Science.gov

Sample records for high-temperature jet flow

  1. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  2. Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.

    2008-01-01

    Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.

  3. Numerical Study of High-Temperature Jet Flow Using RANS/LES and PANS Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2005-01-01

    Two multi-scale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k(epsilon)) model with a RANS/LES transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the Partially Averaged Navier-Stokes (PANS) model, where the unresolved kinetic energy parameter (f(sub k)) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS). It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and equal to one in the viscous sub layer, and when the RANS turbulent viscosity becomes smaller than the LES viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate and turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide valuable tool for accurate jet noise predictions. Solutions from these models are compared to RANS results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid RANS/LES and PANS in simulating such flow phenomena.

  4. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    PubMed Central

    Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278

  5. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    PubMed

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  6. DEVELOPMENT OF HIGH TEMPERATURE HYDROCARBON JET FUELS

    DTIC Science & Technology

    AIRCRAFT ENGINE OILS, *AVIATION FUELS, *HYDROCARBONS, *JET ENGINE FUELS, *LUBRICANTS, *POLYCYCLIC COMPOUNDS, ALKYL RADICALS, BENZENE, CATALYSIS...CHEMICAL REACTIONS , COMBUSTION, CUMENES, DECOMPOSITION, ETHYLENES, FORMALDEHYDE, FRAGMENTATION, HIGH TEMPERATURE, HYDROGENATION, NAPHTHALENES, PHYSICAL

  7. Determination of the velocity, density, maximum flux, and enthalpy profiles for a very high temperature arc jet nozzle flow

    NASA Astrophysics Data System (ADS)

    Kopp, Robert William

    1989-06-01

    Hypervelocity flows for velocities is excess of 1.4 km/sec (Mach 5) require very high stagnation temperature to avoid liquefaction. The arc heater wind tunnel was designed to provide such flows. The electric-arc driven wind tunnel can develop stagnation temperatures up to 13,000 K which will produce hypervelocity flows up to 7 km/sec (earth orbital speed). The nature of the flow, however, is such that the high temperature source flow may cause severe gradients at the nozzle exit. In order to perform aerothermodynamic tests the characterization of the flow in the test section is required. This paper experimentally determines the stream profiles for an arcjet wind tunnel conical nozzle directly from calorimetry and pitot probe surveys.

  8. Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.

    1999-01-01

    The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.

  9. High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows

    NASA Astrophysics Data System (ADS)

    Papageorge, Michael J.; Arndt, Christoph; Fuest, Frederik; Meier, Wolfgang; Sutton, Jeffrey A.

    2014-07-01

    In this manuscript, we describe an experimental approach to simultaneously measure high-speed image sequences of the mixture fraction and temperature fields during pulsed, turbulent fuel injection into a high-temperature, co-flowing, and vitiated oxidizer stream. The quantitative mixture fraction and temperature measurements are determined from 10-kHz-rate planar Rayleigh scattering and a robust data processing methodology which is accurate from fuel injection to the onset of auto-ignition. In addition, the data processing is shown to yield accurate temperature measurements following ignition to observe the initial evolution of the "burning" temperature field. High-speed OH* chemiluminescence (CL) was used to determine the spatial location of the initial auto-ignition kernel. In order to ensure that the ignition kernel formed inside of the Rayleigh scattering laser light sheet, OH* CL was observed in two viewing planes, one near-parallel to the laser sheet and one perpendicular to the laser sheet. The high-speed laser measurements are enabled through the use of the unique high-energy pulse burst laser system which generates long-duration bursts of ultra-high pulse energies at 532 nm (>1 J) suitable for planar Rayleigh scattering imaging. A particular focus of this study was to characterize the fidelity of the measurements both in the context of the precision and accuracy, which includes facility operating and boundary conditions and measurement of signal-to-noise ratio (SNR). The mixture fraction and temperature fields deduced from the high-speed planar Rayleigh scattering measurements exhibited SNR values greater than 100 at temperatures exceeding 1,300 K. The accuracy of the measurements was determined by comparing the current mixture fraction results to that of "cold", isothermal, non-reacting jets. All profiles, when properly normalized, exhibited self-similarity and collapsed upon one another. Finally, example mixture fraction, temperature, and OH* emission

  10. Jet engine powers large, high-temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Benham, T. F.; Mulliken, S. R.

    1967-01-01

    Wind tunnel for large component testing uses a jet engine with afterburner to provide high temperatures /1200 degrees to 2000 degrees F/ and controlled high velocity gas. This economical wind tunnel can accommodate parts ten feet by ten feet or larger, and is a useful technique for qualitative information.

  11. Turbulent Flow past High Temperature Surfaces

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  12. High-temperature counter-flow recuperator

    NASA Astrophysics Data System (ADS)

    Rudloff, F.

    1981-05-01

    The commercial potential of a helical recuperator design in recovering waste heat from industrial furnaces is reported. The helical recuperator concept consists of a cylindrical column with an interior helical interface which separates the preheat air and the combustion gas. The column operates in a teer flow mode and is formed from modular sections. The material evaluation consisted of exposing material samples to a soda-lime glass furnace environment for a fifteen week period. ECP-3, X-81, and Unichrome were the best suited for use in a soda-lime environment and ECP-3 was the best candidate with respect to manufacturing. Two potential design modifications were identified: a finned design and a double helix design. For materials that showed the greatest potential for use in the glass environment, the double helix design made from ECP-3 was the most economical producing payback periods of 6 to 14 years.

  13. Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    2009-01-01

    Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.

  14. Properties of thin films for high temperature flow sensors

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    1991-01-01

    Requirements of material parameters of high temperature flow sensors are identified. Refractory metal silicides offer high temperature sensitivity and high frequency response and are stable up to 1000 C. Intrinsic semiconductors of high band gap are also considered as sensor elements. SiC and diamond are identified. Combined with substrates of low thermal and electrical conductivity, such as quartz or Al2O3, these materials meet several requirements of high sensitivity and frequency response. Film deposition and patterning techniques suitable for these materials are identified.

  15. Flux-flow resistivity of three high-temperature superconductors

    SciTech Connect

    Cha, Y.S.; Evans, D.J.; Hull, J.R.; Seol, S.Y.

    1996-10-01

    Results of experiments on flux-flow resistivity (the relationship of voltage to current) of three high-temperature superconductors are described. The superconductors are a melt-cast BSCCO 2212 rod, a single filament BSCCO powder-in-tube (PIT) tape, and a multifilament PIT tape. The flux-flow resistivity of these superconductors was measured at three temperatures: 77 K (saturated liquid nitrogen), 87 K (saturated liquid argon), and 67 K (subcooled liquid nitrogen). Implications of the present results for practical applications are discussed.

  16. High-temperature zirconia microthruster with an integrated flow sensor

    NASA Astrophysics Data System (ADS)

    Lekholm, Ville; Persson, Anders; Palmer, Kristoffer; Ericson, Fredric; Thornell, Greger

    2013-05-01

    This paper describes the design, fabrication and characterization of a ceramic, heated cold-gas microthruster device made with silicon tools and high temperature co-fired ceramic processing. The device contains two opposing thrusters, each with an integrated calorimetric propellant flow sensor and a heater in the stagnation chamber of the nozzle. The exhaust from a thruster was photographed using schlieren imaging to study its behavior and search for leaks. The heater elements were tested under a cyclic thermal load and to the maximum power before failure. The nozzle heater was shown to improve the efficiency of the thruster by 6.9%, from a specific impulse of 66 to 71 s, as calculated from a decrease of the flow rate through the nozzle of 13%, from 44.9 to 39.2 sccm. The sensitivity of the integrated flow sensor was measured to 0.15 mΩ sccm-1 in the region of 0-15 sccm and to 0.04 mΩ sccm-1 above 20 sccm, with a zero-flow sensitivity of 0.27 mΩ sccm-1. The choice of yttria-stabilized zirconia as a material for the devices makes them robust and capable of surviving temperatures locally exceeding 1000 °C.

  17. High-Temperature Jet Spray Reactor for the Preparation of Rare Earth Oxides by Pyrolysis: Computer Simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiu-yue; Lv, Chao; Zhang, Zi-mu; Dou, Zhi-he; Zhang, Ting-an; Liu, Yan; Lv, Guo-zhi

    2014-09-01

    A new type of high-temperature jet spray pyrolysis (SP) reactor is investigated in this article as part of studies on the preparation of rare earth oxides at Northeastern University (NEU), Shenyang, China. The jet spray reactor examined here is a horizontal, tubular reactor conveying the hot products of the combustion of methane and oxygen with a converging-diverging jet section in an arrangement that provides for inspiration of LaCl3 solution to pyrolyze to La2O3 with the hot gas. The present article is concerned with a computer simulation using a computational fluid dynamic model to develop the velocity, temperature, and pressure profiles in the jet reactor since direct measurement is difficult. The article includes brief comments on a room-temperature model designed to examine the flow characteristics of the jet SP reactor. It was found that the velocity decreased at first, and then it increased near the jet throat. The highest velocity occurred at the throat of jet SP reactor where the LaCl3 enters the unit. Along the reactor axis, the temperature decreases with distance from the gas inlet. The lowest temperature zone was near the wall before the throat of the reactor due to wall heat losses. The temperature was estimated to be close to 1700 K at the throat of the reactor, and it was about 1300 K toward the exit of the reactor. It was shown that a reaction would take place mainly in the throat and in the vicinity of first contact between gas and induced spray. A negative pressure was produced as gas passes through the converging-diverging throat of the jet SP reactor that causes the LaCl3 solution to enter the throat of the reactor. While the investigations of this type of reactor are at an early stage, the results look promising. NEU continues to investigate this approach for the preparation of La2O3 based on high-temperature testwork and physical modeling techniques.

  18. Radial flow pulse jet mixer

    DOEpatents

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  19. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  20. High strain rate and high temperature behaviour of metallic materials for jet engine turbine containment

    NASA Astrophysics Data System (ADS)

    Gálvez, F.; Cendón, D.; Enfedaque, A.; Sánchez-Gálvez, V.

    2006-08-01

    This work presents a study on the mechanical characterisation of the materials involved in air jet engine turbines. The final objective is to analyse the phenomenon of a turbine blade off failure, to verify the requirements of the case containment. The materials in the turbine are under high temperatures, ranging from 400circC to 800circC and when the fail of the blade occurs if impacts against the case, reaching strain rates up to 103 s - 1. To obtain the behaviour of the materials, testing at high strain rate and high temperature at one time is necessary. The experimental set-up used was a split Hopkinson pressure bar, with a high temperature furnace adapted. The bars used on the device were high strength nickel alloys with a cooling system to decrease the temperature of the measurement devices. The effect of wave dispersion due to the temperature gradient has been also studied to correct the measurements if necessary. The material tested has been the FV535 stainless steel used on the case. The full stress-strain curves at different temperatures and at strain rates up to 103 s-1 have been obtained. The experimental results show a marked influence of the strain rate and the temperature that cannot be neglected. The Johnson-Cook material model has been used to fit the results of the material tests.

  1. Flowmeter measures flow rates of high temperature fluids

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1966-01-01

    Flowmeter in which flow rate is determined by measuring the position and thus the displacement of an internal float acted upon by the flowing fluid determines the flow rates of various liquid metals at elevated temperatures. Viscous forces cause the float to move from its mounted position, affording several means for measuring this motion and the flow rate.

  2. Jet flows of reacting gases

    NASA Astrophysics Data System (ADS)

    Aliev, Farkhadzhan; Zhumaev, Zair Sh.

    The book presents fundamentals of the aerodynamic theory and calculation of straight gas jets. The discussion focuses on the flow structure and turbulent combustion of unmixed gases and thermal characteristics of the jet. The following three types of problems are considered: motion of unmixed chemically active gases; gas motion under conditions of chemical equilibrium; and motion of gases under conditions of finite-rate chemical reactions.

  3. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  4. Nonintrusive fast response oxygen monitoring system for high temperature flows

    NASA Technical Reports Server (NTRS)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  5. Computational Study of Nonequilibrium Chemistry in High Temperature Flows

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Sriram

    Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below

  6. Study of Solid Particle Behavior in High Temperature Gas Flows

    NASA Astrophysics Data System (ADS)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.

    2009-01-01

    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  7. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  8. Modeling jets in cross flow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1994-01-01

    Various approaches to the modeling of jets in cross flow are reviewed. These are grouped into four classes, namely: empirical models, integral models, perturbation models, and numerical models. Empirical models depend largely on the correlation of experimental data and are mostly useful for first-order estimates of global properties such as jet trajectory and velocity and temperature decay rates. Integral models are based on some ordinary-differential form of the conservation laws, but require substantial empirical calibration. They allow more details of the flow field to be obtained; simpler versions have to assume similarity of velocity and temperature profiles, but more sophisticated ones can actually calculate these profiles. Perturbation models require little empirical input, but the need for small parameters to ensure convergent expansions limits their application to either the near-field or the far-field. Therefore, they are mostly useful for the study of flow physics. Numerical models are based on conservation laws in partial-differential form. They require little empirical input and have the widest range of applicability. They also require the most computational resources. Although many qualitative and quantitative features of jets in cross flow have been predicted with numerical models, many issues affecting accuracy such as grid resolution and turbulence model are not completely resolved.

  9. Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki

    There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.

  10. High-temperature and high-speed oxidation of 4H-SiC by atmospheric pressure thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Hanafusa, Hiroaki; Ishimaru, Ryosuke; Higashi, Seiichiro

    2017-04-01

    The application of atmospheric pressure thermal plasma jet (TPJ) annealing to the high-temperature and high-speed thermal oxidation of Si-face of 4H-SiC wafer is reported. A high SiO2 film growth rate of 288 nm min‑1 was obtained at an oxidation temperature of 1640 °C without intentional dry O2 gas feeding. Ambient analysis suggested that ozone generated from oxygen in the ambient air by the plasma irradiation was supplied to the SiC surface. It is implied that a mono-oxygen decomposed from ozone was diffused into the oxide growth interface. As a result, high-speed oxidation occurred by combination of high-temperature TPJ annealing and ozone feeding.

  11. Jet flow in steadily swimming adult squid.

    PubMed

    Anderson, Erik J; Grosenbaugh, Mark A

    2005-03-01

    Although various hydrodynamic models have been used in past analyses of squid jet propulsion, no previous investigations have definitively determined the fluid structure of the jets of steadily swimming squid. In addition, few accurate measurements of jet velocity and other jet parameters in squid have been reported. We used digital particle imaging velocimetry (DPIV) to visualize the jet flow of adult long-finned squid Loligo pealei (mantle length, L(m)=27.1+/-3.0 cm, mean +/-S.D.) swimming in a flume over a wide range of speeds (10.1-59.3 cm s(-1), i.e. 0.33-2.06 L(m) s(-1)). Qualitatively, squid jets were periodic, steady, and prolonged emissions of fluid that exhibited an elongated core of high speed flow. The development of a leading vortex ring common to jets emitted from pipes into still water often appeared to be diminished and delayed. We were able to mimic this effect in jets produced by a piston and pipe arrangement aligned with a uniform background flow. As in continuous jets, squid jets showed evidence of the growth of instability waves in the jet shear layer followed by the breakup of the jet into packets of vorticity of varying degrees of coherence. These ranged from apparent chains of short-lived vortex rings to turbulent plumes. There was some evidence of the complete roll-up of a handful of shorter jets into single vortex rings, but steady propulsion by individual vortex ring puffs was never observed. Quantitatively, the length of the jet structure in the visualized field of view, L(j), was observed to be 7.2-25.6 cm, and jet plug lengths, L, were estimated to be 4.4-49.4 cm using average jet velocity and jet period. These lengths and an average jet orifice diameter, D, of 0.8 cm were used to calculate the ratios L(j)/D and L/D, which ranged from 9.0 to 32.0 and 5.5 to 61.8, respectively. Jets emitted from pipes in the presence of a background flow suggested that the ratio between the background flow velocity and the jet velocity was more

  12. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  13. Cooperative Investigation of Jet Flows.

    DTIC Science & Technology

    1982-06-01

    high and low Reynolds number jets. Controlling the jet with pure tone excitation, that enhances the helical mode of its instability, resulted in a... helical modes and upstream influence appear to be key mechanisms in our findings 3.- -- - Disatributio~n/ Availit- UNCLASSIFIED 89CUMIIY CLAWIPCAT OF...and low Reynolds number*’ jets. Controlling the jet with pure tone excitation, that enhances the helical mode of its instability, resulted in a

  14. Jet flow and premixed jet flame control by plasma swirler

    NASA Astrophysics Data System (ADS)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang

    2017-04-01

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  15. An experimental study of turbulent flow in attachment jet combustors by LDV

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Cheng-Kang

    1993-12-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width.

  16. Computational Flow Predictions for the Lower Plenum of a High-Temperature, Gas-Cooled Reactor

    SciTech Connect

    Donna Post Guillen

    2006-11-01

    Advanced gas-cooled reactors offer the potential advantage of higher efficiency and enhanced safety over present day nuclear reactors. Accurate simulation models of these Generation IV reactors are necessary for design and licensing. One design under consideration by the Very High Temperature Reactor (VHTR) program is a modular, prismatic gas-cooled reactor. In this reactor, the lower plenum region may experience locally high temperatures that can adversely impact the plant’s structural integrity. Since existing system analysis codes cannot capture the complex flow effects occurring in the lower plenum, computational fluid dynamics (CFD) codes are being employed to model these flows [1]. The goal of the present study is to validate the CFD calculations using experimental data.

  17. The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor

    SciTech Connect

    Allendorf, M.D.; Osterheld, T.H.; Melius, C.F.

    1994-01-01

    Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

  18. Research of products of high temperature synthesis flowing in the rotation conditions

    NASA Astrophysics Data System (ADS)

    Ksandopulo, G.; Baideldinova, A.; Riabikin, Y.; Mukhina, L.; Ponomareva, E.; Vasilieva, N.

    2017-02-01

    The method of production of materials by out-furnace process of self-propagating high temperature synthesis (SHS), flowing in the conditions of action of centrifugal force, is developed presently. The primary purpose of working is achievement high level of generating of energy and use of it for forming of steady meta-stable crystalline phases with an uncommon set of physical and chemical properties.

  19. Jet flow on ribbed curved surfaces

    NASA Astrophysics Data System (ADS)

    Lashkov, Iu. A.; Sokolova, I. N.; Shumilkina, E. A.

    1992-02-01

    The objective of the study was to investigate the possibility of using microribbing to reduce turbulent friction in Coanda flows over curved surfaces. It is shown that ribs make it possible to reduce the effect of a jet impinging on an obstacle and to prevent the Coanda effect when jet attachment is undesirable. The optimal rib parameters are determined.

  20. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are

  1. SparkJet Actuators for Flow Control

    DTIC Science & Technology

    2007-03-01

    from 300 to 1000 K and velocities from -100 to 400 m/sec. The rectangular zone that represents the annular energy deposition region in 3D is visible in...and Glezer, A., "Flow Reattachment Dynamics over a Thick Airfoil Controlled by Synthetic Jet Actuators," AIAA Paper No. 99-1001, 37th AIAA Aerospace...Sciences Meeting, Reno, NV, January 1999. 3 Amitay, M., and Glezer, A., "Aerodynamic Flow Control of a Thick Airfoil using Synthetic Jet Actuators

  2. Field of Flow About a Jet and Effect of Jets on Stability of Jet-Propelled Airplanes

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S.

    1946-01-01

    A theoretical investigation was conducted on jet-induced flow deviation. Analysis is given of flow inclination induced outside cold and hot jets and jet deflection caused by angle of attack. Applications to computation of effects of jet on longitudinal stability and trim are explained. Effect of jet temperature on flow inclination was found small when thrust coefficient is used as criterion for similitude. The average jet-induced downwash over tail plane was obtained geometrically.

  3. High temperature corrosion of welded ferritic stainless steel in flowing CO2 gas

    NASA Astrophysics Data System (ADS)

    Shariff, Nurul Atikah; Othman, Norinsan Kamil; Jalar, Azman; Hamid, Muhammad Azmi Abdul; Rahman, Irman Abdul

    2013-05-01

    The high temperature corrosion of welded structure of Ferritic Stainless Steel (FSS) in flowing Ar-75%CO2 gas at 700°C has been investigated. The welded structure of FSS joint using ER 308L filler metal by GTAW. The soundness of welded joint has been clarified by X-Ray CT Scan. Prior the high temperature exposure, the welded FSS compulsory passed the standard of ASME. The welded structure of FSS was heated in flowing CO2 gas for 50 h at 1 atm. The morphology and microstructure of oxide formation on welded FSS alloy was characterized by using SEM. The result shows that the different oxide morphologies were observed on parent and fusion metal. The formation of different oxide and element properties at the interface were revealed by X-Ray Diffraction. The differences of the physical condition and morphology microstructure of welded and parent metal were observed to respond to different exposure times. This phenomenon perhaps explained due to the differences of the minor alloying elements on both parent and filler metals. The high temperature corrosion behaviour was discussed in details in this paper regarding on the physical properties, morphology and the microstructure.

  4. High temperature behavior of nanostructured Al powders obtained by mechanical alloying under NH3 flow

    NASA Astrophysics Data System (ADS)

    Caballero, E. S.; Cintas, J.; Cuevas, F. G.; Montes, J. M.; Herrera-García, M.

    2015-03-01

    Aluminium powder was mechanically alloyed under ammonia gas flow for different times (1-5 h) in order to produce a second-phase reinforcement, mainly by aluminium nitride (AlN). After milling, powders were consolidated by cold uniaxial pressing and vacuum sintering. A small amount of copper powder was added to the Al milled powder to improve its sintering behavior. Hardness and indirect tensile test were carried out at room and high temperature to evaluate the mechanical properties evolution. Results showed an remarkable hardness increase with the second phases content, even at high temperature (up to 229 HB at 400 °C). However, the high content of second phases of ceramic nature decreases the ductility, resulting in low values of tensile strength (lower than 160 MPa).

  5. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Mutharasan, Rajakkannu; Du, Guang-Wu; Miller, Jeffrey H.; Ko, Frank

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating horizontal engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the seal concept design and development of two new seal classes that show promise of meeting these demands will be presented. These seals include the ceramic wafer seal and the braided ceramic rope seal. Presented are key elements of leakage flow models for each of these seal types. Flow models such as these help designers to predict performance-robbing parasitic losses past the seals, and estimate purge coolant flow rates. Comparisons are made between measured and predicted leakage rates over a wide range of engine simulated temperatures and pressures, showing good agreement.

  6. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  7. Doping Effect on High-Temperature Plastic Flow in Fine-grained Alumina (Invited)

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Ikuhara, Y.; Sakuma, T.

    2010-12-01

    High-temperature plastic flow controlled by matter transport in the grain boundaries of Al2O3 is briefly introduced with a special interest in the effect of cation doping. According to the deformation mechanism map compiled for polycrystalline Al2O3, the predominant deformation mechanism in Al2O3 with a grain size of less than 10μm is grain boundary diffusional creep at temperatures of 1100-1400°C and an applied stress of less than 100MPa. The grain boundary sliding becomes important in the deformation mechanism when the grain size is smaller than several microns. Our group has found that the high-temperature creep rate in Al2O3 with an average grain size of less than 5μm is sensitively influenced by the doping of a small amount of cations at the doping level of 0.1mol%. For instance, the high-temperature creep rate in Al2O3 with a grain size of 1μm is retarded by a factor of 200 at 1250°C by the doping of 0.1mol% Y3+ or Lu3+. We performed high-resolution transmission electron microscopy observations and chemical analysis by an energy dispersive X-ray spectrometer using an electron probe size of 1nm on samples of various kinds of cation-doped Al2O3s. The microstructure investigation revealed that the doped cations tend to segregate in the vicinity of the grain boundaries of the Al2O3; grain boundaries in the cation-doped Al2O3s are clean without any second phase particles or amorphous layer, and are essentially solid/solid boundaries. The segregation of the Y or Lu cations in the grain boundaries probably suppresses the grain boundary diffusion of Al2O3 and accordingly reduces the creep rate at high temperatures.

  8. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    NASA Technical Reports Server (NTRS)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and

  9. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  10. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    SciTech Connect

    Richard Schultz

    2012-04-01

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  11. Snowmass 2001: Jet energy flow project

    SciTech Connect

    C. F. Berger et al.

    2002-12-05

    Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms.

  12. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    SciTech Connect

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  13. High temperature gradient micro-sensor for wall shear stress and flow direction measurements

    NASA Astrophysics Data System (ADS)

    Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.

    2016-12-01

    We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.

  14. Fluctuating pressures in flow fields of jets

    NASA Technical Reports Server (NTRS)

    Schroeder, J. C.; Haviland, J. K.

    1976-01-01

    The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.

  15. Experiments on confined turbulent jets in cross flow. [longitudinal and transverse distributions of velocity and temperature for jet flow

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Greber, I.

    1974-01-01

    Results are reported of experiments on the effects of an opposite wall on the characteristics of turbulent jets injected into a cross flow, for unheated and heated jets. Longitudinal and transverse distributions of velocity and temperature are presented for single and multiple circular jets, and trajectories are presented for two-dimensional jets. The opposite wall has relatively little effect on a single jet unless the ratio of jet to cross flow momentum flux is large enough for the jet to impinge on the opposite wall. For a row of jets aligned perpendicularly to the cross flow, the opposite wall exerts progressively larger influence as the spacing between jets decreases. Much of the effect of jet and wall proximity can be understood by considering the interaction of the vortex flow which is the major feature of the structure of a single jet in a cross flow. Smoke photographs are shown to elucidate some of the interaction patterns.

  16. Highly Inclined Jets in Cross Flow

    NASA Technical Reports Server (NTRS)

    Milanovic, I. M.; Zaman, K. B. M. Q.

    2003-01-01

    Results from an experimental investigation of flow field generated by pitched and yawed jets discharging from a flat plate into a cross-flow are presented. The circular jet was pitched at alpha = 20deg and 45deg and yawed between Beta = 0deg and 90deg in increments of 15deg. The measurements were performed with two ×-wires providing all three components of velocity and turbulent stresses. These data were obtained at downstream locations of x = 3, 5, 10 and 20, where the distance x, normalized by the jet diameter, is measured from the center of the orifice. Data for all configurations were acquired at a momentum-flux ratio J = 8. Additionally, for selected angles and locations, surveys were conducted for J = 1.5, 4, and 20. As expected, the jet penetration is found to be higher at larger alpha. With increasing beta the jet spreads more. The rate of reduction of peak streamwise vorticity, ? max, with the downstream distance is significantly less at higher Beta but is found to be practically independent of alpha. Thus, at the farthest measurement station x = 20, ?xmax is about five times larger for Beta = 75deg compared to the levels at Beta = 0deg. Streamwise velocity within the jet-vortex structure is found to depend on the parameter J. At J = 1.5 and 4, 'wake-like' velocity profiles are observed. In comparison, a 'jet-like' overshoot is present at higher J. Distributions of turbulent stresses for various cases are documented. Peak normal stresses are found to occur within the core of the streamwise vortices. With yaw, at lower values of J, high turbulence is also observed in the boundary layer underneath the jet-vortex structure

  17. PVD Cu trench-fill by viscous flow at high temperatures

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan

    The scaling of integrated circuits has led to new challenges in Cu interconnect fabrication. It is getting difficult to fill narrow trenches, e.g. 20 nm wide, by Cu electroplating. In this work, a high temperature PVD Cu viscous flow trench fill process was explored to overcome the difficulties of filling narrow and high aspect ratio trenches. We have tested and found TaN and MoN to be good barriers, and Ru a good wetting surface for Cu. The three metals, Ta, Mo and Ru, are thus suitable for use as a thin liner to provide adhesion between the filled Cu and the dielectrics. We have therefore studied and compared Cu viscous flow trench filling on Ru, Mo and Ta liners. Cross-sectional TEM was employed to examine the trench fill profiles under different viscous flow conditions. We have found that a continuous Cu seed deposited at room temperature was essential to allow successful Cu viscous flow. The liner material's effect on Cu seed agglomeration was thus critical. It was shown that viscous flow on a Ru liner with a continuous Cu seed can fill narrow trenches (300 nm wide) at a high aspect ratio (a/r = 5), and produce maximized Cu grain size without post-fill annealing. A thicker Cu seed is required on the Mo liner for a successful viscous fill. However, on a Ta liner, because of poor Cu wetting, it is difficult to maintain a continuous Cu seed coverage at high temperatures, and the viscous fill was unsuccessful. To fill ultra-narrow (≤ 48 nm wide) and high aspect ratio (a/r ≥ 4) trenches, a lower deposition rate was needed. Agglomeration of the whole Cu fill at high temperatures is a key issue, which still remains to be overcome. Computer simulations of the viscous flow trench fill process were carried out, taking into account the effects of incoming flux divergence and Cu seed coverage. Our simulations indicated that a successful viscous trench fill relies on a continuous Cu seed coverage and a high surface mobility. Viscous flow is not sensitive to the

  18. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  19. Jet vortex generators for turbulent flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory; Lin, J.; Howard, F.

    1990-01-01

    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low speed turbulent flow over a two dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  20. Jet vortex generators for turbulent flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, G.; Lin, J.; Howard, F.

    1990-01-01

    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  1. On some flow characteristics of conventional and excited jets

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1983-01-01

    Improved correlations of jet centerline velocity and static temperature decay data for convergent nozzles are developed. From these empirical correlations, a relationship was devised by which the static temperature decay for a nonisothermal jet plume can be determined from cold-flow jet centerline velocity decay data or prediction. This relationship is shown to apply as well to jet plumes for various nozzle shapes. It is assumed, by analogy, that this relationship also applies to acoustically excited jet plumes. Jet plume spreading with and without excitation is discussed. Finally, the radial velocity and temperature profiles for conventional and enhanced mixing jet flows are shown and their implication for excited flows is discussed.

  2. High-Flow Jet Exit Rig Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Buehrle, Robert J.; Trimarchi, Paul A.

    2003-01-01

    The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating

  3. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  4. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silcox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2011-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  5. Control of jet flow mixing and stabilization

    NASA Astrophysics Data System (ADS)

    Yuan, Chih-Chung

    This dissertation examines the effect of feedback controllers on mixing and stabilization of unstable two-dimensional jet flows. The mixing enhancement control law uses a pair of actuators at the jet nozzle exit acting on the shear layers near the corners by blowing and subtracting fluid in an anti-symmetric fashion with a zero net mass flux. The sensor measures the pressure difference across the nozzle diameter and is either located at downstream or at the nozzle exit with time delay. If the length/time scale is long enough and the feedback gain is sufficiently large, this control strategy will provide a constant vortex generation pattern that successfully improves mixing. The evolution of a passive scalar and mixing of particles with mass in jet flows are visualized and quantified. Probability Density Functions based on the particle/scalar distribution are constructed as measures of mixing. The stabilization control law employs filaments with distributed sensors and actuators in the jet flow. The sensors measure the local pressure difference across nozzle diameter and the actuators act as a reaction body force in the normal direction. The instability is damped with sufficiently large feedback gain. The Reynolds numbers of jet flows studied are 100 and 150 that are in the transient range. The results are obtained by means of Direct Numerical Simulation. The Navier-Stokes equations are spatially discretized by second order finite-difference method and advanced in time using a fractional step technique with a hybrid Runge-Kutta/Crank-Nicolson time discretization. This hybrid technique is developed to gain a larger time step while numerical stability is maintained. Stretched and staggered grids are used in both stream-wise and normal directions. The simulation results are validated by comparison with previous works and through self-similar analysis.

  6. Fiber-optic flow sensors for high-temperature environment operation up to 800°C.

    PubMed

    Chen, Rongzhang; Yan, Aidong; Wang, Qingqing; Chen, Kevin P

    2014-07-01

    This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066  m/s and 0.66  m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

  7. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    SciTech Connect

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  8. Biomass-oxygen gasification in a high-temperature entrained-flow gasifier.

    PubMed

    Zhou, Jinsong; Chen, Qing; Zhao, Hui; Cao, Xiaowei; Mei, Qinfeng; Luo, Zhongyang; Cen, Kefa

    2009-01-01

    The technology associated with indirect biomass liquefaction is currently arousing increased attention, as it could ensure a supply of transportation fuels and reduce the use of petroleum. The characteristics of biomass-oxygen gasification in a bench-scale laminar entrained-flow gasifier were studied in the paper. Experiments were carried out to investigate the influence of some key factors, including reaction temperature, residence time and oxygen/biomass ratio, on the gasification. The results indicated that higher temperature favored H2 and CO production. Cold gas efficiency was improved by N10% when the temperature was increased from 1000 to 1400 degrees C. The carbon conversion increased and the syngas quality was improved with increasing residence time. A shorter residence resulted in incomplete gasification. An optimal residence time of 1.6 s was identified in this study. The introduction of oxygen to the gasifier strengthened the gasification and improved the carbon conversion, but lowered the lower heating value and the H2/CO ratio of the syngas. The optimal oxygen/biomass ratio in this study was 0.4. The results of this study will help to improve our understanding of syngas production by biomass high-temperature gasification.

  9. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  10. An approximation technique for jet impingement flow

    SciTech Connect

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  11. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  12. Numerical models of jet disruption in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Burns, Jack O.; Roettiger, Kurt; Norman, Mike

    1993-01-01

    We present a coherent picture for the formation of the observed diverse radio morphological structures in dominant cluster galaxies based on the jet Mach number. Realistic, supersonic, steady-state cooling flow atmospheres are evolved numerically and then used as the ambient medium through which jets of various properties are propagated. Low Mach number jets effectively stagnate due to the ram pressure of the cooling flow atmosphere while medium Mach number jets become unstable and disrupt in the cooling flow to form amorphous structures. High Mach number jets manage to avoid disruption and are able to propagate through the cooling flow.

  13. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  14. Investigation of non-symmetric jets in cross flow

    NASA Astrophysics Data System (ADS)

    Yu, Fan-Ming

    1987-05-01

    Non-symmetric jets in crossflow were studied with various jet geometries, jet orientations, jet characteristics, and jet to crossflow velocity ratios. Four different cross-section geometry jets were studied and compared with a circular jet with identical jet port cross-sectional area. Standard dye and laser induced fluorescent flow visualization techniques were used to identify the existence of various vortices in the flow field. Among the many forms of secondary vortices produced, three major vortex systems were identified: main jet vortices, wake vortices, and spinoff vortices. A reconstruction of the asymmetric flow field based on observations and its evolution and relationships with established symmetric jets in the crossflow were made. The large scale rolled-up vortex structure which was found at low jet to crossflow velocity ratio is very similar to the hair-pin vortex structure. This observation provides a potential research tool on the study of the structure of turbulent boundary layers. Unsteady jets created by pulsation of the jet flow at low pulsation frequencies give the increase of the depth of penetration. However, the introducing of swirl into jets by passive methods reduces the depth of penetration.

  15. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  16. Jet Magnetically Accelerated from Advection Dominated Accretion Flow

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Long; Jiang, Zhi-Xiong

    2014-08-01

    A jet model for the jet power arising from a steady, optically thin, advection dominated accretion flow (ADAF) around a Kerr black hole (BH) is proposed. We investigate the typical numerical solutions of ADAF, and calculate the jet power from an ADAF using a general relativistic version of electronic circuit theory. It is shown that the jet power concentrates in the inner region of the accretion flow, and the higher the degree to which the flow advection-dominated is, the lower the jet power from the ADAF is.

  17. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  18. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    USGS Publications Warehouse

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  19. Investigations of eddy coherence in jet flows

    NASA Technical Reports Server (NTRS)

    Yule, A. J.

    1980-01-01

    In turbulent shear flow the term coherent structures refers to eddies which are both spatially coherent, i.e., large eddies, aand also temporally coherent, i.e., they retain their identities for times which are long compared with their time scales in fixed point measurements. In transitional flows, the existence of such structures is evident from flow visualizations. In many other flows, such structures are not so evident. The reasons for the existence of these two classes of flows are discussed and attention is focused upon the more difficult flows, where coherent structures are not so evident. Techniques by which the existence (or nonexistence) of such structures in these flows can be established from point measurements, are also discussed. A major problem is shown to be the need to discriminate between real losses in eddy coherence and apparent losses in coherence introduced by phase scrambling effects which 'smear' multipoint correlations. The analysis of multiprobe time dependent data in cold and reacting round turbulent jets is described and it is shown how evidence of strong eddy coherence can be extracted from data.

  20. Synthetic Jet Flow Field Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome

    2004-01-01

    An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.

  1. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  2. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    NASA Astrophysics Data System (ADS)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  3. Analysis of multiple jets in a cross-flow

    NASA Astrophysics Data System (ADS)

    Isaac, K. M.; Schetz, J. A.

    1982-12-01

    The analysis of Campbell and Schetz (1973) is extended to the study of multiple jets in a cross flow, where the interaction of two jets is taken into account by a modification of the drag coefficient that is sensed by each jet. Results show that the rear jet trajectory is significantly modified by the presence of the front one even when the jets are spaced far apart. The analysis is applicable to such phenomena as the exhaust of chimney stack smoke into a wind and the lift jets of a V/STOL aircraft during takeoff or landing in strong winds.

  4. Instability arisen on liquid jet penetrated in flowing liquid bath

    NASA Astrophysics Data System (ADS)

    Oka, Naoto; Ueno, Ichiro

    2009-11-01

    We carry out an experimental study with a special interest on a penetration process and an instability on a liquid jet impinged to a flowing liquid pool. The impinged jet penetrates into the flowing bath accompanying with an entrainment of the ambient immiscible gas without coalescing with the liquid in the pool until the air wrap around the jet collapses. The wrapping air controls instabilities arisen on the jet. We observe the dynamic behaviors of the penetrated jet and the departure of the bubble of the wrapping gas at the tip of the collapsing jet by use of a high-speed camera in order to categorize the behaviors as functions of the velocities of the jet and flow in the pool. We also evaluate an averaged thickness of the wrapping gas through the observation.

  5. High Temperature Semiconductor Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899

  6. A granular-biomass high temperature pyrolysis model based on the Darcy flow

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Qi, Guoli; Dong, Peng

    2015-03-01

    We established a model for the chemical reaction kinetics of biomass pyrolysis via the high-temperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.

  7. Isothermal and Reactive Turbulent Jets in Cross-Flow

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  8. Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.

    2016-09-01

    The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.

  9. A novel 2.45 GHz/200 W Microwave Plasma Jet for High Temperature Applications above 3600 K

    NASA Astrophysics Data System (ADS)

    Schopp, C.; Nachtrodt, F.; Heuermann, H.; Scherer, U. W.; Mostacci, D.; Finger, T.; Tietsch, W.

    2012-12-01

    State of the art atmosphere plasma sources are operated with frequencies in kHz/MHz regions and all high power plasma jets make use of tungsten electrodes. A microwave plasma torch has been developed at FH Aachen for the application in various fields. The advantages over other plasma jet technologies are the high efficiency combined with a maintenance-free compact design and non-tungsten electrodes. In this paper the development of a 200 W torch is described. Argon is used as the primary plasma gas and a second gas can be applied for additional purposes. For the plasma generation a microwave at 2.45 GHz is sent through the torch. The special internal topology causes a high electric field that ignites the plasma at the tip and leads to the ionization of the passing Argon atoms which are emitted as a jet. By designing the copper electrode as a cannula it is possible to gain plasma temperatures higher than the electrode's melting point. The electric field simulations are made with Ansoft HFSS. Experiments were carried out to verify the simulations. The upcoming steps in the development will be the scale-up to higher power levels of several kW with a magnetron as power source.

  10. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  11. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  12. VTOL in-ground effect flows for closely spaced jets

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Hill, W. G., Jr.; Jenkins, R. C.; Migdal, D.

    1980-01-01

    The interaction of two vertically impinging incompressible jets is studied through the invention of physical flow models that approximate the behavior of colliding wall jets as the incident jets are brought closer together. The mechanism for upwash formation is studied and momentum models for the upwash sheet are postulated. An approximate method for computing the ground isobar pattern of jet and upwash deflection zones is presented and compared with test data. A method for computing the upwash impingement force in the absence of secondary induced flow effects is also presented and reasonably good agreement is achieved with experimental data for cylindrical fuselage shapes of circular and rectangular cross section.

  13. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    PubMed

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  14. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    SciTech Connect

    Oßwald, Patrick; Köhler, Markus

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  15. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  16. Flow visualization of lateral jet injection into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Aoki, K.; Lilley, D. G.

    1985-01-01

    Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.

  17. Jet-flow from shock tubes

    NASA Astrophysics Data System (ADS)

    Kingery, Charles N.; Gion, Edmund J.

    1989-07-01

    This project was designed to map the magnitude and extent of the high velocity jet flow exiting shock tubes. The flow was measured by installing stagnation probes along three blast lines and by supplementing these measurements with calibrated displacement cubes. The side-on and stagnation overpressure versus time were measured, and from that, the side-on and stagnation impulse were calculated. The stagnation impulse showed a large drop in magnitude as the blast line was moved from the zero line to a 1.5 and then to a 3-diameter offset. A helium driver was used in the 2.54-cm-diameter shock tube to simulate an explosion in a storage magazine. Results are presented in the form of stagnation impulse versus distance along the three blast lines. The significance of these findings is that the present quantity-distance criteria for munitions stored in underground magazines are based on side-on peak overpressure, but our results show that the peak stagnation pressure and impulse are much greater. At a distance where 10.3-kPa (1.5 psi) side-on pressure was measured, a 49.6-kPa (7.2 psi) stagnation pressure was measured. At the same distance, a side-on impulse was 12.6 kPa-ms (1.83 psi-ms), while the stagnation impulse was 134 kPa-ms (20.2 psi-ms)--a dramatic difference.

  18. Jet Dipolarity: Top Tagging with Color Flow

    SciTech Connect

    Hook, Anson; Jankowiak, Martin; Wacker, Jay G.; /SLAC

    2011-08-12

    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high p{sub T}. The impressive resolution of the ATLAS and CMS detectors means that a typical QCD jet at the LHC deposits energy in {Omicron}(10-100) calorimeter cells. Such fine-grained calorimetry allows for jets to be studied in much greater detail than previously, with sophisticated versions of current techniques making it possible to measure more than just the bulk properties of jets (e.g. event jet multiplicities or jet masses). One goal of the LHC is to employ these techniques to extend the amount of information available from each jet, allowing for a broader probe of the properties of QCD. The past several years have seen significant progress in developing such jet substructure techniques. A number of general purpose tools have been developed, including: (i) top-tagging algorithms designed for use at both lower and higher p{sub T} as well as (ii) jet grooming techniques such as filtering, pruning, and trimming, which are designed to improve jet mass resolution. Jet substructure techniques have also been studied in the context of specific particle searches, where they have been shown to substantially extend the reach of traditional search techniques in a wide variety of scenarios, including for example boosted Higgses, neutral spin-one resonances, searches for supersymmetry, and many others. Despite these many successes, however, there is every reason to expect that there remains room for refinement of jet substructure techniques.

  19. Swirling-flow jet noise suppressors for aircraft engines

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1976-01-01

    Experimental investigations of the effects of swirling the jet exhausts of small turbofan and turbojet engines have indicated significant progress towards predicting and attaining substantial jet noise abatement with minimum thrust losses in large aircraft engines. Systematic variations of the important swirl vane and swirling flow parameters were conducted to determine their effects on jet noise reduction and engine performance. Since swirling flow becomes more effective in reducing jet noise as the density and temperature gradients increase, the significant trends in noise reduction and engine performance that were established by these parametric studies could be projected into potentially greater reductions of sound pressure levels with minimum thrust losses by controlled swirling of the jets of high thrust engines. The density and temperature gradients in the jet exhausts of high thrust engines are larger by comparison with gradients in small engines.

  20. Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Russell, James W.

    1999-01-01

    This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.

  1. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  2. Recession behavior of Lu2SiO5 under a high speed steam jet at high temperatures

    SciTech Connect

    Ueno, Akira; Ohji, Tatsuki; Lin, Hua-Tay

    2011-01-01

    Study of recession behavior of Lu{sub 2}SiO{sub 5} bulk was performed in high speed steam jet with a velocity of {approx}50 m/s temperature range between 1300 and 1500 C for 100 h. X-ray results showed that no phase change was observed for all samples after steam exposure. Detailed scanning electron microscopy examinations showed some cracks formation was observed on the bulk surface for the samples of 1400 and 1500 C. Also, porous structure was formed on the bulk surface for the samples of 1300 and 1400 C. As for 1500 C sample, the porous structure disappeared after exposure test. The high magnification images of 1300 C sample showed the depletion of grain boundary glassy phase. However, for 1400 C sample, boundary phase was formed again, and the grain growth can be identified for the sample of 1500 C. The recession mechanism can be explained by a mass transfer of evaporated species from the bulk surface and the weight loss rate measured can be expressed by Arrhenius plot.

  3. Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between Tmax_w and Qmin. We also examined if years with extreme low Qmin were associated with years of extreme high Tmax_w. We tested these hypotheses using long32 term data from 22 minimally human-influenced streams for the period 1950-2010. We found trends toward a shorter time lag between Tmax_w and Qmin over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gauge the effects of the recent climate variability in freshwaters.

  4. Simulation of high-temperature water-CO2 flows in porous media

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2010-05-01

    Coupled water and carbon dioxide flows in porous media can take place both in natural volcanic environments and in industrial processes, for example, underground carbon dioxide storage or geothermal energy recovery. Pressures and temperatures in these flows can considerably exceed their values in critical point of water. Nowadays there are no adequate mathematical models that can in aggregate describe both water and water-carbon dioxide mixture properties in sub- and supercritical regions and the dynamics of their flows in such conditions. Thereby the influence of critical conditions on water flows in porous media is not well understood. In the paper cubic equation of state is used to describe water-carbon dioxide mixture in wide range of conditions including critical conditions for mixture. The equation generalizes well known Peng-Robinson equation and can be used to describe properties not only of hydrocarbons but also of carbon-dioxide and water. The real mixture properties measurements are used to determine the equation coefficients. Comparison between experimental measurements and data calculated via the equation of state shows a good agreement between the data. For example the error in water density calculation is less than 10% in the whole range of pressure-enthalpy conditions. Effective and fast algorithms for phase equilibrium calculation via pressure, enthalpy and mixture composition where developed. These thermodynamic variables are the most suitable for trans-critical flow simulations. The developed numerical model that is based on mass and energy conservation laws was used to study hydrothermal system in Solfatara volcano (Campi Flegrei). The flows in porous media that take place in the system are forced by presence of magmatic chamber located at depth of 9 km. Magma degassing makes a hot supercritical plume of water-carbon dioxide mixture that ascends to shallow layers where magmatic fluid mixes with cold meteoric water. The model assumes a source of

  5. Wake Oscillation of Column Wall Jet in Uniform Flow

    NASA Astrophysics Data System (ADS)

    Yoshida, Yohei; Sato, Kotaro; Ono, Yoichi

    Both experiment and calculation demonstrated to clarify the effect of a column wall jet in uniform fluid flow on the characteristic of wake oscillation. The vortex intensity decreased and the oscillations attenuated when the jet direction matched the uniform flow. When the jet flow was reversed, the vortex intensity grew and the oscillations increased in magnitude. It has been found that the Strouhal number based on the half width of the flow velocity distribution was nearly constant. Also, the frequency depended on the vortex structure of the wake, which was further dependent on the jet flow velocity. In addition, the situations that gave twin peaks in the oscillation spectrum were found both in experiment and in calculation.

  6. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Astrophysics Data System (ADS)

    So, R. M. C.; Ahmed, S. A.

    1984-04-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  7. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  8. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOEpatents

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  9. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  10. Testing of a Shrouded, Short Mixing Stack Gas Eductor Model Using High Temperature Primary Flow.

    DTIC Science & Technology

    1982-10-01

    underground pipe to building 249. Air enters the test facility through a vertical standpipe which contains an eight inch butterfly valve in parallel with a...bypass globe valve (Figure 6). The butterfly valve is - .- normally closed, flow through the bypass valve only being 48 q sufficient to operate the gas...eight inch butterfly valve and enters a short section of piping which is used by other departments to supply various experiments. The second arm of the

  11. A New Constitutive Model for the High-Temperature Flow Behavior of 95CrMo Steel

    NASA Astrophysics Data System (ADS)

    Xie, Bao-Sheng; Cai, Qing-Wu; Wei, Yu; Xu, Li-Xiong; Zhen, Ning

    2016-12-01

    The compressive deformation behavior of 95CrMo steel, one of the worldwide used hollow steels, was investigated on a Gleeble-3500 thermo-simulation machine within temperature range of 1073-1323 K and strain rate range of 0.1-10 s-1. Considering the influence of work-hardening, dynamic recovery and dynamic recrystallization, a new constitutive model for high-temperature flow stress was established in this paper. The calculated values predicted by the new constitutive model lie fairly close to the experimental values with a correlation coefficient ( R) of generally above 0.99 and an average absolute relative error of 3.00%, proving a good predictability of the new constitutive model. Also, a modified Sellars-Tegart-Garofalo model (STG model) was introduced to verify the precision of the new constitutive model. Compared to the modified STG model, the new constitutive model has a higher accuracy, which implies it is a reliable tool for predicting flow stress at high temperatures not only under equilibrium state, but also under transient deformation conditions. Besides, the new constitutive model was proved still viable in the initial stage of plastic deformation where plastic strain is lower than 0.05.

  12. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-04-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.

  13. Cryostabilization of high-temperature superconducting magnets with subcooled flow in microchannels

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Hull, J. R.; Choi, U. S.

    1992-07-01

    Subcooled flow of liquid nitrogen in microchannels is proposed as a means to enhance the stability of a superconducting magnet. Analysis shows high current density or a low stabilizer fraction is obtainable in a cryostable magnet. Increase in stability (using the Stekley criterion) is directly related to coolant velocity and coolant channel aspect ratio, however, there is a corresponding increase in pressure drop of the system. Another constraint is the coolant temperature rise, which is found to be a function of coolant residence time and the coolant to conductor ratio.

  14. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Astrophysics Data System (ADS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-04-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  15. Optical experiments on thermophoretically augmented submicron particle deposition from 'dusty' high temperature gas flows

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.; Kim, Sang-Soo

    1984-01-01

    A real-time laser reflectivity method and Pt ribbon targets are used to obtain experimental data on the initial deposition rate of MgO(s) particles of approximately 700 nm diameter from otherwise clean combustion products as a function of target temperature (about 950-1450 K) and mainstream gas temperature (about 1500-1600 K). These preliminary data are used to demonstrate the dominant role of thermophoresis (particle drift down a temperature gradient) and to assess the utility of recently developed theoretical methods for predicting and correlating the temperature dependence of thermophoretically augmented convective-diffusion 'dust' deposition rates from flowing hot gases.

  16. On the flow structures and hysteresis of laminar swirling jets

    NASA Astrophysics Data System (ADS)

    Ogus, G.; Baelmans, M.; Vanierschot, M.

    2016-12-01

    In this paper different flow patterns of an annular jet with a stepped-conical nozzle as well as the transition between these patterns are numerically investigated as a function of the swirl number S which is the ratio of tangential momentum flux to axial momentum flux. The Reynolds number of the jet based on the axial velocity and the nozzle hydraulic diameter is 180. The 3D Navier Stokes equations are solved using the direct numerical simulation. Four different flow patterns are identified and their associated flow structures are discussed. Starting from an annular jet at zero swirl, spinning vortices around the central axis originate with increasing swirl. As the swirl is further increased, the onset of vortex breakdown occurs, followed by jet attachment to the nozzle. Decreasing the swirl number back from this flow pattern, the Coanda effect near the nozzle outlet creates a wall jet. This wall jet remains till the decreasing swirl number equals to zero, showing hysteresis in flow patterns between an increase and a subsequent decrease in swirl. The determined flow states are experimentally validated. Potential applications related to these flow patterns and their hysteretic behavior are also briefly discussed.

  17. Jets.

    PubMed

    Rhines, Peter B.

    1994-06-01

    This is a discussion of concentrated large-scale flows in planetary atmospheres and oceans, argued from the viewpoint of basic geophysical fluid dynamics. We give several elementary examples in which these flows form jets on rotating spheres. Jet formation occurs under a variety of circumstances: when flows driven by external stress have a rigid boundary which can balance the Coriolis force, and at which further concentration can be caused by the beta effect; when there are singular lines like the line of vanishing windstress or windstress-curl, or the Equator; when compact sources of momentum, heat or mass radiate jet-like beta plumes along latitude circles; when random external stirring of the fluid becomes organized by the beta effect into jets; when internal instability of the mass field generates zonal flow which then is concentrated into jets; when bottom topographic obstacles radiate jets, and when frontogenesis leads to shallow jet formation. Essential to the process of jet formation in stratified fluids is the baroclinic life cycle described in geostrophic turbulence studies; there, conversion from potential to kinetic energy generates eddy motions, and these convert to quasibarotropic motions which then radiate and induce jet-like large-scale circulation. Ideas of potential vorticity stirring by eddies generalize the notion of Rossby-wave radiation, showing how jets embedded in an ambient potential vorticity gradient (typically due to the spherical geometry of the rotating planet) gain eastward momentum while promoting broader, weaker westward circulation. Homogenization of potential vorticity is an important limit point, which many geophysical circulations achieve. This well-mixed state is found in subdomains of the terrestrial midlatitude oceans, the high-latitude circumpolar ocean, and episodically in the middle atmosphere. Homogenization expels potential vorticity gradients vertically to the top and bottom of the fluid, and sideways to the edges of

  18. Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Pinar, F. Javier; Úbeda, Diego

    To improve fuel cell design and performance, research studies supported by a wide variety of physical and electrochemical methods have to be carried out. Among the different techniques, current distribution measurement owns the desired feature that can be performed during operation, revealing information about internal phenomena when the fuel cell is working. Moreover, short durability is one of the main problems that is hindering fuel cell wide implementation and it is known to be related to current density heterogeneities over the electrode surface. A good flow channel geometry design can favor a uniform current density profile, hence hypothetically extending fuel cell life. With this, it was thought that a study on the influence of flow channel geometry on the performance of a high temperature polymer electrolyte membrane (PEM) fuel cell using current distribution measurement should be a very solid work to optimize flow field design. Results demonstrate that the 4 step serpentine and pin-type geometries distribute the reactants more effectively, obtaining a relatively flat current density map at higher current densities than parallel or interdigitated ones and yielding maximum powers up to 25% higher when using oxygen as comburent. If air is the oxidant chosen, interdigitated flow channels perform almost as well as serpentine or pin-type due to that the flow conditions are very important for this geometry.

  19. Transient wall-jet flowing over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Danon, Ron; Gregory, James W.; Greenblatt, David

    2016-09-01

    The transient flow of a two-dimensional wall-jet over a circular cylinder, following rapid initiation and termination, was investigated experimentally. Unsteady surface pressures and unsteady pressure-sensitive paint were used to gain a basic understanding of the flow physics. Jet initiation produced a starting vortex, upstream of which the Coandă flow developed, producing a large low-pressure peak. Immediately following jet termination, the pressure increased over the first quarter of the circumference, while the downstream separation region remained virtually unaffected. Simplifying analyses and dimensional arguments were used to show that the timescales characterizing the transient development of the integrated loads depend only on the square of the slot height and the kinematic viscosity and are thus independent of the jet velocity. Following jet initiation, the resulting loads varied according to a linear transient model, while small nonlinearities were observed following jet termination. Unsteady pressure-sensitive paint showed that the starting jet emerges from the slot in a two-dimensional manner and that streamwise streaks, identified as Görtler vortices, form well before the flow reaches steady state. During termination, the streamwise structures dissipate downstream initially, with the dissipation propagating upstream.

  20. AC electrified jets in a flow-focusing device: Jet length scaling.

    PubMed

    Castro-Hernández, Elena; García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Tan, Say Hwa; Baret, Jean-Christophe; Ramos, Antonio

    2016-07-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates.

  1. Convective heat transfer studies at high temperatures with pressure gradient for inlet flow Mach number of 0.45

    NASA Technical Reports Server (NTRS)

    Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.

    1984-01-01

    Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.

  2. Effects of rotating flows on combustion and jet noise.

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1972-01-01

    Experimental investigations of combustion in rotating (swirling) flow have shown that the mixing and combustion processes were accelerated, flame length and noise levels significantly decreased, and flame stability increased relative to that obtained without rotation. Unsteady burning accompanied by a pulsating flame, violent fluctuating jet, and intense noise present in straight flow burning were not present in rotating flow burning. Correlations between theory and experiment show good agreement. Such effects due to rotating flows could lead to suppressing jet noise, improving combustion, reducing pollution, and decreasing aircraft engine size. Quantitative analysis of the aero-acoustic relationship and noise source characteristics are needed.-

  3. A jet-driven dynamo (JEDD) from jets-inflated bubbles in cooling flows

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2017-01-01

    I suggest that the main process that amplifies magnetic fields in cooling flows in clusters and group of galaxies is a jet-driven dynamo (JEDD). The main processes that are behind the JEDD is the turbulence that is formed by the many vortices formed in the inflation processes of bubbles, and the large scale shear formed by the propagating jet. It is sufficient that a strong turbulence exits in the vicinity of the jets and bubbles, just where the shear is large. The typical amplification time of magnetic fields by the JEDD near the jets and bubbles is approximately hundred million years. The amplification time in the entire cooling flow region is somewhat longer. The vortices that create the turbulence are those that also transfer energy from the jets to the intra-cluster medium, by mixing shocked jet gas with the intra-cluster medium gas, and by exciting sound waves. The JEDD model adds magnetic fields to the cyclical behavior of energy and mass in the jet-feedback mechanism (JFM) in cooling flows.

  4. Propulsive jet influence on generic launcher base flow

    NASA Astrophysics Data System (ADS)

    Stephan, S.; Wu, J.; Radespiel, R.

    2015-12-01

    Afterbody flow phenomena represent a significant source of uncertainties in the design of a launcher. Therefore, there is a demand for measuring such flows in wind tunnels. For propulsive jet simulation a new jet facility was integrated into a hypersonic/supersonic wind tunnel. The jet simulation resembles the generic model of a staged rocket launcher. The design and the qualification of the facility are reported. This includes measurements of pressure, temperature and Mach number distribution. Pressure and Schlieren measurements are conducted in the wake of the generic launcher. The unsteady pressure characteristics at the generic rocket base and fairing are analyzed for supersonic and hypersonic freestream. The influence of the under-expanded jet is reported and the jet temperatures are varied. On the base fluctuations at a Strouhal number around 0.25 dominates supersonic freestream flows. Additionally, a fluctuation level increase on the base is observed for Strouhal numbers above 0.75 in hypersonic flow regime, which is attributed to the interactions of wake flow and jet.

  5. Measurements in a large angle oblique jet impingement flow

    NASA Technical Reports Server (NTRS)

    Foss, J. F.

    1978-01-01

    The flow field associated with the oblique impingement of an axisymmetric jet was investigated in the externally blown flap configuration for the STOL aircraft. The passive and active spreading characteristics of the shallow angle (a greater than or = approximately to 15 degrees) oblique impingement flow, the role of the initially azimuthal vorticity field, and the stagnation point region were studied, and compared to the large ( a = 45 degres) oblique jet impingement flow. A description of the characteristics of the large angle impingement flow is presented: A flow field near the plate as showing two distinct patterns, one near the location of the maximum surface pressure, and another about the geometric intersection of the jet axis with the plate; and turbulence in the region above the plate which is greater than the one accounted for by the convection of turbulence energy by the mean motion.

  6. Experimental Study of the Effects of Collision of Water Droplets in a Flow of High-Temperature Gases

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-01-01

    Using high-speed video recording and cross-correlation "tracer" visualization, the authors have investigated the regularities of the processes of collision of water droplets (characteristic parameters: radii 0.025-0.25 mm, velocities of motion 0.5-12 m/s, and relative concentration 0.001-0.0012 m3 of liquid droplets in 1 m3 of the gas) in their motion in a flow of high-temperature (about 1100 K) gases. The characteristic effects of collision of two droplets, at which combined droplets are formed (coagulation occurs) and conditions for spreading or fragmentation of the latter are implemented, have been singled out. The values of the Weber and Reynolds numbers for droplets before and after the collisions have been established. The influences of the velocities of motion, the dimensions, and the angles of intersection of mechanical trajectories of droplets on the effects of collisions have been determined.

  7. Computational method to predict thermodynamic, transport, and flow properties for the modified Langley 8-foot high-temperature tunnel

    NASA Astrophysics Data System (ADS)

    Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.

    1992-07-01

    The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.

  8. Computational method to predict thermodynamic, transport, and flow properties for the modified Langley 8-foot high-temperature tunnel

    NASA Technical Reports Server (NTRS)

    Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.

    1992-01-01

    The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.

  9. Numerical simulation of particle laden coaxial turbulent jet flows

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2010-11-01

    The study of coaxial turbulent particle laden jets has been of interest due to its importance in many applications such as industrial burners, and mixing devices. The addition of the second phase to the continuous phase jet can change the already complicated flow pattern and turbulent characteristics of the jets. Albeit the vast research efforts that have been devoted to understand such phenomena, demand for detailed investigation of particle laden flows remains an active area of research. The advent of laser diagnostics has helped to quantify the myriad details of the jet flow fields in more details. In parallel computational fluid dynamics (CFD) can provide additional information by further investigating such flows with an acceptable level of accuracy. In this work, numerical simulations results are presented for the flow and turbulent characteristics of a coaxial jet with and without the dispersed phase. The results are compared with the experimental data measured using Molecular Tagging Velocimetry diagnostic technique. The key objective of this work is to undermine the flow field details that are difficult if not impossible to measure.

  10. LIF Measurement of Interacting Gas Jet Flow with Plane Wall

    NASA Astrophysics Data System (ADS)

    Yanagi, A.; Kurihara, S.; Yamazaki, S.; Ota, M.; Maeno, K.

    2011-05-01

    Discharging rarefied gas jets in low-pressure conditions are interesting and important phenomena from an engineering point of view. For example they relate to the attitude control of the space satellite, or the semiconductor technology. The jets, however, deform to the complicated shapes by interacting with solid walls. In this paper we have performed the experiments the flow visualization as a first step by applying the LIF (Laser Induced Fluorescence) method on the jet-wall interaction. Jet is spouting out from a φ1.0 mm circular hole into the low pressure air chamber, impinging on a flat plate. The LIF visualization of interacting rarefied gas jet is carried out by using the iodine (I2) tracer and argon ion laser.

  11. Flow visualisation studies on growth of area of deflected jets

    NASA Astrophysics Data System (ADS)

    Sivadas, V.; Pani, B. S.; Bütefisch, K. A.; Meier, G. E. A.

    Laser light sheet visualisation, coupled with image processing, was utilised to understand the effect of exit geometry on the integral properties of jets in cross flow. The study involved jets emanating from circular and rectangular nozzles of different aspect ratios deflected by a uniform free-stream. The investigation considers incompressible momentum jets with exit Reynolds number in the range of 4400-9200, the velocity ratios being 3.9, 5.9 and 7.8. In contrast to a deflected circular jet, those jets emanating from blunt configurations tend to have higher growth rates initially and are devoid of the horse-shoe or the bound vortex system in their cross section.

  12. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  13. Rethinking the process of detrainment: jets in obstructed natural flows

    NASA Astrophysics Data System (ADS)

    Mossa, Michele; de Serio, Francesca

    2016-12-01

    A thorough understanding of the mixing and diffusion of turbulent jets released in porous obstructions is still lacking in literature. This issue is undoubtedly of interest because it is not strictly limited to vegetated flows, but also includes outflows which come from different sources and which spread among oyster or wind farms, as well as aerial pesticide treatments sprayed onto orchards. The aim of the present research is to analyze this process from a theoretical point of view. Specifically, by examining the entrainment coefficient, it is deduced that the presence of a canopy prevents a momentum jet from having an entrainment process, but rather promotes its detrainment. In nature, detrainment is usually associated with buoyancy-driven flows, such as plumes or density currents flowing in a stratified environment. The present study proves that detrainment occurs also when a momentum-driven jet is issued in a not-stratified obstructed current, such as a vegetated flow.

  14. Rethinking the process of detrainment: jets in obstructed natural flows

    PubMed Central

    Mossa, Michele; De Serio, Francesca

    2016-01-01

    A thorough understanding of the mixing and diffusion of turbulent jets released in porous obstructions is still lacking in literature. This issue is undoubtedly of interest because it is not strictly limited to vegetated flows, but also includes outflows which come from different sources and which spread among oyster or wind farms, as well as aerial pesticide treatments sprayed onto orchards. The aim of the present research is to analyze this process from a theoretical point of view. Specifically, by examining the entrainment coefficient, it is deduced that the presence of a canopy prevents a momentum jet from having an entrainment process, but rather promotes its detrainment. In nature, detrainment is usually associated with buoyancy-driven flows, such as plumes or density currents flowing in a stratified environment. The present study proves that detrainment occurs also when a momentum-driven jet is issued in a not-stratified obstructed current, such as a vegetated flow. PMID:27974835

  15. Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows.

    PubMed

    Timmer, Michael A G; Oosterhuis, Joris P; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2016-01-01

    A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be implemented before the local minor losses have an influence on the jet pump performance is investigated. To validate the numerical results, they are compared with experimental results for one of the proposed jet pump designs.

  16. Pitched and Yawed Circular Jets in Cross-Flow

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.; Zaman, K. B. M. Q.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    Results from an experimental investigation of flow field generated by pitched and yawed jets discharging from a flat plate into a cross-flow are presented. The circular jet was pitched at alpha = 20 degrees and 45 degrees and yawed between beta = 0 degrees and 90 degrees in increments of 15 degrees. The measurements were performed with two X-wires providing all three components of velocity and turbulence intensity. These data were obtained at downstream locations of x = 3, 5, 10 and 20, where the distance x normalized by the jet diameter, is measured from the center of the orifice. Data for all configurations were acquired at a momentum-flux ratio J = 8. Additionally, for selected angles and locations, surveys were conducted for J = 1.5, 4, and 20. As expected, the jet penetration is found to be higher at larger alpha. With increasing beta the jet spreads more. The rate of reduction of peak streamwise vorticity, with the downstream distance is significantly lessened at higher alpha but is found to be practically independent of alpha. Thus, at the farthest measurement station x = 20, omega(sub xmax) is about five times larger for beta = 0 degrees compared to the levels at beta = 0 degrees. Streamwise velocity within the jet-vortex structure is found to depend on the parameter J. At J = 1.5 and 4, 'wake-like' velocity profiles are observed. In comparison, a 'jet-like' overshoot is present at higher J.

  17. Numerical study of twin-jet impingement upwash flow

    NASA Technical Reports Server (NTRS)

    Pegues, W. J.; Vanka, S. P.

    1990-01-01

    Two horizontally spaced jets impinging normally on a flat surface create a fountain upwash flow due to the collision of the radially flowing wall jets. This fountain flow is of importance to the dynamics and propulsion of STOVL aircraft. The fountain flow influences the lift forces on the aircraft and the ingestion of hot gases and debris by the engine inlet. In this paper, a multigrid based finite-difference numerical procedure has been applied to solve the equations governing this three-dimensional flow. The standard k-epsilon turbulence model has been used. Comparisons with experimental data reveal that while the mean velocities are predicted with reasonable accuracy, the turbulent kinetic energies are seriously in error. The reasons for this discrepancy could be the intense unsteadiness and large-scale structures of the flow in the near-wall region, which cannot be captured well by any Reynolds-averaged turbulence model.

  18. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  19. Scaling approach and thermal-hydraulic analysis in the reactor cavity cooling system of a high temperature gas -cooled reactor and thermal-jet mixing in a sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Omotowa, Olumuyiwa A.

    This dissertation develops and demonstrates the application of the top-down and bottom-up scaling methodologies to thermal-hydraulic flows in the reactor cavity cooling system (RCCS) of the high temperature gas reactor (HTGR) and upper plenum of the sodium fast reactor (SFR), respectively. The need to integrate scaled separate effects and integral tests was identified. Experimental studies and computational tools (CFD) have been integrated to guide the engineering design, analysis and assessment of this scaling methods under single and two-phase flow conditions. To test this methods, two applicable case studies are considered, and original contributions are noted. Case 1: "Experimental Study of RCCS for the HTGR". Contributions include validation of scaling analysis using the top-down approach as guide to a ¼-scale integral test facility. System code, RELAP5, was developed based on the derived scaling parameters. Tests performed included system sensitivity to decay heat load and heat sink inventory variations. System behavior under steady-state and transient scenarios were predicted. Results show that the system has the capacity to protect the cavity walls from over-heating during normal operations and provide a means for decay heat removal under accident scenarios. A full width half maximum statistical method was devised to characterize the thermal-hydraulics of the non-linear two-phase oscillatory behavior. This facilitated understanding of the thermal hydraulic coupling of the loop segments of the RCCS, the heat transfer, and the two-phase flashing flow phenomena; thus the impact of scaling overall. Case 2: "Computational Studies of Thermal Jet Mixing in SFR". In the pool-type SFR, susceptible regions to thermal striping are the upper instrumentation structure and the intermediate heat exchanger (IHX). We investigated the thermal mixing above the core to UIS and the potential impact due to poor mixing. The thermal mixing of dual-jet flows at different

  20. Oscillatory jet flow in electrospinning of polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Tripatanasuwan, Sureeporn; Reneker, Darrell

    2008-03-01

    The flow of polymer solution into an electrospinning jet can be controlled by the pressure applied to the fluid, and the flow out can be controlled by the electrical potential of the fluid. When the average flow rate of solution carried away by the jet was smaller than the rate at which the liquid was forced through the orifice into the jet, the solution flow rate and the electrical current both oscillated in time. The amount of fluid near the orifice grew larger and caused the flow out of that region to increase, and the amount of fluid near the orifice decreased. Then the cycle repeated. The oscillatory phenomena were demonstrated using a jet of polyethylene oxide in water (Molecular weight, 400k, concentration about 5%) flowing through a tube with a diameter of 0.7 mm. The pressure was 500 to 2500 Pascals, and the applied potential was around 5 kV. The frequency of oscillation (about 0.5 Hertz) was affected by the resistivity of the polymer solution (around 4500 ohm-meters).

  1. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    SciTech Connect

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel is characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.

  2. Flow interactions of finite-span synthetic jets and a cross flow

    NASA Astrophysics Data System (ADS)

    Vasile, Joseph D.

    The interaction of a finite-span synthetic jet with a cross-flow over a swept-back finite wing was studied experimentally at a Reynolds number of 100,000 and at multiple angles of attack. The focus of the work was to explore the interaction of finite span synthetic jets with a locally attached or separated flow field in the vicinity of the synthetic jet orifice. The effect of blowing ratio and aspect ratio of the jet orifice was discussed in detail. As was shown in previous work for an unswept finite configuration, the time-averaged velocity field exhibits secondary streamwise flow structures that evolve due to the finite span of the synthetic jet orifice. Furthermore, these structures depend upon actuation level of the jet, as well as orifice geometry. Phase-averaged measurements over the swept-back finite configuration showed that in the presence of sweep the flow becomes highly three-dimensional almost immediately downstream of the synthetic jet orifice. It was demonstrated that the baseline flow field that develops over a swept-back configuration (dependent on angle of attack), which is characterized by spanwise and streamwise vorticity components, is responsible for the immediate breakdown of the coherent structures that are introduced by the synthetic jet orifice, and for the formation of the secondary flow structures that were seen in the time-averaged flow field. Furthermore, the effect of jet placement along the span of the wing was studied. A finite-span synthetic jet was placed near the tip of a finite sweptback wing. The focus of that part of the work was to explore the interaction of the synthetic jet with a spatially non-uniform velocity field (due to the presence of a tip vortex), especially the formation and advection of flow structures in the vicinity of the synthetic jet. As was shown, the time-averaged velocity field exhibited streamwise flow structures downstream of the jet. The tip vortex was found to influence the development of the flow

  3. Transverse jet injection into a supersonic turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B.; Drikakis, D.

    2011-04-01

    Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge-Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin-Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 1/45th of the computational resources used in the classical LES study.

  4. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  5. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  6. Experiments and modeling of dilution jet flow fields

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1986-01-01

    Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.

  7. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  8. Variable-Density Co-Flowing Jet Simulations with BHR

    NASA Astrophysics Data System (ADS)

    Israel, Daniel M.

    2015-11-01

    Recent experiments by the Extreme Fluids team at Los Alamos National Laboratory have examined a jet of SF6 injected into co-flowing air. The experiment is designed to aquire detailed diagnostics for comparision to turbulence models. Simultaneous PIV/PLIF is used to measure the Reynolds stress and velicty-density correlations. In the current work, the BHR RANS model is being implemented in an incompressible variable-density code, and compared to the experimental results. Since the jet is not self-similar, both due to co-flow and variable density effects, careful attenstion is payed to the role of inflow conditions. Also, some multi-jet configurations are explored.

  9. Control of low-speed turbulent separated flow using jet vortex generators

    NASA Technical Reports Server (NTRS)

    Selby, G. V.; Lin, J. C.; Howard, F. G.

    1992-01-01

    A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction, and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  10. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    NASA Astrophysics Data System (ADS)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  11. Global stability of the focusing effect of fluid jet flows.

    PubMed

    Montanero, J M; Rebollo-Muñoz, N; Herrada, M A; Gañán-Calvo, A M

    2011-03-01

    The global stability of the steady jetting mode of liquid jets focused by coaxial gas streams is analyzed both theoretically and experimentally. Numerical simulations allow one to identify the physical mechanisms responsible for instability in the low viscosity and very viscous regimes of the focused liquid. The characteristic flow rates for which global instability takes place are estimated by a simple scaling analysis. These flow rates do not depend on the pressure drop (energy) applied to the system to produce the microjet. Their dependencies on the liquid viscosity are opposite for the two extremes studied: the characteristic flow rate increases (decreases) with viscosity for very low (high) viscosity liquids. Experiments confirmed the validity of these conclusions. The minimum flow rates below which the liquid meniscus becomes unstable are practically independent of the applied pressure drop for sufficiently large values of this quantity. For all the liquids analyzed, there exists an optimum value of the capillary-to-orifice distance for which the minimum flow rate attains a limiting value. That limiting value represents the lowest flow rate attainable with a given experimental configuration in the steady jetting regime. A two-dimensional stability map with a high degree of validity is plotted on the plane defined by the Reynolds and capillary numbers based on the limiting flow rate.

  12. High-Temperature Test Technology

    DTIC Science & Technology

    1987-03-01

    APR EDITION OF I JAN 73 IS OBSOLETE. Unclassif iedm"M SECURITY CLASSIFICATION OF THIS PAGE FORWORD The work documented in this report was performed...and turbine blades of jet engines. The objective of much of this work is a reliable, high- temperature, fast -response thermocouple which interferes as...In the latter case, durability, reasonable accuracy at high temperature and relatively small size are all important; fast response is perhaps less

  13. Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling

    USGS Publications Warehouse

    Mangan, M.; Mastin, L.; Sisson, T.

    2004-01-01

    In this paper we examine the consequences of bubble nucleation mechanism on eruptive degassing of rhyolite magma. We use the results of published high temperature and pressure decompression experiments as input to a modified version of CONFLOW, the numerical model of Mastin and Ghiorso [(2000) U.S.G.S. Open-File Rep. 00-209, 53 pp.] and Mastin [(2002) Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000192] for steady, two-phase flow in vertical conduits. Synthesis of the available experimental data shows that heterogeneous nucleation is triggered at ??P 120-150 MPa, and leads to disequilibrium degassing at extreme H2O supersaturation. In this latter case, nucleation is an ongoing process controlled by changing supersaturation conditions. Exponential bubble size distributions are often produced with number densities of 106-109 bubbles/cm3. Our numerical analysis adopts an end-member approach that specifically compares equilibrium degassing with delayed, disequilibrium degassing characteristic of homogeneously-nucleating systems. The disequilibrium simulations show that delaying nucleation until ??P =150 MPa restricts degassing to within ???1500 m of the surface. Fragmentation occurs at similar porosity in both the disequilibrium and equilibrium modes (???80 vol%), but at the distinct depths of ???500 m and ???2300 m, respectively. The vesiculation delay leads to higher pressures at equivalent depths in the conduit, and the mass flux and exit pressure are each higher by a factor of ???2.0. Residual water contents in the melt reaching the vent are between 0.5 and 1.0 wt%, roughly twice that of the equilibrium model. ?? 2003 Elsevier B.V. All rights reserved.

  14. Numerical Simulation of a High Mach Number Jet Flow

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.

    1993-01-01

    The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach

  15. A rate- and state-dependent flow law of halite as determined with a high-temperature biaxial machine

    NASA Astrophysics Data System (ADS)

    Noda, H.; Shimamoto, T.

    2008-12-01

    A phrase, "rate- and state-dependent law" (r-s law) is nowadays frequently used to describe the complex mechanical property of a fault after Dieterich [1979] and Ruina [1983]. This phrase was also used to describe the mechanical behavior of ductile deformation of a crystalline material [e.g. Chapter 1 of Frost, 1959], but a ductile flow law in such a framework at large shear strain is not studied very well. On the other hand, geological observations such as repeated overprinting of textures of pseudotachylytes and mylonites [Lin et al., 2005] suggest that a ductile flow law and the combination with a frictional constitutive law are important in the interseismic stress accumulation process, the earthquake cycle, and the fault behavior around the down- dip limit of the seismogenic zone. In order to investigate how to combine brittle and ductile flow laws, it is important to know both of the end-members, but a ductile flow law comparable to the r-s frictional law has not yet established. Halite is almost only one rock-forming mineral known to cross the brittle-ductile transition under experimentally convenient condition [Shimamoto, 1986; Kawamoto and Shimamoto, 1997, 1998]. Previous experimental studies mainly concentrated on the steady state frictional resistance or construction of the strength profile of a crust without paying much attention to the transient behavior on a change in the slip rate. In this work, we have conducted velocity-stepping tests for a simulated halite shear zone at a range of temperatures and loading velocities or strain rates including the ductile regime where the dependency of the resistance to the normal stress almost vanishes with using a high-temperature biaxial deformation apparatus at Hiroshima University. Then, we have tested several constitutive laws if they can be fit to the mechanical data reasonably, considering the spring-slide model. We used an iterative least-squares method [Reinen and Weeks, 1994]. Specifically, we adopt a

  16. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Foss, J. F.

    1984-01-01

    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  17. Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography.

    PubMed

    Duhamel, Chloé; Cardinael, Pascal; Peulon-Agasse, Valérie; Firor, Roger; Pascaud, Laurent; Semard-Jousset, Gaëlle; Giusti, Pierre; Livadaris, Vincent

    2015-03-27

    The development of new efficient conversion processes to transform heavy petroleum fractions into valuable products, such as diesel, requires improved chemical knowledge of the latter. High-temperature comprehensive gas chromatography (HT-GC × GC) has proven to be a powerful technique for characterizing such complex samples. This paper reports on an evaluation of the performances of four different differential flow modulators, including two original ones that have not been previously described in the literature, in terms of dispersion, peak intensity, peak capacity and overloading. These modulators, all of which are based on Agilent capillary flow technology (CFT), are forward fill/flush (FFF) differential flow modulators with an integrated collection channel or an adjustable channel (new) and reverse fill/flush (RFF) differential flow modulators with an integrated collection channel (new) or an adjustable channel. First, the optimization of the collection channel dimensions is described. Second, an RFF and an FFF differential flow modulator possessing the same collection channel were compared. The reverse differential flow modulation significantly reduced band broadening compared to forward differential flow modulation, and the peak intensity doubled for every modulated peak when an RFF differential flow modulator was used. Then, an RFF differential flow modulator and CO2 dual-jet modulator were compared. Whereas the percentages of separation space used were similar (61% with the HT-GC × GC method using a cryogenic modulator and 59% with the method using an RFF differential flow modulator), the peak capacities were at least three times more important with differential flow modulation due to the greater length of the column used in the second dimension. The results demonstrate that the RFF differential flow modulator is an excellent tool for studying heavy petroleum cuts. It demonstrates the best performances and it is the most versatile modulator. In its two

  18. Flow behaviour of negatively buoyant jets in immiscible ambient fluid

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.

    2012-01-01

    In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.

  19. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  20. Three dimensional direct numerical simulation of complex jet flows

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Kahouadji, Lyes; Juric, Damir; Chergui, Jalel; Craster, Richard; Matar, Omar

    2016-11-01

    We present three-dimensional simulations of two types of very challenging jet flow configurations. The first consists of a liquid jet surrounded by a faster coaxial air flow and the second consists of a global rotational motion. These computations require a high spatial resolution and are performed with a newly developed high performance parallel code, called BLUE, for the simulation of two-phase, multi-physics and multi-scale incompressible flows, tested on up to 131072 threads with excellent scalability performance. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. Coriolis forces are taken into account and solved via an exact time-integration method that ensures numerical accuracy and stability. EPSRC UK Programme Grant EP/K003976/1.

  1. Zonal Flow as Pattern Formation: Merging Jets and the Ultimate Jet Length Scale

    SciTech Connect

    Jeffrey B. Parker and John A. Krommes

    2013-01-30

    Zonal flows are well known to arise spontaneously out of turbulence. It is shown that for statisti- cally averaged equations of quasigeostrophic turbulence on a beta plane, zonal flows and inhomoge- neous turbulence fit into the framework of pattern formation. There are many implications. First, the zonal flow wavelength is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  2. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, P. J.

    1988-01-01

    Ways of implementing the turbulence closure scheme based on modeling the large scale coherent structures as instability waves were sought. The computational tools necessary to apply this scheme to jets of arbitrary geometry were developed. The model, developed earlier, was extended to the shock structure of supersonic jets of arbitrary geometry and multiple jets. It was found that though the qualititate features of the unsteady flow field could be predicted there were always difficulties with some of the quantitative features. This led to the new formation of the closure scheme. The schemes for computations tools which were developed are efficient and represent the application of the very powerful mathematical tools to the problems of practical significance.

  3. Effects of Inlet Flow Conditions on Crossflow Jet Mixing

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.; Holdeman, J. D.

    1996-01-01

    An experimental investigation of the effects of mainstream turbulence, mainstream swirl and non-symmetric mass addition has been conducted for the isothermal mixing of multiple jets injected into a confined rectangular crossflow. Jet penetration and mixing in the near field was studied using planar Mie scattering to measure time-averaged mixture fraction distributions. Orifice configurations were used that were optimized for mixing performance based on previous experimental and computational results for a homogeneous approach flow. Mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of the mean jet concentration distributions, was found to be minimally affected by free-stream turbulence but significantly influenced by the addition of swirl to the mainstream. The results for non-symmetric mass addition indicate that the concentration distribution of the flowfield can be tailored if desired.

  4. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Heller, Reinhard; Hull, John R.

    High-temperature superconductors (HTS's), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given.

  5. Structure and Mixing Characterization of Variable Density Transverse Jet Flows

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Levon

    (CVP) and the generation of strong upstream shear layer instability. In contrast, weak, convectively unstable upstream shear layers corresponded with asymmetries in the jet cross-sectional shape and/or lack of a CVP structure. While momentum flux ratio J and density ratio S most significantly determined the strength of the instabilities and CVP structures, an additional dependence on jet Reynolds number for CVP formation was found, with significant increases in jet Reynolds number resulting in enhanced symmetry and CVP generation. The mixing characteristics of Rej = 1900 jets of various J, S, and injector type were explored in detail in the present studies using jet centerplane and cross-sectional PLIF measurements. Various mixing metrics such as the jet fluid centerline concentration decay, Unmixedness, and Probability Density Function (PDF) were applied systematically using a novel method for comparing jets with different mass flux characteristics. It was found that when comparing mixing metrics along the jet trajectory, strengthening the upstream shear layer instability by reducing J, and achieving absolutely unstable conditions, enhanced overall mixing. Reducing density ratio S for larger J values, which under equidensity (S = 1.00) conditions would create a convectively unstable shear layer, was also observed to enhance mixing. On the other hand, reducing S for low J conditions, which are known to produce absolutely unstable upstream shear layers even for equidensity cases, was actually observed to reduce mixing, a result attributed to a reduction in crossfiow fluid entrainment into shear layer vortex cores as jet density was reduced. Comparing injectors, the flush-mounted pipe was generally the best mixer, whereas the worst mixer was the nozzle that was elevated above the crossfiow boundary layer due to upstream shear layer co-flow generated by the elevated nozzle contour; this co-flow was observed here and in prior studies to stabilize the shear layer. The

  6. Numerical Analysis of Pelton Nozzle Jet Flow Behavior Considering Elbow Pipe

    NASA Astrophysics Data System (ADS)

    Chongji, Zeng; Yexiang, Xiao; Wei, Xu; Tao, Wu; Jin, Zhang; Zhengwei, Wang; Yongyao, Luo

    2016-11-01

    In Pelton turbine, the dispersion of cylindrical jet have a great influence on the energy interaction of jet and buckets. This paper simulated the internal flow of nozzle and the downstream free jet flow at 3 different needle strokes. The nozzle model consists of the elbow pipe and the needle rod which supported by 4 ribs. Homogenous model and SST k-ω model were adopted to simulate the unsteady two-phase jet flow. The development of free flow, including a contraction process followed by an expansion process, was analysed detailed as well as the influence of the nozzle geometry on the jet flow pattern. The increase of nozzle opening results in a more dispersion jet, which means a higher hydraulic loss. Upstream bend and ribs induce the secondary flow in the jet and decrease the jet concentration.

  7. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  8. Flow field topology of submerged jets with fractal generated turbulence

    NASA Astrophysics Data System (ADS)

    Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2015-11-01

    Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.

  9. An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets

    NASA Technical Reports Server (NTRS)

    Lee, George

    1961-01-01

    An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.

  10. 3D Evolution of Jets in Clusters of Galaxies - A comparison with Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Max, Camenzind; Martin, Krause; Markus, Thiele

    A comparison is drawn between jet propagation in molecular clouds and jets launched by galaxies in clusters. The biggest difference between the two types of jets is found in the density contrast. While the cocoon plasma in extragalactic jets has now been detected in X-rays, the corresponding cocoon gas for Herbig-Haro flows is barely visible.

  11. Active Control of Jet Engine Inlet Flows

    DTIC Science & Technology

    2007-03-31

    circumferential distortion pattern acts as an unsteady forcing function, inducing blade vibration that can result in structural fatigue and failure 3. This...after moderate vibrations of the duct model were observed under standard test conditions, a more rigid mounting system was adopted. Upstream of the...The design process started with determining the proper placement of the actuators. Using results from surface pressure tests and flow visualization

  12. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  13. Gas Flow and Electric Field Characterization in Plasma Jets for Biomedical Applications: From Single Jet to Multi Jet Arrays

    NASA Astrophysics Data System (ADS)

    Robert, Eric

    2015-09-01

    This work reports first on time-resolved measurement of longitudinal and radial electric fields (EF) associated with plasma propagation in dielectric capillaries. Plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have a few kV/cm in amplitude for helium or neon plasmas. Their amplitude is kept almost constant along a few tens of cm long capillary. The key role of the voltage pulse polarity and the drastic impact of the presence of a target in front of the plasma jet are discussed from Schlieren images. All these experimental measurements are in excellent agreement with model calculations which are used to infer EF data on capillary axis. EF diagnostics in the plasma plume in the free jet mode but also in contact with various targets is proposed. The combination of intense transient EF, both of ns and µs duration, together with significant transient reactive species generation during plasma jet treatments may be reconsidered. Typical EF amplitudes likely to induce electrostimulation, electroporation are indeed probably achieved in many in vivo protocols. Stimulation of tissue oxygenation, blood flow rate modulation and more recently immune system triggering may be examples where EF could play a significant role. The second part of this work is dedicated to the development of multi jets, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are analyzed from ICCD imaging and time resolved EF measurements. This allows for the design of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation and

  14. Measurements of the flow and thermal characteristics of turbulet jets in cross flow

    NASA Astrophysics Data System (ADS)

    Sherif, S. A.

    An experimental investigation of the flow, turbulence, and thermal characteristics of heated, cooled, and isothermal turbulent jets in cross flow is reported. The experiments were carried out in a water channel facility of the recirculation type. Hot or cold water was injected verically upward from a circular pipe located near the channel bottom to the cross-flowing stream in the channel. Hot and cold-film anemometers along with appropriate linearizers, bridges, filters, and probes were used. A new signal analysis method was developed for resolving the complex three-dimensional structure of the mean turbulent flow field resulting from the interaction between the free stream and the jet. A rotatable probe technique was used to measure the size components for the Reynolds stress tensor in isothermal flows of any turbulence intensity. New experssions that correct for the temperature contamination of the velocity signals in nonisothermal flows were developed for both the linearized and unlinearized anemometer responses. Mean velocity and turbulence intensity data were obtained for the isothermal jet at jet-to-free stream velocity ratios of 2, 4, and 6 both in and outside the jet plane of symmetry.

  15. Collective Interaction of a Compressible Periodic Parallel Jet Flow

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1997-01-01

    A linear instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. The disturbance environment is investigated using a two dimensional perturbation of a mean flow. For all cases large temporal growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a disturbance can propagate. The large temporal growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of growth rates are presented for a range of Mach numbers and nozzle spacings corresponding to experimental test conditions where screech synchronized phase locking was observed. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.

  16. Mean Flow Perturbation Analysis of an Underexpanded Jet

    NASA Astrophysics Data System (ADS)

    Bhaumik, Swagata; Gaitonde, Datta; Shen, Hao; Acoustics Technology, Boeing Research; Technology, Boeing Company Collaboration

    2015-11-01

    Here, we illustrate a novel method to predict sound generated by imperfectly expanded jets where the resulting shock-cells can yield significant broadband noise in the far-field. We describe continued development of mean flow perturbation method to analyze the response of an underexpanded jet to small perturbations. This method originates from the work of Touber & Sandham (Theor. Comput. Fluid. Dyn., 2009) for nominally 2D shock-wave turbulent-boundary layer interactions. This method is an initial boundary value problem and is equally applicable to flows with sharp gradients. It degenerates into the LST, global and PSE analysis under suitable conditions. We use this method to study finer details of the noise generation mechanisms of an under-expanded round jet at M = 1 . 0 . Preliminary results on time-averaged mean turbulent flow-field perturbed by an annular multi-periodic excitation close to the nozzle-exit plane show interaction of downstream propagating disturbances with the feet of the shock-cells. This causes significant amplification of disturbances resulting in the formation of toroidal vortical structures. This further destabilize the shock-cells, finally resulting in acoustic wave propagation in two distinct downstream and upstream directions.

  17. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  18. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  19. Jet flow control at the blade scale to manipulate lift

    NASA Astrophysics Data System (ADS)

    Braud, Caroline; Guilmineau, Emmanuel

    2016-09-01

    The turbulent atmospheric boundary layer in which wind turbines are implemented is strongly inhomogeneous and unsteady. This induces unsteady mechanical loads at different characteristic time scales from seconds to minutes which limits significantly their life time. Different control strategies have been proposed in the framework of the French ANR SmartEole project to alleviate the impact of these upstream fluctuations at the farm, wind turbine and blade scales (i.e. characteristic time scales from seconds to minutes). The present work, which is part of this ANR project, focuses on the flow control strategies at the blade scale, to manipulate lift and thus alleviate fatigue loads. The design of a NACA654-421 airfoil profile has been modified to be able to implement jet control. Slotted jet and discrete jet configurations were implemented numerically and experimentally respectively. Results show the ability of both configurations to increase the lift by up to 30% using a significant redistribution of the mean shear. Efficiency seems to be more important using slotted jets, which however needs to be confirmed from 3D simulations.

  20. Role of jet asymmetry in glottal flow aerodynamics

    NASA Astrophysics Data System (ADS)

    Peltier, Joel; Krane, Michael; Medvitz, Richard

    2008-11-01

    Finite element computations of flow through a constriction are used to illuminate the role of the Coanda effect in glottal flow and voice production. Steady-state computations were performed for a series of constriction openings. One set of simulations enforced transverse flow symmetry, while the other allowed the flow to develop naturally. Comparisons of measures relevant to vocal fold vibration and sound production are presented. These comparisons show that the Coanda effect primarily affects the differential transverse force on the vocal fold walls, while the axial force differs little from the symmetric case. These results suggest strongly that the primary role of the Coanda effect in speech is to drive asymmetric vocal fold vibration patterns, and that glottal jet instability contributes to voice perturbations and fluctuations.

  1. Analysis of Flow From Arc-Jet Spectra

    NASA Technical Reports Server (NTRS)

    Blackwell, H. E.; Scott, Carl D.

    1997-01-01

    Materials testing is carried out at the JSC Atmospheric Reentry Materials and Structures Facility. A flow diagnostics program is under development to characterize the energy distribution in arc-jet flows used to simulate atmospheric entry. Heat transfer to materials depends on flow properties which includes the composition of and energy distribution among the atoms, ions, molecules, and molecular ions which make up the flow. This project involves analysis of shock layer characteristics from the radiation emitted and experimentally collected from near the front of the shock to near the surface of the material. The analysis has yielded information on relative populations of neutral molecules and molecular ions within the layer. In determining non-equilibrium temperatures within the layer, some insight into the spectral constants used to compute radiative emission has been gained.

  2. On the Scaling Laws and Similarity Spectra for Jet Noise in Subsonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are reviewed with regard to their applicability to deduce full-scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full- scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. New results are presented showing the dependence of overall sound power level on the jet temperature ratio at various jet Mach numbers. A generalized similarity spectrum is also proposed, which accounts for convective Mach number and angle to the jet axis.

  3. Driving Flows in Laboratory Astrophysical Plasma Jets: The Mochi.LabJet Experiment

    NASA Astrophysics Data System (ADS)

    Carroll, Evan G.

    Mochi.Labjet is a new experiment at the University of Washington developed to investigate the interaction of shear flows in plasma jets with boundary conditions similar to an accretion disc system. This thesis details the engineering design and first plasmas of the Mochi.Labjet experiment. The experiment required construction of a new three electrode plasma gun with azimuthal symmetric gas injection, two optically-isolated pulsed power supplies for generating and sustaining plasma, and one optically-isolated pulsed power supply for generating a background magnetic field. Optical isolation is achieved with four custom circuits: the TTL-optical transmitter, optical-TTL receiver, optical-relay, and optical-tachometer circuits. First plasmas, during the commissioning phase of the apparatus, show evidence of flared jet structures with significant azimuthal symmetry.

  4. Co and Fe-catalysts supported on sepiolite: effects of preparation conditions on their catalytic behaviors in high temperature gas flow treatment of dye.

    PubMed

    Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan

    2016-08-01

    An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.

  5. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  6. Prediction of jet flows from the axisymmetric supersonic nozzle

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Kendall, M. A. F.; Costigan, G.; Bellhouse, B. J.

    This study is motivated by the authors' interest in developing a needle-free powdered vaccine delivery device, the Epidermal Powdered Injection system(EPI). The behaviour of a supersonic jet, which accelerates powdered vaccines in micro-form to a sufficient momentum to penetrate the outer layer of human skin or mucosal tissue, is therefore of great importance. In this paper, a well established Modified Implicit Flux Vector Splitting (MIFVS) solver for the Navier-Stokes equations is extended to numerically study the transient supersonic jet flows of interest. A low Reynolds number k-ɛ turbulence model, with the compressibility effect considered, is integrated into MIFVS solver to the prediction of the turbulent structures and interactions with inherent shock systems. The results for the NASA validation case NPARC, Contoured Shock Tube and Venturi of EPI system are discussed.

  7. Phased-Array Measurements of Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Lee, Sang Soo

    2005-01-01

    A 16 microphone phased-array system has been successfully applied to measure jet noise source distributions. In this study, a round convergent nozzle was tested at various hot and cold flow conditions: acoustic Mach numbers are between 0.35 and 1.6 and static temperature ratios are varied from cold to 2.7. The classical beamforming method was applied on narrowband frequencies. From the measured source distributions locations of peak strength were tracked and found to be very consistent between adjacent narrowband frequencies. In low speed heated and unheated jets, the peak source locations vary smoothly from the nozzle exit to downstream as the frequency is decreased. When the static temperature ratio was kept constant, the peak source position moved downstream with increasing acoustic Mach number for the Strouhal numbers smaller than about 1.5. It was also noted that the peak source locations of low frequencies occur farther downstream than the end of potential core.

  8. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  9. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  10. Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow coupling

    NASA Technical Reports Server (NTRS)

    Dvorak, Frank A.; Dash, Sanford M.

    1987-01-01

    Work currently in progress to update an existing transonic circulation control airfoil analysis method is described. Existing methods suffer from two dificiencies: the inability to predict the shock structure of the underexpanded supersonic jets; and the insensitivity of the calculation to small changes in the Coanda surface geometry. A method developed for the analysis of jet exhaust plumes in supersonic flow is being modified for the case of the underexpanded wall jet. In the subsonic case, the same wall jet model was modified to include the calculation of the normal pressure gradient. This model is currently being coupled with the transonic circulation control airfoil analysis.

  11. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

    2007-11-01

    This report presents results from the development and optimization of a reference commercialscale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540° C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 × 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

  12. Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Prisco, David; Austin, Joanna M.; Kieffer, Susan W.

    2014-04-01

    We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

  13. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    SciTech Connect

    Sun, Xiaodong; Zhang, Xiaoqin; Kim, Inhun; O'Brien, James; Sabharwall, Piyush

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  14. Measurements of the flow and turbulence characteristics of round jets in cross flow

    NASA Astrophysics Data System (ADS)

    Sherif, S. A.; Pletcher, R. H.

    1986-05-01

    Measurements of the velocity and turbulence characteristics of a round turbulent jet in cross flow are reported. The experiments were conducted in a water channel, 8.53 m long, 0.61 m wide, and 1.067 m deep, of the recirculation type. Water was injected vertically upward from a circular pipe located near the channel bottom to simulate the turbulent jet. Normal and 45 deg-slanted fiber-film probes along with appropriate anemometers and bridges were operated in the constant temperature mode to measure mean velocities, turbulence intensities, Reynolds stresses, structural parameters, correlation coefficients, and the turbulent kinetic energy. The measurements were carried out in the jet and its wake both in and outside the jet plane of symmetry.

  15. Measurements in a large angle oblique jet impingement flow

    NASA Technical Reports Server (NTRS)

    Foss, J. F.

    1974-01-01

    Velocity and surface pressure measurements, in the flow field of an obliquely impinging jet, and their interpretation as regards the governing mechanics and the aerodynamic noise generation characteristics of such a flow are reported. A computer controlled probe positioning mechanism allowed the measurement of the velocity magnitude and direction in the plane parallel to the plate. The mean velocity and Reynolds stress components were recorded. Measures of the terms in the momentum equation reveal the character of the pressure gradients in the neighborhood of the stagnation point. The effects of the stagnation streamline location on the vorticity field and the vortex sound considerations are discussed in relationship to the aerodynamic noise generation effects of this flow.

  16. Fluid dynamic aspects of jet noise generation. [noise measurement of jet blast effects from supersonic jet flow in convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Barra, V.; Panunzio, S.

    1976-01-01

    Jet engine noise generation and noise propagation was investigated by studying supersonic nozzle flow of various nozzle configurations in an experimental test facility. The experimental facility was constructed to provide a coaxial axisymmetric jet flow of unheated air. In the test setup, an inner primary flow exhausted from a 7 in. exit diameter convergent--divergent nozzle at Mach 2, while a secondary flow had a 10 in. outside diameter and was sonic at the exit. The large dimensions of the jets permitted probes to be placed inside the jet core without significantly disturbing the flow. Static pressure fluctuations were measured for the flows. The nozzles were designed for shock free (balanced) flow at Mach 2. Data processing techniques and experimental procedures were developed in order to study induced disturbances at the edge of the supersonic flows, and the propagation of those disturbances throughout the flows. Equipment used (specifications are given) to record acoustic levels (far field noise) is described. Results and conclusions are presented and discussed. Diagrams of the jet flow fields are included along with photographs of the test stand.

  17. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  18. Mixed exhaust flow supersonic jet engine and method

    SciTech Connect

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  19. Flow Visualization and Heat Transfer Characteristics of Liquid Jet Impingement

    NASA Astrophysics Data System (ADS)

    Jafar, Farial A.; Thorpe, Graham R.; Turan, Özden F.

    2012-07-01

    Equipment used to cool horticultural produce often involves three-phase porous media. The flow field and heat transfer processes that occur in such equipment are generally quantified by means of empirical relationships amongst dimensionless groups. This work represents a first step towards the goal of harnessing the power of computational fluid dynamics (CFD) to better understand the heat transfer processes that occur in beds of irrigated horticultural produce. The primary objective of the present study is to use numerical predictions towards reducing the energy and cooling water requirement in cooling horticultural produce. In this paper, flow and heat transfer predictions are presented of a single slot liquid jet impinging on flat and curved surfaces using a CFD code (FLUENT) for 2D configurations. The effects of Reynolds number, nozzle to plate spacing, nozzle width, and target surface configuration have been studied. Reynolds numbers of 250, 375, 500, 700, 1000, 1500, 1800, and 1900 are studied where the liquid medium is water. Here, the Reynolds number is defined in terms of the hydraulic nozzle diameter, inlet jet velocity, and fluid kinematic viscosity. The results show that Reynolds numbers, nozzle to plate spacing, and nozzle width have a significant effect on the flow field and heat transfer characteristics, whereas the target surface configuration at the stagnation area has no substantial impact. The use of a numerical tool has resulted in a detailed investigation of these characteristics, which has not been available in the literature previously.

  20. High-Flow PMR-Polymide Composites Developed With Mechanical Properties Comparable to Other High-Temperature Systems

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2001-01-01

    PMR polyimides, in particular PMR-15, are well known for their excellent high-temperature stability and performance, and solvent resistance. However, the processing of these materials is limited, for the most part, to prepreg-based methods, such as compression or autoclave processing. These methods involve substantial amounts of hand labor, and as a result, manufacturing costs for components made from PMR polyimides can be high. In cost-sensitive applications, these high manufacturing costs can make the use of PMR polyimide-based components cost prohibitive. Lower cost manufacturing methods, such as resin transfer molding (RTM) and resin film infusion, have been demonstrated to reduce manufacturing costs by as much as 50 percent over prepreg-based methods. However, these processes are only amenable to materials with melt viscosities below 30 poise. Most PMR polyimides have melt viscosities on the order of 100 poise or higher. Recent efforts at the NASA Glenn Research Center have focused on chemical modifications to PMR polyimides to reduce their melt viscosity to the point where they could be processed by these low-cost manufacturing methods without adversely affecting their high-temperature properties and performance. These efforts have led to a new family of PMR polyimides that have melt viscosities significantly lower than that of PMR-15. Reductions in melt viscosity are brought about through the introduction of molecular twists in the polymer backbone. Carbon fiber (T650- 35) composites were prepared from one of these polyimides, designated PMR-Flex, by compression molding. The properties of these composites are presented below and compared with comparable composites made from PMR-15 and PETI-RTM, a new low-melt-viscosity polyimide.

  1. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  2. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2016-12-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9 ) and hypersonic (M=5.9 ) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5 ) and high for the hypersonic case (p_e/p_∞ ≈ 90 ). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  3. On the Scaling Laws for Jet Noise in Subsonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Kandula, Max

    2003-01-01

    The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are examined with regard to their applicability to deduce full scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full-scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. It is shown that the jet Mach number (jet exit velocity/sound speed at jet exit) is a more general and convenient parameter for noise scaling purposes than the ratio of jet exit velocity to ambient speed of sound. A similarity spectrum is also proposed, which accounts for jet Mach number, angle to the jet axis, and jet density ratio. The proposed spectrum reduces nearly to the well-known similarity spectra proposed by Tam for the large-scale and the fine-scale turbulence noise in the appropriate limit.

  4. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  5. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  6. Three dimensional flow field measurements of a 4:1 aspect ratio subsonic jet

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Swan, D. H.

    1989-01-01

    Flow field measurements for a subsonic rectangular cold air jet with an aspect ratio of 4:1 (12.7 x 50.8 mm) at a Mach number of 0.09 and Re of 100,000 have been carried out using a three-dimensional laser Doppler anemometer system. Mean velocity measurements show that the jet width spreads more rapidly along the minor axis than along the major axis. The outward velocities, however, are not significantly different for the two axes, indicating the presence of enhanced mixing along the minor axis. The jet slowly changes from a rectangular jet to a circular jet as the flow progresses downstream.

  7. Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1984-01-01

    Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.

  8. Parametric Testing of Chevrons on Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2004-01-01

    A parametric family of chevron nozzles have been studied, looking for relationships between chevron geometric parameters, flow characteristics, and far-field noise. Both cold and hot conditions have been run at acoustic Mach number 0.9. Ten models have been tested, varying chevron count, penetration, length, and chevron symmetry. Four comparative studies were defined from these datasets which show: that chevron length is not a major impact on either flow or sound; that chevron penetration increases noise at high frequency and lowers it at low frequency, especially for low chevron counts; that chevron count is a strong player with good low frequency reductions being achieved with high chevron count without strong high frequency penalty; and that chevron asymmetry slightly reduces the impact of the chevron. Finally, it is shown that although the hot jets differ systematically from the cold one, the overall trends with chevron parameters is the same.

  9. Analysis of screeching in a cold flow jet experiment

    NASA Technical Reports Server (NTRS)

    Wang, M. E.; Slone, R. M., Jr.; Robertson, J. E.; Keefe, L.

    1975-01-01

    The screech phenomenon observed in a one-sixtieth scale model space shuttle test of the solid rocket booster exhaust flow noise has been investigated. A critical review is given of the cold flow test data representative of Space Shuttle launch configurations to define those parameters which contribute to screech generation. An acoustic feedback mechanism is found to be responsible for the generation of screech. A simple equation which permits prediction of screech frequency in terms of basic testing parameters such as the jet exhaust Mach number and the separating distance from nozzle exit to the surface of model launch pad is presented and is found in good agreement with the test data. Finally, techniques are recommended to eliminate or reduce the screech.

  10. Predicting the stability of a compressible periodic parallel jet flow

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    1996-01-01

    It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.

  11. Study and application of a high-pressure water jet multi-functional flow test system.

    PubMed

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  12. Study and application of a high-pressure water jet multi-functional flow test system

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  13. Modeling Acoustic Effects on shear-Coaxial Jet Flow Utilizing Molecular Dynamic Simulation

    DTIC Science & Technology

    2007-03-01

    two models. Model A is a second order equation while Model B is a simpler first order equation with a general slip coefficient , b, included in the...Acceleration Ai Inner jet area Ao Outer jet area b General slip coefficient c Propagation speed Di Inner jet diameter Do Outer jet...injectors exhausting parallel to the main flow field operating closely enough so their mixing zones interfere (Schetz, 1980:137). The second definition

  14. A Flow-Through High-Pressure Electrical Conductance Cell for Determining of Ion Association of Aqueous Electrolyte Solutions at High Temperature and Pressure

    SciTech Connect

    Bianchi, H.; Ho, P.C.; Palmer, D.A.; Wood, R.H.

    1999-09-12

    A flow-through high-pressure electrical conductance cell was designed and constructed to measure limiting molar conductances and ion association constants of dilute aqueous solutions with high precision at high temperatures and pressures. The basic concept of the cell employs the principle developed at the University of Delaware in 1995, but overall targets higher temperatures (to 600 C) and pressures (to 300 MPa). At present the cell has been tested by measuring aqueous NaCl and LiOH solutions (10{sup {minus}3} to 10{sup {minus}5} mol.kg{sup {minus}1}) to 405 C and 33 MPa with good results.

  15. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Ciancone, Michael L.

    1987-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  16. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Ciancone, M. L.

    1985-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  17. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  18. Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, F.; Cheng, J. J.; Zuo, Q.; Chen, C. F.

    2016-04-01

    Hot deformation behavior of Nickel-based corrosion-resistant alloy (N08028) was studied in compression tests conducted in the temperature range of 1050-1200 °C and the strain rate range of 0.001-1 s-1. The flow stress behavior and microstructural evolution were observed during the hot deformation process. The results show that the flow stress increases with deformation temperature decreasing and strain rate increasing, and that the deformation activation energy ( Q) is not a constant but increases with strain rate increasing at a given strain, which is closely related with dislocation movement. On this basis, a revised strain-dependent hyperbolic sine constitutive model was established, which considered that the "material constants" in the original model vary as functions of the strain and strain rate. The flow curves of N08028 alloy predicted by the proposed model are in good agreement with the experimental results, which indicates that the revised constitutive model can estimate precisely the flow curves of N08028 alloy.

  19. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  20. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  1. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  2. Flow and Acoustic Properties of Low Reynolds Number Underexpanded Supersonic Jets. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hu, Tieh-Feng

    1981-01-01

    Jet noise on underexpanded supersonic jets are studied with emphasis on determining the role played by large scale organized flow fluctuations in the flow and acoustic processes. The experimental conditions of the study were chosen as low Reynolds number (Re=8,000) Mach 1.4 and 2.1, and moderate Reynolds number (Re=68,000) Mach 1.6 underexpanded supersonic jets exhausting from convergent nozzles. At these chosen conditions, detailed experimental measurements were performed to improve the understanding of the flow and acoustic properties of underexpanded supersonic jets.

  3. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  4. Effect of electronic excitation on high-temperature flows of ionized nitrogen and oxygen mixtures behind strong shock waves

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    Strongly non-equilibrium flows of reacting five-component ionized mixtures of nitrogen (N2/N2+/N /N+/e-) and oxygen (O2/O2+/O /O+/e-) behind the plane shock wave are studied taking into account electronic degrees of freedom of both neutral and ionized species. The kinetic scheme includes non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer. Two test cases corresponding to the spacecraft re-entry (Hermes and Fire II experiments) are considered; fluid-dynamic variables, transport coefficients and heat flux are calculated, and different contribution to the heat flux are analyzed. The effect of electronic excitation on the heat transfer is governed by the competition of diffusion and heat conduction; it becomes weak if diffusive processes prevail. An important role of thermal diffusion in ionized flows is emphasized. The influence of dissociation rates on the heat flux is assessed.

  5. Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core

    SciTech Connect

    Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M.

    2012-07-01

    The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

  6. Constitutive Modeling of High-Temperature Flow Behavior of an Nb Micro-alloyed Hot Stamping Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Feng, Ding; Huang, Yunhua; Wei, Shizhong; Mohrbacher, Hardy; Zhang, Yue

    2016-03-01

    The thermal deformation behavior and constitutive models of an Nb micro-alloyed 22MnB5 steel were investigated by conducting isothermal uniaxial tensile tests at the temperature range of 873-1223 K with strain rates of 0.1-10 s-1. The results indicated that the investigated steel showed typical work hardening and dynamic recovery behavior during hot deformation, and the flow stress decreased with a decrease in strain rate and/or an increase in temperature. On the basis of the experimental data, the modified Johnson-Cook (modified JC), modified Norton-Hoff (modified NH), and Arrhenius-type (AT) constitutive models were established for the subject steel. However, the flow stress values predicted by these three models revealed some remarkable deviations from the experimental values for certain experimental conditions. Therefore, a new combined modified Norton-Hoff and Arrhenius-type constitutive model (combined modified NH-AT model), which accurately reflected both the work hardening and dynamic recovery behavior of the subject steel, was developed by introducing the modified parameter k ɛ. Furthermore, the accuracy of these constitutive models was assessed by the correlation coefficient, the average absolute relative error, and the root mean square error, which indicated that the flow stress values computed by the combined modified NH-AT model were highly consistent with the experimental values (R = 0.998, AARE = 1.63%, RMSE = 3.85 MPa). The result confirmed that the combined modified NH-AT model was suitable for the studied Nb micro-alloyed hot stamping steel. Additionally, the practicability of the new model was also verified using finite element simulations in ANSYS/LS-DYNA, and the results confirmed that the new model was practical and highly accurate.

  7. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  8. Numerical Study of Noise Characteristics in Overexpanded Jet Flows

    DTIC Science & Technology

    2015-08-05

    condition have been investigated. Total temperature ratios of 1.0 (cold), 2.0, and 3.0 are considered. The cold jet is a highly screeching jet...conical surface. It is found that the radiating portion of the pressure wave intensity increases with the jet temperature , but the hydrodynamic portion is...much less sensitive to the change of the jet temperature . The near-field noise intensity associated with the Mach wave radiation is observed over a

  9. In vitro investigation of contrast flow jet timing in patient-specific intracranial aneurysms

    PubMed Central

    Desai, Virendra R.; Britz, Garvin W.

    2016-01-01

    Background The direction and magnitude of intra-aneurysmal flow jet are significant risk factors of subarachnoid hemorrhage, and the change of flow jet during an endovascular procedure has been used for prediction of aneurysm occlusion or whether an additional flow diverter (FD) is warranted. However, evaluation of flow jets is often unreliable due to a large variation of flow jet on the digital subtraction angiograms, and this flow pattern variation may result in incorrect clinical diagnosis Therefore, factors contributing to the variation in flow jet are examined at an in vitro setting, and the findings can help us to understand the nature of flow jet and devise a better plan to quantify the aneurysmal hemodynamics accurately. Methods Intra-aneurysmal flows in three patient-specific aneurysms between 11 and 25 mm were investigated in vitro, and a FD was deployed in each aneurysm model. X-ray imaging of these models were performed at injection rates between 0.2 and 2 mL/s. Pulsatile blood pump and aneurysm model were imaged together to determine the timing of flow jet. Results The contrast bolus arrives at the aneurysm early at high contrast injection rates. The flow patterns with slow injection rates exhibit strong inertia that is associated with the systole flow. Flow jets arrive at the aneurysms at the peak systole when the bolus is injected at 0.2 mL/s. The contrast-to-signal ratio is the highest at the injection rate of 0.5 mL/s. Effect of flow diversion can only be assessed at an injection rate greater than 0.5 mL/s. Conclusions Intra-aneurysmal flow jet is highly dependent on the injection rate of the contrast agent. For the internal carotid artery (ICA) aneurysms, the systolic flows can be visualized at slow injection rates (<0.5 mL/s), while the diastolic flow jets are visible at higher injection rates (>1 mL/s). Dependence of flow jet on the contrast injection rate has serious clinical implications and needs to be considered during diagnostic procedures

  10. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  11. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  12. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  13. Buoyancy Effects on Flow Transition in Low-Density Inertial Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    Effects of buoyancy on transition from laminar to turbulent flow are presented for momentum-dominated helium jet injected into ambient air. The buoyancy was varied in a 2.2-sec drop tower facility without affecting the remaining operating parameters. The jet flow in Earth gravity and microgravity was visualized using the rainbow schlieren deflectometry apparatus. Results show significant changes in the flow structure and transition behavior in the absence of buoyancy.

  14. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 2: Heat transfer on serpentine flow passage.

    PubMed

    Takeishi, K; Aoki, S

    2001-05-01

    The improvement of the heat transfer coefficient of the 1st row blades in high temperature industrial gas turbines is one of the most important issues to ensure reliable performance of these components and to attain high thermal efficiency of the facility. This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of such gas turbines in order to attain efficient and environmentally benign engines. Following the experiments described in Part 1, a set of trials was conducted to clarify the influence of the blade's rotating motion on the heat transfer coefficient for internal serpentine flow passages with turbulence promoters. Test results are shown and discussed in this second part of the contribution.

  15. An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dennis, Robert Foster

    1993-01-01

    An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.

  16. The effect of a turbulent jet on gas transport during oscillatory flow.

    PubMed

    Kamm, R D; Bullister, E T; Keramidas, C

    1986-08-01

    Axial mass transport due to the combined effects of flow oscillation and a turbulent jet was studied both experimentally and with a simple theoretical model. The experiments show that the distance over which turbulence enhances transport is greatly increased by flow oscillation, and is particularly sensitive to tidal volume. The jet flow rate and jet configuration are relatively less important. To analyze the results, the region influenced by the jet is divided into two zones: a near field in which the time-mean flow velocities are larger than the turbulent fluctuations, and a far field where the time-mean flow is essentially zero. In the far field, axial mass transport is increased due to the turbulence which decays in strength away from the jet. When oscillatory flow is superimposed upon the steady jet flow, the turbulence in the far field interacts with the flow oscillations to augment the transport of turbulence energy and of mass. This transport enhancement is modeled by introducing an effective axial diffusivity analogous to that used in laminar oscillatory flow.

  17. Effect of Ambient and Oxygen Temperature on Flow Field Characteristics of Coherent Jet

    NASA Astrophysics Data System (ADS)

    Liu, Fuhai; Zhu, Rong; Dong, Kai; Hu, Shaoyan

    2016-02-01

    The coherent jets are now used widely in electric arc furnace steelmaking process to increase the stirring ability, reaction rates, and energy efficiency. However, there has been limited research on the basic physics of the coherent jets. In the present study, the characteristics of flow field of supersonic coherent jet in hot and cold condition were studied. The total temperature and axial velocity were measured by combustion experiment. Flow field characteristics of supersonic coherent jet were simulated by Fluent software. The detailed chemical kinetic mechanism is presently used for the modeling of reactions. It consists of 53 species, plus Ar and N2, for a total of 325 reversible reactions. The present study showed that the shrouding flame decreases the entrainment of the ambient gas to the central supersonic jet, which results in a low expansion rate for the coherent supersonic jet. The higher ambient temperature can prolong the potential core of coherent jet and conventional jet. However, the potential core of coherent jet reduces with oxygen temperature increasing, which is opposite to conventional jet.

  18. Two-dimensional over-expanded jet flow parameters in supersonic nozzle lip vicinity

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.; Uskov, V. N.

    2014-04-01

    The mathematical model for two-dimensional (plane or axis-symmetric) over-expanded jet flow parameters analysis in the vicinity of supersonic nozzle lip is proposed. The variation of the key parameters of this problem (e.g., the geometrical curvature of oblique shock emanating from the nozzle edge) is studied parametrically depending of jet flow parameters, such as Mach number, jet incalculability, and the ratio of gas specific heats. It was proved that differential parameters of the flow field crucially depend not only of the key parameters, but on the symmetry type as well.

  19. Flow Characteristics of Plane Wall Jet with Side Walls on Both Sides

    NASA Astrophysics Data System (ADS)

    Imao, Shigeki; Kikuchi, Satoshi; Kozato, Yasuaki; Hayashi, Takayasu

    Flow characteristics of a two-dimensional jet with side walls have been studied experimentally. Three kinds of cylindrical walls and a flat wall were provided as the side walls, and they were combined and attached to a nozzle. Nine types of side wall conditions were investigated. Velocity was measured by a hot-wire probe and the separation point was measured by a Pitot tube. Mean velocity profiles, the growth of the jet half-width, the decay of jet maximum velocity, and the attachment distance were clarified. When cylindrical walls with different radii are installed, the flow pattern changes markedly depending on the velocity of the jet. A striking increase in the jet half-width is related to the separation of flow from the smaller cylindrical wall just behind the nozzle.

  20. Application of Synthetic Jets to Reduce Stator Flow Separation in a Low Speed Axial Compressor

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Culley, Dennis E.; Zaman, Khairul B.M.Q.

    2008-01-01

    Flow control using synthetic jet injection has been applied in a low speed axial compressor. The synthetic jets were applied from the suction surface of a stator vane via a span-wise row of slots pitched in the streamwise direction. Actuation was provided externally from acoustic drivers coupled to the vane tip via flexible tubing. The acoustic resonance characteristics of the system, and the resultant jet velocities were obtained. The effects on the separated flow field for various jet velocities and frequencies were explored. Total pressure loss reductions across the vane passage were measured. The effect of synthetic jet injection was shown to be comparable to that of pulsatory injection with mass addition for stator vanes which had separated flow. While only a weak dependence of the beneficial effect was noted based on the excitation frequency, a strong dependence on the amplitude was observed at all frequencies.

  1. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  2. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  3. Jet mixing into a heated cross flow in a cylindrical duct: Influence of geometry and flow variations

    NASA Technical Reports Server (NTRS)

    Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.

    1992-01-01

    To examine the mixing characteristics of jets in an axi-symmetric can geometry, temperature measurements were obtained downstream of a row of cold jets injected into a heated cross stream. Parametric, non-reacting experiments were conducted to determine the influence of geometry and flow variations on mixing patterns in a cylindrical configuration. Results show that jet to mainstream momentum flux ratio and orifice geometry significantly impact the mixing characteristics of jets in a can geometry. For a fixed number of orifices, the coupling between momentum flux ratio and injector determines (1) the degree of jet penetration at the injection plane, and (2) the extent of circumferential mixing downstream of the injection plane. The results also show that, at a fixed momentum flux ratio, jet penetration decreases with (1) an increase in slanted slot aspect ratio, and (2) an increase in the angle of the slots with respect to the mainstream direction.

  4. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    NASA Astrophysics Data System (ADS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of ReD = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  5. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  6. CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  7. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, an asymmetry in the hydrodynamic end effects will exist which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length.

  8. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Pušková, Pavlína; Trávníček, Zdeněk; Šafařík, Pavel

    2016-03-01

    An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex - in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD) and the sound pressure level (SPL) were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600-18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x) in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  9. High-temperature thermodynamics.

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1967-01-01

    High temperature thermodynamics requiring species and phases identification, crystal structures, molecular geometries and vibrational, rotational and electronic energy levels and equilibrium constants

  10. Prediction of Drag Reduction in Supersonic and Hypersonic Flows with Counterflow Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Beaulieu, Warren; Hager, James O.; Turner, James E. (Technical Monitor)

    2002-01-01

    Computational fluid dynamics solutions of the flowfield of a truncated cone-cylinder with and without counterflow jets have been obtained for the short penetration mode (SPM) and long penetration mode (LPM) of the freestream-counterflow jet interaction flowfield. For the case without the counterflow jet, the comparison of the normalized surface pressures showed very good agreement with experimental data. For the case with the SPM jet, the predicted surface pressures did not compare as well with the experimental data upstream of the expansion corner, while aft of the expansion corner, the comparison of the solution and the data is seen to give much better agreement. The difference in the prediction and the data could be due to the transient character of the jet penetration modes, possible effects of the plasma physics that are not accounted for here, or even the less likely effect of flow turbulence, etc. For the LPM jet computations, one-dimensional isentropic relations were used to derived the jet exit conditions in order to obtain the LPM solutions. The solution for the jet exit Mach number of 3 shows a jet penetration several times longer than that of the SPM, and therefore much weaker bow shock, with an attendant reduction in wave drag. The LPM jet is, in essence, seen to be a "pencil" of fluid, with much higher dynamic pressure, embedded in the oncoming supersonic or hypersonic freestream. The methodology for determining the conditions for the LPM jet could enable a practical approach for the design and application of counterflow LPM jets for the reduction of wave drag and heat flux, thus significantly enhancing the aerodynamic characteristics and aerothermal performance of supersonic and hypersonic vehicles. The solutions show that the qualitative flow structure is very well captured. The obtained results, therefore, suggest that counterflowing jets are viable candidate technology concepts that can be employed to give significant reductions in wave drag, heat

  11. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, P. J.

    1987-01-01

    Numerical methods were developed that will form the computational part of the turbulence closure scheme. A wave model was developed for the two-dimensional shear layer. This configuration is being used as a test case for the closure schemes. Various numerical schemes were examined to give efficient solutions of the Rayleigh equation for this geometry. These include both spectral and finite difference methods. Secondly, numerical methods are under development to solve the non-separable Rayleigh equation. This solution is required for the closure scheme in more complex geometries. A model problem was used to assist in the algorithm development. Two-dimensional spectral methods and a hybrid spectral/finite difference technique were developed. An analytic solution of the Rayleigh equation for a basic elliptic flow was obtained. This will be used to verify the stability codes developed for arbitrary geometries. Other numerical methods for solving the Rayleigh equation based on the boundary element technique were also examined. These solutions are forming the basis of a model for the shock structure in jets of arbitrary geometry.

  12. Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2004-01-01

    Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.

  13. Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Lukin, G.; Zimmermann, F.; Röder, C.; Motylenko, M.; Pätzold, O.; Heitmann, J.; Kortus, J.; Rafaja, D.

    2017-03-01

    High-temperature vapor phase epitaxy (HTVPE) is a physical vapor transport technology for a deposition of gallium nitride (GaN) layers. However, little is known about the influence of the deposition parameters on the microstructure of the layers. In order to fill this gap, the influence of the ammonia (NH3) flow applied during the HTVPE growth on the microstructure of the deposited GaN layers is investigated in this work. Although the HTVPE technology is intended to grow GaN layers on foreign substrates, the GaN layers under study were grown on GaN templates produced by metal organic vapor phase epitaxy in order to be able to separate the growth defects from the defects induced by the lattice misfit between the foreign substrate and the GaN layer. The microstructure of the layers is characterized by means of high-resolution x-ray diffraction (XRD), transmission electron microscopy and photoluminescence. In samples deposited at low ammonia flow, planar defects were detected, along which the nitrogen atoms are found to be substituted by impurity atoms. The interplay between these planar defects and the threading dislocations is discussed. A combination of XRD and micro-Raman spectroscopy reveals the presence of compressive residual stress in the samples.

  14. Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Lukin, G.; Zimmermann, F.; Röder, C.; Motylenko, M.; Pätzold, O.; Heitmann, J.; Kortus, J.; Rafaja, D.

    2016-12-01

    High-temperature vapor phase epitaxy (HTVPE) is a physical vapor transport technology for a deposition of gallium nitride (GaN) layers. However, little is known about the influence of the deposition parameters on the microstructure of the layers. In order to fill this gap, the influence of the ammonia (NH3) flow applied during the HTVPE growth on the microstructure of the deposited GaN layers is investigated in this work. Although the HTVPE technology is intended to grow GaN layers on foreign substrates, the GaN layers under study were grown on GaN templates produced by metal organic vapor phase epitaxy in order to be able to separate the growth defects from the defects induced by the lattice misfit between the foreign substrate and the GaN layer. The microstructure of the layers is characterized by means of high-resolution x-ray diffraction (XRD), transmission electron microscopy and photoluminescence. In samples deposited at low ammonia flow, planar defects were detected, along which the nitrogen atoms are found to be substituted by impurity atoms. The interplay between these planar defects and the threading dislocations is discussed. A combination of XRD and micro-Raman spectroscopy reveals the presence of compressive residual stress in the samples.

  15. Cooled High-Temperature Radial Turbine Program. Phase 2

    DTIC Science & Technology

    1992-05-01

    proposed for advanced engines with high power-to-weight and inproved SFC requirements. The addition of cooling to the blades of a metal radial turbine ...4 secl/2 ) 62.2 Blade - jet Speed Ratio 0.66 Adiabatic Efficiency (T-to-T, %) 87.0 Cooling flows for the gasifier turbine section are set at 5.7%. The...Way Cincinnati, OH 45215-6301 85 COOLED HIGH-TEMPERATURE RADIAL TURBINE PROGRAM DISTRIBUTION LIST Number Qf Copies General Electric Aircraft Engines

  16. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  17. A CFD study of gas-solid jet in a CFB riser flow

    SciTech Connect

    Li, Tingwen; Guenther, Chris

    2012-03-01

    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

  18. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  19. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE PAGES

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  20. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  1. High temperature superconductors

    NASA Technical Reports Server (NTRS)

    Wu, Maw-Kuen

    1987-01-01

    The two principle objectives are to develop materials that superconduct at higher temperatures and to better understand the mechanisms behind high temperature superconductivity. Experiments on the thermal reaction, structure, and physical properties of materials that exhibit superconductivity at high temperatures are discussed.

  2. A Parametric Study of Jet Interactions with Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    2004-01-01

    Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.

  3. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  4. Flow and far field acoustic amplification properties of heated and unheated jets

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Bayliss, A.

    1981-01-01

    The interaction of an acoustic pulse with the experimentally determined mean flow field of a spreading jet is simulated numerically. The simulation is obtained through solving the Euler equations linearized about the spreading jet. The model reveals a small, sustained oscillation long after the original pulse has passed. This remnant is considered a continual shedding of vortices from the nozzle lip, together with the generation of acoustic ripples. IT is shown that the jet also acts as an amplifier of sound. This amplification is traced to the jet's stability characteristics. It is demonstrated that some of the observed differences in the spectra of heated and unheated jets can be attributed to differences in the stability characteristics of the jets.

  5. Wing shielding of high velocity jet and shock-associated noise with cold and hot flow jets

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.; Wagner, J.

    1976-01-01

    Jet exhaust noise shielding data are presented for cold and hot flows (ambient to 1,100 K) and pressure ratios from 1.7 to 2.75. A nominal 9.5-cm diameter conical nozzle was used with simple shielding surfaces that were varied in length from 28.8 to 114.3 cm. The nozzle was located 8.8 cm above the surfaces. The acoustic data with the various sheilding lengths are compared to each other and to that for the nozzle alone. In general, short shielding surfaces that provided shielding for subsonic jets did not provide as much shielding for jets with shock noise, however, long shielding surfaces did shield shock noise effectively.

  6. Wing shielding of high-velocity jet and shock-associated noise with cold and hot flow jets

    NASA Technical Reports Server (NTRS)

    Von Glahn, U.; Groesbeck, D.; Wagner, J.

    1976-01-01

    Jet exhaust noise shielding data are presented for cold and hot flows (ambient to 1100 K) and pressure ratios from 1.7 to 2.75. A nominal 9.5-cm diameter conical nozzle was used with simple shielding surfaces that were varied in length from 28.8 to 114.3 cm. The nozzle was located 8.8 cm above the surfaces. The acoustic data with the various shielding lengths are compared to each other and to that for the nozzle alone. In general, short shielding surfaces that provided shielding for subsonic jets did not provide as much shielding for jets with shock noise; however, long shielding surfaces did shield shock noise effectively.

  7. Cold Flow Diluent Mixing Study Using Radial High Density Ratio Jets into a Circular Freestream

    DTIC Science & Technology

    2010-07-01

    CAD) solid models. From the CAD model, computational grids are generated for the CFD simulations using Gridgen v.15. Appropriate flow modeling...release, Distribution is unlimited 4 Figure 2: Geometry and Mesh Boundaries in Water Jet Simulations Grid Generation and Flow Model GRIDGEN v.15...generated using GRIDGEN v.15. Figure 4 shows the computational domain for the dual-jet configuration. The modeled domain contains 1.3 to 1.8

  8. Experiments on the flow and acoustic properties of a moderate-Reynolds-number supersonic jet

    NASA Technical Reports Server (NTRS)

    Troutt, T. R.; Mclaughlin, D. K.

    1982-01-01

    Flow and acoustic properties of a jet at Reynolds number of 70,000 were studied at Mach 2.1. Measurements in a free jet test facility were made with pitot tubes and hot-wire anemometry. Center-line Mach number distributions for natural and excited jets were obtained. A slow initial growth rate was in the potential core region of the jet, indicating a transition from laminar to turbulent flow in moderate Reynolds number jets. The transition occurred within the first 2-3 diameters. Spectral components were calculated for the fluctuating flowfield, and sound pressure levels were measured for the overall near-field noise. The centroid of noise was located about 8 nozzle diameters downstream. The growth rates of instabilities were determined to be in agreement with linear stability theory predictions over a broad frequency range.

  9. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    NASA Technical Reports Server (NTRS)

    Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.

    2000-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the

  10. Three-dimensional flow over a conical afterbody containing a centered propulsive jet: A numerical simulation

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Rothmund, H.

    1984-01-01

    The supersonic flow field over a body of revolution incident to the free stream is simulated numerically on a large, array processor (the CDC CYBER 205). The configuration is composed of a cone-cylinder forebody followed by a conical afterbody from which emanates a centered, supersonic propulsive jet. The free-stream Mach number is 2, the jet-exist Mach number is 2.5, and the jet-to-free-stream static pressure ratio is 3. Both the external flow and the exhaust are ideal air at a common total temperature.

  11. Modulating flow and aerodynamic characteristics of a square cylinder in crossflow using a rear jet injection

    NASA Astrophysics Data System (ADS)

    Huang, Rong F.; Hsu, Ching M.; Chen, Yu T.

    2017-01-01

    The temporally evolved flow behaviors around a square cylinder subject to modulation of a planar jet issued from the cylinder's downstream surface into the wake were studied using the laser-assisted smoke flow visualization method and synchronized hot-wire anemometers. The drag force asserted on the square cylinder was obtained by measuring the surface pressures. Four characteristic flow modes (wake-dominated, transitional, critical, and jet-dominated) were observed in different regimes of freestream Reynolds number and jet injection ratio. In the wake-dominated mode, the jet swung periodically back and forth on the downstream surface due to the wake vortex shedding. In the transitional mode, the vortex shedding in the wake vanished so that the flow around the cylinder presented no periodic oscillations. In the critical mode, the wake width became smaller and therefore made the vortex shedding frequency larger than that observed in the wake dominated mode. In the jet-dominated mode, the jet had a large momentum that entrained wake fluids and therefore stabilized the instabilities of the wake, separated boundary layers on lateral surfaces, and stagnation point on the upstream surface. Two standing vortices appeared in the near wake beside the high-momentum jet. The width of the wake was decreased substantially by jet entrainment. The drag coefficient decreased with an increase in the jet injection ratio. The downstream surface jet injection caused the pressure coefficients to decrease at the upstream surface and to increase at the downstream surface. Therefore, the drag coefficients were decreased significantly by 26%, 33%, and 38% at the injection ratios of 0.5, 1.5, and 2.5, respectively.

  12. CFD simulations of closely spaced jets in shallow flowing ambient

    NASA Astrophysics Data System (ADS)

    Shrivastava, Ishita; Adams, E. Eric

    2016-11-01

    In shallow water bodies, multiple closely spaced jets are often used to discharge industrial effluents such as brine from desalination plants, heated water from thermal power plants and wastewater from wastewater treatment plants. The jets interact with each other due to effects of dynamic pressure and result in jet trajectories and mixing that are significantly different from non-interfering jets. Here, we look at the case of a unidirectional diffuser, which consists of a linear array of jets discharging horizontally in the direction perpendicular to the diffuser. Dilution through such an arrangement of jets depends on various discharge and ambient parameters, such as effluent buoyancy, water depth and ambient current. We present results of computational fluid dynamics (CFD) simulations and compare them with experimental observations to examine the effects of shallowness, shoreline separation and ambient currents on the mixing of a unidirectional diffuser. We observe that shallow depth, shoreline proximity and crossflow, all result in increased interaction among the jets and reduced mixing.

  13. Flow Physics of Synthetic Jet Interactions on a Sweptback Model with a Control Surface

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Amitay, Michael

    2016-11-01

    Active flow control using synthetic jets can be used on aerodynamic surfaces to improve performance and increase fuel efficiency. The flowfield resulting from the interaction of the jets with a separated crossflow with a spanwise component must be understood to determine actuator spacing for aircraft integration. The current and previous work showed adjacent synthetic jets located upstream of a control surface hingeline on a sweptback model interact with each other under certain conditions. Whether these interactions are constructive or destructive is dependent on the spanwise spacing of the jets, the severity of separation over the control surface, and the magnitude of the spanwise flow. Measuring and understanding the detailed flow physics of the flow structures emanating from the synthetic jet orifices and their interactions with adjacent jets of varying spacings is the focus of this work. Wind tunnel experiments were conducted at the Rensselaer Polytechnic Institute Subsonic Wind Tunnel using stereo particle image velocimetry (SPIV) and pressure measurements to study the effect that varying the spanwise spacing has on the overall performance. Initial SPIV data gave insight into defining and understanding the mechanisms behind the beneficial or detrimental jets interactions.

  14. Investigation of mean flow and turbulence for a variable-density jet near transition

    NASA Astrophysics Data System (ADS)

    Solovitz, Stephen; Mastin, Larry; Viggiano, Bianca; Dib, Tamara; Ali, Nasim; Cal, Raul; Volcanic Plume Research Team Collaboration

    2016-11-01

    Plumes can vary widely in size and speed in geophysical systems, with Reynolds numbers (Re) extending from thousands to billions. Concurrently, their densities also have significant deviations, resulting in Richardson numbers (Ri) from negligible levels to near one. To investigate a range of these flow conditions more closely, a laboratory-scale experiment considered helium jets exhausting into air. The tests considered Re from 1500 to 10000 and Ri magnitudes near 0.001, which encompasses a series of jet conditions near the exit, including laminar, transitioning, and turbulent flow. Using particle image velocimetry (PIV), instantaneous velocity fields were acquired, and these were used to determine the mean velocity, entrainment, and turbulent statistics. The laminar jet showed very little development or entrainment, with only minor fluctuations. Turbulent jets had rapid flow development, nearing fully-developed conditions earlier than similar non-buoyant jets. For the transitioning jet, the entrainment and turbulent stresses were significantly larger than even the fully turbulent jet, with axial normal stresses more than doubled. Examining the instantaneous flow fields, these increases coincided with large, non-axisymmetric eddies in the shear layer. Supported by NSF Grant #: EAR-1346580.

  15. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    NASA Technical Reports Server (NTRS)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  16. Flow of a Two-Dimensional Liquid Metal Jet in a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Molokov, S.; Reed, C. B.

    2002-01-01

    A combined effect of surface tension, gravity, inertia and a transverse nonuniform magnetic field on the steady, two-dimensional jet (or curtain) flow is studied with reference to liquid metal divertors of tokamaks and coating flows. Here main fundamental aspects of the flow are presented. More details on the assumptions, analysis and results are given in. Consider a steady flow of a viscous, electrically conducting, incompressible fluid in a jet pouring downward in the x-asterisk-direction (the direction of gravity) from a nozzle.

  17. The noise and flow characteristics of inverted-profile coannular jets

    NASA Technical Reports Server (NTRS)

    Tanna, H. K.; Tester, B. J.; Lau, J. C.

    1979-01-01

    A basic understanding of the noise reduction mechanisms in shock-free inverted-velocity-profile coannular jets was studied. Acoustic measurements are first conducted in an anechoic facility to isolate the effects of inverted velocity and inverted temperature for coannular jets having constant total thrust, mass flow rate and exit area. To obtain physical explanations of the measured noise changes, several types of experiments are conducted. These include (1) source location experiments using the polar correlation technique, (2) mean flow surveys using a combination pressure/temperature probe, and (3) detailed mean flow and turbulence measurements using a two-point four-channel laser velocimeter. The results from these experiments are presented and discussed in detail. Finally, the measured variations of coannular jet mixing noise with fan-to-primary velocity ratio and static temperature ratio are interpreted by utilizing the results from the various experimental phases in conjunction with the existing Lockheed single jet noise prediction model.

  18. Oxidation-Strengthened High-Temperature Rivets

    NASA Technical Reports Server (NTRS)

    Mclemore, R. L.

    1982-01-01

    Shear strength of titanium-niobium rivets improves with oxidation. Ti-Nb rivets developed for fastening parts of Space Shuttle thrustors may be suitable also for other high-temperature applications in oxidizing environments--for example, in burner cans of commercial jet engines and boilers and retorts for coal gasification systems.

  19. Revision of capillary cone-jet physics: electrospray and flow focusing.

    PubMed

    Gañán-Calvo, Alfonso M; Montanero, José M

    2009-06-01

    Capillary cone jets are natural microfluidic structures arising in steady capillary tip streaming, whose paradigms are electrospray and flow focusing phenomena. In this work, we make a profound revision of the basic underlying physics of generic cone jets from thousands of experimental measurements, most of them reported in the literature. First, the boundaries of the stability region of steady jetting are calculated. We describe these limitations by instability mechanisms associated with the local flow structure in the tip and the issuing jet and with the global behavior of the meniscus. Second, to undertake a general physical treatment of cone jets in steady regime, we analyze the energy balance taking place in the tips of both flow focusing and electrospray. This analysis yields a fundamental result: if the electrospray data are expressed in terms of an effective pressure drop, both phenomena satisfy the same scaling law for the droplet size, which exhibits nearly complete similarity in the parameter window where quasimonodisperse sprays are produced. That effective pressure drop is a function of the liquid properties exclusively, i.e., it does not depend on the operational parameters (flow rate and applied voltage). Moreover, the stability limits of the operational regimes are analyzed in detail, finding fundamental coincidences between flow focusing and electrospray as well. These results provide most useful general description and predictive scaling laws for nearly monodisperse microspraying or nanospraying based on steady cone jets, of immediate applicability in analytical chemistry, chemical engineering, biochemistry, pharmaceutical and food technologies, painting, and many other technological fields.

  20. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan

    2011-01-01

    Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.

  1. On the performance and flow characteristics of jet pumps with multiple orifices.

    PubMed

    Oosterhuis, Joris P; Timmer, Michael A G; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2016-05-01

    The design of compact thermoacoustic devices requires compact jet pump geometries, which can be realized by employing jet pumps with multiple orifices. The oscillatory flow through the orifice(s) of a jet pump generates asymmetric hydrodynamic end effects, which result in a time-averaged pressure drop that can counteract Gedeon streaming in traveling wave thermoacoustic devices. In this study, the performance of jet pumps having 1-16 orifices is characterized experimentally in terms of the time-averaged pressure drop and acoustic power dissipation. Upon increasing the number of orifices, a significant decay in the jet pump performance is observed. Further analysis shows a relation between this performance decay and the diameter of the individual holes. Possible causes of this phenomenon are discussed. Flow visualization is used to study the differences in vortex ring interaction from adjacent jet pump orifices. The mutual orifice spacing is varied and the corresponding jet pump performance is measured. The orifice spacing is shown to have less effect on the jet pump performance compared to increasing the number of orifices.

  2. Conceptual design of a forced-flow-cooled 20-kA current lead using Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    SciTech Connect

    Heller, R.; Hull, J.R.

    1994-11-01

    The use of high-temperature superconductors in current leads to reduce refrigeration power has been investigated by many groups in the past. Most used YBCO and Bi-2212 bulk superconductors, although their critical current density is not very high. In this paper, BI-2223 HTSC tapes sheathed with Ag alloys are used in the design of a 20-kA current lead because of their higher critical current in medium magnetic fields. The lead current of 20 kA is related to the coil current of the planned stellarator WENDELSTEIN 7-X. Forced-now helium cooling has been used in the design, allowing position-independent and well-controlled operation. The design characteristics of the lead are presented and 4-K helium cooling of the whole lead, as well as 60-K helium cooling of the copper part of the lead, is discussed. The power consumption at zero current, and the lead`s behaviour in case of loss of coolant flow, are given, The results of the design allow extrapolation to current leads of the 50-kA range.

  3. A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy

    PubMed Central

    Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses η-values within ±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model. PMID:24688358

  4. High-temperature fast-flow-reactor kinetics study of the reaction AlO + CO/sub 2/. -->. AlO/sub 2/ + CO. Thermochemical implications

    SciTech Connect

    Rogowski, D.F.; English, A.J.; Fontijn, A.

    1986-04-10

    The title reaction has been studied in a high-temperature fast-flow reactor (HTFFR) at temperatures from 500 to 1300 K. Laser-induced fluorescence was used to monitor relative (AlO). k(T) was determined to be (2.5 +/- 1.3) x 10/sup -14/ exp((400 +/- 280)/T) cm/sup 3/ molecule/sup -1/ s/sup -1/ (confidence level > 95%). The reaction probably proceeds via an intermediate complex which preferentially dissociates to the reactants. The negative activation energy implies D(O-AlO) greater than or equal to D(O-CO) = 127 kcal mol/sup -1/, which is incompatible with the O-AlO dissociation energy obtained for AlO/sub 2/ from Al/sub 2/O/sub 3/ evaporation-mass spectrometry studies. It is argued that the latter AlO/sub 2/ may have a different structure from that of the present work. 19 references, 3 figures, 1 table.

  5. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  6. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  7. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar

    2004-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique suited for the microgravity environment. The flow structure was characterized by distributions of helium mole fraction obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. Experiments reveal that the global flow oscillations observed in Earth gravity are absent in microgravity. The report provides quantitative details of flow evolution as the experiment undergoes change in gravity in the drop tower.

  8. Optimization of jet parameters to control the flow on a ramp

    NASA Astrophysics Data System (ADS)

    Guilmineau, Emmanuel; Duvigneau, Régis; Labroquère, Jérémie

    2014-06-01

    This study deals with the use of optimization algorithms to determine efficient parameters of flow control devices. To improve the performance of systems characterized by detached flows and vortex shedding, the use of flow control devices such as oscillatory jets are intensively studied. However, the determination of efficient control parameters is still a bottleneck for industrial problems. Therefore, we propose to couple a global optimization algorithm with an unsteady flow simulation to derive efficient flow control rules. We consider as a test case a backward-facing step with a slope of 25°, including a synthetic jet actuator. The aim is to reduce the time-averaged recirculation length behind the step by optimizing the jet blowing/suction amplitude and frequency.

  9. The silent base flow and the sound sources in a laminar jet.

    PubMed

    Sinayoko, Samuel; Agarwal, Anurag

    2012-03-01

    An algorithm to compute the silent base flow sources of sound in a jet is introduced. The algorithm is based on spatiotemporal filtering of the flow field and is applicable to multifrequency sources. It is applied to an axisymmetric laminar jet and the resulting sources are validated successfully. The sources are compared to those obtained from two classical acoustic analogies, based on quiescent and time-averaged base flows. The comparison demonstrates how the silent base flow sources shed light on the sound generation process. It is shown that the dominant source mechanism in the axisymmetric laminar jet is "shear-noise," which is a linear mechanism. The algorithm presented here could be applied to fully turbulent flows to understand the aerodynamic noise-generation mechanism.

  10. A numerical study of the FENE-CR model applied to a jet flow problem

    NASA Astrophysics Data System (ADS)

    Paulo, G. S.; Oishi, C. M.; Tomé, M. F.

    2013-10-01

    The FENE-CR model is investigated through a numerical algorithm to simulate the time-dependent moving free surface flow produced by a jet impinging on a flat surface. The objective is to demonstrate that by increasing the extensibility parameter L, the numerical solutions converge to the solutions obtained with the Oldroyd-B model. The governing equations are solved by an established free surface flow solver based on the finite difference and marker-and-cell methods. Numerical predictions of the extensional viscosity obtained with several values of the parameter L are presented. The results show that if the extensibility parameter L is sufficiently large then the extensional viscosities obtained with the FENE-CR model approximate the corresponding Oldroyd-B viscosity. Moreover, the flow from a jet impinging on a flat surface is simulated with various values of the extensibility parameter L and the fluid flow visualizations display convergence to the Oldroyd-B jet flow results.

  11. Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon; Abarbanel, Saul; Nordstrom, Jan; Ryabenkii, Viktor; Vatsa, Veer

    1998-01-01

    We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness.

  12. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    SciTech Connect

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  13. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  14. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  15. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  16. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  17. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  18. Schlieren Measurements of Buoyancy Effects on Flow Transition in Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    The transition from laminar to turbulent flow in helium jets discharged into air was studied using Rainbow Schlieren Deflectometry technique. In particular, the effects of buoyancy on jet oscillations and flow transition length were considered. Experiments to simulate microgravity were conducted in the 2.2s drop tower at NASA Glenn Research Center. The jet Reynolds numbers varied from 800 to1200 and the jet Richardson numbers ranged between 0.01 and 0.004. Schlieren images revealed substantial variations in the flow structure during the drop. Fast Fourier Transform (FFT) analysis of the data obtained in Earth gravity experiments revealed the existence of a discrete oscillating frequency in the transition region, which matched the frequency in the upstream laminar regime. In microgravity, the transition occurred farther downstream indicating laminarization of the jet in the absence of buoyancy. The amplitude of jet oscillations was reduced by up to an order of magnitude in microgravity. Results suggest that jet oscillations were buoyancy induced and that the brief microgravity period may not be sufficient for the oscillations to completely subside.

  19. Numerical simulation of supersonic jet flow using a modified k-ɛ model

    NASA Astrophysics Data System (ADS)

    Tandra, D. S.; Kaliazine, A.; Cormack, D. E.; Tran, H. N.

    2006-01-01

    Many papers have reported that the standard k-ɛ model fails to accurately predict the mean velocity profile of turbulent axisymmetric jets (Thies and Tam, Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the K-ɛ model, AIAA J., 1996, 34(2), 309 316; Pope, Turbulent Flows, 2002 (Cambridge University press: Cambridge). As the jet velocity increases, the deviation of the model with respect to the experimental measurements also increases. This work is aimed at the development of a modified k-ɛ model that can be used to predict the mean properties of an axisymmetric jet as it (i) flows as a free jet, (ii) propagates between walls, and (iii) impinges on a solid object. Three additional terms are proposed to improve the standard k-ɛ model predictions. They are Durbin realizable, Heinz turbulence production and Sarkar compressibility correction terms. The performance of the modified model in predicting the velocity and the impact pressure profiles of a free jet with an exit Mach number range of 0.6 2.8 has been confirmed by its close agreement with the experimental measurements. In addition, the study suggests that the model is also capable of predicting the impact pressure of a supersonic jet propagating between smooth walls and impinging on the front edge of the wall in various degrees of intensity.

  20. Shock tunnel measurement of the interaction amplification factor for a hot gas side jet in a supersonic cross flow

    NASA Astrophysics Data System (ADS)

    Havermann, M.; Ende, H.; Seiler, F.; Schwenzer, M.

    An efficient method for the steering of bodies flying at high Mach numbers is the lateral jet control. Compared to fins, no drag is induced when the jet is inactive and there is no risk of aerothermal problems. Additionally, conventional fins are quite inefficient at high altitudes due to the low stagnation pressures. A disadvantage of the lateral control jet, however, is the complex flow pattern that is formed around the active jet. In front of the lateral jet, a bow shock in conjunction with a separation shock is formed. Behind the jet, a wake with a low-pressure zone exists (Fig. 1). In addition to the jet thrust, an aerodynamic force resulting from the flow interactions around the jet is acting on the body, which makes an accurate side force prediction very difficult. It is common to define an interaction amplification factor that takes into account both types of forces: the jet thrust as well as the interaction force.

  1. The Measurements of Axisymmetric Air Turbulent Jet Flow with an Individual Realization Laser Velocimeter System,

    DTIC Science & Technology

    2014-09-26

    wire anemometer in order to compare with those made with a LV. Their results were in good coincidence in the core flow region. The velocity bias was...jet flow with the use of an IRLV system. The mean velocity distribution was also measured simultaneously with a hot wire anemometer for comparison...1 and Fig. 2 show the experimental systems which consist of the model, IRLV system and hot wire anemometer . 1. Flow system The flow system is

  2. Numerical simulation on macro-instability of coupling flow field structure in jet-stirred tank

    NASA Astrophysics Data System (ADS)

    Luan, D. Y.; Lu, J. P.; Bu, Q. X.; Zhang, S. F.; Zheng, S. X.

    2016-05-01

    The velocity field macro-instability (MI) can help to improve the mixing efficiency. In this work, the MI features of flow field induced by jet-stirred coupling action is studied by using computational fluid dynamics (CFD) simulations. The numerical simulation method of jet-stirred model was established based on standard turbulent equations, and the impeller rotation was modeled by means of the Sliding Mesh (SM) technology. The numerical results of test fluid (water) power consumption were compared with the data obtained by power test experiments. The effects of jet flow velocity and impeller speed on MI frequency were analyzed thoroughly. The results show that the calculated values of power consumption agree well with the experiment measured data, which validates the turbulent model, and the flow structure and MI frequency distribution are affected by both impeller speed and jet flow rate. The amplitude of MI frequency increases obviously with the increasing rotation speed of impeller and the eccentric jet rate, and it can be enhanced observably by eccentric jet rate, in condition of comparatively high impeller speed. At this time, the MI phenomenon disappears with the overall chaotic mixing.

  3. Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.

    PubMed

    Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P

    2016-02-27

    3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core.

  4. Flow characteristics in free impinging jet reactor by particle image velocimetry (PIV) investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Youzhi; Qi, Guisheng; Jiao, Weizhou; Yuan, Zhiguo

    2016-08-01

    The flow characteristics in free impinging jet reactors (FIJRs) were investigated using particle image velocimetry (PIV). The effects of the Reynolds number (Re) and the ratio of jet distance to jet diameter (w/d) on flow behavior were discussed for equal volumetric flow rates of the two jets. The impingement plane, instantaneous velocity, mean velocity, and turbulent kinetic energy (TKE) distribution of FIJRs are measured from captured images using the PIV technique. As Re increases, the average diameter of the impingement plane linearly increases. The instability of the liquid is closely related to the jet velocity or the Re. However, the stagnation point is insensitive to the variation of the Re. The droplets break up from the turbulent liquid in the ‘wall-free’ environment of FIJRs, so that the liquid back-flow found in confined impinging jet reactors (CIJRs) is not observed. Increasing the Re from 1800-4100 or decreasing the w/d from 20-6 plays a similar role in increasing the TKE values and intensifying turbulence, which promotes the momentum transfer and mixing efficiency in FIJRs.

  5. Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Dai, Guan-Zhong

    2010-11-01

    The flow characteristics and oil mist spillages of wall-mounted and jet-isolated range hoods were studied experimentally. Flow patterns were examined using a laser-light, sheet-assisted, smoke flow visualization technique. Spillages were diagnosed by the locally averaged tracer gas concentration test method. Tracer gas concentration test results correlated well with those of flow visualizations. For the wall-mounted hood, primary leakages occur around the region near the front edge of a countertop due to boundary layer separation, as well as the region just below the lower edge of the side panels of the hood due to the expansion effect of plumes. Increasing the suction flow rate above some critical values may help to reduce leakages out of the lateral planes but would increase spillages around the front edge of the countertop. For the jet-isolated range hood, oil mists spread widely and present unsteady motions with a high degree of turbulence because insufficient free air is allowed to enter the space enclosed by the jets and rear wall. Spillages across the jets into the environment due to turbulent dispersion become significant. Increasing the suction flow rate above some critical values may help to reduce spillages, while increasing the jet velocity would increase turbulent dispersion and thus lead to larger leakages.

  6. Water-Shale interactions in bench-top and high pressure/high temperature autoclave experiments: Identifying geochemical reaction controlling flow back water chemistry

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; O'Carroll, D. M.; Willson, C. S.; Gerhard, J.

    2011-12-01

    An important side effect of hydraulic fracturing (HF) in shale gas wells is the production of saline flow-back water. This water often contains total dissolved soil (TDS) concentrations greater than 100,000 ppm which requires expensive treatment and disposal of the produced water. Possible origins of the high TDS content include: 1. Mixing of fresh HF-fluids with highly saline pore fluids in the targeted shale. 2. Migration and mixing of saline brines by newly-formed fractures into the HF-water from neighboring formations. 3. Water rock interactions between the targeted shale and HF-water that include mineral dissolution, pyrite oxidation buffered by carbonate dissolution and cation exchange in newly hydrated clay minerals.. These possibilities are not mutually exclusive and all may be operating to alter flow-back water chemistry. This study will examine geochemical reactions between a productive Gulf Coast shale and manufactured HF-waters using sealed bench top experiments and high temperature/high pressure autoclave experiments. The samples of the shale were collected from core material housed at The Bureau of Economic Geology collected from two wells. The manufactured HF-waters were produced by mixing NaCl, KCl and CaCl2 salts with De-ionized water at approximately 0, 2000 and 20,000 ppm. During experiments, elements that show large increases in aqueous concentrations are Na, Cl, Ca and SO4. Simultaneous increases in Na and Cl, coupled with high Cl/Br ratios, suggest halite dissolution rather than pore space brine is responsible for Na and Cl concentrations. Simultaneous increase in Ca and SO4 suggest anhydrite dissolution. (SEM imaging shows that anhydrite crystals are usually embedded with the framework mineral grains, rather than precipitated in pores during sample drying, which suggests mineral source of Ca and SO4, possibly for Na and Cl as well). Pyrite oxidation and calcium carbonate dissolution were not significant due to no decrease in pH and no

  7. Water-Shale interactions in bench-top and high pressure/high temperature autoclave experiments: Identifying geochemical reaction controlling flow back water chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Lu, J.; Nicot, J.

    2013-12-01

    An important side effect of hydraulic fracturing (HF) in shale gas wells is the production of saline flow-back water. This water often contains total dissolved soil (TDS) concentrations greater than 100,000 ppm which requires expensive treatment and disposal of the produced water. Possible origins of the high TDS content include: 1. Mixing of fresh HF-fluids with highly saline pore fluids in the targeted shale. 2. Migration and mixing of saline brines by newly-formed fractures into the HF-water from neighboring formations. 3. Water rock interactions between the targeted shale and HF-water that include mineral dissolution, pyrite oxidation buffered by carbonate dissolution and cation exchange in newly hydrated clay minerals.. These possibilities are not mutually exclusive and all may be operating to alter flow-back water chemistry. This study will examine geochemical reactions between a productive Gulf Coast shale and manufactured HF-waters using sealed bench top experiments and high temperature/high pressure autoclave experiments. The samples of the shale were collected from core material housed at The Bureau of Economic Geology collected from two wells. The manufactured HF-waters were produced by mixing NaCl, KCl and CaCl2 salts with De-ionized water at approximately 0, 2000 and 20,000 ppm. During experiments, elements that show large increases in aqueous concentrations are Na, Cl, Ca and SO4. Simultaneous increases in Na and Cl, coupled with high Cl/Br ratios, suggest halite dissolution rather than pore space brine is responsible for Na and Cl concentrations. Simultaneous increase in Ca and SO4 suggest anhydrite dissolution. (SEM imaging shows that anhydrite crystals are usually embedded with the framework mineral grains, rather than precipitated in pores during sample drying, which suggests mineral source of Ca and SO4, possibly for Na and Cl as well). Pyrite oxidation and calcium carbonate dissolution were not significant due to no decrease in pH and no

  8. RAXJET- TRANSONIC, AXISYMMETRIC FLOW OVER NOZZLE AFTERBODIES WITH SUPERSONIC JET EXHAUSTS

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1994-01-01

    The nozzle afterbody is one of the main drag-producing components of an aircraft propulsion system. Thus, considerable effort has been devoted to developing techniques for predicting the afterbody flow field and drag. The RAXJET computer program was developed to predict the transonic, axisymmetric flow over nozzle afterbodies with supersonic jet exhausts and includes the effects of boundary-layer displacement, separation, jet entrainment, and inviscid jet plume blockage. RAXJET iteratively combines the South-Jameson relaxation procedure, the Reshotko-Tucker boundary-layer solution, the Presz separation model, the Dash-Pergament mixing model, and the Dash-Thorpe inviscid plume model into a single, comprehensive model. The approach taken in the RAXJET program requires considerably less computational time than the Navier-Stokes solutions and generally yields results of comparable accuracy. In RAXJET, the viscous-inviscid interaction model is constructed by dividing the afterbody flow field into six separate computational regions: (1) The inviscid external flow solution is based on the relaxation procedure of South and Jameson for solving the exact nonlinear potential flow equation in nonconservative form. (2) The flow field in the inviscid jet exhaust is solved by explicit spatial marching of the conservative finite-difference form of the inviscid flow equations for a uniform composition gas mixture. (3) The properties in the attached boundary-layer region are solved by a modified version of the Reshotko-Tucker integral method for turbulent flows. (4) The analysis of the separated flow region consists of predicting the separation location and calculating the discriminating streamline shape. (5) The jet wake region is determined by either a simple extrapolation model or by an integral method that accounts for entrainment effects. (6) The displacement-thickness distribution arising from entrainment into the jet mixing layer is calculated by the overlaid mixing model

  9. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  10. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  11. Three-dimensional evolution of flow structures in transitional circular and chevron jets

    NASA Astrophysics Data System (ADS)

    Violato, Daniele; Scarano, Fulvio

    2011-12-01

    The three-dimensional behavior of flow transition in circular and 6-chevron jets at Re = 5000 is investigated with experiments conducted on a free water jet by time-resolved tomographic particle image velocimetry. The emphasis is on the unsteady organization of coherent flow structures, which play a role in the generation of acoustic noise. Shedding and pairing of vortices are the most pronounced phenomena observed in the near field of the circular jet. The first and second pairing amplify the axial pulsatile motion in the jet column and lead to the growth of azimuthal waves culminating in the breakup of the vortex ring. Streamwise vortices of axial and radial vorticity are observed in the outer region and move inward and outward under the effect of the vortex rings. In the jet with chevrons, the axisymmetric ring-like coherence of the circular jet is not encountered. Instead, streamwise flow structures of azimuthal vorticity emanate from the chevron apices, and counter-rotating streamwise vortices of axial and radial vorticity develop from the chevron notches. The decay of streamwise vortices is accompanied by the formation of C-shaped structures. The three-dimensional analysis allows quantifying the vortex stretching and tilting activity, which, for the circular jet exit, is related to the azimuthal instabilities and the streamwise vortices connecting the vortex rings. In the chevron jet, stretching and tilting peak during the formation of C-structures. Following Powell's aeroacoustic analogy, the spatial distribution of the source term is mapped, evaluating the temporal derivative of the Lamb vector. The spatio-temporal evolution of such source term is visualized revealing that the events of highest activity are associated with the processes of vortex-ring pairing and vortex-ring disruption for the circular jet, and with the decay of streamwise instabilities and the formation of C-shaped structures for the chevron case.

  12. Use of arc-jet hypersonic blunted wedge flows for evaluating performance of Orbiter TPS

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Battley, H. H.; Gallegos, J. J.

    1979-01-01

    Arc-jet tests at NASA/JSC have been conducted recently to evaluate the performance of the Orbiter Thermal Protection System (TPS) on three critical areas of the side and top of the Orbiter fuselage: (1) cargo bay door, (2) crew access door, and (3) LRSI/FRSI joint regions. Test articles corresponding to these three areas on the Orbiter were mounted in an arc-jet test chamber in a blunted-wedge holder and exposed to hypersonic flow at various angles of attack. The effects of flow direction, heating load, and overtemperature were investigated. In addition, the reuse capability of the TPS materials was evaluated, along with the protection of the pressure seals within the test articles. Thermal match model predictions correlated well with primary structure thermocouple data. Heating rate and pressure predictions based on a nonequilibrium flow field computer program showed good agreement with arc-jet test data and existing hypersonic flow theories.

  13. Gravitational Effects on Near-Field Flow Structure of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon

    2004-01-01

    Experiments were conducted in earth gravity and micro gravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2 s drop tower at NASA John H. Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique suited for the microgravity environment. The flow structure was characterized by distribution of helium mole fraction obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70% wider than that in Earth gravity. Experiments reveal that the global flow oscillations observed in Earth are absent in microgravity. Quantitative deatails are provided of the evolution as the experiment undergoes changes in gravity in the drop tower.

  14. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  15. Computational Analysis of the Flow and Acoustic Effects of Jet-Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.; Abdol-Hamid, K. S.; Pao, S. Paul; Elmiligui, Alaa A.; Massey, Steven J.

    2005-01-01

    Computational simulation and prediction tools were used to understand the jet-pylon interaction effect in a set of bypass-ratio five core/fan nozzles. Results suggest that the pylon acts as a large scale mixing vane that perturbs the jet flow and jump starts the jet mixing process. The enhanced mixing and associated secondary flows from the pylon result in a net increase of noise in the first 10 diameters of the jet s development, but there is a sustained reduction in noise from that point downstream. This is likely the reason the pylon nozzle is quieter overall than the baseline round nozzle in this case. The present work suggests that focused pylon design could lead to advanced pylon shapes and nozzle configurations that take advantage of propulsion-airframe integration to provide additional noise reduction capabilities.

  16. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis

    PubMed Central

    Nunes, J K; Tsai, S S H; Wan, J; Stone, H A

    2013-01-01

    Dripping and jetting regimes in microfluidic multiphase flows have been investigated extensively, and this review summarizes the main observations and physical understandings in this field to date for three common device geometries: coaxial, flow-focusing and T-junction. The format of the presentation allows for simple and direct comparison of the different conditions for drop and jet formation, as well as the relative ease and utility of forming either drops or jets among the three geometries. The emphasis is on the use of drops and jets as templates for microparticle and microfiber syntheses, and a description is given of the more common methods of solidification and strategies for achieving complex multicomponent microparticles and microfibers. PMID:23626378

  17. Optimization of the shapes of obstacles in jet-separation flow

    NASA Astrophysics Data System (ADS)

    Monakhov, V. N.; Gubkina, E. V.

    2007-05-01

    The model of an ideal incompressible fluid is used to study the solvability of optimal control problems for the shape of a nozzle which discharges free-boundary fluid flow with and without accounting for gravity (internal aerodynamics) and shape optimization problems for an obstacle with jet separation (external aerodynamics). The qualitative properties of such flows are studied.

  18. On the reverse flow ceiling jet in pool fire-ventilation crossflow interactions in a simulated aircraft cabin interior

    NASA Technical Reports Server (NTRS)

    Kwack, E. Y.; Bankston, C. P.; Shakkottai, P.; Back, L. H.

    1989-01-01

    The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.

  19. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  20. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  1. Transition to turbulence and noise radiation in heated coaxial jet flows

    NASA Astrophysics Data System (ADS)

    Gloor, Michael; Bühler, Stefan; Kleiser, Leonhard

    2016-04-01

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35∘. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for rmic > 40R1, where rmic is the distance from the end of the potential core and R1 is the core-jet radius, a perfect 1/rmic decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  2. Surface Characterization of LMMS Molybdenum Disilicide Coated HTP-8 Using Arc- Jet Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Stewart, David A.

    2000-01-01

    Surface properties for an advanced Lockheed Martin Missile and Space (LMMS) molybdenum disilicide coated insulation (HTP-8) were determined using arc-jet flow to simulate Earth entry at hypersonic speeds. The catalytic efficiency (atom recombination coefficients) for this advanced thermal protection system was determined from arc-jet data taken in both oxygen and nitrogen streams at temperatures ranging from 1255 K to roughly 1600 K. In addition, optical and chemical stability data were obtained from these test samples.

  3. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  4. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  5. On the correspondence between flow structures and convective heat transfer augmentation for multiple jet impingement

    NASA Astrophysics Data System (ADS)

    Terzis, Alexandros

    2016-09-01

    The correspondence between local fluid flow structures and convective heat transfer is a fundamental aspect that is not yet fully understood for multiple jet impingement. Therefore, flow field and heat transfer experiments are separately performed investigating mutual-jet interactions exposed in a self-gained crossflow. The measurements are taken in two narrow impingement channels with different cross-sectional areas and a single exit design. Hence, a gradually increased crossflow momentum is developed from the spent air of the upstream jets. Particle image velocimetry (PIV) and liquid crystal thermography (LCT) are used in order to investigate the aerothermal characteristics of the channel with high spatial resolution. The PIV measurements are taken at planes normal to the target wall and along the centreline of the jets, providing quantitative flow visualisation of jet and crossflow interactions. Spatially resolved heat transfer coefficient distributions on the target plate are evaluated with transient techniques and a multi-layer of thermochromic liquid crystals. The results are analysed aiming to provide a better understanding about the impact of near-wall flow structures on the convective heat transfer augmentation for these complex flow phenomena.

  6. Reduction of Jet Penetration in a Cross-Flow by Using Tabs

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1998-01-01

    A tab placed suitably on a nozzle that produces a jet in a cross-flow can reduce the penetration of the jet. This effect, achieved when the tab is placed on the windward side of the nozzle relative to the cross flow, may be of interest in film cooling applications. Wind tunnel experiments are carried out, in the momentum ratio (J) range of 10-90, to investigate the tab geometry that would maximize this effect. The preliminary results show that a 'delta tab' having a base width approximately fifty percent of the nozzle diameter may be considered optimum. With a given tab size, the effect is more pronounced at higher J. Reduction in jet penetration by as much as 40% is observed. Comparable reduction in jet penetration is also obtained when a triangular shaped tab is placed flush with the tunnel wall or with its apex tilted down into the jet nozzle (the 'delta tab' being the configuration in which the apex is tilted up). However, the delta tab involves the least flow blockage and pressure loss. Relative to the baseline case, the lateral spreading of the jet is found to be more with the delta tab but less with other orientations of the tab.

  7. Optimization of a synthetic jet actuator for flow control around an airfoil

    NASA Astrophysics Data System (ADS)

    Montazer, E.; Mirzaei, M.; Salami, E.; Ward, T. A.; Romli, F. I.; Kazi, S. N.

    2016-10-01

    This paper deals with the optimization of a synthetic jet actuator parameters in the control flow around the NACA0015 airfoil at two angles of attack: 13° (i.e. the stall angle of NACA0015) and 16° (i.e. the post stall angle of NACA0015) to maximize the aerodynamic performance of the airfoil. Synthetic jet actuator is a zero mass flux-active flow control device that alternately injects and removes fluid through a small slot at the input movement frequency of a diaphragm. The movement of the diaphragm and also the external flow around the airfoil were simulated using numerical approach. The objective of the optimization process function was maximum lift-drag ratio (L/D) and the optimization variables were jet frequency, length of the jet slot and jet location along the chord. The power coefficient of the jet was considered as a constraint. The response surface optimization method was employed to achieve the optimal parameters. The results showed that the actuator is more effective for post stall angles of attack that can lead to an enhancement of 66% in L/D.

  8. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment

    NASA Astrophysics Data System (ADS)

    Cao, Z.; Walsh, J. L.; Kong, M. G.

    2009-01-01

    This letter reports on electrical and optical characteristics of a ten-channel atmospheric pressure glow discharge jet array in parallel electric and gas flow fields. Challenged with complex three-dimensional substrates including surgical tissue forceps and sloped plastic plate of up to 15°, the jet array is shown to achieve excellent jet-to-jet uniformity both in time and in space. Its spatial uniformity is four times better than a comparable single jet when both are used to treat a 15° sloped substrate. These benefits are likely from an effective self-adjustment mechanism among individual jets facilitated by individualized ballast and spatial redistribution of surface charges.

  9. Numerical study of an impinging jet to a turbulent channel flow in a T-Junction configuration

    NASA Astrophysics Data System (ADS)

    Georgiou, Michail; Papalexandris, Miltiadis

    2016-11-01

    In this talk we report on Large Eddy Simulations of an impinging planar jet to a turbulent channel flow in a T-Junction configuration. Due to its capacity for mixing and heat transfer enhancement, this type of flow is encountered in various industrial applications. In particular, our work is related to the emergency cooling systems of pressurized water reactors. As is well known, this type of flow is dominated by a large separation bubble downstream the jet impingement location. Secondary regions of flow separation are predicted both upstream and downstream the impinging jet. We describe how these separation regions interact with the shear layer that is formed by the injection of the jet to the crossflow, and how they affect the mixing process. In our talk we further examine the influence of the jet's velocity to characteristic quantities of the jet, such as penetration length and expansion angle, as well as to the first and second-order statistics of the flow.

  10. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  11. Penetration process and instabilities arisen on a liquid jet impinged to a liquid flowing in a channel

    NASA Astrophysics Data System (ADS)

    Hattori, Kaoru; Ueno, Ichiro

    2010-11-01

    We conduct a series of experiments with a special interest on a penetration process and instabilities arisen on a liquid jet impinged to a liquid of the same kind flowing in a channel. The impinged jet penetrates into the flowing bath accompanying with entrainment of the ambient immiscible gas, which results in the impinged jet wrapped by the entrained gas as a "sheath." This sheath formation enables the impinged jet to survive in the fluid in the channel without coalescing until the entrained-air sheath breaks down. Occasionally a "cap" of the entrained air is formed at the tip of the penetrated jet, and the jet elongates like a long balloon. Dynamic behaviors of the penetrated jet and the departure of the bubble of warring gas at the tip of the collapsing jet observed by use of a high-speed camera are discussed.

  12. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 1: Results and discussion

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. The conclusions derived were: (1) intrusive probes can produce significant errors in the measurements of the velocity of jets if they are large in diameter and penetrate beyond the jet center; (2) rectangular jets without tabs, compared to circular jets of the same exit area, provide faster jet mixing; and (3) further mixing enhancement is possible by using mechanical tabs.

  13. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  14. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2016-07-12

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  15. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  16. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  17. Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets

    NASA Astrophysics Data System (ADS)

    Ozmen, Yucel; Ipek, Gokhan

    2016-04-01

    In this study, an experimental and numerical study is carried out to investigate flow field and heat transfer characteristics of unconfined and confined arrays of four turbulent slot air jets issuing from the lower surface and impinging normally on the upper surface. Pressure and temperature distributions on the surfaces were obtained for the nozzle-to-plate spacing (H/W) of 1-10 and for the Reynolds numbers in the range of 5000-15,000 at the jet-to-jet centerline spacing (S/W) of 9. The effects of jet confinement, Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer were investigated. Pressure distributions are obtained experimentally and numerically, while heat transfer distributions are computed numerically. It is observed that the surface pressure distributions on both impingement and confinement plates are independent from the Reynolds number, while they have been largely affected from the nozzle-to-plate spacing. Jet confinement causes a considerable difference at the flow field especially for small nozzle-to-plate spacings. Subatmospheric regions are not observed for unconfined jet. However three different types of subatmospheric pressure regions occur on both impingement and confinement plates for confined jet. Nusselt distributions on the impingement plate for both unconfined and confined jet configurations depend on the Reynolds number and nozzle-to-plate spacing. It is concluded that there is a strong correlation between subatmospheric regions and secondary peaks in Nusselt distributions. The numerical results obtained using the Realizable k-ɛ turbulence model is in good accordance with the experimental results for moderate values of nozzle-to-plate spacings.

  18. A Conceptual Model to Link Anomalously High Temperature Gradients in the Cerros del Rio Volcanic Field to Regional Flow in the Espanola Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Fillingham, E. J.; Keller, S. N.; McCullough, K. R.; Watters, J.; Weitering, B.; Wilce, A. M.; Folsom, M.; Kelley, S.; Pellerin, L.

    2015-12-01

    Temperature-depth well data along with electromagnetic (EM) data were collected by students of the Summer of Applied Geophysics Experience (SAGE) 2015 field season in the Espanola Basin, New Mexico. The data from this year, in addition to data acquired since 2013, were used to construct a conceptual east-west cross-section of the Espanola Basin and the adjacent highlands in order to evaluate the regional flow system. Vertical geothermal gradients from several monitoring wells were measured using a thermistor. Anomalously warm geothermal gradients were mapped in the Cerros del Rio volcanic field in the basin just east of the Rio Grande. Temperature gradients are up to 70℃/km, while the background geothermal gradients in the Rio Grande rift zone generally show 28℃-35℃/km. This anomaly extends to the Buckman well field, which supplies water to the city of Santa Fe. Overpumping of this well field has led to subsidence in the past. However, discharge temperature plots indicate that the temperature gradients of the Buckman field may be rebounding as pumping is reduced. Audiomagnetotelluric (AMT) and transient electromagnetic (TEM) data were acquired in the vicinity of three monitoring wells. TEM and AMT methods complement each other with the former having depths of investigation of less than ten to hundreds of meters and AMT having depths of investigation comparable to the wells deeper than 500m. These datasets were used collectively to image the subsurface stratigraphy and, more specifically, the hydrogeology related to shallow aquifers. The EM data collected at these wells showed a trend indicating a shallow aquifer with a shallower resistive layer of approximately 100 ohm-m at 70-100 meters depth. Beneath this resistive layer we resolved a more conductive, clay-rich layer of 10 ohm-m. These resistivity profiles compliment the electrical logs provided by Jet West, which indicate shallower sandstone interbedded with silt on top of more silt-dominant layers. Our

  19. An experimental and numerical study of particle-laden coaxial jet flows

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.

    1990-01-01

    A detailed experimental and numerical study of the developing region of coaxial jet flows with and without glass beads is performed. A two-component phase/Doppler interferometer is used to measure mean and fluctuating velocity components for each phase and particle-number density. The numerical calculation is based on a stochastic Lagrangian treatment for the particles and a recently proposed two-equation turbulence model for two-phase flows. Results show that the particle-number density profile becomes narrower than the corresponding profile for round jet flow and that the particles attain a uniform velocity across the jet radius. The particles attenuate the level of gas turbulence and increase their anisotropy level. The numerical calculations yield reasonable and encouraging agreement with the measurements.

  20. Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Zizelman, J.

    1985-01-01

    Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.

  1. An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets

    NASA Astrophysics Data System (ADS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2005-10-01

    An experimental investigation into the structure of a supersonic jet impinging on a large plate is presented. Digital particle image velocimetry (DPIV), shadowgraph photography and acoustic measurements are used to understand the relationship between the unsteady jet structure and the production of tones for nozzle-to-plate spacings between 1 and 5 nozzle exit diameters at a nozzle pressure ratio equal to 4. Results indicate that the instability of the jet depends on the location of the plate in the shock cell structure of the corresponding free jet and the strength of the standoff shock wave, rather than on the occurrence of recirculation zones in the impingement region. Phase-locked studies show streamwise displacements of the stand-off shock wave, a moving recirculation zone in the subsonic flow in front of the plate, and significant oscillations of both the compression and expansion regions in the peripheral supersonic flow when tones are produced. Sound is shown to be generated by periodic pulsing of the wall jet boundary resulting from periodic motion of the flow in the impingement and near-wall regions of the flow.

  2. On the trajectory scaling of tandem twin jets in cross-flow in close proximity

    NASA Astrophysics Data System (ADS)

    New, T. H.; Zang, B.

    2015-11-01

    An experimental study has been conducted on tandem twin jets in cross-flow (JICF) in close proximity to investigate the relationships between their trajectories, separation distances and velocity ratios. Results show that the front and rear jets, each with initially distinct jet trajectory, merge into a single trajectory shortly after they exhaust into the cross-flow. Furthermore, the merged tandem JICF attains deeper cross-flow penetration than that of a single JICF at the same velocity ratio. The front jet is also observed to provide `shielding' for the rear jet such that the latter penetrates relatively deeper into the cross-flow, which corroborates observations made by earlier studies. In particular, the present study demonstrates that it is possible to collapse the tandem JICF merged trajectories by ` rD'-scaling, where A and B coefficients show slight reductions and increments, respectively, with increasing separation distance. Collapsing the merged trajectories by using single JICF A and B coefficients leads to the notion of effective velocity ratio for tandem JICF, which enable the authors to propose a modification in the ` rD'-scaling law for tandem JICF. Lastly, the modified ` rD'-scaling law is applied to trajectory data from an earlier tandem JICF study, and its validity is demonstrated by the resulting good collapse.

  3. Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis.

    PubMed

    Zhou, Xin-Cai; Li, Yu-Lan; Liu, De-Xi; Cao, Ying-Guang; Lu, Xin-Pei

    2016-11-01

    The aim of the present study was to assess the antimicrobial activity of plasma jet with helium (He) flowing through 3% hydrogen peroxide in root canals infected with Enterococcus faecalis. A total of 42 single-rooted anterior teeth were prepared, sterilized, inoculated with an E. faecalis suspension and incubated for 7 days. Next, the teeth were randomly divided into six experimental groups (including groups treated by plasma jet with or without He for different time durations) and one control group treated without plasma. The number of surviving bacteria in each canal was determined by counting the colony forming units (CFU)/ml on nutrient agar plates. The results indicated that statistically significant reduction in CFU/ml (P<0.005) existed for all treatment groups relative to the control group. The greatest reductions in CFU/ml were observed for Group 3 (7.027 log unit reduction) and Group 2 (6.237 log unit reduction), which were treated by plasma jet sterilization with He flowing through 3% hydrogen peroxide for 4 min or for 2 min, respectively. In addition, the reduction in Group 3 was significantly greater compared with that in Group 2 or in the groups treated by plasma jet sterilization without He flowing through 3% hydrogen peroxide for 1, 2 or 4 min. In conclusion, plasma jet with or without He flowing through 3% hydrogen peroxide can effectively sterilized root canals infected with E. faecalis and should be considered as an alternative method for root canal disinfection in endodontic treatments.

  4. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    NASA Astrophysics Data System (ADS)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  5. Visualization of the flow field in a confined and submerged impinging jet

    SciTech Connect

    Fitzgerald, J.A.; Garimella, S.V.

    1997-07-01

    The high heat transfer rates that can be obtained through the use of jet impingement cooling have led to its use in a variety of applications, including paper drying, glass manufacturing, turbine-blade cooling, and electronics cooling. Here, the flow field of a normally impinging, axisymmetric, confined and submerged liquid kit is studied using flow visualization. The results are compared with computations and experimental measurements of the flow field, and are used to describe the position of the recirculating toroid in the outflow region which is characteristic of the confined flow field. Changes in the features of the recirculation pattern due to changes in Reynolds number, nozzle diameter and nozzle-to-target plate spacing are documented. Results are presented for nozzle diameters of 3.18, 6.35, and 12.7 mm, at jet Reynolds numbers in the range of 2,000 to 23,000, and nozzle-to-target plate spacings of 1, 2, 3, and 4 jet diameters. Up to three interacting vertical structures are observed in the confinement region at the smaller Reynolds numbers. The center of the primary recirculation pattern moves away from the centerline of the jet with an increase in Reynolds number, nozzle diameter, and nozzle-to-target plate spacing. As the recirculating toroid moves away from the jet axis, more of the ambient fluid is entrained into the confinement region.

  6. Mach reflection associated with over-expanded nozzle free jet flows

    NASA Technical Reports Server (NTRS)

    Chow, W. L.; Chang, I. S.

    1975-01-01

    The occurrence of Mach reflection within the over-expanded nozzle free jet flow has been examined. A flow model emphasizing the interaction between the outer and central core streams has been developed to deal with flow situations where detailed inviscid calculations of the flowfield with Mach reflexion are not possible. The results obtained show reasonably good agreement with the available experimental data. This method has also produced comparable results where detailed calculations of the flowfield are possible.

  7. Studies on the mixing of liquid jets and pre-atomized sprays in confined swirling air flows for lean direct injection combustion

    NASA Astrophysics Data System (ADS)

    Huh, Jun-Young

    A lean direct injection (LDI) combustion concept was introduced recently to obtain both low NOsbx emissions and high performance for advanced aircraft gas turbine engines. It was reported that pollutant emissions, especially NOsbx, in a lean combustion mode depend significantly on the degree of mixing (mixedness) of supplied air and liquid fuel droplets. From a viewpoint of environmental protection, therefore, uniform mixing of fuel and air in a very short period of time, i.e., well-stirred mixing, is crucially important in the LDI combustion mode. In the present study, as the first stage toward understanding the combustion phenomena in a lean direct injection (LDI) mode, the hydrodynamic behavior of liquid jets and pre-atomized sprays in confined swirling air flows is investigated. Laser-based flow visualization and image analysis techniques are applied to analyze the instantaneous motion of the mixing process of the jets and pre-atomized sprays. Statistical analysis system (SAS) software is utilized to analyze the experimental data, and correlate experimental parameters. Statistical parameters, such as centrality, degree of spread, and total area ratio of particles, are defined in this study, and used to quantify the mixedness (degree of mixing) of liquid particles in confined geometry. Two empirical equations are obtained to predict jet intact lengths and spray angles, respectively, in confined swirling air flows. It is found that initial jet characteristics, such as intact length and spray angle, determine the mixing of the liquid particles resulting from the jet. It is verified that image analysis is feasible in quantitative determination of the mixedness of liquid particles. Even though substantial improvements in liquid fuel injector systems are required before they can be considered adequate for LDI combustion at high pressure and high temperature, the results and ideas obtained from the present study will help engineers find better mixing methods for LDI

  8. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  9. Flow distribution in a roller jet bit determined from hot-wire anemometry measurements

    SciTech Connect

    Gavignet, A.A.; Bradbury, L.J.; Quetier, F.P.

    1987-03-01

    In current practice, the optimization of drilling hydraulics consists of the selection of nozzle sizes that maximize either jet impact or hydraulic power at the nozzle. But what is required for a real optimization is the knowledge of the hydraulic forces available for cleaning at the rock face, not at the nozzle. This paper shows the results of hot-wire anemometry experiments that provide insight into the flow distribution in a jet bit. Direct measurements of the flow field, including turbulence levels, are reported and discussed.

  10. Flow Field Characterization of an Angled Supersonic Jet Near a Bluff Body

    NASA Technical Reports Server (NTRS)

    Wolter, John D.; Childs, Robert; Wernet, Mark P.; Shestopalov, Andrea; Melton, John E.

    2011-01-01

    An experiment was performed to acquire data from a hot supersonic jet in cross flow for the purpose of validating computational fluid dynamics (CFD) turbulence modeling relevant to the Orion Launch Abort System. Hot jet conditions were at the highest temperature and pressure that could be acquired in the test facility. The nozzle pressure ratio was 28.5, and the nozzle temperature ratio was 3. These conditions are different from those of the flight vehicle, but sufficiently high to model the observed turbulence features. Stereo Particle Image Velocimetry (SPIV) data and capsule pressure data are presented. Features of the flow field are presented and discussed

  11. Propulsive-jet flow field analysis using the three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Reed, C. L.

    1988-01-01

    A three-dimensional Navier-Stokes code has been applied to the analysis of flow fields containing propulsive jets. Specifically, the application was made to a flow field containing a supersonic jet injected at an angle of 90 degrees to a subsonic free stream. Although wind tunnel data were available, the computational results were not readily comparable to the experimental data because of significant differences between the two plume trajectories. Reasons for the differences are suggested in the report and include: (1) incomplete convergence, (2) inadequate grid resolution in the high gradient regions, and (3) use of a low-order turbulence closure model.

  12. Simultaneous velocity and concentration measurements of a turbulent jet mixing flow.

    PubMed

    Hu, Hui; Saga, Tetsuo; Kobayashi, Toshio; Taniguchi, Nobuyuki

    2002-10-01

    A method for the simultaneous measurement of velocity and passive scalar concentration fields by means of particle image velocimetry (PIV) and planar laser induced florescence (PLIF) techniques is described here. An application of the combined PIV-PLIF system is demonstrated by performing simultaneous velocity and concentration measurements in the near field of a turbulent jet mixing flow. The distributions of the ensemble-averaged velocity and concentration, turbulent velocity fluctuation, concentration standard deviation, and the correlation terms between the fluctuating velocities and concentration in the near field of the turbulent jet flow are presented as the measurement results of the simultaneous PIV-PLIF system.

  13. Three-dimensional study of turbulent flow characteristics of an offset plane jet with variable density

    NASA Astrophysics Data System (ADS)

    Assoudi, Ali; Habli, Sabra; Mahjoub Saïd, Nejla; Bournot, Hervé; Le Palec, Georges

    2016-11-01

    An experimental and numerical investigation of the flow field of variable density turbulent offset jet is presented. The velocity measurements are performed using a Velocimetry Laser Doppler technique for an offset height h. Three cases of variable-density turbulent plane jets discharging from a rectangular nozzle into a quiescent medium are studied. The variation density jets considered were revealed at different Reynolds numbers. In the second step of this work, a numerical three-dimensional model of the problem is simulated through the resolution of the Navier-Stokes equations by means of the finite volume method and the Reynolds stress model second-order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzle and both the vertical and horizontal walls is also adopted. A good level of agreement was achieved, between the experiments and the calculations. Once the model validated, our model allowed the evaluation of the influence of the variation density on the characterizing features of the resulting flow filed. It is found that the centerline velocity and concentration of the heavier jet decays much faster than in the two other jets, and a similar behavior for the vertical profiles in the three variable-density jets is well reproduced in the simulation.

  14. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  15. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  16. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  17. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  18. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  19. RAXJET: A computer program for predicting transonic, axisymmetric flow over nozzle afterbodies with supersonic jet exhausts

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1982-01-01

    A viscous-inviscid interaction method to calculate the subsonic and transonic flow over nozzle afterbodies with supersonic jet exhausts was developed. The method iteratively combines a relaxation solution of the full potential equation for the inviscid external flow, a shock capturing-shock fitting inviscid jet solution, an integral boundary layer solution, a control volume method for treating separated flows, and an overlaid mixing layer solution. A computer program called RAXJET which incorporates the method, illustrates the predictive capabilities of the method by comparison with experimental data is described, a user's guide to the computer program is provided. The method accurately predicts afterbody pressures, drag, and flow field properties for attached and separated flows for which no shock induced separation occurs.

  20. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    SciTech Connect

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flow perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the

  1. The Time-Resolved Flow Field of a Spatially Oscillating Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Ostermann, F.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2016-11-01

    Spatially oscillating jets in crossflow emitted by fluidic oscillators have been proven beneficial for flow control applications in recent studies. However, the driving mechanism behind the efficacy remains unknown. The presented study examines the fundamental, time-resolved flow field of a spatially oscillating jet in crossflow. The inclination angle between oscillation plane and crossflow is 90°. The underlying experimental dataset is acquired plane-by-plane by a traversable stereoscopic particle image velocimetry system. Phase-averaging reduces stochastic noise, compensates low sampling rates, and allows combining the individual planes to a time-resolved three-dimensional flow field. The trajectory of the oscillating jet is much shallower than a steady jet. Two counter-rotating streamwise vortices are revealed. The sense of rotation is opposite to that of the counter-rotating vortex pair of steady jets in crossflow. This sense of rotation enables the vortices to prevail far downstream because they push each other toward the wall. The strength of the vortices is alternating. This vortex pair is a promising candidate to be the driving mechanism behind the high efficacy in separation control. PhD Student.

  2. Modeling Variable-Density Jets with Co-Flow Using BHR

    NASA Astrophysics Data System (ADS)

    Israel, Daniel

    2016-11-01

    The two-fluid jet in a co-flow has two similarity breaking features which make it more interesting, and challenging, than the simple self-similar jet. First, it transitions from strong jet to weak jet, and second, from shear driven to buoyancy driven. These two simultaneous mechanisms make it a strong test for a turbulence model. The Extreme Fluids team at Los Alamos National Laboratory has an on-going experimental campaign examining an SF6 jet injected downwards into a co-flowing air stream. Using simultaneous PIV/PLIF they have obtained measurements of important turbulence quantities, including the Reynolds stresses, and the velocity-density correlations. In the current work, these measurements are used to validate the BHR turbulence model. The BHR model (Besnard et al., 1992) is a variable-density turbulence model similar to the LRR model for shear flows, but with additional transport equations for ρai = ρ'ui' ' ̲ and b = ρ'v' ̲ . Here we examine both the conventional model form, as well as a new version (Schwarzkopf et al., 2016) which include two length-scale equations: one for the dissipation scale, and one for the turbulent transport scale.

  3. Interactions of a finite span synthetic jet with a cross flow

    NASA Astrophysics Data System (ADS)

    Leong, Chia Min; van Buren, Tyler; Whalen, Edward; Amitay, Michael; Rensselaer Polytechnic Institute Team; Boeing Collaboration

    2013-11-01

    A synthetic jet is a zero-net-mass-flux flow control actuator that produces alternating ejection and suction of fluid momentum across an orifice. It has been used in numerous applications as an active flow control device to improve aerodynamic performance. Though their aerodynamic performance effects are well known, this present study seeks to understand the fluid dynamic effects of synthetic jets. Specifically, the work investigates the interactions of a finite span synthetic jet with a zero-pressure-gradient laminar boundary layer. This study was performed in a small-scale subsonic wind tunnel with an adjustable test section upper wall that was used to generate a zero-pressure-gradient boundary layer. Several finite span rectangular orifices were chosen for this study. Time and phase-averaged Stereoscopic Particle Image Velocimetry (SPIV) measurements were acquired at multiple planes upstream and downstream of the synthetic jet orifice to explore the interaction of the synthetic jet with the cross flow. The effects of the orifice aspect ratio (12, 18, and 24) and blowing ratio (0.5, 1, and 1.5) were investigated. The unsteady vortical structures observed in the near field and the steady structures in the far field are discussed.

  4. Thermal Protection System Evaluation Using Arc-jet Flows: Flight Simulation or Research Tool?

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    The arc-jet has been used to evaluate thermal protection systems (TPS) and materials for the past forty years. Systems that have been studied in this environmerd include ablators, active, and passive TPS concepts designed for vehicles entering planetary and Earth atmospheres. The question of whether arc-jet flow can simulate a flight environment or is it a research tool that provides an aero-thermodynamic heating environment to obtain critical material properties will be addressed. Stagnation point tests in arc-jets are commonly used to obtain material properties such as mass loss rates, thermal chemical stability data, optical properties, and surface catalytic efficiency. These properties are required in computational fluid dynamic codes to accurately predict the performance of a TPS during flight. Special facilities have been developed at NASA Ames Research Center to approximate the flow environment over the mid-fuselage and body flap regions of proposed space-planes type vehicles. This paper compares flow environments generated in flight over a vehicle with those created over an arc-jet test articles in terms of scale, chemistry, and fluid dynamic properties. Flight experiments are essential in order to validate the material properties obtained from arc-jet tests and used to predict flight performance of any TPS being considered for use on a vehicle entering the Earth atmosphere at hypersonic speed.

  5. Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality

  6. Large-scale turbulent structures in jets and in flows over cavities and their relationship to entrainment and mixing

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Massier, P. F.

    1979-01-01

    Large scale structures in jets and in flows over cavities were investigated experimentally to determine their role in entrainment, mixing, and noise production. The presence of these structures resulted in growth of the shear layer and entrainment. Merging of adjacent large scale structures caused the near field pressure signal in excited flows. It is believed that both the entrained fluid as well as its eventual mixing with the jet flow can be controlled by introducing pulsation in the jet flow at a frequency for which the flow is most unstable.

  7. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  8. Flow field and near and far sound field of a subsonic jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1986-01-01

    Flow and sound field data are presented for a 2.54 cm diameter air jet at a Mach number of 0.50 and a Reynolds number of 300,000. Distributions of mean velocity, turbulence intensities, Reynolds stress, spectral components of turbulence as well as of the near field pressure, together with essential characteristics of the far field sound are reported. This detailed set of data for one particular flow, erstwhile unavailable in the literature, is expected to help promoote and calibrate subsonic jet noise theories. 'Source locations' in terms of the turbulence maxima, coupling between the entrainment dynamics and the near pressure field, the sound radiation paths, and the balance in mass, momentum and sound energy fluxes are discussed. The results suggest that the large scale coherent structures of the jet govern the 'source locations' by controlling the turbulence and also strongly influence the near field pressure fluctuations.

  9. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    NASA Astrophysics Data System (ADS)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.

  10. The influence of inlet flow condition on the frequency of self-excited jet precession

    NASA Astrophysics Data System (ADS)

    Mi, J.; Nathan, G. J.; Wong, C. Y.

    2006-01-01

    A precessing jet flow can be generated naturally by a fluidic nozzle comprising a cylindrical nozzle-chamber with a large sudden expansion at its inlet and a small lip at its outlet. Such a precessing jet flow is offset with respect to the chamber axis, about which it rotates. The aim of the present study is to investigate the influence of the chamber-inlet configuration on the frequency of such precession. Three different inlet configurations, classified as long pipe, smooth contraction, and sharp-edged orifice plate, are tested. It is found that the frequency of precession from the orifice is highest, whereas that of the pipe jet is lowest. These differences appear to result partly from the distinct differences in their respective initial boundary layers.

  11. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. This volume contains tabulated data for each of the data runs cited in Volume 1. Baseline characteristics, mixing modifications (subsonic and supersonic, heated and unheated) and miscellaneous charts are included.

  12. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  13. Flow field investigation of atmospheric braking for high drag vehicles with forward facing jets. [in spacecraft entry

    NASA Technical Reports Server (NTRS)

    Grenich, A. F.; Woods, W. C.

    1981-01-01

    Flow field phenomena associated with a supersonic jet issuing upstream into a hypervelocity flow field were investigated experimentally in support of a new space vehicle aerobraking concept developed by Boeing for Orbital Transfer Vehicles (OTV's). Tests were made on OTV models in the NASA Langley 22 in., Mach 20 helium tunnel with jet exit Mach numbers from 1.0 to 6.18 and ballute half angles of 45 and 60 deg. Force data were taken at zero angle of attack to determine the effect of ballute angle, jet Mach number and jet flow rate on vehicle drag. Bow shock structures were examined in terms of flow steadiness to define acceptable jet flow rate regimes for use in drag modulation. Limited tests were made to obtain pressure and temperature distributions around the ballute and to determine the ballute center of pressure. Test results are presented and discussed relative to OTV application and similar previous experimental investigations.

  14. Application of Tomo-PIV in a large-scale supersonic jet flow facility

    NASA Astrophysics Data System (ADS)

    Wernet, Mark P.

    2016-09-01

    Particle imaging velocimetry (PIV) has been used extensively at NASA GRC over the last 15 years to build a benchmark data set of hot and cold jet flow measurements in an effort to understand acoustic noise sources in high-speed jets. Identifying the noise sources in high-speed jets is critical for ultimately modifying the nozzle hardware design/operation and therefore reducing the jet noise. Tomographic PIV (Tomo-PIV) is an innovative approach for acquiring and extracting velocity information across extended volumes of a flow field, enabling the computation of additional fluid mechanical properties not typically available using traditional PIV techniques. The objective of this work was to develop and implement the Tomo-PIV measurement capability and apply it in a large-scale outdoor test facility, where seeding multiple flow streams and operating in the presence of daylight presents formidable challenges. The newly developed Tomo-PIV measurement capability was applied in both a subsonic M 0.9 flow and an under-expanded M 1.4 heated jet flow field. Measurements were also obtained using traditional two-component (2C) PIV and stereo PIV in the M 0.9 flow field for comparison and validation of the Tomo-PIV results. In the case of the M 1.4 flow, only the 2C PIV was applied to allow a comparison with the Tomo-PIV measurement. The Tomo-PIV fields-of-view covered 180 × 180 × 10 mm, and the reconstruction domains were 3500 × 3500 × 200 voxels. These Tomo-PIV measurements yielded all three components of vorticity across entire planes for the first time in heated supersonic jet flows and provided the first full 3D reconstruction of the Mach disk and oblique shock intersections inside of the barrel shocks. Measuring all three components of vorticity across multiple planes in the flow, potentially reduces the number of measurement configurations (streamwise and cross-stream PIV) required to fully characterize the mixing-enhanced nozzle flows routinely studied in

  15. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  16. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1990-10-01

    usual substrates, SrTiO3 , YSZ, MgO, and LaA103, it has been possible to deposit films on Si substrates without any buffer layer. A bolometer has been...new opportunities for the study of superconductor-insulator transitions and the investigation of photo- doping with carriers of high temperature super... SrTiO3 (00), SrTiO3 (l 10), LaA103 (100), MgO(100), and yttria stabilized zirconia (YSZ). The surfaces of these films could be imaged with a scanning

  17. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  18. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  19. Design of a Slotted, Natural-Laminar-Flow Airfoil for Business-Jet Applications

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    2012-01-01

    A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.

  20. Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.

    2013-01-01

    An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.

  1. Flowfield characteristics of a transverse jet into supersonic flow with pseudo-shock wave

    NASA Astrophysics Data System (ADS)

    Yamauchi, H.; Choi, B.; Takae, K.; Kouchi, T.; Masuya, G.

    2012-11-01

    We performed an experimental investigation of the flowfield of a transverse jet into supersonic flow with a pseudo-shock wave (PSW). In this study, we injected compressed air as the injectant, simulating hydrocarbon fuel. A back pressure control valve generated PSW into Mach 2.5 supersonic flow and controlled its position. The positions of PSW were set at nondimensional distance from the injector by the duct height ( x/ H) of -1.0, -2.5, and -4.0. Particle image velocimetry (PIV) gave us the velocity of the flowfield. Mie scattering of oil mist only with the jet was used to measure the spread of the injectant. Furthermore, gas sampling measurements at the exit of the test section were carried out to determine the injectant mole fraction distributions. Gas sampling data qualitatively matched the intensity of Mie scattering. PIV measurements indicated that far-upstream PSW decelerated the flow speed of the main stream and developed the boundary layer on the wall of the test section. The flow speed deceleration at the corner of the test section was remarkable. The PSW produced nonuniformity in the main stream and reduced the momentum flux of the main stream in front of the injector. The blowing ratio, defined as the square root of the momentum flux ratio, of the jet and the main stream considering the effect of the boundary layer thickness was shown to be a useful parameter to explain the jet behavior.

  2. Incorporating the Johnson-Cook Constitutive Model and a Soft Computational Approach for Predicting the High-Temperature Flow Behavior of Sn-5Sb Solder Alloy: A Comparative Study for Processing Map Development

    NASA Astrophysics Data System (ADS)

    Vafaeenezhad, H.; Seyedein, S. H.; Aboutalebi, M. R.; Eivani, A. R.

    2017-01-01

    The high-temperature flow behavior of Sn-5Sb lead-free solder alloy has been investigated using isothermal hot compression experiments at 298 K to 400 K and strain rate between 0.0005 s-1 and 0.01 s-1. The flow stress under these test conditions was modeled using constitutive equations based on the Johnson-Cook (J-C) model and an artificial neural network (ANN). Three input factors, i.e., temperature, strain rate, and true strain, were incorporated into the network, and the flow stress was considered as the system output. One hidden layer was adopted in the simulations. Furthermore, a comparative study was carried out on the potential of the two proposed models to characterize the high-temperature flow behavior of this alloy. The capability of the models was assessed by comparing the simulation predictions using a correlation coefficient ( R 2). The stresses predicted by both models presented good agreement with experimental results. In addition, it was found that the ANN model could predict the high-temperature deformation more precisely over the whole temperature and strain rate ranges. However, this is strongly dependent on the availability of extensive, high-quality data and characteristic variables.

  3. Impingement flow heat transfer measurements of turbine blades using a jet array

    NASA Astrophysics Data System (ADS)

    Vantreuren, Kenneth W.

    1994-08-01

    The requirement for increased gas turbine engine performance has led to the use of much higher turbine entry temperature (TET). The higher temperatures require active cooling of the turbine blade using compressor bleed air. Arrays of impinging jets are one method currently used to reduce the blade temperature on the midspan and leading edge. Air flows through small holes in a blade insert and is directed on the inside surface of a turbine blade to reduce local surface temperature. The engine situation was represented by a 10-20 times scale model tested in the internal cooling transient facility at the University of Oxford. The geometry chosen was for a widely spaced array with a jet spacing of 8d and a plate thickness to jet diameter of 1.2. Experiments were accomplished for a range of impingement plate to target surface spacings, z/d, (1, 2 and 4) and jet Reynolds numbers, Re(sub j), (10,000 - 40,000) with both staggered and inline array hole configurations. The transient liquid crystal technique, both peak intensity narrowband and hue temperature history wideband, enabled the determination of heat transfer coefficient and adiabatic wall temperature. For the first time, local detail of heat transfer on the target surface as well as observation of the crossflow influence on the jet at the target surface are possible. A large variation in heat transfer exists between the stagnation point and channel passage between jets (2-4 times) which was unknown in previous experiments.

  4. Application of PIV to the Measurement of High Speed Jet Flows

    NASA Technical Reports Server (NTRS)

    Lourenco, L.

    1999-01-01

    The Particle Image Velocimetry, PIV, has been implemented for the investigation of high-speed jet flows at the NASA Langley Research Center. In this approach the velocity (displacement) is found as the location of a peak in the correlation map of particle images acquired in quick succession. In the study, the technique for the correct seeding of the flow field were developed and implemented and the operational parameters influencing the accuracy of the measurement have been optimized.

  5. Characterization of neonatal aortic cannula jet flow regimes for improved cardiopulmonary bypass.

    PubMed

    Menon, Prahlad G; Teslovich, Nikola; Chen, Chia-Yuan; Undar, Akif; Pekkan, Kerem

    2013-01-18

    During pediatric and neonatal cardiopulmonary bypass (CPB), tiny aortic outflow cannulae (2-3 mm inner diameter), with micro-scale blood-wetting features transport relatively large blood volumes (0.3 to 1.0 L/min) resulting in high blood flow velocities (2 to 5 m/s). These severe flow conditions are likely to complement platelet activation, release pro-inflammatory cytokines, and further result in vascular and blood damage. Hemodynamically efficient aortic outflow cannulae are required to provide high blood volume flow rates at low exit force. In addition, optimal aortic insertion strategies are necessary in order to alleviate hemolytic risk, post-surgical neurological complications and developmental defects, by improving cerebral perfusion in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae. In this study, direct numerical simulation (DNS) computational fluid dynamics (CFD) was employed to delineate baseline hemodynamic performance of jet wakes emanating from microCT scanned state-of-the-art pediatric cannula tips in a cuboidal test rig operating at physiologically relevant laminar and turbulent Reynolds numbers (Re: 650-2150 , steady inflow). Qualitative and quantitative validation of CFD simulated device-specific jet wakes was established using time-resolved flow visualization and particle image velocimetry (PIV). For the standard end-hole cannula tip design, blood damage indices were further numerically assessed in a subject-specific cross-clamped neonatal aorta model for different cannula insertion configurations. Based on these results, a novel diffuser type cannula tip is proposed for improved jet flow-control, decreased blood damage and exit force and increased permissible flow rates. This study also suggests that surgically relevant cannula orientation parameters such as outflow angle and insertion depth may be important for improved hemodynamic performance. The jet

  6. Optimization of an inclined elliptic impinging jet with cross flow for enhancing heat transfer

    NASA Astrophysics Data System (ADS)

    Heo, Man-Woong; Lee, Ki-Don; Kim, Kwang-Yong

    2011-06-01

    This work presents a parametric study and optimization of a single impinging jet with cross flow to enhance heat transfer with two design variables. The fluid flow and heat transfer have been analyzed using three-dimensional compressible Reynolds-averaged Navier-Stokes equations with a uniform heat flux condition being applied to the impingement plate. The aspect ratio of the elliptic jet hole and the angle of inclination of the jet nozzle are chosen as the two design variables, and the area-averaged Nusselt number on a limited target plate is set as the objective function. The effects of the design variables on the heat transfer performance have been evaluated, and the objective function has been found to be more sensitive to the angle of inclination of the jet nozzle than to the aspect ratio of the elliptic jet hole. The optimization has been performed by using the radial basis neural network model. Through the optimization, the area-averaged Nusselt number increased by 7.89% compared to that under the reference geometry.

  7. The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.; Miller, Steven A. E.

    2013-01-01

    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.

  8. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  9. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  10. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  11. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  12. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  13. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  14. Flow control in axial fan inlet guide vanes by synthetic jets

    NASA Astrophysics Data System (ADS)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  15. Vortex Behavior in Fully-Oscillating Low-Speed Jet Flows

    NASA Astrophysics Data System (ADS)

    Jones, Preston; Baker, John

    2010-11-01

    Vortex formation associated with a fully oscillating low-speed jet was studied to better understand the fundamental nature of such flows. It has been hypothesized that vortices produced by sinusoidal flow from a nozzle will behave in a manner different from that observed for typical piston-cylinder generated vortices. A variable speed reciprocating pump, designed to produce sinusoidal flow fields at the nozzle exit, was used to examine vortex characteristics as a function of Reynolds number and dynamic vortex formation number. The behavior was visualized using a passive scalar dye. Video recording were used to examine the nature of the flows for the above-mentioned dimensionless parameters. Flows corresponding to Reynolds numbers in the range of 244 to 2708 and dynamic vortex formation numbers in the range of 0.82 to 62.92 were considered. The fully oscillating jets flows produced vortices that appear to not exhibit the critical vortex formation number of 4, commonly observed for pulsating jets. Reynolds number was shown to have an impact on physical vortex detachment.

  16. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  17. High-Speed Rainbow Schlieren Deflectometry Analysis of Helium Jets Flowing into Air for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.

    2002-01-01

    The flow phenomena of buoyant jets have been analyzed by many researchers in recent years. Few, however have studied jets in microgravity conditions, and the exact nature of the flow under these conditions has until recently been unknown. This study seeks to extend the work done by researchers at the university of Oklahoma in examining and documenting the behavior of helium jets in micro-gravity conditions. Quantitative rainbow schlieren deflectometry data have been obtained for helium jets discharging vertically into quiescent ambient air from tubes of several diameters at various flow rates using a high-speed digital camera. These data have obtained before, during and after the onset of microgravity conditions. High-speed rainbow schlieren deflectometry has been developed for this study with the installation and use of a high-speed digital camera and modifications to the optical setup. Higher temporal resolution of the transitional phase between terrestrial and micro-gravity conditions has been obtained which has reduced the averaging effect of longer exposure times used in all previous schlieren studies. Results include color schlieren images, color time-space images (temporal evolution images), frequency analyses, contour plots of hue and contour plots of helium mole fraction. The results, which focus primarily on the periods before and during the onset of microgravity conditions, show that the pulsation of the jets normally found in terrestrial gravity ("earth"-gravity) conditions cease, and the gradients in helium diminish to produce a widening of the jet in micro-gravity conditions. In addition, the results show that the disturbance propagate upstream from a downstream source.

  18. Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.

    2006-01-01

    The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are

  19. Influence of vortical flow structures on the glottal jet location in the supraglottal region.

    PubMed

    Kniesburges, Stefan; Hesselmann, Christina; Becker, Stefan; Schlücker, Eberhard; Döllinger, Michael

    2013-09-01

    Within the fully coupled multiphysics phonation process, the fluid flow plays an important role for sound production. This study addresses phenomena in the flow downstream of synthetic self-oscillating vocal folds. An experimental setup consisting of devices for producing and conditioning the flow including the main test channel was applied. The supraglottal channel was designed to prevent an acoustic coupling to the vocal folds. Hence, the oscillations were aerodynamically driven. The cross-section of the supraglottal channel was systematically varied by increasing the distance between the lateral channel walls. The vocal folds consisted of silicone rubber of homogenous material distribution generating self-sustained oscillations. The airflow was visualized in the immediate supraglottal region using a laser-sheet technique and a digital high-speed camera. Furthermore, the flow was studied by measuring the static pressure distributions on both lateral supraglottal channel walls. The results clearly showed different flow characteristics depending on the supraglottal configuration. In all cases with supraglottal channel, the jet was located asymmetrical and bent in medial-lateral direction. Furthermore, the side to which the jet was deflected changed in between the consecutive cycles showing a bifurcational behavior. Previously, this phenomenon was explained by the Coanda effect. However, the present data suggest that the deflection of the jet was mainly caused by large air vortices in the supraglottal channel produced by the flow field of previous oscillations. In contrast, for the case without supraglottal channel, the air jet was found totally symmetrical stabilized by the constant pressure in the ambient region. The emitted sound signal showed additional subharmonic tonal peaks for the asymmetric flow cases, which are characteristics for diplophonia.

  20. A mean flow field solution to a moderately under/over-expanded turbulent supersonic jet

    NASA Astrophysics Data System (ADS)

    Emami, Babak; Bussmann, Markus; Tran, Honghi N.

    2009-04-01

    The linearized solution for an inviscid imperfectly-expanded supersonic axisymmetric jet has been extended to the case of a turbulent flow, by taking into account the mean Reynolds stresses. The analytical results agree reasonably well with experimental data available in the literature, and so indicate that the solution is a good approximation to the near-field of an imperfectly-expanded jet. This analytical solution could be used to improve semi-empirical models of broadband shock-associated noise in aeronautics. To cite this article: B. Emami et al., C. R. Mecanique 337 (2009).

  1. Jet noise from co-axial nozzles over a wide range of geometric and flow parameters

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Friedman, R.

    1974-01-01

    Free field pure jet noise data were taken for a large range of coaxial nozzle configurations. The core nozzles were circular (1 to 4 in. diameter) and plug types. The fan to core area ratio varied from 0.7 to 43.5, while the velocity ratio typically varied from 0 to 1. For most cases the two nozzles were coplanar but large axial extensions of either nozzle were also tested. Correlation of the data resulted in a simple procedure for estimating ambient temperature subsonic coaxial jet noise spectra over a wide range of geometric and flow parameters.

  2. Active Control of Jets in Cross-Flow for Film Cooling Applications

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, Dimitris E.

    2003-01-01

    Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.

  3. The Far Field Structure of a Jet in Cross-Flow

    NASA Astrophysics Data System (ADS)

    Lanitis, Nicolas; Dawson, James

    2014-11-01

    Stereoscopic PIV measurements were performed in the far field of a cross-flow jet. Measurements were taken in a water channel in the spanwise-wall normal plane (y-z) containing the Counter-Rotating vortex pair (CVP). The jet's Reynolds number was Rejet = 2 ×104 and had an exit diameter of dj = 4 mm. Measurements were taken for a jet to cross-flow velocity ratio of Vr = 10 at three downstream positions of x /dj = 30 , 55 , 85 and for a Vr = 15 , 20 at x /dj = 85 . Two point spatial correlations hint at the presence of arch shaped structures titled in the streamwise x-direction on the windward side of the CVP as well as straight vortex tubes extending into the wake. The arched shaped structure is compounded by PDFs of the location of streamwise vorticity peaks (vortex tubes) in the instantaneous field indicating the presence of a vortex structure aligned in the spanwise direction. This information together with the use of High Speed Stereoscopic PIV and Taylor's Hypothesis, which allowed for the extraction of 3D structures, led to the development of an eddy model comprised of hairpin, roller and wake structures to predict turbulence statistics of a jet in cross-flow.

  4. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  5. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  6. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  7. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  8. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  9. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  10. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  11. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  12. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  13. Flow and Heat Flux Behavior of Micro-bubble Jet Flows Observed in Thin, Twisted-Wire, Subcooled Boiling in Microgravity

    NASA Astrophysics Data System (ADS)

    Munro, Troy R.; Ban, Heng

    2015-02-01

    Thin wire, subcooled boiling experiments were performed onboard an aircraft flying a parabolic trajectory to provide microgravity conditions for improved observation of jet flow phenomena and their behavior in the absence of buoyant forces. A new type of nucleation jet flow was observed in microgravity. This new micro-bubble jet flow is seen at medium to high heat fluxes and is characterized by a region of the wire that forms multiple jet columns which contain micro-bubbles. These columns flow together and penetrate tens of millimeters into the bulk fluid. Bubble behavior on the wire was observed to progress from a dominance of larger isolated bubbles on the wire to a dominance of micro-bubble jet flows on the wire as heat flux was increased. There was also a transient transition from a few large isolated bubbles to micro-bubble jet flow dominance for a set heat flux. A cross correlation calculation provided velocities of micro-bubbles in the flow, which were in the range of 4-14 mm/s. These velocities were used with convection correlations to show that fluid flows induced by jet flows are a significant contributor to the subcooled boiling heat transfer in microgravity, but are not the primary contributor. Additionally, a relative bubble area analysis approximates the direct contribution of these jet flows to the overall heat dissipation. These micro-bubble jet flows, which are only observed on thin wires (not flat surfaces), and the convection currents they induce, have the potential to allow for sustained fluid motion to occur in microgravity.

  14. Computation of multi-dimensional viscous supersonic jet flow

    NASA Technical Reports Server (NTRS)

    Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.

    1986-01-01

    A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  15. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  16. The Effect of Vortex Generators on a Jet in a Cross-Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Foss, J. K.

    1997-01-01

    The effect of vortex generators in the form of tabs on the penetration and spreading of a jet in a cross-flow has been studied experimentally. It is found that the tab has very little effect when placed on the leeward side, i.e., on the downstream edge of the jet nozzle relative to the free-stream flow. A study of the static pressure distribution reveals significantly lower pressures on the leeward side. Thus, when placed on that side the tab does not produce a "pressure hill" of sufficient magnitude that is the primary source of streamwise vorticity in the flow field over the tab. This qualitatively explains the ineffectiveness. In comparison, there is a significant effect on the flow field when the tab is placed on the windward side, The sense of vorticity generated by the tab in the latter configuration is opposite to that of the bound vortex pair that otherwise characterizes the flow. Thus, the strength of the bound vortex pair is diminished and the jet penetration is reduced.

  17. Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis

    PubMed Central

    Zhou, Xin-Cai; Li, Yu-Lan; Liu, De-Xi; Cao, Ying-Guang; Lu, Xin-Pei

    2016-01-01

    The aim of the present study was to assess the antimicrobial activity of plasma jet with helium (He) flowing through 3% hydrogen peroxide in root canals infected with Enterococcus faecalis. A total of 42 single-rooted anterior teeth were prepared, sterilized, inoculated with an E. faecalis suspension and incubated for 7 days. Next, the teeth were randomly divided into six experimental groups (including groups treated by plasma jet with or without He for different time durations) and one control group treated without plasma. The number of surviving bacteria in each canal was determined by counting the colony forming units (CFU)/ml on nutrient agar plates. The results indicated that statistically significant reduction in CFU/ml (P<0.005) existed for all treatment groups relative to the control group. The greatest reductions in CFU/ml were observed for Group 3 (7.027 log unit reduction) and Group 2 (6.237 log unit reduction), which were treated by plasma jet sterilization with He flowing through 3% hydrogen peroxide for 4 min or for 2 min, respectively. In addition, the reduction in Group 3 was significantly greater compared with that in Group 2 or in the groups treated by plasma jet sterilization without He flowing through 3% hydrogen peroxide for 1, 2 or 4 min. In conclusion, plasma jet with or without He flowing through 3% hydrogen peroxide can effectively sterilized root canals infected with E. faecalis and should be considered as an alternative method for root canal disinfection in endodontic treatments. PMID:27882119

  18. The identification of excited species in arc jet flow

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1987-01-01

    Spectrographic work done at the Atmospheric Reentry Material and Structures Facility (arc jet) located at the Johnson Space Center has led to the identification of several excited molecular and atomic states. The excited molecular states identified are: first positive nitrogen system, second positive nitrogen system, the first negative nitrogen system, the gamma system for nitric oxide, and the 306.4 nm system of OH. Excited atoms identified were nitrogen, oxygen, hydrogen, silicon, copper, sodium, barium, potassium, and calcium. The latter five are considered contaminants. Excited molecular states of oxygen were not seen, suggesting full dissociation of oxygen molecules to oxygen atoms within the arc column and nozzle. Further, evidence exists that O(-) may be present since a background continuum is seen, and because of the existence of positive species (first negative system of N2(+)). Interpretation of spectrographic plates was enhanced by the use of a microdensitometer, and by the application of a second order least squares routine which determined wavelength as a function of plate location. Results of this work will ultimately improve models used in the calculation of heat transfer rates to the space shuttle and the aerobraking orbit transfer vehicles.

  19. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  20. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  1. Large eddy simulation of flow development and noise generation of free and swirling jets

    NASA Astrophysics Data System (ADS)

    Wan, Zhen-Hua; Zhou, Lin; Yang, Hai-Hua; Sun, De-Jun

    2013-12-01

    Large eddy simulation is performed for investigating the local and far-field behaviors of free and swirling jets at moderate Reynolds number. By solving compressible boundary layer equations, the inflow profiles with different swirl number are calculated, and then their stability characteristics are analyzed based on linear stability theory. The amplification rates of swirling jets are higher than the free one, particularly for higher or negative azimuthal wavenumber modes. Multiple unstable modes are superimposed to construct inflow forcing. The quantities of flow and acoustic are presented and compared against the results of existed experiments and other computations, besides, the comparisons are also made among themselves. For swirling jets, the spreadings of jet half-width and vorticity thickness at the initial and transition stage are enhanced, but they are surpassed by the free jet at turbulent mixing stage. In all cases, the development of mixing layer initially is greatly influenced by frequencies f0 and f0/2 associated with upstream forcing. As the swirl intensity is increased, the growth rates of fluctuation quantities on the centerline and the nozzle lip line are raised, but the peak levels on the centerline are reduced substantially. In swirling jets, the strength of vortex pairing is decreased, and the pairing noise is weakened correspondingly. The overall sound pressure levels are lower than that of the free jet at all observation angles (ϕ), and about 3 decibels (dB) is reduced at ϕ ≃ 30° in the strong swirling case at a distance of 60 radii. The Fourier analyses of pressure and acoustic sources show that the modes are varied greatly, which suggests that the noise reduction should be corresponding to the change of instability waves.

  2. Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D. L.; Heidmann, J. D.

    2010-01-01

    An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.

  3. Demonstration of the feasibility of laser induced fluorescence for arc jet flow diagnostics

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    1989-01-01

    Laser Induced Fluorescence (LIF) studies are carried out on nitric oxide and oxygen molecules in the arc jet flows at the NASA Johnson Space Center Reentry Testing Facility. Measurements are taken in the free stream and from a blunt body shock layer. Tests are performed under different flow conditions to determine the feasibility and sensitivity of the LIF technique for various species. This is developed as a part of high enthalpy flow diagnostics and will be useful to elucidate the rotational and vibrational temperatures. Adequate sensitivity for the detection of O(2) and NO is demonstrated. Proposed improvements of the existing system are presented.

  4. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  5. Use of a plane jet for flow-induced noise reduction of tandem rods

    NASA Astrophysics Data System (ADS)

    Kun, Zhao; Xi-xiang, Yang; Patrick, N. Okolo; Wei-hua, Zhang

    2016-06-01

    Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source. The use of a plane jet is proposed to reduce this flow-induced noise. Tandem rods with different gap widths were utilized as the test body. Both acoustic and aerodynamic tests were conducted in order to validate this technique. Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet. However, when the plane jet was turned on, in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor. Moreover, aerodynamic tests fundamentally studied explanations for the noise reduction. Specifically, not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet. Consequently, the vortex shedding induced by the rear rod was reduced, which was confirmed by the speed, Reynolds stress as well as the velocity fluctuation spectral measured in its wake. This study confirmed the potential use of a plane jet towards landing gear noise reduction. Project partially supported by the European Union FP7 CleanSky Joint Technology Initiative “ALLEGRA” (Grant No. 308225).

  6. An Experimental Investigation of the Flow Structure of Supersonic Impinging Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2002-01-01

    An experimental investigation into the jet structure associated with sound production by a supersonic impinging jet is presented. Large plate impinging tones are investigated for a nozzle pressure ratio (NPR) of 4 and nozzle-to-plate spacings between 1 and 5 nozzle exit diameters, where NPR is equal to the ratio of the stagnation pressure to the pressure at the nozzle lip. Results from phase-locked shadowgraph and phase-averaged digital particle image velocimetry (DPIV) studies indicate that, during the oscillation cycle, the Mach disk oscillates axially, a well defined recirculation zone is created in the subsonic impingement region and moves toward the plate, and the compression and expansion regions in the outer supersonic flow move downstream, Sound appears to be generated in the wall jet at approximately 2.6R from the jet axis, where R is the nozzle exit radius. The oscillatory motion in the wall jet is the result of the periodic fluid motion in the near wall region.

  7. JET LUMINOSITY FROM NEUTRINO-DOMINATED ACCRETION FLOWS IN GAMMA-RAY BURSTS

    SciTech Connect

    Kawanaka, Norita; Piran, Tsvi; Krolik, Julian H. E-mail: tsvi.piran@mail.huji.ac.il

    2013-03-20

    A hyperaccretion disk formed around a stellar-mass black hole is a plausible model for the central engine that powers gamma-ray bursts (GRBs). If the central black hole rotates and a poloidal magnetic field threads its horizon, a powerful relativistic jet may be driven by a process resembling the Blandford-Znajek (BZ) mechanism. We estimate the luminosity of such a jet as a function of mass accretion rate and other accretion parameters assuming that the poloidal magnetic field strength is comparable to the inner accretion disk pressure. We show that the jet efficiency attains its maximal value when the accretion flow is cooled via optically thin neutrino emission. The jet luminosity is much larger than the energy deposition through neutrino-antineutrino annihilation ({nu} {nu}-bar {yields}e{sup +}e{sup -}) provided that the black hole is spinning rapidly enough. When the accretion rate onto a rapidly spinning black hole is larger than 0.003-0.01 M{sub Sun} s{sup -1}, the disk becomes optically thin to neutrinos, its pressure increases and the jet luminosity is sufficient to drive a GRB. The transition of the accretion rate above and below this limiting value may cause the large variability observed in GRB.

  8. Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Jiang, Yan-ping; Yan, Li; Liu, Jun

    2016-04-01

    The thermal protection on the surface of hypersonic vehicles attracts an increasing attention worldwide, especially when the vehicle enters the atmosphere at high speed. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Menter's shear stress transport (SST) model have been employed to investigate the heat flux reduction mechanism induced by the variations of the cavity configuration, the jet pressure ratio and the injectant molecular weight in the combinational opposing jet and cavity concept. The length of the cavity is set to be 6 mm, 8 mm and 10 mm in order to make sure that the cavity configuration is the "open" cavity, and the jet pressure ratio is set to be 0.4, 0.6 and 0.8 in order to make sure that the flow field is steady. The injectant is set to be nitrogen and helium. The obtained results show that the aft angle of the cavity only has a slight impact on the heat flux reduction, and the heat flux peak decreases with the decrease of the length of the cavity. The design of the thermal protection system for the hypersonic blunt body is a multi-objective design exploration problem, and the heat flux distribution depends on the jet pressure ratio, the aft wall of the cavity and the injectant molecular weight. The heat flux peak decreases with the increase of the jet pressure ratio when the aft angle of the cavity is large enough, and this value is 45°.

  9. Measurements of mean flow and acoustic power for a subsonic jet impinging normal to a large rigid surface

    NASA Technical Reports Server (NTRS)

    Schloth, A. P.

    1976-01-01

    An experimental study was made to measure the mean flow field and acoustic power of a subsonic jet impinging normal to a large rigid surface. A 6.25 cm diameter, circular cool air jet was used at heights of 20, 10, and 5 jet diameters above the surface. The jet exit Mach number was varied from 0.28 to 0.93. Impact and static pressure surveys were made in directions both axial and lateral to the jet axis and also parallel and perpendicular to the surface. Acoustic power was calculated from microphone measurements made during each test run using a diffuse field calibration for the test facility. Results indicate that the flow field for jet impingement is characterized mainly by a strong rise in static pressure in the impingement region near the surface and by boundary layer development in the wall jet region. Acoustic power measurements generally followed a U(8) law for both the free jet and jet impingement although there was some variation especially at high Mach number and for close impingement distances. Overall noise levels increased with decreasing jet-to-surface height. Normalized power spectra correlated well for all cases when the Strouhal number was greater than 0.2; the correlation was poor when the Strouhal number was low.

  10. Numerical simulation of the interaction of a transverse jet with a supersonic flow using different turbulence models

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.

    2015-09-01

    This paper presents a numerical simulation of the flow resulting from transverse jet injection into a supersonic flow through a slot nozzle at different pressures in the injected jet and the crossflow. Calculations on grids with different resolutions use the Spalart-Allmaras turbulence model, the k- ɛ model, the k- ω model, and the SST model. Based on a comparison of the calculated and experimental data on the wall pressure distribution, the length of the recirculation area, and the depth of jet penetration into the supersonic flow, conclusions are made on the accuracy of the calculation results for the different turbulence models and the applicability of these models to similar problems.

  11. Unsteady Flow Simulation of a Sweeping Jet Actuator Using a Lattice-Boltzmann Method

    NASA Technical Reports Server (NTRS)

    Duda, B.; Wessels, M.; Fares, E.; Vatsa, V.

    2016-01-01

    Active flow control technology is increasingly used in aerospace applications to control flow separation and to improve aerodynamic performance. In this paper, PowerFLOW is used to simulate the flow through a sweeping jet actuator at two different pressure ratios. The lower pressure ratio leads to a high subsonic flow, whereas the high pressure ratio produces a choked flow condition. Comparison of numerical results with experimental data is shown, which includes qualitatively good agreement of pressure histories and spectra. PIV measurements are also available but the simulation overestimates mean and fluctuation quantities outside the actuator. If supply pressure is matched at one point inside the mixing chamber a good qualitative agreement is achieved at all other monitor points.

  12. Experimental validation of potential and turbulent flow models for a two-dimensional jet enhanced exhaust hood.

    PubMed

    Kulmala, I

    2000-01-01

    A two-dimensional jet-reinforced slot exhaust hood was modeled using a mathematical model based on potential flow theory and with a computational fluid dynamics (CFD) model using the standard k-epsilon model for turbulence closure. The accuracy of the calculations was verified by air velocity and capture efficiency measurements. The comparisons show that, for normal operating conditions, both the models predicted the mean airflows in front of the hood well. However, the CFD model gave more realistic results in the jet flow region and also of the short-circuiting flow. Both models became increasingly inaccurate when the ratio of the supply jet momentum to the exhaust flow rate increased. The jet enhancement proved to be a very efficient way to increase the effective control range of exhaust hoods. Controlled air movements can be created at distances that are two to three times larger than with conventional suction alone without increasing the exhaust flow rate.

  13. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  14. An investigation of jet trajectory in flow through scaled vocal fold models with asymmetric glottal passages

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2006-11-01

    Pulsatile two-dimensional flow through asymmetric static divergent models of the human vocal folds is investigated. Included glottal divergence angles are varied between 10° and 30°, with asymmetry angles between the vocal fold pairs ranging from 5° to 15°. The model glottal configurations represent asymmetries that arise during a phonatory cycle due to voice disorders. The flow is scaled to physiological values of Reynolds, Strouhal, and Euler numbers. Data are acquired in the anterior posterior mid-plane of the vocal fold models using phase-averaged Particle Image Velocimetry (PIV) acquired at ten discrete locations in a phonatory cycle. Glottal jet stability arising from the vocal fold asymmetries is investigated and compared to previously reported work for symmetric vocal fold passages. Jet stability is enhanced with an increase in the included divergence angle, and the glottal asymmetry. Concurrently, the bi-modal jet trajectory and flow unsteadiness diminishes. Consistent with previous findings, the flow attachment due to the Coanda effect occurs when the acceleration of the forcing function is zero.

  15. Numerical Simulations of a Reacting Sonic Jet in a Supersonic Cross-flow

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen

    2014-11-01

    Interaction of a jet with a background cross-flow is a situation common to many engineering systems, including combustors in SCRAMJETS, gas turbines etc. Such an interaction enhances fuel-air mixing through the distortion of coherent structures into counter-rotating vortex pairs that are tilted, stretched and then sundered by the velocity gradient in the cross-flow, eventually leading to turbulent mixing. The ignition process and flame characteristics depend sensitively on the extent and efficiency of this turbulent mixing process. We describe results from detailed 3D numerical simulations of a sonic circular jet of diameter (D = 0.5 cm) issuing a mixture of H2 (Fuel) diluted with 50% N2 at 300 K into a turbulent, Mach 2 cross-flow of air at 1200 K. The simulations were performed in a computational domain of 20 × 16 × 16 jet diameters using the compressible flow code FLASH, with modifications to handle detailed (H2-O2) chemistry and temperature-dependent material properties. We discuss the role of shock driven mixing, ignition and flame anchoring on the combustion efficiency of the system.

  16. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  17. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    SciTech Connect

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.

  18. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    DOE PAGES

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; ...

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmore » asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.« less

  19. Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow

    SciTech Connect

    Kolla, H.; Grout, R. W.; Gruber, A.; Chen, J. H.

    2012-08-01

    The mechanisms contributing to flame stabilization and blowout in a nitrogen-diluted hydrogen transverse jet in a turbulent boundary layer cross-flow (JICF) are investigated using three-dimensional direct numerical simulation (DNS) with detailed chemistry. Non-reacting JICF DNS were performed to understand the relative magnitude and physical location of low velocity regions on the leeward side of the fuel jet where a flame can potentially anchor. As the injection angle is reduced from 90{sup o} to 70{sup o}, the low velocity region was found to diminish significantly, both in terms of physical extent and magnitude, and hence, its ability to provide favorable conditions for flame anchoring and stabilization are greatly reduced. In the reacting JICF DNS a stable flame is observed for 90{sup o} injection angle and, on average, the flame root is in the vicinity of low velocity magnitude and stoichiometric mixture. When the injection angle is smoothly transitioned to 75{sup o} a transient flame blowout is observed. Ensemble averaged quantities on the flame base reveal two phases of the blowout characterized by a kinematic imbalance between flame propagation speed and flow normal velocity. In the first phase dominant flow structures repeatedly draw the flame base closer to the jet centerline resulting in richer-than-stoichiometric mixtures and high velocity magnitudes. In the second phase, in spite of low velocity magnitudes and a return to stoichiometry, due to jet bending and flame alignment normal to the cross-flow, the flow velocity normal to the flame base increases dramatically perpetuating the blowout.

  20. Impact of surface proximity on flow and acoustics of a rectangular supersonic jet

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Baier, Florian; Mora, Pablo; Kailsanath, Kailas; Viswanath, Kamal; Johnson, Ryan

    2016-11-01

    Advances in jet technology have pushed towards faster aircraft, leading to more streamlined designs and configurations, pushing engines closer to the aircraft frame. This creates additional noise sources stemming from interactions between the jet flow and surfaces on the aircraft body, and interaction between the jet and the ground during takeoff and landing. The paper studies the impact of the presence of a flat plate on the flow structures and acoustics in an M =1.5 (NPR =3.67) supersonic jet exhausting from a rectangular C-D nozzle. Comparisons are drawn between baseline cases without a plate and varying nozzle-plate distance at NPRs from 2.5 to 4.5, and temperature ratios of up to 3.0. At the shielded side and sideline of the plate noise is mitigated only when the plate is at the nozzle lip (h =0). Low frequency mixing noise is increased in the downstream direction only for h =0. Screech tones that exist only for low NTR are fully suppressed by the plate at h =0. However, for h>0 the reflection enhances screech at both reflected side and sideline. Low frequency mixing noise is enhanced by the plate at the reflected side at all plate distances, while broad band shock associated noise is reduced only at the sideline for h =0. Increased temperature mitigates the screech tones across all test conditions. The results are compared to a circular nozzle of equivalent diameter with an adjacent plate.

  1. Perfect fluid flow from the impact of a dense granular jet

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy W.; Ellowitz, Jake; Guttenberg, Nicholas; Turlier, Herve; Nagel, Sidney R.

    2011-03-01

    Axisymmetric collision of a cylindrical water jet with a circular target generates a thin conical sheet, also known as a water bell [Cheng et al. Phys. Rev. Lett. 99, 2007]. Intriguingly, recent experiments on granular jet impact in the regime of dense inertial flow reveal similar behavior: the angles by which the collimated sheets of particles are ejected from the target agree closely with the angles measured in the water-bell experiments [Clanet, C. J. Fluid Mech. 430, 2001]. This quantitative correspondence suggests that the collective granular motion during impact can be modeled as an incompressible, continuum fluid. Since viscous effects are weak in water-jet impact and the granular jet is comprised of non-cohesive particles (hence possessing zero surface tension), the simplest scenario is that the continuum motion corresponds to the flow of a perfect fluid. We show an exact solution of 2D perfect fluid impact agrees quantitatively with 2D discrete-particle simulation results. Therefore, the emergence of a highly collimated outgoing sheet does not necessarily signal the creation of a thermodynamic liquid phase. Such a coherent outcome results generically when the motion is nearly incompressible and dominated by inertia.

  2. Numerical Study of Rarefied Hypersonic Flow Interacting with a Continuum Jet. Degree awarded by Pennsylvania State Univ., Aug. 1999

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    2000-01-01

    An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.

  3. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  4. Simple Model for Vibration-Translation Exchange at High Temperatures: Effects of Multiquantum Transitions on the Relaxation Of A N2 Gas Flow Behind a Shock

    DTIC Science & Technology

    2011-02-22

    relaxation of a N2 gas flow behind a shock A. Aliat,1,* P. Vedula,1,* and E. Josyula2 1School of Aerospace and Mechanical Engineering, University of...influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on vibrational distributions of high levels. All...simulate hypersonic gas flows are based on the assumption of quasistationary distributions (Boltzmann or Treanor) over vibrational energies [2–5]. These

  5. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  6. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  7. Investigation of Strain/Vorticity and Large-Scale Flow Structure in Turbulent Nonpremixed Jet Flames

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.

    1999-01-01

    Our study will use the microgravity environment to investigate the underlying flow structure of turbulent nonpremixed round jet flames. In particular, we aim to investigate the large-scale turbulent structure using planar laser Mie scattering (PLMS), and the strain rate and vorticity fields using particle image velocimetry (PIV). This work is motivated by recent studies in our laboratory that have led to several interesting observations of nominally momentum-driven turbulent nonpremixed planar flames. First of all, the organized large-scale turbulent structures that are observed in nonreacting planar jets may be substantially modified or suppressed in nonpremixed planar jet flames. Furthermore, a recent study using PIV and planar laser-induced fluorescence of OH has shown that in transitional and turbulent nonpremixed planar jet flames the presence of the flame seems to greatly influence the underlying vorticity and strain fields, as compared to nonreacting jets. For example, the reaction zones in the jet flames are strongly correlated with regions of high vorticity. A related study has demonstrated that vorticity is not correlated in the same way with either iso-scalar surfaces or scalar dissipation layers in nonreacting planar jets. Furthermore, the relationship between strain and the reaction zone appears to be modified by the presence of high levels of heat release. In particular, the strain rate field in planar jet flames exhibits a preferred direction of principal compressive strain that apparently is related to strong shear across the reaction zone. This preferred direction of strain was not observed in nonreacting jets. One of the major problems encountered when conducting these types of studies is that it is difficult to know to what extent buoyancy influences the results. Therefore, the microgravity environment provides us with an excellent opportunity to explore these issues without the complicating effects of buoyancy. This is particularly the case when

  8. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  9. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-08-26

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  10. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  11. Computation of a Synthetic Jet in a Turbulent Cross-Flow Boundary Layer

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2004-01-01

    A series of unsteady Reynolds-averaged Navier-Stokes computations are performed for the flow of a synthetic jet issuing into a turbulent boundary layer through a circular orifice. This is one of the validation test cases from a synthetic jet validation workshop held in March 2004. Several numerical parameters are investigated, and the effects of three different turbulence models are explored. Both long-time-averaged and time-dependent phase-averaged results are compared to experiment. On the whole, qualitative comparisons of the mean flow quantities are fairly good. There are many differences evident in the quantitative comparisons. The calculations do not exhibit a strong dependence on the type of turbulence model employed.

  12. The Isolated Synthetic Jet in Crossflow: A Benchmark for Flow Control Simulation

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Jenkins, Luther N.

    2006-01-01

    An overview of the data acquisition, reduction, and uncertainty of experimental measurements made of the flowfield created by the interaction of an isolated synthetic jet and a turbulent boundary layer is presented. The experimental measurements were undertaken to serve as the second of three computational fluid dynamics validation databases for Active Flow Control. The validation databases were presented at the NASA Langley Research Center Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control in March, 2004. Detailed measurements were made to document the boundary conditions for the flow and also for the phase-averaged flowfield itself. Three component Laser-Doppler Velocimetry, 2-D Particle Image Velocimetry, and Stereo Particle Image Velocimetry were utilized to document the phase-averaged velocity field and the turbulent stresses.

  13. An Experimental Investigation Into The Effect Of Plasma On The Flow Features Of An Axisymmetric Jet

    DTIC Science & Technology

    2007-10-01

    and turbulent effects) for varying Mach number . The overall objective was to describe the effect of radio frequency capacitively coupled plasma on the...penetration. However, in pipe-flow jets the centerline turbulent kinetic energy decreased at low equivalent Mach numbers , reversing to slight increases for...equivalent Mach numbers over 1.4. iii To my Lord, Jesus Christ - may this be to your glory. I am incredibly blessed by God to have the opportunity to

  14. Emission of sound from axisymmetric turbulence convected by a mean flow with application to jet noise

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1972-01-01

    A model, based on Lighthill's theory, for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. Unlike Ribner's model, it does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic. turbulence by the more realistic one of axisymmetric turbulence. The implications of the model for jet noise are discussed.

  15. RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.; Roberge, A. M.

    1973-01-01

    A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.

  16. Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Das, I. S.

    1985-01-01

    The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.

  17. Flow visualization and numerical analysis of a coflowing jet - A three-dimensional approach

    NASA Technical Reports Server (NTRS)

    Agui, Juan C.; Hesselink, Lambertus

    1988-01-01

    The instabilities of an acoustically excited coflowing jet are investigated by using a time series of cross-sections of large-scale structures present in the flow and by a fully three-dimensional numerical simulation via the vortex-element method. These structures are first revealed by a flow-visualization technique based on smoke seeding the inner jet flow and observing the flow cross-sections as the structures are convected past a stationary sheet of laser light. Usage of image-processing techniques along with computer graphics allows the full three-dimensional reconstruction of the structure. The general morphology of the flow is determined from the reconstructed views and shows that the vorticity is mainly concentrated into a single large-scale vortex ring. Hypotheses regarding the nature and origin of the longitudinal instabilities observed in the flow can be drawn from the reconstructed views, and are supported by the numerical simulations. Quantitative values such as the surface-to-volume ratio and the entrainment level are also obtained from the experimental data. The onset of streamwise vorticity and its distribution are derived from the numerical calculations as well. Three-dimensional views and a holographic display of a characteristic eddy are also presented.

  18. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  19. Comparison of MSL RCS Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Johansen, Craig T.; Novak, Luke A.; Bathel, Brett F.; Ashcraft, Scott W.; Danehy, Paul M.

    2012-01-01

    Numerical predictions of the Mars Science Laboratory (MSL) reaction control system (RCS) jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide (NO) planar laser-induced fluorescence (PLIF) data. The steady Reynolds Averaged Navier Stokes (RANS) equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental PLIF data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the PLIF signal equation, computational flow images (CFI) were produced and directly compared to the qualitative PLIF data. Post processing of the experimental and simulation data enabled the jet trajectory to be extracted for a more quantitative comparison. The two-dimensional velocity fields were reconstructed through interpolation of a series of single-component velocity profiles. Each distribution of single-component velocity was obtained using molecular tagging velocimetry (MTV). After validating the numerical model, the numerical solution was further examined to gain insight into hypersonic jet-in-crossflow interaction. Future NO-PLIF experiments are proposed based on this analysis.

  20. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  1. Finite difference time domain electroacoustic model for synthetic jet actuators including nonlinear flow resistance.

    PubMed

    Kooijman, Gerben; Ouweltjes, Okke

    2009-04-01

    A lumped element electroacoustic model for a synthetic jet actuator is presented. The model includes the nonlinear flow resistance associated with flow separation and employs a finite difference scheme in the time domain. As opposed to more common analytical frequency domain electroacoustic models, in which the nonlinear resistance can only be considered as a constant, it allows the calculation of higher harmonics, i.e., distortion components, generated as a result of this nonlinear resistance. Model calculations for the time-averaged momentum flux of the synthetic jet as well as the radiated sound power spectrum are compared to experimental results for various configurations. It is shown that a significantly improved prediction of the momentum flux-and thus flow velocity-of the jet is obtained when including the nonlinear resistance. Here, the current model performs slightly better than an analytical model. For the power spectrum of radiated sound, a reasonable agreement is obtained when assuming a plausible slight asymmetry in the nonlinear resistance. However, results suggest that loudspeaker nonlinearities play a significant role as well in the generation of the first few higher harmonics.

  2. Numerical mixing calculations of confined reacting jet flows in a cylindrical duct

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Holdeman, J. D.

    1995-01-01

    The results reported in this paper describe some of the main flow characteristics and NOx production results which develop in the mixing process in a constant cross-sectional cylindrical duct. A 3-dimensional numerical model has been used to predict the mixing flow field and NOx characteristics in a mixing section of an RQL combustor. Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameter: (1) jet-to-mainstream momentum-flux ration (J), (2) orifice shape or orifice aspect ratio, and (3) slot slant angle. The results indicate that the mixing flow field and NOx production significantly vary with the value of the jet penetration and subsequently, slanting elongated slots generally improve the NOx production at high J conditions. Round orifices produce low NOx at low J due to the strong jet penetration. The NOx production trends do not correlate with the mixing non-uniformity parameters described herein.

  3. Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1995-01-01

    Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.

  4. Effects of Jet Entry at High Flow Outfalls on Juvenile Pacific Salmon

    SciTech Connect

    Johnson, G. E.; Ebberts, Blaine D.; Dauble, Dennis D.; Giorgi, Albert E.; Heisey, Paul G.; Mueller, Robert P.; Neitzel, Duane A.

    2003-05-01

    We conducted field studies and laboratory experiments to document relationships between injury/mortality rates of juvenile salmon and jet entry velocities characteristic of high flow (> 28.3 m3/s) outfalls. During field tests the range of calculated mean entry velocities was 9.3-13.7 m/s for two high flow outfall discharges (28.3 and ~70.2 m3/s) and two tailwater elevations. Mortality of balloon-tagged hatchery spring chinook salmon (Oncorhynchus tshawytscha) juveniles in the field tests was <1% at entry velocities of 9.3 m/s and 13.7 m/s. Injury rates during both field tests were also less than 1%. At a high velocity flume in a laboratory, small (87-100 mm FL) and large (135-150 mm FL) hatchery fall chinook salmon were exposed to velocities ranging from 0.0 to 24.4 m/s in a fast-fish-to-slow-water scenario. Jet entry velocities up to 15.2 m/s provided benign passage conditions for all sizes of juvenile salmonids tested. Based on our results, we concluded that a jet entry velocity up to 15.2 m/s should safely pass juvenile salmon at high flow outfalls, contingent upon site-specific, post-construction verification studies.

  5. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers.

    PubMed

    Vega, E J; Acero, A J; Montanero, J M; Herrada, M A; Gañán-Calvo, A M

    2014-06-01

    We analyze both experimentally and numerically the formation of microbubbles in the jetting regime reached when a moderately viscous liquid stream focuses a gaseous meniscus inside a converging micronozzle. If the total (stagnation) pressure of the injected gas current is fixed upstream, then there are certain conditions on which a quasisteady gas meniscus forms. The meniscus tip is sharpened by the liquid stream down to the gas molecular scale. On the other side, monodisperse collections of microbubbles can be steadily produced in the jetting regime if the feeding capillary is appropriately located inside the nozzle. In this case, the microbubble size depends on the feeding capillary position. The numerical simulations for an imposed gas flow rate show that a recirculation cell appears in the gaseous meniscus for low enough values of that parameter. The experiments allow one to conclude that the bubble pinch-off comprises two phases: (i) a stretching motion of the precursor jet where the neck radius versus the time before the pinch essentially follows a potential law, and (ii) a final stage where a very thin and slender gaseous thread forms and eventually breaks apart into a number of micron-sized bubbles. Because of the difference between the free surface and core velocities, the gaseous jet breakage differs substantially from that of liquid capillary jets and gives rise to bubbles with diameters much larger than those expected from the Rayleigh-type capillary instability. The dependency of the bubble diameter upon the flow-rate ratio agrees with the scaling law derived by A. M. Gañán-Calvo [Phys. Rev. E 69, 027301 (2004)], although a slight influence of the Reynolds number can be observed in our experiments.

  6. An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil

    NASA Astrophysics Data System (ADS)

    Gul, M.; Uzol, O.; Akmandor, I. S.

    2014-06-01

    This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m × 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x105 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x105 Reynolds number at zero angle of attack.

  7. Secondary peak in the Nusselt number distribution of impinging jet flows: A phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Aillaud, P.; Duchaine, F.; Gicquel, L. Y. M.; Didorally, S.

    2016-09-01

    This paper focuses on a wall-resolved Large Eddy Simulation (LES) of an isothermal round submerged air jet impinging on a heated flat plate, at a Reynolds number of 23 000 (based on the nozzle diameter and the bulk velocity at the nozzle outlet) and for a nozzle to plate distance of two jet diameters. This specific configuration is known to lead to a non-monotonic variation of the temporal-mean Nusselt number as a function of the jet center distance, with the presence of two distinct peaks located on the jet axis and close to two nozzle diameters from the jet axis. The objectives are here twofold: first, validate the LES results against experimental data available in the literature and second to explore this validated numerical database by the use of high order statistics such as skewness and probability density functions of the temporal distribution of temperature and pressure to identify flow features at the origin of the second Nusselt peak. Skewness (Sk) of the pressure temporal distribution reveals the rebound of the primary vortices located near the location of the secondary peak and allows to identify the initiation of the unsteady separation linked to the local minimum in the mean heat transfer distribution. In the region of mean heat transfer enhancement, joint velocity-temperature analyses highlight that the most probable event is a cold fluid flux towards the plate produced by the passage of the vortical structures. In parallel, heat transfer distributions, analyzed using similar statistical tools, allow to connect the above mentioned events to the heat transfer on the plate. Thanks to such advanced analyses, the origin of the double peak is confirmed and connected to the flow dynamics.

  8. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    NASA Astrophysics Data System (ADS)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  9. Sound Propagation from a Supersonic Jet Flowing through a Rigid-walled Duct with a J-Deflector

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Margasahayam, Ravi; Vu, Bruce

    2003-01-01

    An experimental study is performed on the acoustical characteristics of a scale-model, perfectly expanded, cold supersonic jet of gaseous nitrogen (Mach 2.5, nozzle exit diameter of 1 inch) flowing through a rigid-walled duct having an upstream J-deflector. The nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane, the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 2 levels (54 jet diameters and 10 jet diameters above ground) with the aid of 9 acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters. Comparisons of the acoustic field were made with and without the duct.

  10. Modelling flow and heat transfer in two-fluid interfacial flows, with applications to drops and jets

    NASA Astrophysics Data System (ADS)

    Mehdi-Nejad, Vala

    2003-10-01

    A two-dimensional, axi-symmetric model is developed to calculate flow and heat transfer in a two-fluid system. The model uses one set of the governing equations combined with a volume tracking method on a fixed structured mesh to model the simultaneous movement of mass, momentum and energy across cell boundaries. Both first and second-order methods are used to approximate temperature fields with sharp gradients that exist near a fluid-fluid interface. The model is first used to simulate the effect of surrounding air during a droplet impact. Bubble entrapment is observed in both numerical simulation and experimental photographs. The impact of water, n-heptane and molten nickel droplets on a solid surface is simulated. When a droplet approaches another surface, air in the gap between them was forced out. Increased air pressure below the droplet creates a depression in its surface, in which air is trapped. Different behaviors observed for water and n-heptane simulations are attributed to differences in wetting behavior. Next, to demonstrate the capabilities of the model, the interfacial heat transfer from molten tin droplets falling in an oil bath is modelled. The development of vortices behind droplets is simulated and the effect of fluid recirculation and oil thermal conductivity on heat dissipation is studied. The thesis concludes with application of the model to a study of interfacial heat transfer during jet break up. It is demonstrated that the change of fluid properties associated with interfacial heat transfer affects the jet break up and the resulting droplet size. It is also shown that obtaining a desirable droplet size during jet break up not only depends on hydrodynamic conditions such as nozzle diameter, jet initial velocity, and pressure, but also on thermal conditions such as the initial jet temperature and the surrounding fluid thermal properties.

  11. A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow

    NASA Technical Reports Server (NTRS)

    Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh

    1997-01-01

    This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.

  12. Microturbulence and Flow Shear in High-performance JET ITB Plasma

    SciTech Connect

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-12-05

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists.

  13. Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet

    NASA Astrophysics Data System (ADS)

    Panda, Pratikash P.; Busari, Oluwatobi; Lucht, Robert P.; Laster, Walter R.

    2017-02-01

    The effect of the nature of vitiated crossflow on the structure and dynamics of non-reacting/reacting transverse jets is investigated. In this study, the vitiated crossflow is produced either by a low-swirl burner (LSB) that adds a swirling component to the crossflow or a bluff-body burner (BBB) that produces a uniform crossflow. The jet fluid is injected through a contoured injector, which provides a top-hat velocity profile. The swirling crossflow exhibits considerable swirl at the point of injection of the transverse jet. Two component high-repetition-rate PIV measurements demonstrate the influence of a vitiated crossflow generated by a low-swirl/bluff-body burner on the near-wake flow-field of the jet. Measurements at a plane below the injection location of the jet indicate that there is a continuous entrainment of PIV particles in case of swirling crossflow. The time-averaged flow-field shows that the velocity field for reacting/non-reacting jets in the LSB crossflow exhibits higher velocity gradients, in the measurement plane along jet cross section, as compared to BBB crossflow. It is found that the vorticity magnitude is lower in case of jets in the BBB crossflow and there is a delay in the formation of the wake vortex structure. The conditional turbulent statistics of the jet flow-field in the two crossflows shows that there is a higher degree of intermittency related to the wake vortex structure in case of a BBB crossflow, which results in a non-Gaussian distribution of the turbulent statistics. The wake Strouhal number calculation shows the influence of the nature of crossflow on the rate of wake vortex shedding. The wake Strouhal number for the jets in BBB crossflow is found to be lower than for the LSB crossflow. A decrease in the wake Strouhal number is observed with an increase in the nozzle separation distance. There is an increase in the dilatation rate owing to heat release which results in higher wake Strouhal number for reacting jets as compared

  14. Two-Dimensional Optical Measurement of Waves on Liquid Lithium Jet Simulating IFMIF Target Flow

    SciTech Connect

    Kazuhiro Itoh; Hiroyuki Koterazawa; Taro Itoh; Yutaka Kukita; Hiroo Kondo; Nobuo Yamaoka; Hiroshi Horiike; Mizuho Ida; Hideo Nakamura; Hiroo Nakamura; Takeo Muroga

    2006-07-01

    Waves on a liquid-lithium jet flow, simulating a proposed high-energy beam target design, have been measured using an optical technique based on specular reflection of a single laser beam on the jet surface. The stream-wise and spanwise fluctuations of the local free-surface slope were least-square fitted with a sinusoidal curve to makeup the signals lost due to the constriction in the optical arrangement. The waveform was estimated with an assumption that wave phase speed can be calculated using the dispersion relation for linear capillary-gravity waves. The direction of propagation on the jet surface was also evaluated so that the wave amplitudes, calculated by integral of slope angle signal, agree consistently in stream-wise and spanwise direction. These measurements and analyses show that the waves at the measurement location for a jet velocity of 1.2 m/s can best be represented by oblique waves with an inclination of 1.23 rad, a wavelength of 3.8 mm and a wave amplitude of about 0.05 mm. (authors)

  15. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  16. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    NASA Astrophysics Data System (ADS)

    Ã-rley, F.; Trummler, T.; Hickel, S.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.

    2015-08-01

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  17. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  18. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  19. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    SciTech Connect

    Örley, F. Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.; Hickel, S.

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  20. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  1. Investigation of co-flow jet flow control and its applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alexis M.

    This thesis investigates the performance of co-flow jet (CFJ) flow control and its applications using experimental testing and computational fluid dynamics (CFD) simulations. For a stationary airfoil and wing, CFJ increases the lift coefficient (CL), reduces the drag and may produce thrust at a low angle of attack (AoA). The maximum lift coefficient is substantially increased for a 2D CFJ airfoil and reaches a value of 4.8 at Cmicro = 0.30. The power consumption of the CFJ pump, measured by the power coefficient (Pc), is influenced by a variety of parameters, including the momentum coefficient (C micro ), the AoA, the injection slot location, and the internal cavity configuration. A low Cmicro of 0.04 produces a rather small Pc in the range of 0.01--0.02 while a higher Cmicro rapidly increases the Pc. Due to the stronger leading edge suction effect, increasing the AoA decreases the Pc. That is until the flow is near separation, within about 2°--3° of the stall AoA. An injection slot location within 2%--5% chord from the leading edge very effectively reduces the power coefficient. An internal cavity design with no separation is crucial to minimize the CFJ power consumption. Overall, the CFJ effectiveness is enhanced with an increasing Mach number as long as the flow remains subsonic, typically with free stream Mach number less than 0.4. Two pitching airfoil oscillations with dynamic stall are studied in this thesis, namely the mild dynamic stall and the deep dynamic stall. At Mach 0.3, the CFJ with a relatively low Cmicro of 0.08 removes the mild dynamic stall. Thereby, the time-averaged lift is increased by 32% and the time-averaged drag is decreased by 80%. The resulting time-averaged aerodynamic (L/D)ave, which does not take the pumping power into account, reaches 118.3. When C micro is increased, the time-averaged drag becomes negative, which demonstrates the feasibility of a CFJ to propel helicopter blades using its pump as the only source of power. The deep

  2. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  3. Effect of clustering on linear plug nozzle flow field for overexpanded internal jet

    NASA Astrophysics Data System (ADS)

    Chutkey, K.; Viji, M.; Verma, S. B.

    2017-01-01

    Experiments were carried out to analyze the flow field development of a linear plug nozzle wherein the internal nozzle was operating in the overexpanded regime. Steady and unsteady pressure measurements were taken along with the schlieren and oil flow visualization techniques to describe the flow field. Over the range of pressure ratios considered, the overexpanded shock pattern from the internal nozzle has been explained with regard to differential end conditions on either side of the core jet. The unsteady characteristics of the pressure fluctuations have been discussed with respect to the foot of the overexpansion shock on the plug surface. The effect of internal nozzle clustering on the plug nozzle flow field has been studied for two different cluster nozzles. The cluster module jet wave interactions along the spanwise direction have been explained with respect to the limiting streamline pattern on the plug surface. In addition to these, the base flow characteristics for these overexpanded internal nozzle pressure ratios have been discussed for two different truncated plug lengths.

  4. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  5. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  6. Guard Flow-enhanced Organic Vapor Jet Printing of Molecular Materials in Air

    NASA Astrophysics Data System (ADS)

    Biswas, Shaurjo

    Rapid advances in the research and development of organic electronics have re-sulted in many exciting discoveries and applications, including OLEDs, OPVs and OTFTs. Devices based on small molecular organic materials often call for sharp interfaces and highly pure materials for improved device performance. Solvent-free deposition and additive patterning of the active layers without the use of vacuum is preferred, calling for specialized processing approaches. Guard flow-enhanced organic vapor jet printing (GF-OVJP), enables addi-tive, rapid, mask-free, solvent-free printing of molecular organic semiconductors in ambient atmosphere by evaporating organic source material into an inert carrier gas jet and collimating and impinging it onto a substrate where the organic molecules condense. A surrounding annular "guard flow" hydrodynamically focuses the primary jet carrying the hot organic vapor and shields it from contact with the ambient oxygen and moisture, enabling device-quality deposits. Deposition in air entails non-trivial effects at the boundary between ambient surroundings and the gas jet carrying the semiconductor vapor that influence the morphology and properties of the resulting electronic devices. This thesis demonstrates the deposition of active layers of OLEDs, OPVs and OTFTs by GF-OVJP in air. Process-structure-property relationships are elucidated, using a combination of film deposition and structural characterization (e.g. AFM, XRD, SEM, spectroscopies), device fabrication and testing, as well as compressible fluid flow, heat and mass transport modeling, thus laying the groundwork for rigorous, quantitative design of film deposition apparatus and small molecular organic semiconductor processing.

  7. Turbulent Flow Physics and Noise in High Reynolds Number Compressible Jets

    NASA Astrophysics Data System (ADS)

    Glauser, Mark

    2016-11-01

    In this talk I will present a snapshot of our ongoing research in high Reynolds number turbulent compressible jets. The high speed axisymmetric jet work (Mach 0.6 - 1.1) has been jointly performed with Spectral Energies LLC through AFRL support and involves 10 kHz and large window PIV data extracted from the near field jet plume, simultaneously sampled with near field pressure and far field noise. We have learned from the simultaneously sampled 10 kHz PIV near field plume and far field noise data, using POD/OID and Wavelet filtering, that there are certain "loud" velocity modes that have low averaged turbulent kinetic energy content but strongly correlate with the far field noise. From the large window PIV data obtained at Mach 1.0 and 1.1, specific POD modes were found to contain important physics of the problem. For example, the large-scale structure of the jet, shock-related fluctuations, and turbulent mixing regions of the flow were isolated through POD. By computing cross correlations, particular POD modes were found to be related to particular noise spectra. I will conclude with a description of our complex nozzle work which uses the multi-stream supersonic single expansion rectangular nozzle (SERN) recently installed in our large anechoic chamber at SU. This work is funded from both AFOSR (joint with OSU with a primary focus on flow physics) and Spectral Energies LLC (via AFRL funds with a focus on noise). Particular emphasis will be on insight gained into this complex 3D flow field (and its relationship to the far field noise) from applications of POD, Wavelet filtering and DMD to various numerical (LES) and experimental (PIV, high speed schlieren, near and far field pressure) data sets, at a core nozzle Mach number of 1.6 and a second stream Mach number of 1.0.

  8. High temperature NASP engine seal development

    NASA Astrophysics Data System (ADS)

    This video details research being conducted at the Lewis Research Center on high temperature engine seal design for the National Aerospace Plane. To maximize the speed, the jets on the NASP extract oxygen from the air rather than carry large liquid fuel tanks; this creates temperatures within the jet of over 5000 F. To prevent these potentially explosive gases from escaping, researchers are developing new technologies for use in the engine seals. Two examples explained are the ceramic wafer seal and the braided ceramic rope seal. Computer simulations and laboratory footage are used to illustrate the workings of these seals. Benefits for other aerospace and industrial applications, as well as for the space shuttle, are explored.

  9. Analytical simulation of the far-field jet noise and the unsteady jet flow-field by a model of periodic shedding of vortex ring from the jet exit

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1975-01-01

    The construction of a theoretical flow field due to shedding of vortex rings, the identification of the controlling parameters, and the determination of whether the theoretical model successfully simulated the unsteady pressure field near jet (and consequently the far field noise) was studied. The basic parameters contained in the analytic solutions were the epoch at which a vortex ring was shed near the jet exit and the eddy viscosity coefficient. These parameters were identified from the experimental data for the real-time pressure and from the spread of the mixing layer of the jet. Results of the theoretical analysis show good qualitative agreement with the experimental data.

  10. High-power and high-temperature operation of an InGaN laser over 3 W at 85 °C using a novel double-heat-flow packaging technology

    NASA Astrophysics Data System (ADS)

    Nozaki, Shinichiro; Yoshida, Shinji; Yamanaka, Kazuhiko; Imafuji, Osamu; Takigawa, Shinichi; Katayama, Takuma; Tanaka, Tsuyoshi

    2016-04-01

    In this paper, we present a novel double-heat-flow (DHF) packaging technology of an indium gallium nitride (InGaN) laser diode (LD) promising for high-power and high-temperature operation. The LD chip on a submount is covered by another III-nitride ceramic submount, which reduces the thermal resistance, facilitating the assembly in a commercial compact package. A DHF LD operates with a maximum output power of over 3 W at 85 °C as well as that of 1.9 W even at 140 °C.

  11. Scale-adaptive simulation of a hot jet in cross flow

    NASA Astrophysics Data System (ADS)

    Duda, B. M.; Menter, F. R.; Hansen, T.; Esteve, M.-J.

    2011-12-01

    The simulation of a hot jet in cross flow is of crucial interest for the aircraft industry as it directly impacts aircraft safety and global performance. Due to the highly transient and turbulent character of this flow, simulation strategies are necessary that resolve at least a part of the turbulence spectrum. The high Reynolds numbers for realistic aircraft applications do not permit the use of pure Large Eddy Simulations as the spatial and temporal resolution requirements for wall bounded flows are prohibitive in an industrial design process. For this reason, the hybrid approach of the Scale-Adaptive Simulation is employed, which retains attached boundary layers in well-established RANS regime and allows the resolution of turbulent fluctuations in areas with sufficient flow instabilities and grid refinement. To evaluate the influence of the underlying numerical grid, three meshing strategies are investigated and the results are validated against experimental data.

  12. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Delabie, E.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; JET Contributors; EUROfusion Consortium, JET, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

    2016-02-01

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi≈0.4 -0.8 , consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E ×B shear increases. Above the minimum of the L -H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H -mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L -H transition.

  13. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    SciTech Connect

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; Delabie, E.

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.

  14. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while belowmore » the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  15. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  16. The effects of turbulent jet flows on plant cell suspension cultures

    PubMed

    MacLoughlin; Malone; Murtagh; Kieran

    1998-06-20

    Cell suspensions of Morinda citrifolia were subjected to turbulent flow conditions in a submerged jet apparatus, to investigate their hydrodynamic shear susceptibility. The suspensions were exposed to repeated, pressure-driven passages through a submerged jet. Two nozzles, of 1 mm and 2 mm diameter, were employed. Average energy dissipation rates were in the range 10(3)-10(5) W/kg and cumulative energy dissipation in the range 10(5)-10(7) J/m3. System response to the imposed conditions was evaluated in terms of suspension viability (determined using a dye exclusion technique) and variations in both chain length distribution and maximum chain length. Viability loss was well-described by a first-order model, and a linear relationship was identified between the specific death rate constant and the average energy dissipation rate. This relationship was consistent with results obtained using the same suspension cultures in a turbulent capillary flow device. Morphological measurements indicated that exposure to the hydrodynamic environment generated in the jet resulted in a significant reduction in both the average and maximum chain lengths, and the reduction in the maximum chain length was identified as an appropriate measure of sustained damage. Analysis of both viability and chain length in terms of cumulative energy dissipated revealed good agreement with results reported by other authors for morphologically different plant cell systems. Copyright 1998 John Wiley & Sons, Inc.

  17. Aeroacoustics of supersonic jet flows from contoured and solid/porous conical plug-nozzles

    NASA Technical Reports Server (NTRS)

    Dosanjh, Darshan S.; Das, Indu S.

    1987-01-01

    The results of an experimental study of the acoustic far-field, the shock associated noise, and the nature of the repetitive shock structure of supersonic jet flows issuing from plug-nozzles having externally-expanded plugs with pointed termination operated at a range of supercritical pressure ratios Xi approaching 2 to 4.5 are reported. The plug of one of these plug-nozzles was contoured. The other plug-nozzles had short conical plugs with either a solid surface or a combination of solid/porous surface of different porosities. The contoured and the uncontoured plug-nozzles had the same throat area and the same annulus-radius ratio K = R sub p/R sub N = 0.43. As the result of modifications of the shock structure, the acoustic performance of improperly expanded jet flows of an externally-expanded short uncontoured plug of an appropriate geometry with suitably perforated plug and a pointed termination, is shown to approach the acoustic performance of a shock-free supersonic jet issuing from an equivalent externally-expanded contoured plug-nozzle.

  18. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-12-20

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  19. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  20. Effect of solid particles on the turbulent flow of a round gaseous jet, a mathematical and experimental study

    NASA Astrophysics Data System (ADS)

    Elghobashi, S. E.

    1981-10-01

    Progress in mathematical and experimental studies aimed at modeling and measuring flow rates for the two-phase gases with dispersed particles in turbulent flows of jets is reported. Exact transport equations of mass and momentum for the two phases, the carrier fluid's kinetic energy of turbulence, and its dissipation rate were derived for incompressible two-phase flows. In the area of clear air jet measurements, attempts were made to obtain two-dimensional measurements of the clear air jet using a two-color, bragg cell shifted laser velocimeter. A complete data set for the streamwise component of mean velocity and turbulence intensity and some data for tangential velocity components were recorded and are included. These data were obtained using a recently modified software package for two-component data acquisition. The data for streamwise flow were compared with the available data for circular jet flow. The agreement was good in the inner half of the jet while some scatter was observed in the outer region of the jet.