energy, is likely to be implemented more frequently in the future. However, the current SOFC technology still cannot meet the demands of commercial applications due to temperature constraints and high cost. To develop a marketable SOFC, suppliers have tended to reduce the operating temperatures by a few hundred degrees. The overall trend for SOFC materials is to reduce their service temperature of electrolyte. Meanwhile, it is important that the other components perform at the same temperature. Currently, the anodes of SOFCs are being studied in depth. Research has indicated that anodes based on a perovskite structure are a more promising candidate in SOFCs than the traditional system because they possess more favorable electrical properties. Among the perovskite-type oxides, SrTiO3 is one of the most promising compositions, with studies demonstrating that SrTiO3 exhibits particularly favorable electrical properties in contrast with other perovskite-type oxides. The main purpose of this article is to describe our study of the effect of rare-earth dopants with a perovskite structure on the electrical behavior of anodes in SOFCs. Sm2O3-doped SrTiO3 synthesized by a solid-state reaction was coated on substrate by atmospheric plasma spray. To compare the effect of the dopant on the electrical conductivity of strontium titanate, different concentrations of Sm2O3 were used. The samples were then investigated by x-ray diffraction, four-point probe at various temperatures (to determine the electrical conductivity), and a scanning electron microscope. The study showed that at room temperature, nondoped samples have a higher electrical resistance than doped samples. As the temperature was increased, the electrical

  18. A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay

    NASA Astrophysics Data System (ADS)

    Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.

    2016-05-01

    For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.

  19. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    PubMed Central

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470

  20. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.

    PubMed

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-28

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  1. Electrical conduction hysteresis in carbon black-filled butyl rubber compounds

    NASA Astrophysics Data System (ADS)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-04-01

    Temperature and concentration dependence of electrical resistance of butyl rubber filled with GPF carbon black was carried out. Current-voltage (I-V) characteristics at room-temperature were also investigated. The I-V characteristics show that the behavior is linear at small voltages up to approximately 0.15 V and currents up to 0.05 mA indicating that the conduction mechanism was probably due to electron tunneling from the end of conductive path to the other one under the action of the applied electric field. At higher voltages, a nonlinear behavior was noticed. The nonlinearity was attributed to the joule heating effects. Electrical resistance of the butyl/GPF composites was measured as a function of temperature during heating and cooling cycles from 300 K and upward to a specific temperature. When the specimens were heated up, the resistance was observed to increase continuously with the rise of temperature. However, when the samples were cooled down, the resistance was observed to decrease following a different path. The presence of conduction hysteresis behavior in the resistance-temperature curves during the heating and cooling cycles was then verified. The electrical conduction of the composite system is supposed to follow an activation conduction mechanism. Activation energy was calculated at different filler concentrations for both the heating and cooling processes.

  2. Electrical Conductivity Of Diamond Up To 1,200 Degrees C

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, Leslie D.

    1993-01-01

    Report discusses measurements of electrical conductivities of two synthetic diamond films, three synthetic diamondlike films, and two natural type IIa diamonds at temperatures from ambient to 1,200 degrees C. Measurements performed to compare electrical conductivities of state-of-the-art diamond films with those of natural insulating diamond, particularly at temperatures above 700 degrees C.

  3. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1999-01-01

    An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle re-entry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800 degrees Fahrenheit. The environmental pressure was varied from 0.0001 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of Saffil, Q-Fiber felt, Cerachrome, and three multi-layer insulation configurations were measured.

  4. Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.

    2003-01-01

    Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.

  5. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  6. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.

    PubMed

    Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe

    2016-09-07

    Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

  7. Electrical and thermal conductivity of Fe-C alloy at high pressure: implications for effects of carbon on the geodynamo of the Earth's core

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Lin, J. F.; Liu, Y.; Feng, S.; Jin, C.; Yoshino, T.

    2017-12-01

    Thermal conductivity of iron alloy in the Earth's core plays a crucial role in constraining the energetics of the geodynamo and the thermal evolution of the planet. Studies on the thermal conductivity of iron reveal the importance of the effects of light elements and high temperature. Carbon has been proposed to be a candidate light element in Earth's core for its meteoritic abundance and high-pressure velocity-density profiles of iron carbides (e.g., Fe7C3). In this study, we employed four-probe van der Pauw method in a diamond anvil cell to measure the electrical resistivity of pure iron, iron carbon alloy, and iron carbides at high pressures. These studies were complimented with synchrotron X-ray diffraction and focused ion beam (FIB) analyses. Our results show significant changes in the electrical conductivity of these iron-carbon alloys that are consistent previous reports with structural and electronic transitions at high pressures, indicating that these transitions should be taken into account in evaluating the electrical and thermal conductivity at high pressure. To apply our results to understand the thermal conduction in the Earth's core, we have compared our results with literature values for the electrical and thermal conductivity of iron alloyed with light elements (C, Si) at high pressures. These comparisons permit the validity of the Wiedemann-Franz law and Matthiessen's rule for the effects of light elements on the thermal conductivity of the Earth's core. We found that an addition of a light element such as carbon has an strong effect on the reducing the thermal conductivity of Earth's core, but the magnitude of the alloying effect strongly depends on the identity of the light element and the crystal and electronic structures. Based on our results and literature values, we have modelled the electrical and thermal conductivity of iron-carbon alloy at Earth's core pressure-temperature conditions to the effects on the heat flux in the Earth's core. In

  8. New high-strength, high-conductivity Cu-Ag alloy sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Inoue, K.; Maeda, H.

    1995-04-01

    A sheet-conductor fabrication method has been developed for Cu-Ag alloys containing 6--24 wt% Ag in which high-strength and high-conductivity are obtained by coldworking combined with intermediate heat treatments. The intermediate heat treatments were repeated three times at 400--450 C for 1--2 h at appropriate stages of cold-rolling. The optimized Cu-24 wt% Ag alloy sheet with a 96% reduction ratio shows an ultimate tensile strength of 1,050 MPa and an electrical conductivity of 75% IACS at room temperature. Anisotropy in the strength with respect to the rolling direction is less than 10%, and no anisotropy in the electrical conductivity occurs. Themore » authors demonstrated the ability to manufacture the Cu-Ag sheets for Bitter magnet on a commercial basis. The sheets fabricated by this method are promising as conductors for high-field Bitter magnet coils.« less

  9. Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine

    NASA Astrophysics Data System (ADS)

    Karato, Shun-ichiro

    2015-11-01

    Nominally anhydrous minerals such as olivine dissolve hydrogen in a variety of forms including free (or interstitial) proton (Hrad) and two protons trapped at the M-site ((2 H)M×). The strength of chemical bonding between protons and the surrounding atoms are different among different species, and consequently protons belonging to different species likely have different mobility (diffusion coefficients). I discuss the role of diffusion of protons in different species in the isotope exchange and hydrogen-assisted electrical conductivity adding a few notes to the previous work by Karato (2013) including a new way to test the model. I conclude that in the case of isotope exchange, the interaction among these species is strong because diffusion is heterogeneous, whereas there is no strong interaction among different species in electrical conduction where diffusion is homogeneous (in an infinite crystal). Consequently, the slowest diffusing species controls the rate of isotope exchange, whereas the fastest diffusing species controls electrical conductivity leading to a different temperature dependence of activation energy and anisotropy. This model explains the differences in the activation energy and anisotropy between isotope diffusion and electrical conductivity, and predicts that the mechanism of electrical conductivity changes with temperature providing an explanation for most of the discrepancies among different experimental observations at different temperatures except for those by Poe et al. (2010) who reported anomalously high water content dependence and highly anisotropic activation energy. When the results obtained at high temperatures are used, most of the geophysically observed high and highly anisotropic electrical conductivity in the asthenosphere can be explained without invoking partial melting.

  10. Electric-field control of conductance in metal quantum point contacts by electric-double-layer gating

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.

    2017-10-01

    An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.

  11. Neutron Diffraction and Electrical Transport Studies on Magnetic Transition in Terbium at High Pressures and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio

    2013-06-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.

  12. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  13. Laboratory-based electrical conductivity at Martian mantle conditions

    NASA Astrophysics Data System (ADS)

    Verhoeven, Olivier; Vacher, Pierre

    2016-12-01

    Information on temperature and composition of planetary mantles can be obtained from electrical conductivity profiles derived from induced magnetic field analysis. This requires a modeling of the conductivity for each mineral phase at conditions relevant to planetary interiors. Interpretation of iron-rich Martian mantle conductivity profile therefore requires a careful modeling of the conductivity of iron-bearing minerals. In this paper, we show that conduction mechanism called small polaron is the dominant conduction mechanism at temperature, water and iron content conditions relevant to Mars mantle. We then review the different measurements performed on mineral phases with various iron content. We show that, for all measurements of mineral conductivity reported so far, the effect of iron content on the activation energy governing the exponential decrease in the Arrhenius law can be modeled as the cubic square root of the iron content. We recast all laboratory results on a common generalized Arrhenius law for iron-bearing minerals, anchored on Earth's mantle values. We then use this modeling to compute a new synthetic profile of Martian mantle electrical conductivity. This new profile matches perfectly, in the depth range [100,1000] km, the electrical conductivity profile recently derived from the study of Mars Global Surveyor magnetic field measurements.

  14. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.

    2014-04-01

    We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon

  15. High thermal conductivity connector having high electrical isolation

    DOEpatents

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  16. The electrical conductivity of in vivo human uterine fibroids.

    PubMed

    DeLonzor, Russ; Spero, Richard K; Williams, Joseph J

    2011-01-01

    The purpose of this study was to determine the value of electrical conductivity that can be used for numerical modelling in vivo radiofrequency ablation (RFA) treatments of human uterine fibroids. No experimental electrical conductivity data have previously been reported for human uterine fibroids. In this study electrical data (voltage) from selected in vivo clinical procedures on human uterine fibroids were used to numerically model the treatments. Measured versus calculated power dissipation profiles were compared to determine uterine fibroid electrical conductivity. Numerical simulations were conducted utilising a wide range of values for tissue thermal conductivity, heat capacity and blood perfusion coefficient. The simulations demonstrated that power dissipation was insensitive to the exact values of these parameters for the simulated geometry, treatment duration, and power level. Consequently, it was possible to determine tissue electrical conductivity without precise knowledge of the values for these parameters. Results of this study showed that an electrical conductivity for uterine fibroids of 0.305 S/m at 37°C and a temperature coefficient of 0.2%/°C can be used for modelling Radio Frequency Ablation of human uterine fibroids at a frequency of 460 kHz for temperatures from 37°C to 100°C.

  17. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.

    PubMed

    Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N

    2005-05-01

    This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result

  18. Effect of temperature on the electric breakdown strength of dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Hualing; Sheng, Junjie; Zhang, Junshi; Wang, Yongquan; Jia, Shuhai

    2014-03-01

    DE (dielectric elastomer) is one of the most promising artificial muscle materials for its large strain over 100% under driving voltage. However, to date, dielectric elastomer actuators (DEAs) are prone to failure due to the temperature-dependent electric breakdown. Previously studies had shown that the electrical breakdown strength was mainly related to the temperature-dependent elasticity modulus and the permittivity of dielectric substances. This paper investigated the influence of ambient temperature on the electric breakdown strength of DE membranes (VHB4910 3M). The electric breakdown experiment of the DE membrane was conducted at different ambient temperatures and pre-stretch levels. The real breakdown strength was obtained by measuring the deformation and the breakdown voltage simultaneously. Then, we found that with the increase of the environment temperature, the electric breakdown strength decreased obviously. Contrarily, the high pre-stretch level led to the large electric breakdown strength. What is more, we found that the deformations of DEs were strongly dependent on the ambient temperature.

  19. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures

    NASA Astrophysics Data System (ADS)

    Schmidt, V. H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.

  20. Transport properties of olivine grain boundaries from electrical conductivity experiments

    NASA Astrophysics Data System (ADS)

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  1. Electrical properties of materials for high temperature strain gage applications

    NASA Technical Reports Server (NTRS)

    Brittain, John O.

    1989-01-01

    A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.

  2. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.

    PubMed

    Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  3. Development of electrically conductive-superoleophobic micropillars for reducing surface adhesion of oil at low temperatures

    NASA Astrophysics Data System (ADS)

    Pan, Zihe; Wang, Tianchang; Zhou, Yikang; Zhao, Boxin

    2016-12-01

    Electrically conductive and superoleophobic micropillars have been developed through the construction of biomimetic micropillars using Ag-filled epoxy composites and the incorporation of FDTS on the micropillar surface. These micropillars are found to be superoleophobic with an oil contact angle of 140°, demonstrating excellent self-cleaning properties. The conductivity of micropillars allows for the Joule-heating effect to actively reduce the adhesion and even unfreeze the frozen oil droplets by passing electrical current. Electrical resistance of the composite micropillars was modulated by two orders of magnitudes by varying the contents of Ag flakes from 45 wt% to 65 wt%. The effectiveness of conductive micropillars for surface un-freezing was investigated by applying DC current to decrease the adhesion strength of frozen oil droplets on surfaces. The results showed a pronounced reduction of frozen oil adhesion force by 60% when the resistance increased from 7.5 Ω to 877 Ω after applying DC current for 2 min. By continuously applying DC current for 3 min, the frozen oil adhesion decreased to 0.05 N, reaching zero when the surface was heated up to -10 °C after applying DC current for 5 min. In contrast, when the droplet was heated up to -5 °C by hot air, there is still a substantial force of adhesion. The research findings demonstrate the use of constructing conductive-superoleophobic composite micropillars at surface for eliminating the frozen oil from surfaces at low temperatures.

  4. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  5. Electrically conductive material

    DOEpatents

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  6. Electrically conductive material

    DOEpatents

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  7. Transient Torque Technique for Viscosity and Electrical Conductivity Determination of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.

  8. A promising structure for fabricating high strength and high electrical conductivity copper alloys

    PubMed Central

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-01-01

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application. PMID:26856764

  9. Maximum on the Electrical Conductivity Polytherm of Molten TeCl4

    NASA Astrophysics Data System (ADS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2017-05-01

    The electrical conductivity of molten TeCl4 was measured up to 761K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl4 electrical conductivity polytherm has a maximum. It was recorded at 705K (κmax=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  10. Electrical conductivity of H2O-NaCl fluids to 10 kbar

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Keppler, H.

    2016-12-01

    Magnetotelluric studies often reveal zones of elevated electrical conductivity in the mantle wedge above subducting slabs, in the deep crust below fold belts, or below active volcanoes. Since both aqueous fluids and hydrous silivate melts may be highly conductive, they may both account for these observations. Distinguishing between these two posssibilities, however, is difficult. One reason for this problem is that while there are very good conductivity data for silicate melts, such data do not exist for aqueous fluids under the relevant conditions of pressure, temperature and solute concentration. Most crustal and mantle fluids likely contain some NaCl, which greatly enhances conductivity due to its partial dissociation into Na+ and Cl-. We therefore studied the electrical conductivity of 0.01, 0.1 and 1 m NaCl solutions in water to 10 kbar and 600 °C. The measurements were carried out in externally-heated diamond cells containing two gaskets separated by an insulating ring of diamond, following a method described by Ni et al. (2014). The two gaskets were used as electrodes and full impedance spectra were measured from 30 Hz to 10 MHz using a Solartron 1260 impedance analyzer. Electrical conductivity was generally found to increase with pressure temperature, and fluid density. The conductivity increase observed upon variation of NaCl concentration from 0.1m to 1m was smaller than from 0.01m to 0.1m, which reflects the reduced degree of dissociation at high NaCl concentration. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O-NaCl fluids may enhance electrical conductivities with little disturbance of vp or vp/vs ratios.

  11. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, Gene H.; Smith, James L.; Sim, James W.

    1986-01-01

    A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  12. Method for electrically isolating an electrically conductive member from another such member

    DOEpatents

    Tsang, K.L.; Chen, Y.

    1984-02-09

    The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.

  13. High Electrical Conductivity of Single Metal-Organic Chains.

    PubMed

    Ares, Pablo; Amo-Ochoa, Pilar; Soler, José M; Palacios, Juan José; Gómez-Herrero, Julio; Zamora, Félix

    2018-05-01

    Molecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal-organic polymers are quasi-1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands. They are excellent electrical conductors as bulk macroscopic crystals and as nanoribbons. However, according to theoretical calculations, the electrical conductance found in the experiments should be even higher. Here, a novel and simple drop-casting procedure to isolate bundles of few to single MMX chains is demonstrated. Furthermore, an exponential dependence of the electrical resistance of one or two MMX chains as a function of their length that does not agree with predictions based on their theoretical band structure is reported. This dependence is attributed to strong Anderson localization originated by structural defects. Theoretical modeling confirms that the current is limited by structural defects, mainly vacancies of iodine atoms, through which the current is constrained to flow. Nevertheless, measurable electrical transport along distances beyond 250 nm surpasses that of all other molecular wires reported so far. This work places in perspective the role of defects in 1D wires and their importance for molecular electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Novel experimental design for high pressure-high temperature electrical resistance measurements in a "Paris-Edinburgh" large volume press.

    PubMed

    Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron

    2015-04-01

    We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.

  15. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  16. Electrical conductivity of hydrous andesitic melts pertinent to subduction zones

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Li, Bin; Ni, Huaiwei; Mao, Zhu

    2017-03-01

    Andesitic magmatism and rocks are widespread at convergent plate boundaries. Electrically conductive bodies beneath subduction zone arc volcanoes, such as the Uturuncu Volcano, Bolivia, may correspond to active reservoirs of H2O-bearing andesitic magma. Laboratory measurements of electrical conductivity of hydrous andesitic melts are required to constrain the physicochemical conditions of these magma reservoirs in combination with magnetotelluric data. This experimental study investigates electrical conductivity of andesitic melts with 0.01-5.9 wt % of H2O at 1164-1573 K and 0.5-1.0 GPa in a piston cylinder apparatus using sweeping-frequency impedance spectroscopy. Electrical conductivity of andesitic melt increases with increasing temperature and H2O concentration but decreases with pressure. Across the investigated range of H2O concentration, electrical conductivity varies by 1.2-2.4 log units, indicating stronger influence of H2O for andesitic melt than for rhyolitic and dacitic melts. Using the Nernst-Einstein equation, the principal charge carrier is inferred to be Na in anhydrous melt but divalent cations in hydrous andesitic melts. The experimental data are regressed into a general electrical conductivity model for andesitic melt accounting for the pressure-temperature-H2O dependences altogether. Modeling results show that the conductive layer at >20 km depths beneath the surface of the Uturuncu Volcano could be interpreted by the presence of less than 20 vol % of H2O-rich andesitic melt (with 6-9 wt % H2O).

  17. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, G.H.; Smith, J.L.; Sim, J.W.

    1983-11-10

    This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  18. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  19. Electrical conduction and thermoelectric properties of perovskite-type BaBi1-xSbxO3

    NASA Astrophysics Data System (ADS)

    Yasukawa, Masahiro; Shiga, Yuta; Kono, Toshio

    2012-06-01

    To elucidate the thermoelectric properties at high temperatures, the electrical conductivity and Seebeck coefficient were measured at temperatures between 423 K and 973 K for perovskite-type ceramics of BaBi1-xSbxO3 solid solutions with x=0.0-0.5. All the ceramics exhibit p-type semiconducting behaviors and electrical conduction is attributed to hopping of small polaronic holes localized on the pentavalent cations. Substitution of Bi with Sb causes the electrical conductivity σ and cell volume to decrease, but the Seebeck coefficient S to increase, suggesting that the Sb atoms are doped as Sb5+ and replace Bi5+, reducing 6s holes conduction from Bi5+(6s0) to Bi3+ (6s2). The thermoelectric power factor S2σ has values of 6×10-8-3×10-5 W m-1 K-2 in the measured temperature range, and is maximized for an Sb-undoped BaBiO3-δ, but decreases upon Sb doping due to the decreased σ values.

  20. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  1. A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity

    PubMed Central

    Skierucha, Wojciech; Wilczek, Andrzej; Szypłowska, Agnieszka; Sławiński, Cezary; Lamorski, Krzysztof

    2012-01-01

    Elements of design and a field application of a TDR-based soil moisture and electrical conductivity monitoring system are described with detailed presentation of the time delay units with a resolution of 10 ps. Other issues discussed include the temperature correction of the applied time delay units, battery supply characteristics and the measurement results from one of the installed ground measurement stations in the Polesie National Park in Poland. PMID:23202009

  2. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  3. Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.

    PubMed

    Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong

    2017-07-19

    We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.

  4. Electrical conductivity structure of the mantle derived from inversion of geomagnetic observatory data: implications for lateral variations in temperature, composition and water content.

    NASA Astrophysics Data System (ADS)

    Munch, Federico; Grayver, Alexander; Khan, Amir; Kuvshinov, Alexey

    2017-04-01

    As most of Earth's interior remains geochemically unsampled, geophysical techniques based on seismology, geodesy, gravimetry, and electromagnetic studies play prominent roles because of their ability to sense structure at depth. Although seismic tomography maps show a variety of structures, separating thermal and compositional contributions from seismic velocities alone still remains a challenging task. Alternatively, as electrical conductivity is sensitive to temperature, chemical composition, oxygen fugacity, water content, and the presence of melt, it can serve for determining chemistry, mineralogy, and physical structure of the deep mantle. In this work we estimate and invert local C-responses (period range 3-100 days) for a number of worldwide geomagnetic observatories to map lateral variations of electrical conductivity in Earth's mantle (400-1600 km depth). The obtained conductivity profiles are interpreted in terms of basalt fraction in a basalt-harzburgite mixture, temperature structure, and water content variations. Interpretation is based on a self-consistent thermodynamic calculation of mineral phase equilibria, electrical conductivity databases, and probabilistic inverse methods.

  5. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  6. Synthesis and characterization of electrical conducting porous carbon structures based on resorcinol-formaldehyde

    NASA Astrophysics Data System (ADS)

    Najeh, I.; Ben Mansour, N.; Mbarki, M.; Houas, A.; Nogier, J. Ph.; El Mir, L.

    2009-10-01

    Electrical conducting carbon (ECC) porous structures were explored by changing the pyrolysis temperature of organic xerogel compounds prepared by sol-gel method from resorcinol-formaldehyde (RF) mixtures in acetone using picric acid as catalyst. The effect of this preparation parameter on the structural and electrical properties of the obtained ECCs was studied. The analysis of the obtained results revealed that the polymeric insulating xerogel phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers to move inside the structure with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity of the obtained ECC structures shows a semi-conducting behaviour and the I( V) characteristics present a negative differential resistance. The results obtained from STM micrographs revealed that the obtained ECC structures consist of porous electrical conducting carbon materials.

  7. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  8. Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prasanna, G. D.; Prasad, V. B.; Jayanna, H. S.

    2015-02-01

    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity cRT decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

  9. Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

    NASA Astrophysics Data System (ADS)

    Aneesh Kumar, K. S.; Bhowmik, R. N.

    2017-12-01

    The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10-4-10-12 S cm-1, and unusually high activation energy ~0.17-1.36 eV.

  10. (High temperature flaw assessment procedure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, M.B.

    1990-06-01

    The Electric Power Research Institute (EPRI), the Japanese Central Research Institute of Electric Power Industry (CRIEPI), and the British Nuclear Electric (NE) are conducting joint studies in the field of liquid metal reactor development. The traveler is currently responsible for the EPRI/CRIEPI/NE High-Temperature Flaw Assessment Procedure activities at the Oak Ridge National Laboratory (ORNL). The traveler participated, on behalf of EPRI, in the EPRI/CRIEPI/NE specialist working session, the purpose of which was to produce the interim High-Temperature Flaw Assessment guide. The traveler also led discussions on the High-Temperature Flaw Assessment Procedure Phase 2 program plan, and on the plan formore » a new joint EPRI/CRIEPI/NE study in Inelastic Behavior and Failure Criteria for Modified 9Cr--1Mo Steel. The traveler visited Profs. K. Ikegami, Y. Asada, N. Ohno, T. Inoue, and K. Kaneko at the Tokyo Institute of Technology, the University of Tokyo, Nagoya University, Kyoto University, and Science University of Tokyo, respectively to hold discussions on research advances in the areas of high-temperature fracture mechanics, inelastic material behavior, and constitutive modeling. In addition, the traveler visited Kajima Corp. and Ohbayashi Corp. Technical Research Institute to collect information on research in the area of fiber reinforced concrete.« less

  11. High field conduction in Pb doped amorphous Se-Te system

    NASA Astrophysics Data System (ADS)

    Anjali, Patial, Balbir Singh; Thakur, Nagesh

    2018-05-01

    In the present study, DC conductivity measurements of as-Se80-xTe20Pbx (x = 0, 1 and 2) glassy alloys are made in the temperature range 298-318 K and in the voltage range 0-180 V. Current-voltage (I-V) characteristics point toward ohmic behavior at low electric field and non-ohmic is observed at high electric field. The variation of ln(I/V) against V are nearly found straight curves but slope of these curves does not decrease linearly with temperature indicates that the space charge limited conduction (SCLC) is absent. Instead the linear relation between ln(I) and V1/2 confirms that the conduction is either Poole-Frenkel type or Schottky emission. A detailed analysis shows that the dominant mechanism is Poole-Frenkel type conduction.

  12. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.

    PubMed

    Cheng, Yin; Wang, Ranran; Sun, Jing; Gao, Lian

    2015-04-28

    Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable conductor as an electrical circuit. However, it still remains a challenge to fabricate high-performance (working strain exceeding 200%) stretchable conductors. Here, we present for the first time a facile, cost-effective, and scalable method for manufacturing ultrastretchable composite fibers with a "twining spring" configuration: cotton fibers twining spirally around a polyurethane fiber. The composite fiber possesses a high conductivity up to 4018 S/cm, which remains as high as 688 S/cm at 500% tensile strain. In addition, the conductivity of the composite fiber (initial conductivity of 4018 S/cm) remains perfectly stable after 1000 bending events and levels off at 183 S/cm after 1000 cyclic stretching events of 200% strain. Stretchable LED arrays are integrated efficiently utilizing the composite fibers as a stretchable electric wiring system, demonstrating the potential applications in large-area stretchable electronics. The biocompatibility of the composite fiber is verified, opening up its prospects in the field of implantable devices. Our fabrication strategy is also versatile for the preparation of other specially functionalized composite fibers with superb stretchability.

  13. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  14. Electrical Conductivities of Low-Temperature KCl-ZrCl4 and CsCl-ZrCl4 Molten Mixtures

    NASA Astrophysics Data System (ADS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2018-02-01

    The electrical conductivities of molten KCl-ZrCl4 and CsCl-ZrCl4 mixtures, including their heterogeneous (melt+crystals) ranges, were measured for the first time. The concentration ranges were 65-72 and 66-75 mol.% of ZrCl4, and the temperature ranges were 482-711 and 548-735 K, respectively. The measurements were carried out in cells of an original design.

  15. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    NASA Astrophysics Data System (ADS)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  16. Real-Time Electrical Impedimetric Monitoring of Blood Coagulation Process under Temperature and Hematocrit Variations Conducted in a Microfluidic Chip

    PubMed Central

    Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming

    2013-01-01

    Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity. PMID:24116099

  17. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  18. Systems Characterization of Temperature, Ph and Electrical Conductivity in Aerobic Biodegradation of Wheat Biomass at Differing Mixing Rates

    NASA Technical Reports Server (NTRS)

    Calhoun, M.; Trotman, A.; Aglan, H.

    1998-01-01

    The purpose of this preliminary study is to observe and relate the rate of mixing to pH and electrical conductivity in an aerobic, continuously stirred bioreactor. The objective is to use data collected from successive experiments as a means of a system characterization. Tests were conducted to obtain these data using a continuously stirred 20 L Cytostir glass reaction vessel as a bioreactor operated without built-in temperature or pH control. The tests were conducted on the lab bench at ambient temperatures. The substrate in the bioreactor was ground wheat biomass obtained from the Biomass Production Chamber at NASA Kennedy Space Center. In this study, the data reflect characteristics of the native (uninoculated) systems as well as inoculated systems. In the native systems, it was found that pi levels became stable after approximately 2 to 3 days. The electrical conductivity levels for the native systems tended to decrease over time. In contrast, ion activity was increased after the introduction of bacteria into the system. This could be correlated with the release of nutrients, due to the activity of the bacteria. Also, there were slight increases in pH in the inoculated system, a result which is expected for a system with no active pr controls. The data will be used to test a mathematical model in an automated system.

  19. Electrical conductivity of a methane-air burning plasma under the action of weak electric fields

    NASA Astrophysics Data System (ADS)

    Colonna, G.; Pietanza, L. D.; D'Angola, A.; Laricchiuta, A.; Di Vita, A.

    2017-02-01

    This paper focuses on the calculation of the electrical conductivity of a methane-air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.

  20. Highly thermally conductive and mechanically strong graphene fibers.

    PubMed

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-04

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  1. Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators.

    PubMed

    Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-03-02

    Highly conductive indium zinc oxide (IZO) thin films were successfully fabricated via a self-combustion reaction for application in solution-processed thermoelectric devices. Self-combustion efficiently facilitates the conversion of soluble precursors into metal oxides by lowering the required annealing temperature of oxide films, which leads to considerable enhancement of the electrical conductivity of IZO thin films. Such enhanced electrical conductivity induced by exothermic heat from a combustion reaction consequently yields high performance IZO thermoelectric films. In addition, the effect of the composition ratio of In to Zn precursors on the electrical and thermoelectric properties of the IZO thin films was investigated. IZO thin films with a composition ratio of In:Zn = 6:2 at the low annealing temperature of 350 °C showed an enhanced electrical conductivity, Seebeck coefficient, and power factor of 327 S cm(-1), 50.6 μV K(-1), and 83.8 μW m(-1) K(-2), respectively. Moreover, the IZO thin film prepared at an even lower temperature of 300 °C retained a large power factor of 78.7 μW m(-1) K(-2) with an electrical conductivity of 168 S cm(-1). Using the combustive IZO precursor, a thermoelectric generator consisting of 15 legs was fabricated by a printing process. The thermoelectric array generated a thermoelectric voltage of 4.95 mV at a low temperature difference (5 °C). We suggest that the highly conductive IZO thin films by self-combustion may be utilized for fabricating n-type flexible printed thermoelectric devices.

  2. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

    PubMed

    Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu; Yama, Gary; Kodama, Takashi; Gunji, Marika; Provine, J; Howe, Roger T; Goodson, Kenneth E; Kenny, Thomas W

    2012-02-08

    While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films. © 2012 American Chemical Society

  3. Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring

    USGS Publications Warehouse

    Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.

    2014-01-01

    Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.

  4. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    PubMed Central

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm−1 and a wide withstanding voltage range of ±2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g−1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg−1 at 3 A g−1 and stable cyclability after 7000 cycles from room temperature to 150°C. PMID:25600936

  5. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  6. High-Temperature Hall-Effect Apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R. A.; Chemielewski, A. B.; Parker, J. B.; Zoltan, A.

    1985-01-01

    Compact furnace minimizes thermal gradients and electrical noise. Semiautomatic Hall-effect apparatus takes measurements on refractory semiconductors at temperatures as high as 1,100 degrees C. Intended especially for use with samples of high conductivity and low chargecarrier mobility that exhibit low signal-to-noise ratios, apparatus carefully constructed to avoid spurious electromagnetic and thermoelectric effects that further degrade measurements.

  7. Hydroxyapatite Nanowire-Based All-Weather Flexible Electrically Conductive Paper with Superhydrophobic and Flame-Retardant Properties.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Dong, Li-Ying; Chen, Feng; Lu, Bing-Qiang; Yang, Ri-Long

    2017-11-15

    How to survive under various harsh working conditions is a key challenge for flexible electronic devices because their performances are always susceptible to environments. Herein, we demonstrate the novel design and fabrication of a new kind of the all-weather flexible electrically conductive paper based on ultralong hydroxyapatite nanowires (HNs) with unique combination of the superhydrophobic surface, electrothermal effect, and flame retardancy. The superhydrophobic surface with water repellency stabilizes the electrically conductive performance of the paper in water. For example, the electrical current through the superhydrophobic paper onto which water droplets are deposited shows a little change (0.38%), and the electrical performance is steady as well even when the paper is immersed in water for 120 s (just 3.65% change). In addition, the intrinsic electrothermal effect of the electrically conductive paper can efficiently heat the paper to reach a high temperature, for example, 224.25 °C, within 10 s. The synergistic effect between the electrothermal effect and superhydrophobic surface accelerates the melting and removal of ice on the heated electrically conductive paper. Deicing efficiency of the heated superhydrophobic electrically conductive paper is ∼4.5 times that of the unheated superhydrophobic electrically conductive paper and ∼10.4 times that of the heated superhydrophilic paper. More importantly, benefiting from fire-resistant ultralong HNs, thermally stable Ketjen black, and Si-O backbone of poly(dimethylsiloxane), we demonstrate the stable and continuous service of the as-prepared electrically conductive paper in the flame for as long as 7 min. The electrical performance of the electrically conductive paper after flame treatment can maintain as high as 90.60% of the original value. The rational design of the electrically conductive paper with suitable building materials and structure demonstrated here will give an inspiration for the

  8. Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5

    NASA Astrophysics Data System (ADS)

    Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.

    2018-05-01

    In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.

  9. Fabrication of setup for high temperature thermal conductivity measurement.

    PubMed

    Patel, Ashutosh; Pandey, Sudhir K

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  10. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids

    NASA Astrophysics Data System (ADS)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis

    2015-06-01

    Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.

  11. Evaluation of electrical conductivity of Cu and Al through sub microsecond underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.

    2012-03-01

    Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.

  12. Thermal and Electrical Conductivity Measurements of Cda 510 Phosphor Bronze

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.; DiPirro, M.

    2010-04-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, results vary among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). These harnesses dominate the heat conducted into the JWST instrument stage, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment that measured its electrical and thermal conductivity between 4 and 295 Kelvin.

  13. High temperature conductivity of potassium-beta(double prime)-alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Ryan, M. A.; O'Connor, D.; Kikkert, S.

    1992-01-01

    Potassium beta(double prime)-alumina (BDPA) single crystals have been reported by several groups to leave higher ionic conductivity than sodium BDPA crystals at room temperature, and similar conductivities are obtained at temperatures up to 600-700 K. Potassium BDPA ceramics have been reported to have significantly poorer conductivities than those of sodium BDPA ceramics, but conductivity measurements at temperatures above 625 K have not been reported. In this study, K(+)-BDPA ceramics were prepared from Na(+)-BDPA ceramic using a modified version of the exchange reaction with KCl vapor reported by Crosbie and Tennenhouse (1982), and the conductivity has been measured in K vapor at temperatures up to 1223 K, using the method of Cole et al. (1979). The results indicate reasonable agreement with earlier data on K(+)-BDPA ceramic measured in a liquid K cell, but show that the K(+)-BDPA ceramic's conductivity approaches that of Na(+)-BDPA ceramic at higher temperatures, being within a factor of four at 700 K and 60 percent of the conductivity of Na(+)-BDPA at T over 1000 K. Both four-probe dc conductivity and four probe ac impedance measurements were used to characterize the conductivity. A rather abrupt change in the grain boundary resistance suggesting a possible phase change in the intergranular material, potassium aluminate, is seen in the ac impedance behavior.

  14. Control for monitoring thickness of high temperature refractory

    DOEpatents

    Caines, M.J.

    1982-11-23

    This invention teaches an improved monitoring device for detecting the changes in thickness of high-temperature refractory, the device consists of a probe having at least two electrically conductive generally parallel elements separated by a dielectric material. The probe is implanted or embedded directly in the refractory and is elongated to extend in line with the refractory thickness to be measured. Electrical inputs to the conductive elements provide that either or both the electrical conductance or capacitance can be found, so that charges over lapsed time periods can be compared in order to detect changes in the thickness of the refractory.

  15. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  16. Electrical conduction at domain walls in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy

    2009-03-01

    We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.

  17. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  18. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less

  19. Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire

    DTIC Science & Technology

    2015-06-02

    Methods section. After knowing the geometrical sizes of the films, the electrical resistivity can be calculated . The temper- ature dependent electrical...plane spacing for peaks (111), (220) and (311) are 2.3616 Å, 1.4518 Å and 1.2287 Å respectively. The corresponding lattice constant can be calculated ...21 nm). So the upper limit of the thermal conductivity ( C vl 3ph vκ = /, ) is calculated as 12.3 W/K·m at 36 K. The phonon mean free path should

  20. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    NASA Technical Reports Server (NTRS)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  1. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  2. Electrical conductivity of MgH2 at multiple shock compression

    NASA Astrophysics Data System (ADS)

    Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir

    2011-06-01

    The electrical conductivity of MgH2 has been studied under multishock compression. Earlier we had been experimentally studied metallization possibility of alane at high pressures in conditions quasiisentropic compression up to 100 GPa. A study of thermodynamic properties of MgH2 under multishock compression has been carried out also. High pressures and temperatures were obtained with an explosive device, which accelerates the metallic impactor up to 3 km/s. Identification of the hydride in experiments was made on the basis of calculations of phase trajectories loading a material in the area of existence of polymorphic phases including high-pressure phases of magnesium hydride (α and γ MgH2, hP1 and hP2). It is shown that occurrence of magnesium hydride electrical conductivity occurs in the field of existence of high-pressure hP2 phase This work was partially supported by the Presidium of the Russian Academy of Sciences within the Program of Basic Research ``Thermal Physics and Mechanics of Extreme Energy Effects and Physics of Strongly Compressed Matter and Russian Foundation for Basic Research Grant No. 10-02-01078.''

  3. Investigation of Thermal and Electrical Properties for Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Juwhari, Hassan K.; Abuobaid, Ahmad; Zihlif, Awwad M.; Elimat, Ziad M.

    2017-10-01

    This study addresses the effects of temperature ranging from 300 K to 400 K on thermal ( κ) and electrical ( σ) conductivities, and Lorenz number ( L) for different conductive polymeric composites (CPCs), as tailoring the ratios between both conductivities of the composites can be influential in the design optimization of certain thermo-electronic devices. Both κ and σ were found to have either a linear or a nonlinear (2nd and 3rd degree polynomial function) increasing behavior with increased temperatures, depending on the conduction mechanism occurring in the composite systems studied. Temperature-dependent behavior of L tends to show decreasing trends above 300 K, where at 300 K the highest and the lowest values were found to be 3 × 103 W Ω/K2 for CPCs containing iron particles and 3 × 10-2 W Ω/K2 for CPCs-containing carbon fibers respectively. Overall, temperature-dependent behavior of κ/ σ and L can be controlled by heterogeneous structures produced via mechanical-molding-compression. These structures are mainly responsible for energy-transfer processes or transport properties that take place by electrons and phonons in the CPCs' bulks. Hence, the outcome is considered significant in the development process of high performing materials for the thermo-electronic industry.

  4. Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Merazga, A.; Montaser, A. A.

    2017-03-01

    Lead vanadate glasses of the system (V2O5)_{1-x}(PbO)x with x = 0.4, 0.45, 0.5, 0.55, 0.6 have been prepared by the press-quenching technique. The dc (σ (0)) and ac (σ (ω )) electrical conductivities were measured in the temperature range from 150 to 420 K and the frequency range from 102 to 106 Hz. The electrical properties are shown to be sensitive to composition. The experimental results have been analyzed within the framework of different models. The dc conductivity is found to be proportional to Tp with the exponent p ranging from 8.2 to 9.8, suggesting that the transport is determined by a multi-phonon process of weak electron-lattice coupling. The ac conductivity is explained by the percolation path approximation (PPA). In this model, σ (ω ) is closely related to the σ (0) and fitting the experimental data produces a dielectric relaxation time τ in good agreement with the expected value in both magnitude and temperature dependence.

  5. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    PubMed

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  6. Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani; Juneja, Chetan; Chen, Christina; Kumar, Binod

    Composites of 6 mol% scandia-stabilized zirconia materials (6ScSZ) and nanosize Al 2O 3 powder (0-30 wt.%) were prepared and characterized for electrical conductivity by the ac impedance method at various temperatures ranging from 300 to 950 °C. All the composites characterized showed improved conductivity at higher temperatures compared to the undoped ScSZ. An average conductivity of 0.12 S cm -1 was measured at 850 °C for 6ScSZ + 30 wt.% Al 2O 3 composite samples, an increase in conductivity up to 20% compared to the undoped 6ScSZ specimen at this temperature. Microstructural evaluation using scanning electron microscopy revealed that the ScSZ grain size was relatively unchanged up to 10 wt.% of Al 2O 3 additions. However, the grain size was reduced in samples with higher (20 and 30 wt.%) additions of Al 2O 3. Small grain size, reduced quantity of the 6ScSZ material (only 70%), and improved conductivity makes these ScSZ + 30 wt.% Al 2O 3 composites very attractive as electrolyte materials in view of their collective mechanical and electrical properties and cost requirements. The observed increase in conductivity values with the additions of an insulating Al 2O 3 phase is explained in light of the space charge regions at the 6ScSZ-Al 2O 3 grain boundaries.

  7. Electric field modulated ferromagnetism in ZnO films deposited at room temperature

    NASA Astrophysics Data System (ADS)

    Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan

    2018-04-01

    The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.

  8. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    NASA Astrophysics Data System (ADS)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  9. Lightweight magnesium nanocomposites: electrical conductivity of liquid magnesium doped by CoPd nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, Andriy; Slabon, Adam; Plevachuk, Yuriy; Sklyarchuk, Vasyl; Sokoliuk, Bohdan

    2018-04-01

    The effect of monodisperse bimetallic CoPd NP admixtures on the electrical conductivity of liquid magnesium was studied. Temperature dependence of the electrical conductivity of liquid Mg98(CoPd)2, Mg96(CoPd)4, and Mg92(CoPd)8 alloys was measured in a wide temperature range above the melting point by a four-point method. It was shown that the addition of even small amount of CoPd nanoparticles to liquid Mg has a significant effect on the electrical properties of the melts obtained.

  10. Flexible high-temperature dielectric materials from polymer nanocomposites.

    PubMed

    Li, Qi; Chen, Lei; Gadinski, Matthew R; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Iagodkine, Elissei; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing

    2015-07-30

    Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

  11. Flexible high-temperature dielectric materials from polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Qi; Chen, Lei; Gadinski, Matthew R.; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing

    2015-07-01

    Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

  12. High voltage-derived enhancement of electric conduction in nanogap devices for detection of prostate-specific antigen

    NASA Astrophysics Data System (ADS)

    Park, Hyung Ju; Chi, Young Shik; Choi, Insung S.; Yun, Wan Soo

    2010-07-01

    We report a simple method of enhancing electric conductance in nanogap devices without any additional treatments, such as silver-enhancing process. The low electric conductance after selective immobilization of biofunctionalized gold nanoparticles in the gap region was greatly enhanced by repeated I-V scans at relatively high voltage ranges of -5 to 5 V, which was attributed to the formation of a new conduction pathway across the gap. The higher conduction state of the nanogap device showed a very stable I-V curve, which was used as an excellent measure of the existence of prostate-specific antigen.

  13. Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D.; Krasik, Ya. E.

    2011-09-15

    Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecondmore » timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.« less

  14. Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.

    NASA Astrophysics Data System (ADS)

    Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng

    To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).

  15. Advanced Capacitor with SiC for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Tsao, B. H.; Ramalingam, M. L.; Bhattacharya, R. S.; Carr, Sandra Fries

    1994-07-01

    An advanced capacitor using SiC as the dielectric material has been developed for high temperature, high power, and high density electronic components for aircraft and aerospace application. The conventional capacitor consists of a large number of metallized polysulfone films that are arranged in parallel and enclosed in a sealed metal case. However, problems with electrical failure, thermal failure, and dielectric flow were experienced by Air Force suppliers for the component and subsystem for lack of suitable properties of the dielectric material. The high breakdown electrical field, high thermal conductivity, and high temperature operational resistance of SiC compared to similar properties of the conventional ceramic and polymer capacitor would make it a better choice for a high temperature, and high power capacitor. The quality of the SiC film was evaluated. The electrical parameters, such as the capacitance, dissipation factor, equivalent series resistance, and dielectric withstand voltage, were evaluated. The prototypical capacitors are currently being fabricated using SiC film.

  16. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

  17. Electrical conductivity and morphology of electrochemical synthesized polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Yesappa, L.; Vijeth, H.; Niranjana, M.; Devendrappa, H.

    2018-05-01

    Polyaniline (PANI) and Polyaniline/CuO nanocomposite have been synthesized by using electrochemical deposition method. The composite was characterized using Fourier transform infra-red spectroscopy (FT-IR) to confirm the chemical interaction changes, micro structural morphology was done by Field Emission Scanning Electronic Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constant and AC conductivity are found to increases with increase in temperature range (303 to 393K), these results shows enhancement in electrical conductivity due to effect of nanocomposite.

  18. Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping

    NASA Astrophysics Data System (ADS)

    Torres Arango, Maria A.

    Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO

  19. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure

    PubMed Central

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-01-01

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479

  20. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.

    PubMed

    Neal, Robert E; Garcia, Paulo A; Robertson, John L; Davalos, Rafael V

    2012-04-01

    Irreversible electroporation is a new technique to kill cells in targeted tissue, such as tumors, through a nonthermal mechanism using electric pulses to irrecoverably disrupt the cell membrane. Treatment effects relate to the tissue electric field distribution, which can be predicted with numerical modeling for therapy planning. Pulse effects will change the cell and tissue properties through thermal and electroporation (EP)-based processes. This investigation characterizes these changes by measuring the electrical conductivity and temperature of ex vivo renal porcine tissue within a single pulse and for a 200 pulse protocol. These changes are incorporated into an equivalent circuit model for cells and tissue with a variable EP-based resistance, providing a potential method to estimate conductivity as a function of electric field and pulse length for other tissues. Finally, a numerical model using a human kidney volumetric mesh evaluated how treatment predictions vary when EP- and temperature-based electrical conductivity changes are incorporated. We conclude that significant changes in predicted outcomes will occur when the experimental results are applied to the numerical model, where the direction and degree of change varies with the electric field considered.

  1. Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.

    PubMed

    Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2018-09-01

    This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.

    2009-04-01

    We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.

  3. Electrical and thermal conductance quantization in nanostructures

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2008-10-01

    In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.

  4. Concentration and Mobility of Electrically-Conducting Defects in Olivine

    NASA Astrophysics Data System (ADS)

    Constable, S.; Roberts, J.; Duba, A.

    2002-12-01

    We have collected measurements of electrical conductivity and thermopower as a function of temperature and oxygen fugacity (f O2) on a sample of San Quintin dunite (95% olivine), and measurements of electrical conductivity equilibration after changes in f O2 on Mt.Porndon lherzolite (65% olivine). Both data sets have been analysed using nonlinear parameter inversion of mathematical models relating conductivity, thermopower, and diffusion kinetics to temperature, f O2, time, and defect concentration and mobility. From the dunite thermopower/conductivity data we are able to estimate the concentration and mobilities of electrically conducting defects. Our model allows electrons, small polarons (Fe+++ on Fe++ sites), and magnesium vacancies (V'' Mg) to contribute to conduction, but only polarons and V'' Mg are required by our data. Polarons dominate conduction below 1300°~C; at this temperature conduction, is equal for the two defects at all f O2 tested. Thermopower measurements allow us to estimate defect concentration independently from mobility, and so we can back out polaron mobility as 12.2x 10-6 exp(-1.05~eV/kT) m2V-1s-1 and magnesium vacancy mobility as 2.72x 10-6 exp(-1.09~eV/kT) m2V-1s-1. Electrical conductivity of the lherzolite, measured as a function of time after changes in the oxygen fugacity of the surrounding CO2/CO atmosphere, is used to infer the diffusivity of the point defects associated with the oxidation reactions. An observed f O2 dependence in the time constants associated with equilibration implies two species of fixed diffusivity, each with f O2-dependent concentrations. Although the rate-limiting step may not necessarily be associated with conducting defects, when time constants are converted to mobilities, the magnitudes and activation energies agree extremely well with the model presented above for the dunite, after one free parameter (effective grain size) is fit at a plausible 1.6~mm diameter. Not only does this study represent one of

  5. High temperature electrical properties study of Sr{sub 2}(Fe,Ti)O{sub 6} double perovskite materials using impedance spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triyono, D., E-mail: djoko.triyono@sci.ui.ac.id; Laysandra, Heidi

    2016-04-19

    The structure, thermal, and electrical properties of double perovskite material Sr{sub 2}(Fe,Ti)O{sub 6} at high temperature have been studied. This material was synthesized by a solid state reaction method. X-ray diffraction characterization at room temperature for all samples shows a single phase and having a structure of cubic double perovskite with Pm3m space group. The variation of Fe and Ti atoms are seen in an increasing of lattice parameter and grain size which is found between 30 nm and 80 nm. The electrical properties as a function of temperature and frequency are characterized by using RLC-meter with impedance spectroscopy method. The impedancemore » data are presented in Nyquist and Bode plot resulting in the equivalent circuit and its parameters. The equivalent circuit shows the effect of grain and grain boundary in the electrical properties of materials. DC conductivity of Sr{sub 2}(Fe,Ti)O{sub 6} as a function of temperature was explained by using Arrhenius equation. The value of the activation energy which is evaluated from dc conductivity as a function of temperature shows the effect of grain and grain boundary. The activation energy exhibits of oxygen vacancy in Sr{sub 2}(Fe,Ti)O{sub 6} which is also supported by morphology of Sr{sub 2}(Fe,Ti)O{sub 6} is characterized by field emission scanning electron microscopy (FESEM).« less

  6. Density, Electrical Conductivity and Viscosity of Hg(sub 0.8)Cd(sub 0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt were measures as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(sub 0.2)Te melt as the temperature was decreased to below 1090 K.

  7. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  8. Electrical and magnetic properties of conductive Cu-based coated conductors

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.

    2003-11-01

    The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.

  9. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  10. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  11. Electrical Conductivity of Ferritin Proteins by Conductive AFM

    NASA Technical Reports Server (NTRS)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2005-01-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.

  12. Contact-independent electrical conductance measurement

    DOEpatents

    Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat

    2017-01-24

    Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.

  13. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg [East Lansing, MI; Fischer, Anne [Arlington, VA; Bennett, Jason [Lansing, MI; Lowe, Michael [Holt, MI

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  14. Polymers that Conduct Electricity.

    ERIC Educational Resources Information Center

    Edelson, Edward

    1983-01-01

    Although polymers are regarded as electrical insulators, it was discovered that they can be made to conduct electricity. This discovery has opened vast new practical and theoretical areas for exploration by physicists and chemists. Research studies with these conducting polymers and charge-transfer salts as well as possible applications are…

  15. High-Temperature Thermal Conductivity Measurement Apparatus Based on Guarded Hot Plate Method

    NASA Astrophysics Data System (ADS)

    Turzo-Andras, E.; Magyarlaki, T.

    2017-10-01

    An alternative calibration procedure has been applied using apparatus built in-house, created to optimize thermal conductivity measurements. The new approach compared to those of usual measurement procedures of thermal conductivity by guarded hot plate (GHP) consists of modified design of the apparatus, modified position of the temperature sensors and new conception in the calculation method, applying the temperature at the inlet section of the specimen instead of the temperature difference across the specimen. This alternative technique is suitable for eliminating the effect of thermal contact resistance arising between a rigid specimen and the heated plate, as well as accurate determination of the specimen temperature and of the heat loss at the lateral edge of the specimen. This paper presents an overview of the specific characteristics of the newly developed "high-temperature thermal conductivity measurement apparatus" based on the GHP method, as well as how the major difficulties are handled in the case of this apparatus, as compared to the common GHP method that conforms to current international standards.

  16. Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers

    NASA Astrophysics Data System (ADS)

    An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki

    2015-01-01

    Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.

  17. Sintering temperature effect on electrical and thermal properties of Zn1-xAlxO as thermoelectric material candidate

    NASA Astrophysics Data System (ADS)

    Fajarin, Rindang; Rahel, Amelthia; Widyastuti

    2018-04-01

    Thermoelectric is a device to convert residual heat energy into electricity. Electrical and thermal properties of constituent material determine thermoelectric efficiency. One of metal oxides, namely zinc oxide (ZnO), is highly stable in a large temperature range, non-toxic, low cost and eco-friendly, has potential application as thermoelectric at high temperature. The aims of this study are to synthesize Zn0.98Al0.02O by coprecipitation method using ZnO and Al2O3 powders as raw materials, and to investigate the effect of sintering temperatures (at 700, 800, 900, and 950°C) on the electrical and thermal properties of the material. The sample products were analyzed by x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray (EDX) measurements to identify phase content, to observe particle morphology and to analyze distribution of elements in the sample, respectively. LCR meter was conducted to study electrical measurements of the samples. Further, thermal properties of the samples were analyzed by TGA measurements. The data show that Al3+ ions have been successfully doped into ZnO crystal lattice and they tend to increase the electrical conductivity of the samples. The sintered Zn0.98Al0.02O sample at 900°C has the highest conductivity value (4.53 × 10-4 S/m) compared to the others. It is relatively stable at high temperature, and thus, it can be used as one promising candidate for thermoelectric material at high temperature.

  18. 3D electrical conductivity tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.

    2018-05-01

    Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in

  19. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  20. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper

  1. The relation between temperature distribution for lung RFA and electromagnetic wave frequency dependence of electrical conductivity with changing a lung's internal air volumes.

    PubMed

    Yamazaki, Nozomu; Watanabe, Hiroki; Lu, Xiaowei; Isobe, Yosuke; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2013-01-01

    Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air during operation. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, and it is difficult for operators to control the precise formation of coagulation lesion. In order to overcome this limitation, we previously proposed a model-based robotic ablation system using finite element method. Creating an accurate thermo physical model and constructing thermal control method were a challenging problem because the thermal properties of the organ are complex. In this study, we measured electromagnetic wave frequency dependence of lung's electrical conductivity that was based on lung's internal air volumes dependence with in vitro experiment. In addition, we validated the electromagnetic wave frequency dependence of lung's electrical conductivity using temperature distribution simulator. From the results of this study, it is confirmed that the electromagnetic wave frequency dependence of lung's electrical conductivity effects on heat generation of RFA.

  2. Dynamical electrical conductivity of graphene.

    PubMed

    Rani, Luxmi; Singh, Navinder

    2017-06-28

    For graphene (a Dirac material) it has been theoretically predicted and experimentally observed that DC resistivity is proportional to T 4 when the temperature is much less than Bloch-Grüneisen temperature ([Formula: see text]) and T-linear in the opposite case ([Formula: see text]). Going beyond this case, we investigate the dynamical electrical conductivity in graphene using the powerful method of the memory function formalism. In the zero frequency regime, we obtain the above mentioned behavior which was previously obtained using the Bloch-Boltzmann kinetic equation. In the finite frequency regime, we obtain several new results: (1) the generalized Drude scattering rate, in the zero temperature limit, shows [Formula: see text] behavior at low frequencies ([Formula: see text]) and saturates at higher frequencies. We also observed the Holstein mechanism, however, with different power laws from that in the case of metals; (2) at higher frequencies, [Formula: see text], and higher temperatures [Formula: see text], we observed that the generalized Drude scattering rate is linear in temperature. In addition, several other results are also obtained. With the experimental advancement of this field, these results should be experimentally tested.

  3. A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics

    NASA Astrophysics Data System (ADS)

    Filla, B. James

    1997-07-01

    A one-sided very-high-temperature guarded hot plate has been built to measure thermal conductivity of monolithic ceramics, ceramic composites, thermal barrier coatings, functional graded materials, and high-temperature metal alloys. It is an absolute, steady-state measurement device with an operational temperature range of 400-1400 K. Measurements are made in an atmosphere of low-pressure helium. Specimens examined in this apparatus are 70 mm in diameter, with thicknesses ranging between 1 and 8 mm. Optimal specimen thermal conductivities fall in the range of 0.5-30 W/(mK). Internal heated components are composed entirely of high-purity aluminum oxide, boron nitride, beryllium oxide, and fibrous alumina insulation board. Pure nickel and thermocouple-grade platinum-based alloys are the only metals used in the system. Apparatus design, modeling, and operation are described, along with the methods of data analysis that are unique to this system. An analysis of measurement uncertainty yields a combined measurement uncertainty of ±5%. Experimental measurements on several materials are presented to illustrate the precision and bias of the apparatus.

  4. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  5. Microbial community structure in a shallow hydrocarbon-contaminated aquifer associated with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Duris, J. W.; Rossbach, S.; Atekwana, E. A.; Werkema, D., Jr.

    2003-04-01

    Little is known about the complex interactions between microbial communities and electrical properties in contaminated aquifers. In order to investigate possible connections between these parameters a study was undertaken to investigate the hypothesis that the degradation of hydrocarbons by resident microbial communities causes a local increase in organic acid concentrations, which in turn cause an increase in native mineral weathering and a concurrent increase in the bulk electrical conductivity of soil. Microbial community structure was analyzed using a 96-well most probable number (MPN) method and rDNA intergenic spacer region analysis (RISA). Microbial community structure was found to change in the presence of hydrocarbon contaminants and these changes were consistently observed in regions of high electrical conductivity. We infer from this relationship that geophysical methods for monitoring the subsurface are a promising new technology for monitoring changes in microbial community structure and simultaneous changes in geochemistry that are associated with hydrocarbon degradation.

  6. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    NASA Astrophysics Data System (ADS)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  7. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  9. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  10. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasingmore » trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.« less

  11. Nonlinear conductivity in silicon nitride

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis

    2017-08-01

    To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.

  12. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  13. Double anisotropic electrically conductive flexible Janus-typed membranes.

    PubMed

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  14. An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity

    NASA Astrophysics Data System (ADS)

    Dudek, M.; Podsadna, J.; Jaszczur, M.

    2016-09-01

    In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  15. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  16. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    PubMed

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-04

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  18. Silicon-graphene conductive photodetector with ultra-high responsivity

    PubMed Central

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at −25 °C in our experiment. PMID:28106084

  19. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  20. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  1. Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1987-01-01

    Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.

  2. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  3. Hot wire needle probe for thermal conductivity detection

    DOEpatents

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  4. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.

    2016-09-01

    The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.

  5. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  6. Electrical Conductivity Measurements on Hydrous Carbonate Melts at Mantle Pressure

    NASA Astrophysics Data System (ADS)

    Sifre, D.; Gaillard, F.

    2012-04-01

    Electromagnetic methods image mantle regions in the asthenosphere with elevated conductivity (0.1 to 1 S.m-1), which constrasts with the conductivity of dry olivine (10-2 to 10-3 S.m-1). A correct interpretation of the petrological nature of the conductive mantle is critical for our understanding of mantle geodynamics because such conductive regions indicate mantle rocks with physical and chemical properties that importantly deviates from the canonical peridotites. For decades, such anomalously high mantle conductivities have been attributed to mineralogical defects associated to few tens of ppm water incorporated in olivine. Most recent experimental surveys, however, refute this hydrous olivine model. Conductive mantle regions could then reflect partial melting. The presence of melts in the Earth's mantle has long been proved by geochemical observations and experimental petrology on peridotite rocks. The requirement for melting in the asthenospheric mantle is the presence of volatile species (water, carbon dioxide, halogens). Small melt fractions are then produced by small volatile contents and they are the first liquids produced by melting magma. This study reports electrical conductivity measurements on such melts at mantle pressure and temperature. We investigated on melt chemical compositions produced by melting of peridotite that would interact with CO2-H2O and Cl. Such melts are carbonatite melts, carbonated silicate melts, hydrous carbonate melts, hydrous basalts. A new system allowing in situ electrical conductivity measurements in piston cylinder has been deployed. This design has been specifically adapted to perfom measurements on liquid samples with elevated electrical conductivities. The chemical compositions investigated are pure liquid CaCO3 and CaMg(CO3)2, to which, cloride (as salts), silicate (as basalts) and water (as brucite) have been added. Experiments have been realized at 1.5 and 2.7 GPa pressure and temperature of 1000-1700° C. Impedance

  7. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  8. Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites.

    PubMed

    Xia, Xiaodong; Hao, Jia; Wang, Yang; Zhong, Zheng; Weng, George J

    2017-05-24

    Highly aligned graphene-based nanocomposites are of great interest due to their excellent electrical properties along the aligned direction. Graphene fillers in these composites are not necessarily perfectly aligned, but their orientations are highly confined to a certain angle, [Formula: see text] with 90° giving rise to the randomly oriented state and 0° to the perfectly aligned one. Recent experiments have shown that electrical conductivity and dielectric permittivity of highly aligned graphene-polymer nanocomposites are strongly dependent on this distribution angle, but at present no theory seems to exist to address this issue. In this work we present a new effective-medium theory that is derived from the underlying physical process including the effects of graphene orientation, filler loading, aspect ratio, percolation threshold, interfacial tunneling, and Maxwell-Wagner-Sillars polarization, to determine these two properties. The theory is formulated in the context of preferred orientational average. We highlight this new theory with an application to rGO/epoxy nanocomposites, and demonstrate that the calculated in-plane and out-of-plane conductivity and permittivity are in agreement with the experimental data as the range of graphene orientations changes from the randomly oriented to the highly aligned state. We also show that the percolation thresholds of highly aligned graphene nanocomposites are in general different along the planar and the normal directions, but they converge into a single one when the statistical distribution of graphene fillers is spherically symmetric.

  9. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  10. Self-healable electrically conducting wires for wearable microelectronics.

    PubMed

    Sun, Hao; You, Xiao; Jiang, Yishu; Guan, Guozhen; Fang, Xin; Deng, Jue; Chen, Peining; Luo, Yongfeng; Peng, Huisheng

    2014-09-01

    Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next-generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high-performance conducting wires that can self-heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self-healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self-healable wire-shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dynamical electrical conductivity of graphene

    NASA Astrophysics Data System (ADS)

    Rani, Luxmi; Singh, Navinder

    2017-06-01

    For graphene (a Dirac material) it has been theoretically predicted and experimentally observed that DC resistivity is proportional to T 4 when the temperature is much less than Bloch-Grüneisen temperature ({{ \\Theta }\\text{BG}} ) and T-linear in the opposite case (T\\gg {{ \\Theta }\\text{BG}} ). Going beyond this case, we investigate the dynamical electrical conductivity in graphene using the powerful method of the memory function formalism. In the zero frequency regime, we obtain the above mentioned behavior which was previously obtained using the Bloch-Boltzmann kinetic equation. In the finite frequency regime, we obtain several new results: (1) the generalized Drude scattering rate, in the zero temperature limit, shows {ω4} behavior at low frequencies (ω \\ll {{k}\\text{B}}{{ \\Theta }\\text{BG}}/\\hbar ) and saturates at higher frequencies. We also observed the Holstein mechanism, however, with different power laws from that in the case of metals; (2) at higher frequencies, ω \\gg {{k}\\text{B}}{{ \\Theta }\\text{BG}}/\\hbar , and higher temperatures T\\gg {{ \\Theta }\\text{BG}} , we observed that the generalized Drude scattering rate is linear in temperature. In addition, several other results are also obtained. With the experimental advancement of this field, these results should be experimentally tested.

  12. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  13. Properties of planetary fluids at high pressure and temperature

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Hamilton, D. C.; Holmes, N. C.; Radousky, H. B.; Ree, F. H.; Ross, M.; Young, D. A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N2 and CH4. Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space.

  14. Low-Temperature Postfunctionalization of Highly Conductive Oxide Thin-Films toward Solution-Based Large-Scale Electronics.

    PubMed

    Ban, Seok-Gyu; Kim, Kyung-Tae; Choi, Byung Doo; Jo, Jeong-Wan; Kim, Yong-Hoon; Facchetti, Antonio; Kim, Myung-Gil; Park, Sung Kyu

    2017-08-09

    Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere. It was noteworthy that the photochemically activated hydrogens on ITO surface could be triggered to facilitate highly crystalline oxygen deficient structure allowing significant increase of carrier concentration and mobility through film microstructure modifications. The low-temperature postfunctionalized ITO films demonstrated conductivity of >1607 S/cm and sheet resistance of <104 Ω/□ under the process temperature of less than 300 °C, which are comparable to those of vacuum-deposited and high-temperature annealed ITO films. Based on the photoassisted postfunctionalization route, all-solution-processed transparent metal-oxide thin-film-transistors and large-area integrated circuits with the ITO bus lines were demonstrated, showing field-effect mobilities of >6.5 cm 2 V -1 s -1 with relatively good operational stability and oscillation frequency of more than 1 MHz in 7-stage ring oscillators, respectively.

  15. Thermal and Electrical Conductivity Probe for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm.

    The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left).

    In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive

    indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.

  16. Nonlinear conductivity of a holographic superconductor under constant electric field

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei

    2017-02-01

    The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.

  17. Temperature and electrical memory of polymer fibers

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  18. An analysis of electrical conductivity model in saturated porous media

    NASA Astrophysics Data System (ADS)

    Cai, J.; Wei, W.; Qin, X.; Hu, X.

    2017-12-01

    Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the

  19. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  20. Enlightening the ultrahigh electrical conductivities of doped double-wall carbon nanotube fibers by Raman spectroscopy and first-principles calculations.

    PubMed

    Tristant, Damien; Zubair, Ahmed; Puech, Pascal; Neumayer, Frédéric; Moyano, Sébastien; Headrick, Robert J; Tsentalovich, Dmitri E; Young, Colin C; Gerber, Iann C; Pasquali, Matteo; Kono, Junichiro; Leotin, Jean

    2016-12-01

    Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 10 8 A m -2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.

  1. D.C. electrical conductivity and conduction mechanism of some azo sulfonyl quinoline ligands and uranyl complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Sonbati, A Z; Salem, O L

    2011-12-01

    Supramolecular coordination of dioxouranium(VI) heterochelates 5-sulphono-7-(4'-X phenylazo)-8-hydroxyquinoline HL(n) (n=1, X=CH(3); n=2, X=H; n=3, X=Cl; n=4, X=NO(2)) have been prepared and characterized with various physico-chemical techniques. The infrared spectral studies showed a monobasic bidentate behavior with the oxygen and azonitrogen donor system. The temperature dependence of the D.C. electrical conductivity of HL(n) ligands and their uranyl complexes has been studied in the temperature range 305-415 K. The thermal activation energies E(a) for HL(n) compounds were found to be in the range 0.44-0.9 eV depending on the nature of the substituent X. The complexation process decreased E(a) values to the range 0.043-045 eV. The electrical conduction mechanism has been investigated for all samples under investigation. It was found to obey the variable range hopping mechanism (VRH). Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Chapman, P.

    1982-01-01

    Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.

  3. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode ofmore » the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.« less

  4. Influence Of The Redox State On The Electrical Conductivity Of Basaltic Melts

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.

    2007-12-01

    The electrical conductivity is an efficient probe of mass transfer processes within silicate melts and magmas. Previous studies have established that the electrical conductivity is sensitive to parameters such as temperature, melt composition and pressure. In contrast to what is known for Fe-bearing minerals, little attention has been given to the influence of redox state on the electrical conductivity of melts. Experiments were performed on tephritic and basaltic compositions respectively from Mt. Vesuvius and Pu'u 'O'o. Measurements were carried out on cylindrical glass samples (OD: 6 mm, ID: 1 mm, L: 8 mm) drilled from glass obtained by fusing each rock sample at 1400°C in air. A two-electrode configuration was adopted, with the electrical impedance being radially measured. A Pt wire was used as the internal electrode whereas a Pt tube served as the external electrode. Experiments were conducted at 1 atm in a vertical furnace between 1200°C and 1300°C, both in air and in a CO-CO2 atmosphere at a fO2 corresponding to NNO+1. Both reduction and oxidation experiments were performed. In reduction experiments (pure CO2 then CO-CO2 gas mixture), electrical conductivities progressively increase with time. The reverse is observed in oxidation experiments (CO-CO2 gas mixture then pure CO2). These variations of electrical conductivities are correlated with modifications of the Fe2+/Fe3+ ratio in the melt, and are consistent with the respective structural roles of Fe2+ and Fe3+. In both types of experiments, a minimum of about 400 mn is necessary before a plateau is reached, interpreted to reflect the kinetics of attainment of the equilibrium Fe2+/Fe3+ ratio in the melt. Differences between plateau and initial values are typically of a few ohms, much higher than the sensitivity of our measurements (better than 0.1 ohm). When increasing temperature, the time required for reaching plateau values decreases. At NNO+1, the electrical activation energy (Ea) was determined for

  5. Application of electrical and electromagnetic depth sounding in highly conductive sediments: The concept of vertical electrical anisotropy

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Bahr, K.

    2010-12-01

    “Nördlinger Ries” is a meteorite crater in the Bavarian ‘Alb’ of Germany that was formed 15 million years ago, and subsequently filled with salty water. Evaporation resulted in an approximately 300 meter thick layer of young, highly conductive sediments. Audio-frequency Magnetotelluric (AMT) and geoelectric depth sounding (VES) techniques were used to analyze the electrical properties of these sediments. The apparent resistivities measured by the two methods are different, which can be explained by vertical electrical anisotropy (horizontal layering). Applying a joint forward modelling technique with resistivity variations found by a Monte Carlo method results in a best fit model containing a large number of layers, while separate inversions of the two data sets yield 3-layer models. Comparisons of the coefficient of anisotropy with drilling core samples demonstrate the reliability of the results. One difficulty of the AMT method is the low signal-to-noise ratio, because of the source’s deadband. Some suggestions for an “intelligent” processing are presented. Kerch (this session) is employing the result of the integrated conductivity as an input for 3D modelling of collected MT data.

  6. Compensation Effect in Electrical Conduction Process: Effect of Substituent Group

    NASA Astrophysics Data System (ADS)

    Mitra, Bani; Misra, T. N.

    1987-05-01

    The semiconductive properties of Vitamin A acid (Retinoic Acid), a long chain conjugated polyene, were studied as a function of the adsorption of different vapours. A compensation effect was observed in the electrical conduction process; unlike that in Vitamin A alcohol and Vitamin A acetate the compensation temperature was observed on the lower side of the experimental temperature (T0≈285 K). It is concluded that the terminal \\diagdown\\diagupC=0 group conjugated to the polyene chain plays an important role in the manifestation of the compensation effect. Various conduction parameters have been evaluated.

  7. Conducting single-molecule magnet materials.

    PubMed

    Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro

    2018-05-11

    Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.

  8. Resolving electrical conductivities from collisionally damped plasmons in isochorically heated warm dense aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, P.; Fletcher, L. B.; Chung, H. -K.

    2016-03-29

    We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from the down- and upshifted plasmon, where the electron density of ne = 1:8 1023 cm 3 is known a priori. We have studied the plasmon damping by applying electron-particle collision models beyond the Born approximation determining the electrical conductivity of warm dense aluminum.

  9. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  10. Electrically-Conductive Polyaramid Cable And Fabric

    NASA Technical Reports Server (NTRS)

    Orban, Ralph F.

    1988-01-01

    Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.

  11. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  12. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    NASA Astrophysics Data System (ADS)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  13. CsSnI[subscript 3]: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, In; Song, Jung-Hwan; Im, Jino

    CsSnI{sub 3} is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI{sub 3} have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI{sub 3}, coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI{submore » 3}. The black orthorhombic form of CsSnI{sub 3} demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI{sub 3} indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of {approx} 10{sup 17} cm{sup -3} and a hole mobility of {approx} 585 cm{sup 2} V{sup -1} s{sup -1}. The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly

  14. Development of High Conductivity Lithium-Ion Electrolytes for Low Temperature Cell Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    1998-01-01

    NASA has continued interest in developing power sources which are capable of operating at low temperatures (-20 C and below) to enable future missions, such as the Mars Rover and Lander. Thus, under a program sponsored by the Mars Exploration Program, we have been involved in developing Li-ion batteries with improved low temperature performance. To accomplish this task, the focus of the research has been upon the development of advanced electrolyte systems with improved low temperature properties. This had led to the identification of a carbonate-based electrolyte, consisting of 1.0 M LiPF6 in EC + DEC + DMC (33:33:34), which has been shown to have excellent performance at -20 C in Li-ion AA-size prototype cells. Other groups are also actively engaged in developing electrolytes which can result in improved low temperature performance of Li-ion cells, including Polystor, Yardney, and Covalent. In addition to developing cells capable of operation at -20 C, there is continued interest in systems which can successfully operate at even lower temperatures (less than -30 C) and at high discharge rates (greater than C/2). Thus, we are currently focusing upon developing advanced electrolytes which are highly conductive at low temperatures and will result in cells capable of operation at -40 C. One approach to improve the low temperature conductivity of ethylene carbonate-based electrolytes involves adding co-solvents which will decrease the viscosity and extend the liquid range. Candidate solvent additives include formates, acetates, cyclic and aliphatic ethers, lactones, as well as other carbonates. Using this approach, we have prepared a number of electrolytes which contain methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), ethyl proprionate (EP), and 1,2-dimethoxyethane (DME), some of which have been characterized and reported. Other groups have also reported electrolytes based on mixtures of carbonates and acetates. In the present study, electrolytes which

  15. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.

    2014-03-01

    The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.

  16. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  17. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films.

    PubMed

    Yang, C-H; Seidel, J; Kim, S Y; Rossen, P B; Yu, P; Gajek, M; Chu, Y H; Martin, L W; Holcomb, M B; He, Q; Maksymovych, P; Balke, N; Kalinin, S V; Baddorf, A P; Basu, S R; Scullin, M L; Ramesh, R

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of approximately 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  18. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  19. Effect of pH on the electrical properties and conducting mechanism of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Periathai, R. Sudha; Abarna, S.; Hirankumar, G.; Jeyakumaran, N.; Prithivikumaran, N.

    2017-03-01

    Semiconductor nanoparticles have attracted more interests because of their size-dependent optical and electrical properties.SnO2 is an oxygen-deficient n-type semiconductor with a wide band gap of 3.6 eV (300 K). It has many remarkable applications as sensors, catalysts, transparent conducting electrodes, anode material for rechargeable Li- ion batteries and optoelectronic devices. In the present work, the role of pH in determining the electrical and dielectric properties of SnO2 nanoparticles has been studied as a function of temperature ranging from Room temperature (RT) to 114 °C in the frequency range of 7 MHz to 50 mHz using impedance spectroscopic technique. The non linear behavior observed in the thermal dependence of the conductance of SnO2 nanoparticles is explained by means of the surface property of SnO2 nanoparticles where proton hopping mechanism is dealt with. Jonscher's power law has been fitted for the conductance spectra and the frequency exponent ("s" value) gives an insight about the ac conducting mechanism. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation.

  20. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  1. Electrically conductive nano graphite-filled bacterial cellulose composites.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  3. An upper bound on the electrical conductivity of hydrated oceanic mantle at the onset of dehydration melting

    NASA Astrophysics Data System (ADS)

    Naif, Samer

    2018-01-01

    Electrical conductivity soundings provide important constraints on the thermal and hydration state of the mantle. Recent seafloor magnetotelluric surveys have imaged the electrical conductivity structure of the oceanic upper mantle over a variety of plate ages. All regions show high conductivity (0.02 to 0.2 S/m) at 50 to 150 km depths that cannot be explained with a sub-solidus dry mantle regime without unrealistic temperature gradients. Instead, the conductivity observations require either a small amount of water stored in nominally anhydrous minerals or the presence of interconnected partial melts. This ambiguity leads to dramatically different interpretations on the origin of the asthenosphere. Here, I apply the damp peridotite solidus together with plate cooling models to determine the amount of H2O needed to induce dehydration melting as a function of depth and plate age. Then, I use the temperature and water content estimates to calculate the electrical conductivity of the oceanic mantle with a two-phase mixture of olivine and pyroxene from several competing empirical conductivity models. This represents the maximum potential conductivity of sub-solidus oceanic mantle at the limit of hydration. The results show that partial melt is required to explain the subset of the high conductivity observations beneath young seafloor, irrespective of which empirical model is applied. In contrast, the end-member empirical models predict either nearly dry (<20 wt ppm H2O) or slightly damp (<200 wt ppm H2O) asthenosphere for observations of mature seafloor. Since the former estimate is too dry compared with geochemical constraints from mid-ocean ridge basalts, this suggests the effect of water on mantle conductivity is less pronounced than currently predicted by the conductive end-member empirical model.

  4. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  5. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature

    PubMed Central

    Eisenach, James C.; Ririe, Douglas G.

    2015-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  6. Controlled Atmosphere High Temperature SPM for electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.

    2007-03-01

    A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.

  7. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  8. Spin-dependent electrical conduction in a pentacene Schottky diode explored by electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Fukuda, Kunito; Asakawa, Naoki

    2017-02-01

    Reported is the observation of dark spin-dependent electrical conduction in a Schottky barrier diode with pentacene (PSBD) using electrically detected magnetic resonance at room temperature. It is suggested that spin-dependent conduction exists in pentacene thin films, which is explored by examining the anisotropic linewidth of the EDMR signal and current density-voltage (J-V) measurements. The EDMR spectrum can be decomposed to Gaussian and Lorentzian components. The dependency of the two signals on the applied voltage was consistent with the current density-voltage (J-V) of the PSBD rather than that of the electron-only device of Al/pentacene/Al, indicating that the spin-dependent conduction is due to bipolaron formation associated with hole polaronic hopping processes. The applied-voltage dependence of the ratio of intensity of the Gaussian line to the Lorentzian may infer that increasing current density should make conducting paths more dispersive, thereby resulting in an increased fraction of the Gaussian line due to the higher dispersive g-factor.

  9. Investigation of the electrical characteristics of electrically conducting yarns and fabrics

    NASA Astrophysics Data System (ADS)

    Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.

    2017-11-01

    Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.

  10. Column displacement experiments to evaluate electrical conductivity effects on electromagnetic soil water sensing

    USDA-ARS?s Scientific Manuscript database

    Bulk electrical conductivity (EC) in superactive soils has been shown to strongly influence electromagnetic sensing of permittivity. However, these effects are dependent on soil water content and temperature as well as the pore water conductivity. We carried out isothermal column displacement experi...

  11. Development of practical high temperature superconducting wire for electric power application

    NASA Technical Reports Server (NTRS)

    Hawsey, Robert A.; Sokolowski, Robert S.; Haldar, Pradeep; Motowidlo, Leszek R.

    1995-01-01

    The technology of high temperature superconductivity has gone from beyond mere scientific curiousity into the manufacturing environment. Single lengths of multifilamentary wire are now produced that are over 200 meters long and that carry over 13 amperes at 77 K. Short-sample critical current densities approach 5 x 104 A/sq cm at 77 K. Conductor requirements such as high critical current density in a magnetic field, strain-tolerant sheathing materials, and other engineering properties are addressed. A new process for fabricating round BSCCO-2212 wire has produced wires with critical current densities as high as 165,000 A/sq cm at 4.2 K and 53,000 A/sq cm at 40 K. This process eliminates the costly, multiple pressing and rolling steps that are commonly used to develop texture in the wires. New multifilamentary wires with strengthened sheathing materials have shown improved yield strengths up to a factor of five better than those made with pure silver. Many electric power devices require the wire to be formed into coils for production of strong magnetic fields. Requirements for coils and magnets for electric power applications are described.

  12. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  13. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  14. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    NASA Astrophysics Data System (ADS)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  15. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, Dominic Francis

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without ormore » with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration

  16. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate

    NASA Astrophysics Data System (ADS)

    Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.

    2018-05-01

    Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.

  17. Directly calculated electrical conductivity of hot dense hydrogen from molecular dynamics simulation beyond Kubo-Greenwood formula

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu

    2018-01-01

    Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.

  18. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  19. High conductivity carbon nanotube wires from radial densification and ionic doping

    NASA Astrophysics Data System (ADS)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  20. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE PAGES

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.; ...

    2017-12-28

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  1. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  2. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  3. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  4. Low temperature resistivity studies of SmB6: Observation of two-dimensional variable-range hopping conductivity

    NASA Astrophysics Data System (ADS)

    Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir

    2018-05-01

    We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.

  5. Calculation and research of electrical characteristics of induction crucible furnaces with unmagnetized conductive crucible

    NASA Astrophysics Data System (ADS)

    Fedin, M. A.; Kuvaldin, A. B.; Kuleshov, A. O.; Zhmurko, I. Y.; Akhmetyanov, S. V.

    2018-01-01

    Calculation methods for induction crucible furnaces with a conductive crucible have been reviewed and compared. The calculation method of electrical and energy characteristics of furnaces with a conductive crucible has been developed and the example of the calculation is shown below. The calculation results are compared with experimental data. Dependences of electrical and power characteristics of the furnace on frequency, inductor current, geometric dimensions and temperature have been obtained.

  6. Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses

    NASA Astrophysics Data System (ADS)

    Deepika, Singh, Hukum

    2018-05-01

    This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.

  7. Electrical conductivity and magnetic field dependent current-voltage characteristics of nanocrystalline nickel ferrite

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Bhowmik, R. N.; Das, M. R.; Mitra, P.

    2017-04-01

    We have studied the grain size dependent electrical conductivity, dielectric relaxation and magnetic field dependent current voltage (I - V) characteristics of nickel ferrite (NiFe2O4) . The material has been synthesized by sol-gel self-combustion technique, followed by ball milling at room temperature in air environment to control the grain size. The material has been characterized using X-ray diffraction (refined with MAUD software analysis) and Transmission electron microscopy. Impedance spectroscopy and I - V characteristics in the presence of variable magnetic fields have confirmed the increase of resistivity for the fine powdered samples (grain size 5.17±0.6 nm), resulted from ball milling of the chemical routed sample. Activation energy of the material for electrical charge hopping process has increased with the decrease of grain size by mechanical milling of chemical routed sample. The I - V curves showed many highly non-linear and irreversible electrical features, e.g., I - V loop and bi-stable electronic states (low resistance state-LRS and high resistance state-HRS) on cycling the electrical bias voltage direction during I-V curve measurement. The electrical dc resistance for the chemically routed (without milled) sample in HRS (∼3.4876×104 Ω) at 20 V in presence of magnetic field 10 kOe has enhanced to ∼3.4152×105 Ω for the 10 h milled sample. The samples exhibited an unusual negative differential resistance (NDR) effect that gradually decreased on decreasing the grain size of the material. The magneto-resistance of the samples at room temperature has been found substantially large (∼25-65%). The control of electrical charge transport properties under magnetic field, as observed in the present ferrimagnetic material, indicate the magneto-electric coupling in the materials and the results could be useful in spintronics applications.

  8. Electrical conductivity of the Earth's mantle from the first Swarm magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, F.; Thébault, E.; Verhoeven, O.; Langlais, B.; Saturnino, D.

    2015-05-01

    We present a 1-D electrical conductivity profile of the Earth's mantle down to 2000 km derived from L1b Swarm satellite magnetic field measurements from November 2013 to September 2014. We first derive a model for the main magnetic field, correct the data for a lithospheric field model, and additionally select the data to reduce the contributions of the ionospheric field. We then model the primary and induced magnetospheric fields for periods between 2 and 256 days and perform a Bayesian inversion to obtain the probability density function for the electrical conductivity as function of depth. The conductivity increases by 3 orders of magnitude in the 400-900 km depth range. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations leading to a temperature gradient in the lower mantle that is close to adiabatic.

  9. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  10. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  11. The electrical conductivities of the DSS-13 beam-waveguide antenna shroud material and other antenna reflector surface materials

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.; Reilly, H. F., Jr.

    1992-01-01

    A significant amount of noise temperature can potentially be generated by currently unknown dissipative losses in the beam waveguide (BWG) shroud. The amount of noise temperature contribution from this source is currently being studied. In conjunction with this study, electrical conductivity measurements were made on samples of the DSS-13 BWG shroud material at 8.420 GHz. The effective conductivities of unpainted and painted samples of the BWG shroud were measured to be 0.01 x 10(exp 7) and 0.0036 x 10(exp 7) mhos/m, respectively. This value may be compared with 5.66 x 10(exp 7) mhos/m for high conductivity copper.

  12. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. Copyright © 2016 the American Physiological Society.

  13. Surface morphology and improved electrical conductivity of camphorsulfonic acid surfactant based PANI nano composite

    NASA Astrophysics Data System (ADS)

    Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Devendrappa, H.

    2018-05-01

    Polyaniline and its composites at different wt. % of Copper oxide nano (PCC1 and PCC5) were prepared by in-situ chemical reaction method. The composites were characterized by Fourier Transform Infrared (FT-IR) Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and the impedance measurement was carried out at different temperature. FTIR and SEM image reveals the presence of copper metal ions uniformly embedded into PANI. The dc electrical conductivity increases with increasing nano concentration in PANI and achieved high conductivity for PCC5. These results are suggesting PCC composite is a prominent candidate for supercapacitor properties and optoelectronics devices applications.

  14. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.

    PubMed

    Kraemer, D; Chen, G

    2014-02-01

    Accurate measurements of thermal conductivity are of great importance for materials research and development. Steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fourier Law). Although theoretically simple, in practice, achieving high accuracies with steady-state methods is challenging and requires rather complex experimental setups due to temperature sensor uncertainties and parasitic heat loss. We developed a simple differential steady-state method in which the sample is mounted between an electric heater and a temperature-controlled heat sink. Our method calibrates for parasitic heat losses from the electric heater during the measurement by maintaining a constant heater temperature close to the environmental temperature while varying the heat sink temperature. This enables a large signal-to-noise ratio which permits accurate measurements of samples with small thermal conductance values without an additional heater calibration measurement or sophisticated heater guards to eliminate parasitic heater losses. Additionally, the differential nature of the method largely eliminates the uncertainties of the temperature sensors, permitting measurements with small temperature differences, which is advantageous for samples with high thermal conductance values and/or with strongly temperature-dependent thermal conductivities. In order to accelerate measurements of more than one sample, the proposed method allows for measuring several samples consecutively at each temperature measurement point without adding significant error. We demonstrate the method by performing thermal conductivity measurements on commercial bulk thermoelectric Bi2Te3 samples in the temperature range of 30-150 °C with an error below 3%.

  15. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  16. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  17. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1962-01-01

    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  18. Electrically Conducting Polyaniline Microtube Blends

    DTIC Science & Technology

    2004-08-01

    SMC-TR-05-01 AEROSPACE REPORT NO. TR-2004(8565)-4 Electrically Conducting Polyaniline Microtube Blends 1 August 2004 Prepared by A. R. HOPKINS, R. A...It is published only for the exchange and stimulation of ideas. Michael Zambrana SMC/AXE Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188...0001 Electrically Conducting Polyaniline Microtube Blends 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER A. R. Hopkins, R

  19. Thermal conductance of Nb thin films at sub-kelvin temperatures.

    PubMed

    Feshchenko, A V; Saira, O-P; Peltonen, J T; Pekola, J P

    2017-02-03

    We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T 4.5 , instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.

  20. Thermal conductance of Nb thin films at sub-kelvin temperatures

    PubMed Central

    Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.

    2017-01-01

    We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1–0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection. PMID:28155895

  1. Thermal conductance of Nb thin films at sub-kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.

    2017-02-01

    We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.

  2. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research; Liu, Z. G.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated withmore » conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.« less

  3. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    DOEpatents

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  4. Electrically conductive polyimides containing silver trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)

    1996-01-01

    Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.

  5. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  6. Comparison of electrical conductivity calculation methods for natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.

    2012-01-01

    The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.

  7. High-Temperature Tolerance of Photosynthesis Can Be Linked to Local Electrical Responses in Leaves of Pea

    PubMed Central

    Sukhov, Vladimir; Gaspirovich, Vladimir; Mysyagin, Sergey; Vodeneev, Vladimir

    2017-01-01

    It is known that numerous stimuli induce electrical signals which can increase a plant's tolerance to stressors, including high temperature. However, the physiological role of local electrical responses (LERs), i.e., responses in the zone of stimulus action, in the plant's tolerance has not been sufficiently investigated. The aim of a current work is to analyze the connection between parameters of LERs with the thermal tolerance of photosynthetic processes in pea. Electrical activity and photosynthetic parameters in pea leaves were registered during transitions of air temperature in a measurement head (from 23 to 30°C, from 30 to 40°C, from 40 to 45°C, and from 45 to 23°C). This stepped heating decreased a photosynthetic assimilation of CO2 and induced generation of LERs in the heated leaf. Amplitudes of LERs, quantity of responses during the heating and the number of temperature transition, which induced the first generation of LERs, varied among different pea plants. Parameters of LERs were weakly connected with the photosynthetic assimilation of CO2 during the heating; however, a residual photosynthetic activity after a treatment by high temperatures increased with the growth of amplitudes and quantity of LERs and with lowering of the number of the heating transition, inducing the first electrical response. The effect was not connected with a photosynthetic activity before heating; similar dependences were also observed for effective and maximal quantum yields of photosystem II after heating. We believe that the observed effect can reflect a positive influence of LERs on the thermal tolerance of photosynthesis. It is possible that the process can participate in a plant's adaptation to stressors. PMID:29033854

  8. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits

    PubMed Central

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-01-01

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics. PMID:26333352

  9. Rapid solidification of high-conductivity copper alloys. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bloom, Theodore Atlas

    1989-01-01

    The main objective was to develop improved copper alloys of high strength and high thermal and electric conductivity. Chill block melt spinning was used to produce binary alloys of Cu-Cr and Cu-Zr, and ternary alloys of Cu-Cr-Ag. By quenching from the liquid state, up to 5 atomic percent of Cr and Zr were retained in metastable extended solid solution during the rapid solidification process. Eutectic solidification was avoided and the full strengthening benefits of the large volume fraction of precipitates were realized by subsequent aging treatment. The very low solid solubility of Cr and Zr in Cu result in a high conductivity Cu matrix strengthened by second phase precipitates. Tensile properties on as-cast and aged ribbons were measured at room and elevated temperatures. Precipitate coarsening of Cr in Cu was studied by changes in electrical resistance during aging. X-ray diffraction was used to measure the lattice parameter and the degree of supersaturation of the matrix. The microstructures were characterized by optical and electron microscopy.

  10. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

    NASA Astrophysics Data System (ADS)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon

  11. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  12. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan; Lowder, Jonathan; Moseley, Michael; Alan Doolittle, W.

    2012-08-01

    Highly p-type GaN films with hole concentrations exceeding 6 × 1019 cm-3 grown by metal-modulated epitaxy are electrically characterized. Temperature-dependent Hall effect measurements at cryogenic temperatures reveal minimal carrier freeze-out in highly doped samples, while less heavily doped samples exhibited high resistivity and donor-compensated conductivity as is traditionally observed. Effective activation energies as low as 43 meV were extracted, and a maximum Mg activation efficiency of 52% was found. In addition, the effective activation energy was found to be negatively correlated to the hole concentration. These results indicate the onset of the Mott-Insulator transition leading to impurity band conduction.

  13. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures

    DOE PAGES

    Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...

    2013-06-11

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less

  14. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  15. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less

  16. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  17. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  18. Deposition of Electrically Conductive Coatings on Castable Polyurethane Elastomers by the Flame Spraying Process

    NASA Astrophysics Data System (ADS)

    Ashrafizadeh, H.; McDonald, A.; Mertiny, P.

    2016-02-01

    Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.

  19. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  20. Electrical conductivity of oxidized-graphenic nanoplatelets obtained from bamboo: effect of the oxygen content

    NASA Astrophysics Data System (ADS)

    Gross, K.; Prías Barragán, J. J.; Sangiao, S.; De Teresa, J. M.; Lajaunie, L.; Arenal, R.; Ariza Calderón, H.; Prieto, P.

    2016-09-01

    The large-scale production of graphene and reduced-graphene oxide (rGO) requires low-cost and eco-friendly synthesis methods. We employed a new, simple, cost-effective pyrolytic method to synthetize oxidized-graphenic nanoplatelets (OGNP) using bamboo pyroligneous acid (BPA) as a source. Thorough analyses via high-resolution transmission electron microscopy and electron energy-loss spectroscopy provides a complete structural and chemical description at the local scale of these samples. In particular, we found that at the highest carbonization temperature the OGNP-BPA are mainly in a sp2 bonding configuration (sp2 fraction of 87%). To determine the electrical properties of single nanoplatelets, these were contacted by Pt nanowires deposited through focused-ion-beam-induced deposition techniques. Increased conductivity by two orders of magnitude is observed as oxygen content decreases from 17% to 5%, reaching a value of 2.3 × 103 S m-1 at the lowest oxygen content. Temperature-dependent conductivity reveals a semiconductor transport behavior, described by the Mott three-dimensional variable range hopping mechanism. From the localization length, we estimate a band-gap value of 0.22(2) eV for an oxygen content of 5%. This investigation demonstrates the great potential of the OGNP-BPA for technological applications, given that their structural and electrical behavior is similar to the highly reduced rGO sheets obtained by more sophisticated conventional synthesis methods.

  1. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    PubMed

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    PubMed

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  3. Electrical and Dielectric Properties of a n-Si Schottky Barrier Diode with Bismuth Titanate Interlayer: Effect of Temperature

    NASA Astrophysics Data System (ADS)

    Yıldırım, M.; Şahin, C.; Altındal, Ş.; Durmuş, P.

    2017-03-01

    An Au/Bi4Ti3O12/ n-Si Schottky barrier diode (SBD) was fabricated with a 51 nm Bi4Ti3O12 interfacial layer. Admittance measurements of the fabricated SBD were carried out in the bias voltage ( V) range of -4 V and 6 V. Capacitance ( C) and conductance ( G/ω) measurements were carried out in a wide temperature range of 120-380 K so that temperature effects on electrical and dielectric properties of the SBD were investigated. Main electrical parameters were extracted from reverse bias C -2- V plots. It was found that variance of electrical and dielectric parameters of the SBD with temperature is basically different for low and high temperature regions. A fair number (˜1012 eV-1 cm-2) was obtained for surface states ( N ss); however, N ss first decreased then increased with temperature. This result was associated with increased defects with temperature and higher activation energy in the high temperature region. Dielectric parameters of the SBD were also extracted and the dielectric constant of SBD was found as ˜10 at room temperature. Application of modulus formalism to the admittance data revealed temperature-activated dielectric relaxation at 340 K. Results showed that the temperature has considerable effects on electrical and dielectric properties of Au/Bi4Ti3O12/ n-Si SBD.

  4. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    NASA Astrophysics Data System (ADS)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  5. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cyclesmore » are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.« less

  6. Soil water sensor response to bulk electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  7. Al-Coated Conductive Fiber Filters for High-Efficiency Electrostatic Filtration: Effects of Electrical and Fiber Structural Properties.

    PubMed

    Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon

    2018-04-10

    Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

  8. Polyimide/Glass Composite High-Temperature Insulation

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  9. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    NASA Astrophysics Data System (ADS)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  10. High-Temperature Storage Testing of ACF Attached Sensor Structures

    PubMed Central

    Lahokallio, Sanna; Hoikkanen, Maija; Vuorinen, Jyrki; Frisk, Laura

    2015-01-01

    Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. PMID:28793735

  11. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.

    PubMed

    Li, Xin-Gui; Li, Ang; Huang, Mei-Rong

    2008-01-01

    Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.

  12. Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci

    PubMed Central

    Mandelkern, M.; Bui, D.; Salamon, N.; Vinters, H. V.; Mathern, G. W.

    2010-01-01

    Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients. PMID:20440549

  13. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  14. DC electrical conductivity of Ag2O-TeO2-V2O5 glassy systems

    NASA Astrophysics Data System (ADS)

    Souri, D.; Tahan, Z. Esmaeili; Salehizadeh, S. A.

    2016-04-01

    In the present article, samples of xAg2O-40TeO2-(60 - x)V2O5 ternary tellurite glasses with 0 ≤ x ≤ 50 (in mol%) have been prepared using the melt-quenching technique. XRD analysis, density measurement by Archimedes' law, determination of reduced vanadium ions by titration method, and electrical conductivity measurement by using four-probe methods have been done for these glasses. The mixed electronic-ionic conduction of these glasses has been investigated over a wide temperature range of 150-380 K. The experimental results have been analyzed with different theoretical models of hopping conduction. The analysis shows that at high temperatures the conductivity data are consistent with Mott's model of phonon-assisted polaronic hopping, while Mott's variable-range hopping model and Greaves' hopping model are valid at low temperatures. The temperature dependence of the conductivity has been also interpreted in the framework of the percolation model proposed by Triberis and Friedman. The analysis of the conductivity data also indicates that the hopping in these tellurite glasses occurs in the non-adiabatic regime. In each sample, based upon the justified transport mechanism, carrier density and mobility have been determined at different temperatures. The values of oxygen molar volume indicate the effect of Ag2O concentration on the thermal stability or fragility of understudied samples.

  15. Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging

    NASA Astrophysics Data System (ADS)

    Mariappan, Leo

    Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with

  16. Thermal and ac electrical properties of N-methylanthranilic acid below room temperature

    NASA Astrophysics Data System (ADS)

    Abdel-Kader, M. M.; Basha, M. A. F.; Ramzy, G. H.; Aboud, A. I.

    2018-06-01

    In this study, we investigated the thermal and alternating current (ac) electrical properties of N-methylanthranilic acid. Based on data obtained by differential scanning calorimetry, we detected two endothermic transitions at ≈ 213 K and ≈265.41 K. The weakening of hydrogen bonds as the temperature increased appeared to be the main cause of these phase transitions. We also recorded the melting point at about 475.5 K. Both the ac conductivity (σac) and complex dielectric constant (ε∗ = ε ' - jε ' ') were studied as functions of temperature over the frequency range from 1 kHz to 100 kHz. We observed significant variations in the thermal and electrical properties before and after the transition temperature at 265.41 K. The conduction mechanism responsible for the ac electrical properties before this transition was due to overlapping large polarons. These novel results are expected to have impacts on the application of organic semiconductors and dielectrics.

  17. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Reboul, S.

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may bemore » calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The

  18. Electrical conductivity modeling in fractal non-saturated porous media

    NASA Astrophysics Data System (ADS)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  19. Enhancing electrical conductivity of room temperature deposited Sn-doped In2O3 thin films by hematite seed layers

    NASA Astrophysics Data System (ADS)

    Lohaus, Christian; Steinert, Céline; Deyu, Getnet; Brötz, Joachim; Jaegermann, Wolfram; Klein, Andreas

    2018-04-01

    Hematite Fe2O3 seed layers are shown to constitute a pathway to prepare highly conductive transparent tin-doped indium oxide thin films by room temperature magnetron sputtering. Conductivities of up to σ = 3300 S/cm are observed. The improved conductivity is not restricted to the interface but related to an enhanced crystallization of the films, which proceeds in the rhombohedral phase.

  20. Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection

    NASA Astrophysics Data System (ADS)

    Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin

    2017-05-01

    Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.

  1. Electrical Conductivity of ɛ-Iron under Shock Compression up to 208G Pa

    NASA Astrophysics Data System (ADS)

    Bi, Yan; Tan, Hua; Jing, Fu-Qian

    2002-02-01

    The electrical conductivity of shock-compressed iron was measured up to 208 GPa by using an improved design in experiment assembly in which the iron sample was encapsulated in a single-crystal sapphire cell. High-pressure shock compressions were generated by the plate impact technique with the two-stage light-gas gun. The measured conductivity of iron varies from 1.45×104 Ω-1 cm-1 at 101 GPa and 2010 K to 7.65×103 Ω-1 cm-1 at 208 GPa and 5220 K. After examining these data together with those reported, we found that the Bloch-Grüneisen expression is still valid at high pressures and temperatures, even up to 208 GPa and 5220 K, at least for ɛ-iron, which is significant in the field of condensed matter physics and deep interior earth science.

  2. Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors.

    PubMed

    Zurbuchen, Urte; Poch, Franz; Gemeinhardt, Ole; Kreis, Martin E; Niehues, Stefan M; Vahldieck, Janis L; Lehmann, Kai S

    2017-02-01

    Background Radiofrequency ablation is used to induce thermal necrosis in the treatment of liver metastases. The specific electrical conductivity of a liver metastasis has a distinct influence on the heat formation and resulting tumor ablation within the tissue. Purpose To examine the electrical conductivity σ of human colorectal liver metastases and of tumor-free liver tissue in surgical specimens. Material and Methods Surgical specimens from patients with resectable colorectal liver metastases were used for measurements (size of metastases <30 mm). A four-needle measuring probe was used to determine the electrical conductivity σ of human colorectal liver metastasis (n = 8) and tumor-free liver tissue (n = 5) in a total of five patients. All measurements were performed at 470 kHz, which is the relevant frequency for radiofrequency ablation. The tissue temperature was also measured. Hepatic resections were performed in accordance with common surgical standards. Measurements were performed in the operating theater immediately after resection. Results The median electrical conductivity σ was 0.57 S/m in human colorectal liver metastases at a median temperature of 35.1℃ and 0.35 S/m in tumor-free liver tissue at a median temperature of 34.9℃. The electrical conductivity was significantly higher in tumor tissue than in tumor-free liver tissue ( P = 0.005). There were no differences in tissue temperature between the two groups ( P = 0.883). Conclusion The electrical conductivity is significantly higher in human colorectal liver metastases than in tumor-free liver tissue at a frequency of 470 kHz.

  3. The electrical conductivity during incipient melting in the oceanic low velocity zone

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Sifre, David; Gardes, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier Majumder, Saswata

    2014-05-01

    A low viscosity layer at the Lithosphere-Asthenosphere Boundary (LAB) is certainly a requirement for plate tectonics but the nature of the rocks presents in this boundary remains controversial. The seismic low velocities and the high electrical conductivities of the LAB are attributed either to sub-solidus water-related defects in olivine minerals or to a few volume percents of partial melt but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be high enough due to several mineralogical processes that have been sometimes ignored; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the LAB and by the high melt mobility that can lead to gravitational segregation. All this has in fact been partly settled 30 years ago, when a petrological LAB has been defined as a region of the upper mantle impregnated by incipient melts; that is small amounts of melt caused by small amount of CO2 and H2O. We show here that incipient melting is a melting regime that is allowed in the entire P-T-fO2 region of the LVZ. The top of the oceanic LVZ (LAB) is then best explained by a melt freezing layer due to a decarbonation reaction, whereas the bottom of the LVZ matches the depth at which redox melting defines the lower boundary of stability of incipient melts. Based on new laboratory measurements, we show here that incipient melts must be the cause of the high electrical conductivities in the oceanic LVZ. Considering relevant mantle abundances of H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the LAB for various ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. We conclude that incipient melts prevail in the LAB, what else?

  4. Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering

    PubMed Central

    2015-01-01

    In this work, carbon nanofibers were used as doping material to develop a highly conductive chitosan-based composite. Scaffolds based on chitosan only and chitosan/carbon composites were prepared by precipitation. Carbon nanofibers were homogeneously dispersed throughout the chitosan matrix, and the composite scaffold was highly porous with fully interconnected pores. Chitosan/carbon scaffolds had an elastic modulus of 28.1 ± 3.3 KPa, similar to that measured for rat myocardium, and excellent electrical properties, with a conductivity of 0.25 ± 0.09 S/m. The scaffolds were seeded with neonatal rat heart cells and cultured for up to 14 days, without electrical stimulation. After 14 days of culture, the scaffold pores throughout the construct volume were filled with cells. The metabolic activity of cells in chitosan/carbon constructs was significantly higher as compared to cells in chitosan scaffolds. The incorporation of carbon nanofibers also led to increased expression of cardiac-specific genes involved in muscle contraction and electrical coupling. This study demonstrates that the incorporation of carbon nanofibers into porous chitosan scaffolds improved the properties of cardiac tissue constructs, presumably through enhanced transmission of electrical signals between the cells. PMID:24417502

  5. Electronic conduction in La-based perovskite-type oxides

    PubMed Central

    Ohbayashi, Kazushige; Koumoto, Kunihito

    2015-01-01

    A systematic study of La-based perovskite-type oxides from the viewpoint of their electronic conduction properties was performed. LaCo0.5Ni0.5O3±δ was found to be a promising candidate as a replacement for standard metals used in oxide electrodes and wiring that are operated at temperatures up to 1173 K in air because of its high electrical conductivity and stability at high temperatures. LaCo0.5Ni0.5O3±δ exhibits a high conductivity of 1.9 × 103 S cm−1 at room temperature (R.T.) because of a high carrier concentration n of 2.2 × 1022 cm−3 and a small effective mass m∗ of 0.10 me. Notably, LaCo0.5Ni0.5O3±δ exhibits this high electrical conductivity from R.T. to 1173 K, and little change in the oxygen content occurs under these conditions. LaCo0.5Ni0.5O3±δ is the most suitable for the fabrication of oxide electrodes and wiring, though La1−xSrxCoO3±δ and La1−xSrxMnO3±δ also exhibit high electronic conductivity at R.T., with maximum electrical conductivities of 4.4 × 103 S cm−1 for La0.5Sr0.5CoO3±δ and 1.5 × 103 S cm−1 for La0.6Sr0.4MnO3±δ because oxygen release occurs in La1−xSrxCoO3±δ as elevating temperature and the electrical conductivity of La0.6Sr0.4MnO3±δ slightly decreases at temperatures above 400 K. PMID:27877778

  6. Electrical conductivity of KAlCl4-ZrCl4 molten mixtures

    NASA Astrophysics Data System (ADS)

    Salyulev, A. B.; Khokhlov, V. A.; Moskalenko, N. I.

    2017-02-01

    The electrical conductivity of commercially challenging KAlCl4-ZrCl4 molten mixtures has been studied as a function of temperature (in the range from 345°C to 500°C) and the ZrCl4 concentration (0‒32.5mol %) using cells of a unique design. It is found to vary in the range from 0.41 to 0.80 S cm-1, increasing with temperature or when the mole concentration of zirconium tetrachloride in molten mixtures decreases.

  7. Disorder induced magnetism and electrical conduction in La doped Ca2FeMoO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Poddar, Asok; Bhowmik, R. N.; Muthuselvam, I. Panneer

    2010-11-01

    We report the magnetism and electrical transport properties of La doped Ca2FeMoO6 double perovskite. Reduction in magnetic moment, nonmonotonic variation in magnetic ordering temperature (TC), increasing magnetic hardness, low temperature resistivity upturn, and loss of metallic conductivity are some of the major changes that we observed due to La doping induced disorder in double perovskite structure. The increase in magnetic disorder in La doped samples and its effect on TC is more consistent with the mean field theory. The modification in electronic band structure due to La doping is understood by establishing a correlation between the temperature dependence of electrical conductivity and thermoelectric power.

  8. Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films using DMSO Additives.

    PubMed

    Lee, Inhwa; Kim, Gun Woo; Yang, Minyang; Kim, Taek-Soo

    2016-01-13

    Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PSS. Furthermore, the electrical conductivity of PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.

  9. Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu

    2015-12-01

    Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential

  10. Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos; Habibiyan, Hamidreza

    2018-03-01

    In this work, based on the Kubo-Greenwood formalism and the k . p Hamiltonian model, the impact of Rashba spin-orbit coupling on electronic band structure and electrical conductivity of spin-up and spin-down subbands in counterparts of graphene, including silicene, stanene, and germanene nanosheets has been studied. When Rashba coupling is considered, the effective mass of Dirac fermions decreases significantly and no significant change is caused by this coupling for the subband gaps. All these nanosheets are found to be in topological insulator quantum phase at low staggered on-site potentials due to the applied perpendicular external electric field. We point out that the electrical conductivity of germanene increases gradually with Rashab coupling, while silicene and stanene have some fluctuations due to their smaller Fermi velocity. Furthermore, some critical temperatures with the same electrical conductivity values for jumping to the higher energy levels are observed at various Rashba coupling strengths. For all structures, a broad peak appears at low temperatures in electrical conductivity curves corresponding to the large entropy of systems when the thermal energy reaches to the difference between the energy states. Finally, we have reported that silicene has the larger has the larger electrical conductivity than two others.

  11. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity.

    PubMed

    Jiang, Xiancai; Xiang, Nanping; Zhang, Hongxiang; Sun, Yujun; Lin, Zhen; Hou, Linxi

    2018-04-15

    Development of bio-based hydrogels with good mechanical properties and high electrical conductivity is of great importance for their excellent biocompatibility and biodegradability. Novel electrically conducive and tough poly(vinyl alcohol)/sodium alginate (PVA/SA) composite hydrogel was obtained by a simple method in this paper. PVA and SA were firstly dissolved in distilled water to form the composite solution and the pure PVA/SA hydrogel was obtained through the freezing/thawing process. The pure PVA/SA hydrogels were subsequently immersed into the saturated NaCl aqueous solution to increase the gel strength and conductivity. The effect of the immersing time on the thermal and mechanical properties of PVA/SA hydrogel was studied. The swelling properties and the antiseptic properties of the obtained PVA/SA hydrogel were also studied. This paper provided a novel way for the preparation of tough hydrogel electrolyte. Copyright © 2018. Published by Elsevier Ltd.

  12. Lightweight, High-Temperature Radiator for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  13. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  14. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  15. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu

    2016-06-28

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω{sup −1} m{sup −1} and 2100 W m{sup −1} K{sup −1} for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reportedmore » method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.« less

  16. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    NASA Astrophysics Data System (ADS)

    Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.

    2016-03-01

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.

  17. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-12-31

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double_prime} alumina solid electrolyte (BASE), themore » seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  18. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-01-01

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE),more » the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  19. Influence of gamma ray irradiation on thermal conductivity of bismaleimide-triazine-based insulation tape at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yoshida, M.; Idesaki, A.; Ogitsu, T.

    2018-01-01

    Recent accelerator-based experiments for particle physics require the superconducting magnets that can be operated under high radiation environment. An electrical insulation tape, which is composed of polyimide film and a boron free glass fabric pre-impregnated with epoxy resin blended with bismaleimide-triazine resin, is developed to enhance the radiation tolerance for superconducting magnets. Since the thermal conductivity of insulation tape is one of key parameters that affects the coil temperature during the operation, the influence of gamma-ray irradiation on the thermal conductivity of the insulation tape is investigated with a maximum dose of 5 MGy. The thermal conductivity is measured at cryogenic temperature from 5 K to 20 K cooled by a Gifford-McMahon cryocooler. By comparing the thermal conductivity before and after the gamma ray irradiation, no significant degradation on the thermal conductivity has been observed.

  20. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 °C: comparison with field observations

    NASA Astrophysics Data System (ADS)

    Zhou, Wenge; Fan, Dawei; Liu, Yonggang; Xie, Hongsen

    2011-12-01

    In situ measurements of elastic wave velocities and electrical conductivities in the three structural directions (normal to foliation Z, perpendicular to lineation in foliation Y and parallel to lineation X) for an amphibolite collected from southwestern margin of the Tarim Basin, northwest China, were carried out in the laboratory. The elastic wave velocity was measured with the combined transmission-reflection method at pressures up to 1.0 GPa (at room temperature) and temperatures up to 700 °C (at 1.0 GPa) and the electrical conductivity was measured with the impedance spectroscopy from 250 to 700 °C at 1.0 GPa. The experimentally determined data included compressional (Vp) and shear wave velocities (Vs), velocity anisotropy (Av), intrinsic pressure and temperature derivatives of Vp and Vs, electrical conductivity (σ), electrical conductivity anisotropy (Aσ) and the parameters of the Arrhenius relationship. Elastic wave velocities increase in the structural directions Z, Y, X, with Vp of 6.63, 6.78 and 6.95 km s-1 and Vs of 3.75, 3.82 and 3.96 km s-1 for Z, Y and X, respectively, at pressure of 1.0 GPa. Elastic wave velocities increase linearly with pressure at room temperature and pressures between 0.25 and 1.0 GPa and decrease linearly with increasing temperature at 1.0 GPa. The pressure coefficients of the sample are in the range of 0.1883-0.2308 km s-1 GPa-1 for Vp and 0.1149-0.1678 km s-1 GPa-1 for Vs. The temperature coefficients are in the range of 2.09-2.35 × 10-4 km s-1 GPa-1 for Vp and 1.28-1.68 × 10-4 km s-1 GPa-1 for Vs. The electrical conductivity increases with increasing temperature, consistent with the Arrhenius relationship. Activation energies for the three structural directions of the amphibolite are in the range of 0.71-0.75 eV. The amphibolite shows velocity anisotropy (4.15-4.86 per cent for Vp and 5.29-5.84 per cent for Vs at 0.25-1.0 GPa) and electrical conductivity anisotropy (11.1-25.2 per cent). Based on the regional crust model

  1. High conductivity composite metal

    DOEpatents

    Zhou, Ruoyi; Smith, James L.; Embury, John David

    1998-01-01

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  2. Versatile apparatus for thermoelectric characterization of oxides at high temperatures

    NASA Astrophysics Data System (ADS)

    Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G.

    2014-10-01

    An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.

  3. Versatile apparatus for thermoelectric characterization of oxides at high temperatures.

    PubMed

    Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G

    2014-10-01

    An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.

  4. Evaluation of high temperature capacitor dielectrics

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  5. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  6. A new thermal conductivity probe for high temperature tests for the characterization of molten salts.

    PubMed

    Bovesecchi, G; Coppa, P; Pistacchio, S

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO 3 , 52% KNO 3 , and 30% LiNO 3 ) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec ® salt (53% KNO 3 , 7% NaNO 3 , 40% NaNO 2 ). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  7. A new thermal conductivity probe for high temperature tests for the characterization of molten salts

    NASA Astrophysics Data System (ADS)

    Bovesecchi, G.; Coppa, P.; Pistacchio, S.

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  8. A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders

    PubMed Central

    Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo

    2010-01-01

    A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases. PMID:27877354

  9. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOEpatents

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  10. Electrically conductive polyurethanes for biomedical applications

    NASA Astrophysics Data System (ADS)

    Williams, Charles M.; Nash, M. A.; Poole-Warren, Laura A.

    2005-02-01

    Electrical interfacing with neural tissue poses significant problems due to host response to the material. This response generally leads to fibrous encapsulation and increased impedance across the electrode. In neural electrodes such as cochlear implants, an elastomeric material like silicone is used as an insulator for the metal electrode. This project ultimately aims to produce a polymer electrode with elastomeric mechanical properties, metal like conductivity and capability. The approach taken was to produce a nanocomposite elastomeric material based on polyurethane (PU) and carbon nanotubes. Carbon nanotubes are ideal due to their high aspect ratio as well as being a ballistic conductor. The choice of PU is based on its elastomeric properties, processability and biocompatibility. Multi-walled nanotubes (MWNTs) were dispersed ultrasonically in various dispersive solutions before being added at up to 20wt% to a 5wt% PU (Pellethane80A) in Dimethylacetamide (DMAc). Films were then solvent cast in a vacuum oven overnight. The resulting films were tested for conductivity using a two-probe technique and mechanically tested using an Instron tensiometer. The percolation threshold (p) of the PU/MWNT films occurred at loadings of between 7 and 10 wt% in this polymer system. Conductivity of the films (above p) was comparable to those for similar systems reported in the literature at up to approximately 7x10-2 Scm-1. Although PU stiffness increased with increased %loading of nanotubes, all composites were highly flexible and maintained elastomeric properties. From these preliminary results we have demonstrated electrical conductivity. So far it is evident that a superior percolation threshold is dependent on the degree of dispersion of the nanotubes. This has prompted work into investigating other preparations of the films, including melt-processing and electrospinning.

  11. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.

    PubMed

    Lay, Makara; Méndez, J Alberto; Delgado-Aguilar, Marc; Bun, Kim Ngun; Vilaseca, Fabiola

    2016-11-05

    In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    NASA Astrophysics Data System (ADS)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  13. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C

    NASA Astrophysics Data System (ADS)

    Han, Y. D.; Zhang, S. M.; Jing, H. Y.; Wei, J.; Bu, F. H.; Zhao, L.; Lv, X. Q.; Xu, L. Y.

    2018-04-01

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  14. The fabrication of highly conductive and flexible Ag pattern through baking Ag nanospheres - nanoplates hybrid ink at a low temperature of 100°C.

    PubMed

    Han, Y D; Zhang, Siming; Jing, H Y; Wei, Jun; Bu, Fanhui; Zhao, Lei; Lv, Xiaoqing; Xu, L Y

    2018-01-24

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens and sintered at a low temperature (100℃). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ·m, which was only 6.5 times of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was owing to the combined action of nanospheres and nanoplates. It was a valued way to prepare Ag nanoink with good performance for printed/written electronics. © 2018 IOP Publishing Ltd.

  15. Electric Conduction in Solids: a Pedagogical Approach Supported by Laboratory Measurements and Computer Modelling Environments

    NASA Astrophysics Data System (ADS)

    Bonura, A.; Capizzo, M. C.; Fazio, C.; Guastella, I.

    2008-05-01

    In this paper we present a pedagogic approach aimed at modeling electric conduction in semiconductors, built by using NetLogo, a programmable modeling environment for building and exploring multi-agent systems. `Virtual experiments' are implemented to confront predictions of different microscopic models with real measurements of electric properties of matter, such as resistivity. The relations between these electric properties and other physical variables, like temperature, are, then, analyzed.

  16. Assessing the temporal stability of spatial patterns of soil apparent electrical conductivity using geophysical methods

    NASA Astrophysics Data System (ADS)

    De Caires, Sunshine A.; Wuddivira, Mark N.; Bekele, Isaac

    2014-10-01

    Cocoa remains in the same field for decades, resulting in plantations dominated with aging trees growing on variable and depleted soils. We determined the spatio-temporal variability of key soil properties in a (5.81 ha) field from the International Cocoa Genebank, Trinidad using geophysical methods. Multi-year (2008-2009) measurements of apparent electrical conductivity at 0-0.75 m (shallow) and 0.75-1.5 m (deep) were conducted. Apparent electrical conductivity at deep and shallow gave the strongest linear correlation with clay-silt content (R = 0.67 and R = 0.78, respectively) and soil solution electrical conductivity (R = 0.76 and R = 0.60, respectively). Spearman rank correlation coefficients ranged between 0.89-0.97 and 0.81- 0.95 for apparent electrical conductivity at deep and shallow, respectively, signifying a strong linear dependence between measurement days. Thus, in the humid tropics, cocoa fields with thick organic litter layer and relatively dense understory cover, experience minimal fluctuations in transient properties of soil water and temperature at the topsoil resulting in similarly stable apparent electrical conductivity at shallow and deep. Therefore, apparent electrical conductivity at shallow, which covers the depth where cocoa feeder roots concentrate, can be used as a fertility indicator and to develop soil zones for efficient application of inputs and management of cocoa fields.

  17. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.

    PubMed

    Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace

    2017-05-25

    Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Design of conduction cooling system for a high current HTS DC reactor

    NASA Astrophysics Data System (ADS)

    Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun

    2017-07-01

    A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

  19. Measurements of mineral thermal conductivity at high pressures and temperatures with the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rainey, E.; Kavner, A.

    2016-12-01

    The high-pressure, high-temperature thermal conductivities of lower mantle oxides and silicates play an important role in governing the heat flow across the core-mantle boundary, and the thermal conductivity of core materials determines, at first order, the power required to run the geodynamo. Uncertainties in the pressure-dependence and compositional-dependence of thermal conductivities has complicated our understanding of the heat flow in the deep earth and has implications for the geodynamo mechanism (Buffett, 2012). The goal of this study is to measure how thermal conductivity varies with pressure and composition using a technique that combines temperature measurements as a function of power input in the laser-heated diamond anvil cell (LHDAC) with a model of three-dimensional heat flow (Rainey & Kavner, 2014). In one set of experiments, we measured temperature versus laser-power for iron, iron silicide, and stainless steel (Fe:Cr:Ni = 70:19:11 wt%), using a variety of insulating layers. In another set of experiments, we measured temperature vs. laser power for a series of Fe-bearing periclase (Mg1-x,FexO) samples, with compositions ranging from x = .24 to x = .78. These experiments were conducted up to pressures of 25 GPa and temperatures of 2800 K. A numerical model for heat conduction in the LHDAC is used to forward model the temperature versus laser power curves at successive pressures, solving for the change in thermal conductivity of the material required to best reproduce the measurements. The heat flow model is implemented using a finite element full-approximation storage (FAS) multi-grid solver, which allows for efficient computation with flexible inputs for geometry and material properties in the diamond anvil cell (Rainey et al., 2013). We use the results of our experiments and model to extract pressure and compositional dependencies of thermal conductivity for the materials described herein. The results are used to help constrain models of the

  20. Structural characterization and electrical conductivity of the Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} solid series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yong; Duan, Nanqi; Yan, Dong, E-mail: yand@hust.edu.cn

    Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} (x=0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.99) is prepared by using a solid reaction route, and single phase is achieved. Structural and phase transformation of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} have been characterized by high temperature X-ray diffraction. The lattice parameters a, b, c decrease and γ increases with increasing x, at both room and high temperature. The phase transformation temperature increases linearly with increasing x for Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ}. The electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} is measured in wet air. A clear relationship between the structural, phase transformation andmore » electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} is built, which will provide a guideline to tailor the electrical conductivity. - Graphical abstract: Structural and phase transformation of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} have been characterized by high temperature X-ray diffraction, as well as the conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} in wet air. A clear relationship between the structural, phase transformation and electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} is built. - Highlights: • Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} with various Sm contents was prepared. • Structure, phase transformation and electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} were characterized. • A relationship between the structure, phase transformation and electrical conductivity was well established.« less

  1. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline filmmore » is well suited for their applications in electronic devices.« less

  2. High conductivity composite metal

    DOEpatents

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  3. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  4. High temperature superconductors applications in telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data formore » such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c

  5. Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor

    NASA Astrophysics Data System (ADS)

    Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao

    2015-02-01

    An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (<200°C). Thermogravimetric analysis showed the silver content of the paste was approximately 25 wt.%. Viscosity studies indicated the paste was a pseudoplastic liquid with viscosity in the range 6.5-9 Pa s. The paste was compatible with the micro-pen direct-writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.

  6. Alternate current conductivity in BSb films prepared by PLD technique: Electron transport processes in low-temperature range (10-275 K)

    NASA Astrophysics Data System (ADS)

    Das, Shirsendu; Bhunia, Ritamay; Hussain, Shamima; Bhar, Radhaballabh; Kumar Pal, Arun

    2017-04-01

    This study is focused on the measurement of alternate current (a.c.) electrical conductivity of BSb films, deposited on fluorine-doped tin oxide (FTO)-coated glass substrates at 673K by the pulsed laser deposition (PLD) technique. The frequency-dependent a.c. conductivity is measured as a function of temperature (10-275K) and frequency (100Hz-100kHz). The transport processes governing the electrical conduction processes in this material are analyzed critically. It is observed from FESEM micrograph that the film is composed of small discrete grain with sizes varying in the range 6-12nm. It is interesting to notice from \\lnσ_ac versus 1000/T plot that there are three distinct zones: i) Semiconductor zone at high temperature from 275 to 150K, ii) Insulator zone at low temperature from 70 to 10K and iii) an abrupt change of the \\lnσ_ac versus 1000/T plot at ˜ 75 indicating MIS transition occurring in this BSb film. We found that the activation energy for the BSb films in the lower-temperature range was quite low ˜ 6 to 41neV, while that in the higher-temperature range was 20 to 50meV.

  7. Role of temperature and oxygen content on structural and electrical properties of LaBaCo2O5+δ thin films

    NASA Astrophysics Data System (ADS)

    Mace, Brennan; Harrell, Zach; Chen, Chonglin; Enriquez, Erik; Chen, Aiping; Jia, Quanxi

    2018-02-01

    The role of temperature and the oxygen content in the structural transformation and electrical conductivity of epitaxial double perovskite LaBaCo2O5+δ (0≤ δ ≤ 1) thin films was systematically investigated. Reciprocal space mapping and ω-2θ x-ray diffraction performed at different temperatures in vacuum indicate that oxygen vacancies in the films become ordered at high temperature in a reducing environment. The changes of the oxygen content and the degree of oxygen vacancy ordering in the films result in a strong in-plane anisotropic lattice deformation and a large thermal expansion coefficient along the c-axis direction. The electrical conductivity measurements reveal that these behaviors are related to the degree of oxygen vacancy formation and lattice deformation in the films.

  8. The electrical properties and glass transition of some dental materials after temperature exposure.

    PubMed

    Marcinkowska, Agnieszka; Gauza-Wlodarczyk, Marlena; Kubisz, Leszek; Hedzelek, Wieslaw

    2017-10-17

    The physicochemical properties of dental materials will remain stable only when these materials in question are resistant to the changes in the oral cavity. The oral environment is subject to large temperature variations. The aim of the study was the assessment of electrical properties and glass transition of some dental materials after temperature exposure. Composite materials, compomers, materials for temporary prosthetic replacement and resin-based pit and fissure sealants were used in the study. The method used was electric conductivity of materials under changing temperature. The order of materials presenting the best characteristics for insulators was as follows: materials for temporary prosthetic replacement, resin-based pit and fissure sealants, composites, and compomers. Thanks to comparisons made between graphs during I and II heating run, the method could be used to observe changes in the heated material and determine whether the changes observed are reversible or permanent. The graphs also provided temperature values which contain information on glass transition during heating. In the oral cavity the effect of the constant temperature stimulus influences maturity of dental materials and improves their properties. But high temperatures over glass transition temperature can cause irreversible deformation and changes of the materials properties, even in a short time.

  9. High-temperature optical fiber sensors for characterization of advanced composite aerospace materials

    NASA Astrophysics Data System (ADS)

    Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.

    1999-01-01

    Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.

  10. Study of electrical conductivity and memory switching in the zinc-vanadium-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mirzayi, M.; Hekmatshoar, M. H.

    2013-07-01

    Vanadium zinc phosphate glasses were prepared by the conventional melt quenching technique and effect of V2O5 concentration on d.c. conductivity of prepared samples were investigated. X-ray diffraction patterns confirmed the glassy character of the samples. The d.c. conductivity increased with increase in V2O5 content. Results showed that activation energy has a single value in the investigated range of temperature, which can be explained in accordance with Mott small pollaron hopping model. I-V characteristics at high electric field showed that switching in these glasses was memory type. The threshold field of switching was found to decrease with increase in V2O5 content. Non-linear behavior and switching phenomenon was explained by Pool-Frenkel effect and thermal model.

  11. Characterizing Uncertainty In Electrical Resistivity Tomography Images Due To Subzero Temperature Variability

    NASA Astrophysics Data System (ADS)

    Herring, T.; Cey, E. E.; Pidlisecky, A.

    2017-12-01

    Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.

  12. Polaron conductivity mechanism in oxalic acid dihydrate: ac conductivity experiment

    NASA Astrophysics Data System (ADS)

    Levstik, Adrijan; Filipič, Cene; Bobnar, Vid; Levstik, Iva; Hadži, Dušan

    2006-10-01

    The ac electrical conductivity of the oxalic acid dihydrate ( α -POX) was investigated as a function of the frequency and temperature. The real part of the complex ac electrical conductivity was found to follow the universal dielectric response σ'∝νs , indicating that hopping or tunneling of localized charge carriers governs the electrical transport. A detailed analysis of the temperature dependence of the exponent s revealed that in a broad temperature range 50-200K the tunneling of polarons is the dominating charge transport mechanism.

  13. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less

  14. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2017-12-09

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  15. A high sensitivity ultralow temperature RF conductance and noise measurement setup.

    PubMed

    Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G

    2011-01-01

    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.

  16. Burnout of the organic vehicle in an electrically conductive thick-film paste

    NASA Astrophysics Data System (ADS)

    Liu, Zongrong; Chung, D. D. L.

    2004-11-01

    The burnout of the organic vehicle in a silver-particle, glass-free, electrically conductive, thick-film paste during firing in air was studied. For a vehicle consisting of ethyl cellulose dissolved in ether, burnout primarily involves the thermal decomposition of ethyl cellulose. The presence of ether with dissolved ethyl cellulose facilitates the burnout of ethyl cellulose. Excessive ethyl cellulose hinders the burnout. A high heating rate results in more residue after burnout. By interrupting the heating at 160°C for 15 min, the residue after subsequent burnout is diminished probably because of reduced temporal overlap of the processes of organic burnout and silver particle necking. By interrupting the heating at either 300°C or 385°C for 30 min, the temperature required for complete burnout is reduced. The addition of silver particles facilitates drying at room temperature and burnout upon heating.

  17. Thermal and electrical contact conductance studies

    NASA Technical Reports Server (NTRS)

    Vansciver, S. W.; Nilles, M.

    1985-01-01

    Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.

  18. High temperature thermal management with boron nitride nanosheets.

    PubMed

    Wang, Yilin; Xu, Lisha; Yang, Zhi; Xie, Hua; Jiang, Puqing; Dai, Jiaqi; Luo, Wei; Yao, Yonggang; Hitz, Emily; Yang, Ronggui; Yang, Bao; Hu, Liangbing

    2017-12-21

    The rapid development of high power density devices requires more efficient heat dissipation. Recently, two-dimensional layered materials have attracted significant interest due to their superior thermal conductivity, ease of production and chemical stability. Among them, hexagonal boron nitride (h-BN) is electrically insulating, making it a promising thermal management material for next-generation electronics. In this work, we demonstrated that an h-BN thin film composed of layer-by-layer laminated h-BN nanosheets can effectively enhance the lateral heat dissipation on the substrate. We found that by using the BN-coated glass instead of bare glass as the substrate, the highest operating temperature of a reduced graphene oxide (RGO) based device could increase from 700 °C to 1000 °C, and at the same input power, the operating temperature of the RGO device is effectively decreased. The remarkable performance improvement using the BN coating originates from its anisotropic thermal conductivity: a high in-plane thermal conductivity of 14 W m -1 K -1 for spreading and a low cross-plane thermal conductivity of 0.4 W m -1 K -1 to avoid a hot spot right underneath the device. Our results provide an effective approach to improve the heat dissipation in integrated circuits and high power devices.

  19. Electrical conduction mechanism in La3Ta0.5Ga5.3Al0.2O14 single crystals

    PubMed Central

    Yaokawa, Ritsuko; Aota, Katsumi; Uda, Satoshi

    2013-01-01

    The electrical conduction mechanism in La3Ta0.5Ga5.3Al0.2O14 (LTGA) single crystals was studied by nonstoichiometric defect formation during crystal growth. Since stoichiometric LTGA is not congruent, the single crystal grown from the stoichiometric melt was Ta-poor and Al-rich, where Al atoms were substituted not only in Ga sites but also in Ta sites. The population of the substitutional Al in Ta sites increased with increasing oxygen partial pressure during growth (growth-pO2) in the range from 0.01 to 1 atm. Below 600 °C, substitutional Al atoms in Ta sites were ionized to yield holes, and thus the electrical conductivity of the LTGA crystal depended on temperature and the growth-pO2. The dependence of the electrical conductivity on the growth-pO2 decreased as temperature increased. The temperature rise increases ionic conductivity, for which the dominant carriers are oxygen defects formed by the anion Frenkel reaction. PMID:24396153

  20. Record-high specific conductance and water temperature in San Francisco Bay during water year 2015

    USGS Publications Warehouse

    Work, Paul A.; Downing-Kunz, Maureen; Livsey, Daniel N.

    2017-02-22

    The San Francisco estuary is commonly defined to include San Francisco Bay (bay) and the adjacent Sacramento–San Joaquin River Delta (delta). The U.S. Geological Survey (USGS) has operated a high-frequency (15-minute sampling interval) water-quality monitoring network in San Francisco Bay since the late 1980s (Buchanan and others, 2014). This network includes 19 stations at which sustained measurements have been made in the bay; currently, 8 stations are in operation (fig. 1). All eight stations are equipped with specific conductance (which can be related to salinity) and water-temperature sensors. Water quality in the bay constantly changes as ocean tides force seawater in and out of the bay, and river inflows—the most significant coming from the delta—vary on time scales ranging from those associated with storms to multiyear droughts. This monitoring network was designed to observe and characterize some of these changes in the bay across space and over time. The data demonstrate a high degree of variability in both specific conductance and temperature at time scales from tidal to annual and also reveal longer-term changes that are likely to influence overall environmental health in the bay.In water year (WY) 2015 (October 1, 2014, through September 30, 2015), as in the preceding water year (Downing-Kunz and others, 2015), the high-frequency measurements revealed record-high values of specific conductance and water temperature at several stations during a period of reduced freshwater inflow from the delta and other tributaries because of persistent, severe drought conditions in California. This report briefly summarizes observations for WY 2015 and compares them to previous years that had different levels of freshwater inflow.

  1. Parallel conductance estimation by hypertonic dilution method with conductance catheter: effects of the bolus concentration and temperature.

    PubMed

    Herrera, M C; Olivera, J M; Valentinuzzi, M E

    1999-07-01

    The conductance catheter has gained momentum since its introduction in cardiovascular dynamics back in 1980. However, measuring errors are still blurring its clinical acceptance. The main objective here was to study the effects of the injected saline concentration and temperature on the evaluation of the parallel conductance, Gp, and thus, on the correction volume Vp. That conductance, Gp, and its associated volume, Vp, were computed using 167 saline dilution curves obtained with boluses at different concentrations and temperatures, injected in seven anesthetized closed-chest dogs. The excursion of the total conductance relative to the steady-state value during a saline maneuver showed good correlation with the injected concentration at both studied temperatures. The reference parallel volume (one reference per dog) was defined as the average value obtained with three successive maneuvers, at 6-M concentration and at body temperature; therefore, the method acted as its own reference. The variation of Vp relative to the reference value was clearly dependent on the injected concentration and on its temperature; dispersion was greater at 22 degrees C than at 40 degrees C. The variability would recognize also other causes, such as uncertainty of the extrapolation procedure and the thoracic redistribution of electrical field lines. As conclusion, it is recommended to characterize each maneuver by its concentration and temperature. Body temperature and 6-M concentration appear as the most recommendable combination for the injectate in most animals. Finally, these results intend to characterize the Vp estimation procedure in order to minimize errors. The variability of Vp, in different experimental conditions, demonstrated that both concentration and temperature are additional parameters that may modify the Gp estimate.

  2. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemalatha, K. S.; Damle, R.; Rukmani, K., E-mail: rukmani9909@yahoo.co.in

    2015-10-21

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance wasmore » observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.« less

  3. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif

    2007-08-01

    We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.

  4. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  5. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.

    PubMed

    Han, Y D; Zhang, S M; Jing, H Y; Wei, J; Bu, F H; Zhao, L; Lv, X Q; Xu, L Y

    2018-02-12

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  6. Structure and Electric Conduction in Pulsed Laser-Deposited ZnO Thin Films Individually Doped with N, P, or Na

    NASA Astrophysics Data System (ADS)

    Jiao, D. L.; Zhong, X. C.; Qiu, W. Q.; Zhang, H.; Liu, Z. W.; Zhang, G. Q.

    2018-03-01

    N-, P-, and Na-doped ZnO films with c-axis orientation were produced by pulsed laser deposition using N2O or O2 as the reaction gas. The effects of deposition temperature and deposition pressure on the lattice structure, morphology, and electric conduction have been investigated. High gas pressure leads to large-sized grains with large grain barriers, which cause a reduced mobility. P acts as an acceptor and the number of compensating defects in the P-doped film is reduced under high O2 pressure. Na also acts as an acceptor, and the effects of high temperature on Na-doped films are encouraging as the solubility of the dopant is high. However, high temperature may cause less incorporation of N and P in the film. In the present work, p-type conduction has not been obtained in N- and P-doped films despite a wide range of processing parameters employed. Na-doped films display an increasing trend towards p-type films at high temperatures and high O2 pressures. These results provide an insight on how these dopants behave in ZnO films and indicate that the careful selection of the deposition conditions is necessary in order to obtain p-type films by pulsed laser deposition.

  7. An origin of good electrical conduction in La{sub 4}BaCu{sub 5}O{sub 13+δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Daiki; Asai, Shinichiro; Terasaki, Ichiro, E-mail: terra@cc.nagoya-u.ac.jp

    2015-07-21

    We have prepared a set of polycrystalline samples of the metallic copper oxide La{sub 4}BaCu{sub 5−x}Co{sub x}O{sub 13+δ} (0 ≤ x ≤ 0.35) and have measured the resistivity from 4 to 800 K. All the resistivities show metallic temperature dependence with a small magnitude less than 2 mΩ cm at 800 K, indicating that the metallic conduction is robust against impurities. The robust metallic conduction further suggests that this class of oxide is a promising candidate for electrical leads at high temperature, which might replace platinum. A detailed measurement and analysis on the Hall resistivity have revealed that at least two components are responsible for the electricalmore » conduction, in which a large number of electrons of moderate mobility coexist with a much smaller number of holes of extremely high mobility. This large electron density well screens the impurity potential and retains the metallic conduction against 7% impurity doping.« less

  8. Emerging applications of high temperature superconductors for space communications

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O.; Bhasin, Kul B.; Long, Kenwyn J.

    1990-01-01

    Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates.

  9. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  10. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  11. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  12. Thermal conductivity of high purity synthetic single crystal diamonds

    NASA Astrophysics Data System (ADS)

    Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.

    2018-04-01

    Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.

  13. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    DOE PAGES

    Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...

    2016-03-11

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less

  14. Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene-buffered conditions and implications for defect equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanamaker, B.J.; Duba, A.G.

    1993-01-10

    The electrical conductivity along [100] of single crystal San Carlos olivine was measured as a function of temperature between 1100[degrees] and 1200[degrees]C and oxygen fugacity between 10[sup [minus]6] and 10[sup +0.5] Pa (at 1200[degrees]C), and either with (pyroxene-buffered) or without (self-buffered) an added natural pyroxene buffer from a San Carlos Iherzolite. Under these temperature and fO[sub 2] conditions, electrical conduction in the self-buffered sample is attributed to polarons (Fe[sup [sm bullet

  15. Photovoltaic device having light transmitting electrically conductive stacked films

    DOEpatents

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  16. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  17. Effect of iron content on the electrical conductivity of perovskite and magnesiowuestite assemblages at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1991-01-01

    The electrical conductivity of (Mg/0.76/Fe/0.24/)SiO3 perovskite and of an assemblage of (Mg/0.89/Fe/0.11/)SiO3 perovskite + (Mg/0.70/Fe/0.30/)O magnesiowiestite was measured at pressures of 45-80 GPa and temperatures from 295 to 3600 K. The apparent activation energy for electrical conduction is 0.24 (+ or - 0.10) eV for the perovskite and 0.20 (+ or - 0.08) eV for the perovskite + magnesiowuestite assemblage. Comparing present results with those derived previously for Fe-poor samples, it is found that the electrical conductivities of both the silicate perovskite and the perovskite + magnesiowuestite assemblage depend strongly on iron content. Thus, the electrical conductivity distribution inside the earth could provide an important constraint in modeling the composition of the lower mantle.

  18. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  19. Transient Torque Method: A Fast and Nonintrusive Technique to Simultaneously Determine Viscosity and Electrical Conductivity of Semiconducting and Metallic Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.; Zhu, S.

    2004-01-01

    A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of liquid metals and molten semiconductors. The experimental setup of the transient torque method is similar to that of the oscillation cup method. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate around its vertical axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with published data. The method is nonintrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer to measure just the viscosity of the melt or as a rotating magnetic field method to determine the electrical conductivity of a melt or a solid if desired.

  20. Electrical properties of Si-Si interfaces obtained by room temperature covalent wafer bonding

    NASA Astrophysics Data System (ADS)

    Jung, A.; Zhang, Y.; Arroyo Rojas Dasilva, Y.; Isa, F.; von Känel, H.

    2018-02-01

    We study covalent bonds between p-doped Si wafers (resistivity ˜10 Ω cm) fabricated on a recently developed 200 mm high-vacuum system. Oxide- and void free interfaces were obtained by argon (Ar) or neon (Ne) sputtering prior to wafer bonding at room temperature. The influence of the sputter induced amorphous Si layer at the bonding interface on the electrical behavior is accessed with temperature-dependent current-voltage measurements. In as-bonded structures, charge transport is impeded by a potential barrier of 0.7 V at the interface with thermionic emission being the dominant charge transport mechanism. Current-voltage characteristics are found to be asymmetric which can tentatively be attributed to electric dipole formation at the interface as a result of the time delay between the surface preparation of the two bonding partners. Electron beam induced current measurements confirm the corresponding asymmetric double Schottky barrier like band-alignment. Moreover, we demonstrate that defect annihilation at a low temperature of 400 °C increases the electrical conductivity by up to three orders of magnitude despite the lack of recrystallization of the amorphous layer. This effect is found to be more pronounced for Ne sputtered surfaces which is attributed to the lighter atomic mass compared to Ar, inducing weaker lattice distortions during the sputtering.

  1. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  2. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  3. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  4. Role of temperature and oxygen content on structural and electrical properties of LaBaCo2O5+δ thin films.

    PubMed

    Mace, Brennan; Harrell, Zach; Chen, Chonglin; Enriquez, Erik; Chen, Aiping; Jia, Quanxi

    2018-02-12

    The role of temperature and the oxygen content in the structural transformation and electrical conductivity of epitaxial double perovskite LaBaCo 2 O 5+δ (0≤ δ ≤ 1) thin films was systematically investigated. Reciprocal space mapping and ω-2θ x-ray diffraction performed at different temperatures in vacuum indicate that oxygen vacancies in the films become ordered at high temperature in a reducing environment. The changes of the oxygen content and the degree of oxygen vacancy ordering in the films result in a strong in-plane anisotropic lattice deformation and a large thermal expansion coefficient along the c-axis direction. The electrical conductivity measurements reveal that these behaviors are related to the degree of oxygen vacancy formation and lattice deformation in the films.

  5. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  6. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  7. Electrical conductivity and dielectric properties of TlInS2 single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.; Hassan, A.

    2011-07-01

    TlInS2 single crystals were grown by using Bridgman-Stockbauer technique. Measurements of DC conductivity were carried out in parallel (σ//) and perpendicular (σ⊥) directions to the c-axis over a temperature range from 303 to 463 K. The anisotropic behaviour of the electrical conductivity was also detected. AC conductivity and dielectric measurements were studied as a function of both frequency (102-106 Hz) and temperature (297-375 K). The frequency dependence of the AC conductivity revealed that σac(ω) obeys the universal law: σac(ω) = Aωs. The mechanism of the ac charge transport across the layers of TlInS2 single crystals was referred to the hopping over localized states near the Fermi level in the frequency range >3.5 × 103 Hz. The temperature dependence of σac(ω) for TlInS2 showed that σac is thermally activated process. Both of ɛ1 and ɛ2 decrease by increasing frequency and increase by increasing temperature. Some parameters were calculated as: the density of localized states near the Fermi level NF = 1.5 × 1020 eV-1 cm-3, the average time of charge carrier hoping between localized states τ = 3.79 μs and the average hopping distance R = 6.07 nm.

  8. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  9. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  10. Silver transfer in proustite Ag{sub 3}AsS{sub 3} at high temperatures: Conductivity and single-crystal X-ray studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagor, Anna; Pawlowski, Antoni; Pietraszko, Adam

    2009-03-15

    Single crystals of proustite Ag{sub 3}AsS{sub 3} have been characterised by impedance spectroscopy and single-crystal X-ray diffraction in the temperature ranges of 295-543 and 295-695 K, respectively. An analysis of the one-particle potential of silver atoms shows that in the whole measuring temperature range defects in the silver substructure play a major role in the conduction mechanism. Furthermore, the silver transfer is equally probable within silver chains and spirals, as well as between chains and spirals. The trigonal R3c room temperature phase does not change until the decomposition of the crystal. The electric anomaly of the first-order character which appearsmore » near 502 K is related to an increase in the electronic component of the total conductivity resulting from Ag{sub 2}S deposition at the sample surface. - Joint probability density function map of silver atoms at T=695 K.« less

  11. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Y.; Liu, S.; Lindenberg, A. M.

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈ 10 11 K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO 3 occurring on few picosecond time scales. Here, we explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on amore » ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO 3 and BaTiO 3. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.« less

  12. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    DOE PAGES

    Qi, Y.; Liu, S.; Lindenberg, A. M.; ...

    2018-01-30

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈ 10 11 K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO 3 occurring on few picosecond time scales. Here, we explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on amore » ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO 3 and BaTiO 3. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.« less

  13. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  14. Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties.

    PubMed

    Marroquin, Jason B; Rhee, K Y; Park, S J

    2013-02-15

    A novel, high-performance Fe(3)O(4)/MWNT/Chitosan nanocomposite has been prepared by a simple solution evaporation method. A significant synergistic effect of Fe(3)O(4) and MWNT provided enhanced electrical conductivity, mechanical properties, and thermal stability on the nanocomposites. A 5% (wt) loading of Fe(3)O(4)/MWNT in the nanocomposite increased conductivity from 5.34×10(-5) S/m to 1.49×10(-2) S/m compared to 5% (wt) MWNT loadings. The Fe(3)O(4)/MWNT/Chitosan films also exhibited increases in tensile strength and modulus of 70% and 155%, respectively. The integral procedure decomposition temperature (IPDT) was enhanced from 501 °C to 568 °C. These effects resulted from a number of factors: generation of a greater number of conductive channels through interactions between MWNT and Fe(3)O(4) surfaces, a higher relative crystallinity, the antiplasticizing effects of Fe(3)O(4), a restricted mobility and hindrance of depolymerization of the Chitosan chain segments, as well as uniform distribution, improved dispersion, and strong interfacial adhesion between the MWNT and Chitosan matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Electrical conductivity anomaly beneath Mare Serenitatis detected by Lunokhod 2 and Apollo 16 magnetometers

    NASA Technical Reports Server (NTRS)

    Vanian, L. L.; Vnuchkova, T. A.; Egorov, I. V.; Basilevskii, A. T.; Eroshenko, E. G.; Fainberg, E. B.; Dyal, P.; Daily, W. D.

    1979-01-01

    Magnetic fluctuations measured by the Lunokhod 2 magnetometer in the Bay Le Monnier are distinctly anisotropic when compared to simultaneous Apollo 16 magnetometer data measured 1100 km away in the Descartes highlands. This anisotropy can be explained by an anomalous electrical conductivity of the upper mantle beneath Mare Serenitatis. A model is presented of anomalously lower electrical conductivity beneath Serenitatis and the simultaneous magnetic data from the Lunokhod 2 site at the mare edge and the Apollo 16 site are compared to the numerically calculated model solutions. This comparison indicates that the anisotropic fluctuations can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Mare Serenitatis. A decreased electrical conductivity in the upper mantle beneath the mare may be due to a lower temperature resulting from heat carried out the magma source regions to the surface during mare flooding.

  16. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  17. High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.

    2013-01-01

    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.

  18. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  19. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  20. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.