Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokshin, Konstantin A.; Zhao Yusheng
2005-06-15
We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Telling, M.T.F.; Department of Materials, University of Oxford, Parks Road, Oxford
2013-08-15
Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction datamore » has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)« less
NASA Astrophysics Data System (ADS)
Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.
2017-12-01
We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.
Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T.; J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195
2014-11-15
We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use themore » aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.« less
High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences
NASA Astrophysics Data System (ADS)
Zhao, Y.; Los Alamos High Pressure Materials Research Team
2013-05-01
The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.de
Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ∼100 K after which it rises again. The same trend—albeit more pronounced—is observed for the c lattice parameter at ∼35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) statemore » to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.« less
NASA Astrophysics Data System (ADS)
Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio
2013-06-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.
Neutron diffraction study of Tb0.5Ho0.5Mn2Si2
NASA Astrophysics Data System (ADS)
Pandey, Swati; Siruguri, Vasudeva; Rawat, Rajeev
2018-02-01
The magnetic properties of tetragonal polycrystalline intermetallic compound Tb0.5Ho0.5Mn2Si2 have been investigated using temperature dependent dc magnetic susceptibility and neutron powder diffraction studies. Results of high temperature susceptibility data shows anomaly at TN = 510 K while low temperature susceptibility data indicate two successive anomalies at T1 = 11 K and T2 = 25 K. Metamagnetic transition is observed in magnetization versus field curves. Our neutron diffraction results indicate three different magnetic regions with different magnetic structures. Neutron diffraction data shows that below T2, the intensities of some of the nuclear peaks get enhanced indicating ferromagnetic ordering, while additional magnetic reflections are observed below T1, indicating antiferromagnetic order. Ordering of rare earth sublattice at low temperature rearranges the ordering of Mn sublattice and results in reorientation of Mn spins at T1. At 2 K Tb/Ho moments are aligned along c-axis while Mn moments are aligned perpendicular to c-axis.
In situ synthesis and characterization of uranium carbide using high temperature neutron diffraction
NASA Astrophysics Data System (ADS)
Reiche, H. Matthias; Vogel, Sven C.; Tang, Ming
2016-04-01
We investigated the formation of UCx from UO2+x and graphite in situ using neutron diffraction at high temperatures with particular focus on resolving the conflicting reports on the crystal structure of non-quenchable cubic UC2. The agents were UO2 nanopowder, which closely imitates nano grains observed in spent reactor fuels, and graphite powder. In situ neutron diffraction revealed the onset of the UO2 + 2C → UC + CO2 reaction at 1440 °C, with its completion at 1500 °C. Upon further heating, carbon diffuses into the uranium carbide forming C2 groups at the octahedral sites. This resulting high temperature cubic UC2 phase is similar to the NaCl-type structure as proposed by Bowman et al. Our novel experimental data provide insights into the mechanism and kinetics of formation of UC as well as characteristics of the high temperature cubic UC2 phase which agree with proposed rotational rehybridization found from simulations by Wen et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khidirov, I., E-mail: khidirov@inp.uz; Parpiev, A. S.
2013-05-15
A series of superstructural reflections (described within the sp. gr. Fd3m) are found to be split into three symmetric parts in the neutron powder diffraction pattern of titanium carbide TiC{sub 0.60} annealed at a temperature of 600 Degree-Sign C. No splitting of superstructural reflections is observed in the neutron diffraction pattern of TiC{sub 0.60} annealed at relatively high temperatures (780 Degree-Sign C). This phenomenon can be explained by that fact that the ordering of carbon atoms at relatively high temperatures (780 Degree-Sign C) is accompanied by the formation of randomly oriented rather large antiphase domains (APDs) (450 A). At relativelymore » low temperatures (600 Degree-Sign C), stacking faults arise in the arrangement of partially ordered carbon atoms. In this case, relatively small ordered APDs (290 A) are formed, along with disordered ones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.
2012-05-15
A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less
Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...
2013-06-11
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less
Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.
Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D
2012-12-01
Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.
Future directions in high-pressure neutron diffraction
NASA Astrophysics Data System (ADS)
Guthrie, M.
2015-04-01
The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less
Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; ...
2015-01-01
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less
Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...
2016-01-01
Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr 64Ni 36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, N. A., E-mail: namauro@noctrl.edu; Vogt, A. J.; Derendorf, K. S.
2016-01-15
Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)« less
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Wu, Xiaodong; Prior, M.
2005-12-01
The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.
NASA Astrophysics Data System (ADS)
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-08-01
The rigidity temperature of a solidifying alloy is the temperature at which the solid phase is sufficiently coalesced to transmit tensile stress. It is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for an Al-13 wt.% Cu alloy using in situ neutron diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is not possible. The cooling on both sides of the mold induces a hot spot at the middle of the sample that is irradiated by neutrons. Diffraction patterns are recorded every 11 s using a large detector, and the very first change of diffraction angles allows for the determination of the rigidity temperature. We measured rigidity temperatures equal to 557°C and 548°C depending on the cooling rate for grain refined Al-13 wt.% Cu alloys. At a high cooling rate, rigidity is reached during the formation of the eutectic phase. In this case, the solid phase is not sufficiently coalesced to sustain tensile load and thus cannot avoid hot tear formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Sven C; Sediako, Dimitry; Shook, S
2010-01-01
A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed usingmore » E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.« less
Christien, F; Telling, M T F; Knight, K S; Le Gall, R
2015-05-01
A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.
40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction
NASA Astrophysics Data System (ADS)
Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.
2018-05-01
We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...
2015-12-17
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-01-01
The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation. PMID:28788507
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-02-12
The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e. , strong enough, to avoid hot tear formation.
NASA Astrophysics Data System (ADS)
Landron, Claude; Hennet, Louis; Coutures, Jean-Pierre; Jenkins, Tudor; Alétru, Chantal; Greaves, Neville; Soper, Alan; Derbyshire, Gareth
2000-04-01
Conventional radiative furnaces require sample containment that encourages contamination at elevated temperatures and generally need windows which restrict the entrance and exit solid angles required for diffraction and scattering measurements. We describe a contactless windowless furnace based on aerodynamic levitation and laser heating which has been designed for high temperature neutron scattering experiments. Data from initial experiments are reported for crystalline and amorphous oxides at temperatures up to 1900 °C, using the spallation neutron source ISIS together with our laser-heated aerodynamic levitator. Accurate reproduction of thermal expansion coefficients and radial distribution functions have been obtained, demonstrating the utility of aerodynamic levitation methods for neutron scattering methods.
On the temperature dependence of H-U{sub iso} in the riding hydrogen model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lübben, Jens; Volkmann, Christian; Grabowsky, Simon
The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for thismore » study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.« less
Structural properties of barium stannate
NASA Astrophysics Data System (ADS)
Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng
2018-06-01
BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Le Gall, R.; Telling, M. T. F.
2015-05-15
A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature rampingmore » as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.« less
Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T
2012-05-21
We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Structural Properties of Barium Stannate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Han, F.; Lopez-Bezanilla, A.
2018-06-01
BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported bymore » density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.« less
Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy
NASA Astrophysics Data System (ADS)
Samanta, Tamalika; Bhobe, P. A.; Das, A.; Kumar, A.; Nigam, A. K.
2018-05-01
We present here a detailed investigation into the magnetic ordering of a full Heusler alloy Ga2MnCo using dc and ac magnetization measurements, neutron diffraction, and neutron depolarization experiments. The crystal structure at room temperature was first confirmed to be L 21 using the highly intense synchrotron x-ray diffraction technique. Temperature-dependent magnetization reveals that Ga2MnCo enters a ferromagnetic (FM) state at TC=154 K, characterized by a sharp increase in magnetization and a plateaulike region hereafter. As the temperature is decreased further, a sharp drop in magnetization is observed at Tf=50 K, hinting toward an antiferromagnetic (AFM) phase change. Neutron diffraction (ND) recorded over the range of temperature from 6 to 300 K provides combined information regarding crystal as well as magnetic structure. Accordingly, an increase in the intensity of the ND pattern is seen at 150 K, signaling the onset of long-range FM order. However, there is no sign of the appearance of superlattice reflections corresponding to the AFM phase in the patterns recorded below 50 K. An unusual discontinuity in the unit-cell volume is seen around Tf, indicating a coupling of this second transition with the contraction of the lattice. Attempts to unravel this interesting magnetic behavior using ac susceptibility measurements led to the existence of glassy magnetism below Tf. Systematic analysis of the susceptibility results along with neutron depolarization measurement identifies the low-temperature phase as a reentrant cluster glass.
Benafan, O.; Garg, A.; Noebe, R. D.; ...
2015-04-20
We investigated the effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni 24.3Ti 49.7Pd 26 (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy. Furthermore, aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed tomore » insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. The texture we developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of ~2%, at relatively high actuation temperatures.« less
High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases
NASA Astrophysics Data System (ADS)
Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel
2017-03-01
Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.
In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium
NASA Astrophysics Data System (ADS)
Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.
2018-04-01
In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.
NASA Astrophysics Data System (ADS)
Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo
2018-04-01
The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.
In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material
Ren, Fei; Schmidt, Robert; Keum, Jong K.; ...
2016-08-24
Introducing nanostructural second phases has been proved to be an effective approach to reduce the lattice thermal conductivity and thus enhance the figure of merit for many thermoelectric materials. Furthermore studies of the formation and evolution of these second phases are central to understanding temperature dependent material behavior, improving thermal stabilities, as well as designing new materials. We examined powder samples of PbTe-PbS thermoelectric material using in situ neutron diffraction and small angle neutron scattering (SANS) techniques from room temperature to elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of themore » second phase. Neutron diffraction data showed the as-milled powder was primarily solid solution before heat treatment. During heating, PbS second phase precipitated out of the PbTe matrix around 480 K, while re-dissolution started around 570 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger nanostructure remained unchanged. Our study demonstrated that in situ neutron techniques are effective means to obtain quantitative information to study temperature dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.« less
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils.
Boehler, R; Molaison, J J; Haberl, B
2017-08-01
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.
NASA Astrophysics Data System (ADS)
Huang, Shenyan; An, Ke; Gao, Yan; Suzuki, Akane
2018-03-01
Constrained γ/ γ' lattice misfit as a function of temperature (room temperature, 871 °C, 982 °C, 1093 °C, and 1204 °C) is measured by neutron diffraction on the first-generation Ni-based single-crystal superalloy René N4 and second-generation superalloys René N5, CMSX4, and PWA1484. All the alloys studied show negative misfit at temperatures above 871 °C. For René N4, René N5, and PWA1484, the misfit becomes less negative at temperatures above 1093 °C, possibly due to either the chemistry effect or internal stress relaxation. The magnitude of the misfit shows a qualitative agreement with Caron's misfit model based on Vegard's coefficients. The Re-free alloy René N4 was found to have a larger γ lattice parameter and γ/ γ' misfit due to higher fractions of Cr, Ti, and Mo. After 100 hours of annealing at high temperatures, René N5 shows a more negative misfit than the misfit after the standard heat treatment.
Singh, Anar; Schefer, Jurg; Sura, Ravi; ...
2016-03-24
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias
2016-03-28
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
Ushakov, Sergey V.; Navrotsky, Alexandra; Weber, Richard J. K.; ...
2015-07-28
High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6/K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZmore » are similar and within (7 ± 2) × 10 -6/K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6/K at 2350°C–2550°C with oxygen displacement parameters (U iso) reaching 0.1 Å 2, similar to behavior observed in UO 2. Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Ilton, Eugene S.; Wallacher, Dirk
2013-01-02
Geologic storage of CO 2 requires that the caprock sealing the storage rock is highly impermeable to CO 2. Swelling clays, which are important components of caprocks, may interact with CO 2 leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO 2 with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of ≈0.15 g/cm 3, followed by an approximately linear decrease of excess sorption to zero and negativemore » values with increasing CO 2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO 2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO 2 in the clay pores is relatively stable over a wide range of CO 2 pressures at a given temperature, indicating the formation of a clay-CO 2 phase. Finally, at the excess sorption maximum, increasing CO 2 sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.« less
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
NASA Technical Reports Server (NTRS)
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction
Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon
2016-01-01
The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503
Magnetic ground state of the multiferroic hexagonal LuFe O3
NASA Astrophysics Data System (ADS)
Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.
2018-05-01
The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-05-01
Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils
Boehler, R.; Molaison, J. J.; Haberl, B.
2017-08-17
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less
Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa
2016-07-01
Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.
NASA Technical Reports Server (NTRS)
Stelmakh, S.; Grzanka, E.; Zhao, Y.; Palosz, W.; Palosz, B.
2004-01-01
Thermal atomic motions of nanocrystalline Sic were characterized by two temperature atomic factors B(sub core), and B(sub shell). With the use of wide angle neutron diffraction data it was shown that at the diffraction vector above 15A(exp -1) the Wilson plots gives directly the temperature factor of the grain interior (B(sub core)). At lower Q values the slope of the Wilson plot provides information on the relative amplitudes of vibrations of the core and shell atoms.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.
2018-04-01
We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.
NASA Astrophysics Data System (ADS)
Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.
2018-05-01
Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.
In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fei, E-mail: renfei@temple.edu, E-mail: kean@ornl.gov; Qian, Bosen; Schmidt, Robert
2016-08-22
Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size ofmore » the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated that there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger one remained unchanged. This study demonstrated that in situ neutron techniques are effective means to obtain quantitative information on temperature-dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.« less
Magnetic behaviour of synthetic Co(2)SiO(4).
Sazonov, Andrew; Meven, Martin; Hutanu, Vladimir; Heger, Gernot; Hansen, Thomas; Gukasov, Arsen
2009-12-01
Synthetic Co(2)SiO(4) crystallizes in the olivine structure (space group Pnma) with two crystallographically non-equivalent Co positions and shows antiferromagnetic ordering below 50 K. We have investigated the temperature variation of the Co(2)SiO(4) magnetic structure by means of non-polarized and polarized neutron diffraction for single crystals. Measurements with non-polarized neutrons were made at 2.5 K (below T(N)), whereas polarized neutron diffraction experiments were carried out at 70 and 150 K (above T(N)) in an external magnetic field of 7 T parallel to the b axis. Additional accurate non-polarized powder diffraction studies were performed in a broad temperature range from 5 to 500 K with small temperature increments. Detailed symmetry analysis of the Co(2)SiO(4) magnetic structure shows that it corresponds to the magnetic (Shubnikov) group Pnma, which allows the antiferromagnetic configuration (G(x), C(y), A(z)) for the 4a site with inversion symmetry 1 (Co1 position) and (0,C(y),0) for the 4c site with mirror symmetry m (Co2 position). The temperature dependence of the Co1 and Co2 magnetic moments obtained from neutron diffraction experiments was fitted in a modified molecular-field model. The polarized neutron study of the magnetization induced by an applied field shows a non-negligible amount of magnetic moment on the oxygen positions, indicating a delocalization of the magnetic moment from Co towards neighbouring O owing to superexchange coupling. The relative strength of the exchange interactions is discussed based on the non-polarized and polarized neutron data.
Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2014-01-01
As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and subsequent shape recovery experiments. Neutron diffraction techniques are also being applied to the investigation of novel high temperature SMAs with the objective of designing alloys with better stability, higher transition temperatures and ultimately superior durability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.
2015-09-07
The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structuremore » also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.« less
NASA Astrophysics Data System (ADS)
Long, Fei
Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion irradiated hot-rolled Zr-2.5Nb alloy is described, providing evidence for the interaction between moving dislocations and irradiation induced loops. Chapter 8 gives the effect on the dislocation structure of different levels of compressive strains along two directions in the hot-rolled Zr-2.5Nb alloy. By using high resolution neutron diffraction and TEM observations, the evolution of type and dislocation densities, as well as changes of dislocation microstructure with plastic strain were characterized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures
Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowska, Małgorzata G., E-mail: malg@dtu.dk; European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund; Theil Kuhn, Luise
High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experimentsmore » successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
NASA Astrophysics Data System (ADS)
Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.
2017-04-01
Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.
Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld
Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.
2017-01-01
In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less
Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.
In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less
High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3
NASA Astrophysics Data System (ADS)
Kyono, A.; Kato, M.; Sano-Furukawa, A.; Machida, S. I.; Hattori, T.
2016-12-01
High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3, was investigated using single-crystal synchrotron x-ray diffraction, Raman spectroscopic, and neutron diffraction analyses. The high-pressure single-crystal synchrotron x-ray diffraction was performed at BL10A, Photon Factory, KEK, Japan. With compression, the a lattice parameter decreased continuously from 12.565 (1) Å to 12.226 (3) Å up to 7.1 GPa. A fit to the Birch-Murnaghan equation of state (EoS) based on the P-V data gives K0 = 56.0 (6) GPa, K' = 4.3 (1), and V0 = 1984.2 (5) Å3, which were consistent with the previous study by Lager et al. (2002). Weak reflections forbidden by the systematic absence of hk0 with k, l = 2n were observed at 5.5 GPa and their intensities became stronger as increasing pressure. The pattern change of systematic absence implies phase transformation from space group Ia-3d to its non-centrosymmetric space group I-43d. High-pressure Raman spectroscopic study was performed up to 8.3 GPa at room temperature. The pressure dependence of lattice modes showed a positive pressure shifts, whereas that of OH stretching vibration mode was changed negative above 5.1 GPa. The change indicates that the strength of hydrogen bonding turns to increase above 5.1 GPa. High-pressure and high-temperature neutron diffraction study was performed with six-axis large volume press, ATSUHIME, at BL11 (PLANET), J-PARC, Japan. At a pressure of approximately 8 GPa, the a lattice parameter increased with temperature, but neither thermal decomposition nor dehydroxylation process occurred up to 1123 K. The crystal structure of katoite was determined by Rietveld method using neutron diffraction data with the space group I-43d. The volume of dodecahedral site containing Ca cations and that of octahedral site occupied by Al cations remained almost constant with temperature, but two crystallographically inequivalent tetrahedral sites which were caused by phase transformation behaved differently from each other. The volume of T2 site was continuously increased, but that of T1 site was constantly decreased, resulting from anisotropic expansion of the dodecahedral site. Consequently, these anisotropic modifications of coordination polyhedra seem to induce the thermal decomposition of katoite at 1123 K and 8 GPa.
α-Phase transformation kinetics of U – 8 wt% Mo established by in situ neutron diffraction
Garlea, Elena; Steiner, M. A.; Calhoun, C. A.; ...
2016-05-08
The α-phase transformation kinetics of as-cast U - 8 wt% Mo below the eutectoid temperature have been established by in situ neutron diffraction. α-phase weight fraction data acquired through Rietveld refinement at five different isothermal hold temperatures can be modeled accurately utilizing a simple Johnson-Mehl-Avrami-Kolmogorov impingement-based theory, and the results are validated by a corresponding evolution in the γ-phase lattice parameter during transformation that follows Vegard’s law. Neutron diffraction data is used to produce a detailed Time-Temperature-Transformation diagram that improves upon inconsistencies in the current literature, exhibiting a minimum transformation start time of 40 min at temperatures between 500 °Cmore » and 510 °C. Lastly, the transformation kinetics of U – 8 wt% Mo can vary significantly from as-cast conditions after extensive heat treatments, due to homogenization of the typical dendritic microstructure which possesses non-negligible solute segregation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemoine, Pierric, E-mail: pierric.lemoine@univ-rennes1.fr; Bourgès, Cédric; Barbier, Tristan
Ternary copper-containing sulfides Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu{sub 12}Sb{sub 4}S{sub 13} decomposes above ≈792 K into Cu{sub 3}SbS{sub 3}, and (ii) Cu{sub 4}Sn{sub 7}S{sub 16} decomposes above ≈891 K into Sn{sub 2}S{sub 3} and amore » copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu{sub 3}SnS{sub 4} stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu{sub 12}Sb{sub 4}S{sub 13} are in fair agreement with recent published data, the decomposition behavior of Cu{sub 4}Sn{sub 7}S{sub 16} differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu{sub 4}Sn{sub 7}S{sub 16} and tetrahedrite Cu{sub 12}Sb{sub 4}S{sub 13} phases at 300 K, and for the high temperature form of skinnerite Cu{sub 3}SbS{sub 3} at 843 K. - Graphical abstract: In situ neutron powder diffraction data (heating rate of 2.5 K/min) indicates that (i) the ternary Cu{sub 12}Sb{sub 4}S{sub 13} phase is stable up to 792 K and decomposes at higher temperature into Cu{sub 3}SbS{sub 3} and Cu{sub 1.5}Sb{sub 0.5}S{sub 2}, and (ii) the Cu{sub 4}Sn{sub 7}S{sub 16} phase is stable up to 891 K and decomposes at higher temperature into Sn{sub 2}S{sub 3} and a cubic phase of sphalerite ZnS-type structure. Sulfur volatilization likely occurs in order to balance the overall stoichiometry.« less
NASA Astrophysics Data System (ADS)
Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.
Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.
Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and themore » production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.« less
Huang, Shenyan; Gao, Yanfei; An, Ke; ...
2014-10-22
In this study, the ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)Al B2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticitymore » theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian
2015-01-15
In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less
Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck
2016-10-04
The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, L. M. S., E-mail: leandro-fisico@hotmail.com; Lima, B. S. de; Santos, C. A. M. dos
K{sub 0.05}MoO{sub 2} has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54 K. Below the transition at 54 K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO{sub 2} compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2012-01-01
The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.
Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se; Kontos, Sofia; Hansen, Thomas C.
2016-03-15
The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropymore » energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.« less
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...
2018-04-30
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
NASA Astrophysics Data System (ADS)
Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.
2017-03-01
M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.
NASA Astrophysics Data System (ADS)
Dityatyev, Oleg A.; Smidt, Peer; Stefanovich, Sergey Yu; Lightfoot, Philip; Dolgikh, Valery A.; Opperman, Heinrich
2004-09-01
Phase equilibria in the Bi 2TeO 5Bi 2SeO 5 system were studied by X-ray, DTA and second harmonic generation (SHG). The samples were synthesized by solid state reactions of the Bi, Te and Se oxides. The phase diagram is interpreted as a quasibinary peritectic one with wide ranges of solid solutions on the basis of both compounds. The SHG study showed Bi 2SeO 5 to undergo a phase transition at about 250 °C. Neutron diffraction (25-650 °C) showed no major changes in the structure of Bi 2SeO 5 at high temperatures. However, the analysis of the oxygen atom thermal factors and site occupancies suggested that the mechanism of the phase transformation is an order-disorder transition involving reorientation of the SeO 3 group.
Neutron scattering study of the interplay between structure and magnetism in Ba(Fe1-xCox)2As2
NASA Astrophysics Data System (ADS)
Lester, C.; Chu, Jiun-Haw; Analytis, J. G.; Capelli, S. C.; Erickson, A. S.; Condron, C. L.; Toney, M. F.; Fisher, I. R.; Hayden, S. M.
2009-04-01
Single-crystal neutron diffraction is used to investigate the magnetic and structural phase diagrams of the electron-doped superconductor Ba(Fe1-xCox)2As2 . Heat-capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2As2 into two distinct transitions. For x=0.025 , we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5K) and the antiferromagnetic transition occurs at TAF=93±0.5K . We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x≈0.055 . However, there is a region of coexistence of antiferromagnetism and signatures of superconductivity obtained from thermodynamic and transport properties. For all the compositions studied, we find two anomalies in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction at the same temperatures where anomalies in the heat capacity and resistivity have been previously identified. Thus for x=0.025 , where we have shown that the lower anomaly occurs at TAF , we infer that there is strong coupling between the antiferromagnetism and the crystal lattice which may persist to larger x .
Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo; ...
2015-11-05
In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less
Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction
NASA Astrophysics Data System (ADS)
Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.
2013-12-01
The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We will present the details of our DAC preparations and results of our in-situ structural refinements of dhcp-FeHx up to ~50 GPa. Together with previous investigations of the thermoelastic and electronic properties of FeHx [2; 6], we will discuss implications for the composition of Earth's iron-rich core. References: 1. N. Hirao et al. (2004), Geophys. Res. Lett., 31, L06616, doi:10.1029/2003GL019380. 2. W.L. Mao et al. (2004), Geophys. Res. Lett., 31, L15618, doi:10.1029/2004GL020541. 3. V.E. Antonov et al. (2002), J. Phys.: Condens. Matter, 14, 6427-6445, doi:10.1088/0953-8984/14/25/311. 4. M. Guthrie et al. (2013), ACA Transactions, 44, in press. 5. R. Boehler et al. (2013), High Press. Res., in press, doi:10.1080/08957959.2013.823197. 6. Y. Shibazaki et al. (2012), Earth Planet. Sci. Lett., 313-314, 79-85, doi:10.1016/j.epsl.2011.11.002.
Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A
2010-05-01
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
Neutron Diffraction Studies of Carbonate Apatite
NASA Astrophysics Data System (ADS)
Moghaddam, Hadi Y.; Leventouri, Theodora; Chakoumakos, Bryan C.
1998-11-01
Moghaddam H.Y., Leventouri Th.* (Dept. of Physics & Alloy Research Center, Florida Atlantic Univ.) Chakoumakos B.C. (Solid State Division, Oak Ridge National Lab.**,kou@ornl.gov) We report Rietveld structural refinements of neutron diffraction data of a highly crystalline, single-phase natural carbonate apatite,(francolite of Epirus, Greece), in order to elucidate the details of carbonate substitution in the apatites. The composition is Ca9.56Na0.38Mg0.08(PO4)4.82(CO3)0.946(SO4)0.2F2.34, as determined by electron microprobe analysis. We report refinements of data for the native francolite as a function of temperature between 296K and 10K after the material had been heated at 750 °C to drive off adsorbed water and CO2. The neutron diffractioii@data were collected using a wavelength 1.0912 A on the HB4 high resolution powder diffractometer at the High Flux Isotope Reactor at Oak Ridge National Laboratory. Analysis of the temperature dependence of the anisotropic displacement parameters can reveal the contribution from the temperature independent static positional disorder. Difference displacement parameters evaluated along various bonding directions are being used to describe the mechanics and dynamics of the carbonate for phosphate substitution.*Supported by a SURA-ORNL Summer Cooperative Research Program 1998.**Supported by the Division of Materials Sciences,U.S. D.O.E. (contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation).
Study of residual stresses in CT test specimens welded by electron beam
NASA Astrophysics Data System (ADS)
Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.
2018-03-01
The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.
From mean-field localized magnetism to itinerant spin fluctuations in the "nonmetallic metal" FeCrAs
NASA Astrophysics Data System (ADS)
Plumb, K. W.; Stock, C.; Rodriguez-Rivera, J. A.; Castellan, J.-P.; Taylor, J. W.; Lau, B.; Wu, W.; Julian, S. R.; Kim, Young-June
2018-05-01
FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a "nonmetal metal." The anomalous resistivity occurs for temperatures below ˜900 K. We have carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3 + magnetic order setting in at TN=115 K ˜10 meV with a mean-field critical exponent. Using neutron spectroscopy we observe gapless, high velocity, magnetic fluctuations emanating from magnetic positions with propagation wave vector q⃗0=(1/3 ,1/3 ) , which persists up to at least 80 meV ˜927 K, an energy scale much larger than TN. Despite the mean-field magnetic order at low temperatures, the magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers. We suggest that the presence of stiff high-energy spin fluctuations extending up to a temperature scale of ˜900 K is the origin of the unusual temperature dependence of the resistivity.
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire
2012-10-14
High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.
Neutron Time-of-Flight Diffractometer HIPPO at LANSCE
NASA Astrophysics Data System (ADS)
Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf
2004-03-01
The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.
Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.
2003-01-01
Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.
Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide
NASA Astrophysics Data System (ADS)
Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine
2018-03-01
Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.
Neutron Diffraction Study On Gamma To Alpha Phase Transition In Ce0.9th0.1 Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashley, Jason C1; Heffner, Robert H; Llobet, A
2008-01-01
Comprehensive neutron diffraction measurements were performed to study the isostructural {gamma} {leftrightarrow} {alpha} phase transition in Ce{sub 0.9}Th{sub 0.1} alloy. Using Rietveld refinements, we obtained lattice and thermal parameters as a function of temperature. From the temperature slope of the thermal parameters, we determined Debye temperatures {Theta}{sup {gamma}}{sub D} = 133(1) K and {Theta}{sup {alpha}}{sub D} = 140(1) K for the {gamma} phase and the {alpha} phase, respectively. This result implies that the vibrational entropy change is not significant at the {gamma} {leftrightarrow} {alpha} transition, contrary to that from elemental Cerium [Phys. Rev. Lett. 92, 105702, 2004].
Phase diagram of multiferroic KCu3As2O7(OD ) 3
NASA Astrophysics Data System (ADS)
Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji
2017-06-01
The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr; Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble; Bonneté, Françoise
2006-03-01
Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grownmore » in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.« less
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.
2018-01-01
Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2 a p × 2 a p × 4 a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m) aristotype through tetragonal ( P4/ mbm) and orthorhombic ( Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S ( Pmmn) phase, and the R ( Pmmn or Pnma) and P ( Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Cranswick, Lachlan M. D.; Swainson, Ian
2006-11-01
The cell dimensions of the fluoroperovskite KMgF3 synthesized by solid state methods have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 293 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data demonstrate conclusively that cubic Pmoverline{3} m KMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. Cell dimensions range from 3.9924(2) Å at 293 K to 3.9800(2) Å at 3.6 K, and are essentially constant within experimental error from 50 to 3.6 K. The thermal expansion data are described using a fourth order polynomial function.
NASA Astrophysics Data System (ADS)
Kouadri-Henni, Afia; Malard, Benoit
2018-05-01
This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.
The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less
Multidataset Refinement Resonant Diffraction, and Magnetic Structures
Attfield, J. Paul
2004-01-01
The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599
Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo
2008-01-01
The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.
The impact of chemical doping on the magnetic state of the Sr{sub 2}YRuO{sub 6} double perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Paula; Ranjbar, Ben; Kennedy, Brendan J.
The impact of chemical doping of the type Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties of Sr{sub 2}YRuO{sub 6}, probed using variable temperature magnetic susceptibility, neutron diffraction and heat capacity measurements, are described. Specific-heat measurements of un-doped Sr{sub 2}YRuO{sub 6} reveal two features at ∼26 and ∼30 K. Neutron scattering measurements at these temperatures are consistent with a change from a 2D ordered state to the 3D type 1 AFM state. Magnetic and structural studies of a number of doped oxides are described that highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} andmore » demonstrate that doping destabilizes the intermediate 2D ordered state. - Graphical abstract: Neutron diffraction measurements of the ordered double perovskite Sr{sub 2}YRuO{sub 6}reveal a with a change from a 2D ordered state to the 3D type 1 AFM state upon cooling. The impact of chemical doping Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties have also been investigated and these highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} with doping destabilizing the intermediate 2D ordered state. - Highlights: • Crystal and Magnetic Structure of Sr{sub 2}YRuO{sub 3} was studied using Neutron Diffraction. • Effect of doping on the magnetic ground state established. • Origin of two low temperature transitions discussed.« less
In-situ High-energy X-ray Diffraction Study of the Local Structure of Supercooled Liquid Si
NASA Technical Reports Server (NTRS)
Lee, G. W.; Kim, T. H.; Sieve, B.; Gangopadhyay, A. K.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, D. S.; Kelton, K. F.; Goldman, A. I.
2005-01-01
While changes in the coordination number for liquid silicon upon supercooling, signaling an underlying liquid-liquid phase transition, have been predicted, x-ray and neutron measurements have produced conflicting reports. In particular some studies have found an increase in the first shell coordination as temperature decreases in the supercooled regime, while others have reported increases in the coordination number with decreasing temperature. Employing the technique of electrostatic levitation coupled with high energy x-ray diffraction (125 keV), and rapid data acquisition (100ms collection times) using an area detector, we have obtained high quality structural data more deeply into the supercooled regime than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.
Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987
DOE R&D Accomplishments Database
Shull, C.G.
1989-07-27
A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation.
Nondestructive evaluation of loading and fatigue effects in Haynes(R) 230(R) alloy
NASA Astrophysics Data System (ADS)
Saleh, Tarik Adel
Nondestructive evaluation is a useful method for studying the effects of deformation and fatigue. In this dissertation I employed neutron and X-ray diffraction, nonlinear resonant ultrasound spectroscopy (NRUS), and infrared thermography to study the effects of deformation and fatigue on two different nickel based superalloys. The alloys studied were HAYNES 230, a solid solution strengthened alloy with 4% M6C carbides, and secondarily HASTELLOY C-2000 a similar single phase alloy. Using neutron and X-ray diffraction, the deformation behavior of HAYNES 230 was revealed to be composite-like during compression, but unusual in tension, where the carbides provide strengthening until just after the macroscopic yield strength and then they begin to debond and crack, creating a tension-compression asymmetry that is revealed clearly by in situ diffraction. In fatigue of HAYNES 230, the hkl elastic strains changed very little in tension-tension fatigue. However, in situ tension-compression studies showed large changes over the initial stages of fatigue. The HAYNES 230 samples studies had two distinct starting textures, measured by neutron diffraction. Some samples were texture free initially and deformed in tension and compression to fiber textures. Other samples started with a bimodal texture due to cross-rolling and incomplete annealing. The final texture of these bimodal samples is shown through modeling to be a superposition of the initial texture and typical FCC deformation mechanisms. The texture-free samples deformed significantly more macroscopically and in internal elastic strains than the samples with the cross-rolled texture. In contrast to the relative insensitivity of neutron diffraction to the effects of tension-tension fatigue, NRUS revealed large differences between as-received and progressively fatigued samples. This showed that microcracking and void formation are the primary mechanisms responsible for fatigue damage in tension-tension fatigue. NRUS is shown to be a useful complimentary technique to neutron diffraction to evaluate fatigue damage. Finally, infrared thermography is used to show temperature changes over the course of fatigue in HASTELLOY C-2000. Four stages of temperature are shown over the course of a single fatigue test. Both empirical and theoretical relationships between steady state temperature and fatigue life are developed and presented.
Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna
2010-12-01
The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.
In situ high-pressure measurement of crystal solubility by using neutron diffraction
NASA Astrophysics Data System (ADS)
Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun
2018-05-01
Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.
Röska, B; Park, S-H; Behal, D; Hess, K-U; Günther, A; Benka, G; Pfleiderer, C; Hoelzel, M; Kimura, T
2018-06-13
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, [Formula: see text] [Formula: see text]. Its honeycomb-like H-bond network running without interruption along the crystallographic [Formula: see text] axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by [Formula: see text] cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature [Formula: see text]-83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
NASA Astrophysics Data System (ADS)
Levy, Davide; Pastero, Linda; Hoser, Andreas; Viscovo, Gabriele
2015-01-01
MnFe2O4 is a low-cost and stable magnetic spinel ferrite. In this phase, the influence of the inversion degree on the magnetic properties is still not well understood. To understand this relationship, Mn-ferrite was synthesized by a chemical co-precipitation method modified in our laboratory and studied by using the Neutron Powder Diffraction from 1.6 K to 1243 K. A full refinement of both crystal and magnetic structures was performed in order to correlate the high-temperature cation partitioning, the Curie transition and the structure changes of the Mn-ferrite. In this work three main temperature intervals are detected, characterized by different Mn-ferrite behaviors: first, ranging from 1.6 K to 573 K, where MnFe2O4 is magnetic; second, from 573 K to 623 K, where MnFe2O4 becomes paramagnetic without cation partitioning; and lastly, from 673 K to 1243 K, where cation partitioning occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.
2009-12-15
Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less
Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei
Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less
Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction
Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...
2016-11-02
Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less
Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Robert L., E-mail: rgreen@flpoly.org; Avdeev, Maxim; School of Chemistry, The University of Sydney, Sydney, NSW 2006
The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphicalmore » abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.« less
Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalevsky, A.Y.; Fisher, S.Z.; Seaver, S.
2010-08-18
Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 {angstrom} resolution using a home source, to 1.6 {angstrom} resolution on NE-CAT at the Advanced Photon Source and to 2.0 {angstrom} resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from thismore » site in the low-temperature structure.« less
Neutron diffraction studies on cobalt substituted BiFeO3
NASA Astrophysics Data System (ADS)
Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.
2013-02-01
A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.
POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany
NASA Astrophysics Data System (ADS)
Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.
2009-05-01
In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay
2015-05-01
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.
2017-02-01
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x ≤1 , 1.86 ≤y ≤2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
Study of the structure of PyHReO{sub 4} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kichanov, S. E., E-mail: ekich@nf.jinr.ru; Kozlenko, D. P.; Wasicki, J. W.
2007-05-15
The structure of deuterated pyridinium perrhenate (d{sub 5}PyH)ReO{sub 4} (C{sub 5}D{sub 5}NHReO{sub 4}) is studied by X-ray diffraction at room temperature and pressures up to 3.5 GPa and by neutron diffraction in the temperature range 10-293 K and at pressures up to 2.0 GPa. Under normal conditions, this compound belongs to the orthorhombic space group Cmc2{sub 1} (ferroelectric phase II). At room temperature and pressures above P > 0.7 GPa, a transition to an orthorhombic phase (paraelectric phase II) is observed. This paraelectric phase is described by the space group Cmcm. At a pressure as high as P = 2.0more » GPa, phase I remains stable at temperatures down to 10 K. This fact indicates that the high pressure suppresses the ferroelectric state in deuterated pyridinium perrhenate (d{sub 5}PyH)ReO{sub 4}.« less
NASA Astrophysics Data System (ADS)
Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.
2013-10-01
Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.
Crossover between Tilt Families and Zero Area Thermal Expansion in Hybrid Prussian Blue Analogues.
Phillips, Anthony E; Fortes, A Dominic
2017-12-11
Materials in the family of Prussian blue analogues (C 3 H 5 N 2 ) 2 K[M(CN) 6 ], where C 3 H 5 N 2 is the imidazolium ion and M=Fe, Co, undergo two phase transitions with temperature; at low temperatures the imidazolium cations have an ordered configuration (C2/c), while in the intermediate- and high-temperature phases (both previously reported as R3‾m ) they are dynamically disordered. We show from high-resolution powder neutron diffraction data that the high-temperature phase has zero area thermal expansion in the ab-plane. Supported by Landau theory and single-crystal X-ray diffraction data, we re-evaluate the space group symmetry of the intermediate-temperature phase to R3‾ . This reveals that the low-to-intermediate temperature transition is due to competition between two different tilt patterns of the [M(CN) 6 ] 3- ions. Controlling the relative stabilities of these tilt patterns offers a potential means to tune the exploitable electric behaviour that arises from motion of the imidazolium guest. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Säubert, Steffen; Jungwirth, Rainer; Zweifel, Tobias; Hofmann, Michael; Hoelzel, Markus; Petry, Winfried
2016-01-01
Exposing uranium–molybdenum alloys (UMo) retained in the γ phase to elevated temperatures leads to transformation reactions during which the γ-UMo phase decomposes into the thermal equilibrium phases, i.e. U2Mo and α-U. Since α-U is not suitable for a nuclear fuel exposed to high burn-up, it is necessary to retain the γ-UMo phase during the production process of the fuel elements for modern high-performance research reactors. The present work deals with the isothermal transformation kinetics in U–8 wt%Mo alloys for temperatures between 673 and 798 K and annealing durations of up to 48 h. Annealed samples were examined at room temperature using either X-ray or neutron diffraction to determine the phase composition after thermal treatment, and in situ annealing studies disclosed the onset of phase decomposition. While for temperatures of 698 and 673 K the start of decomposition is delayed, for higher temperatures the first signs of transformation are already observable within 3 h of annealing. The typical C-shaped curves in a time–temperature–transformation (TTT) diagram for both the start and the end of phase decomposition could be determined in the observed temperature regime. Therefore, a revised TTT diagram for U–8 wt%Mo between 673 and 798 K and annealing durations of up to 48 h is proposed. PMID:27275139
Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan
2012-12-05
Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.
Sesselmann, Andreas; Klobes, Benedikt; Dasgupta, Titas; ...
2015-09-25
The thermoelectric properties on polycrystalline single (In) and double filled (Ce, In) skutterudites are characterized between 300 and 700 K. Powder neutron diffraction measurements of the skutterudite compositions In xCo 4Sb 12 (x= 0.05, 0.2) and Ce 0.05In 0.1Co 4Sb 12 as a function of temperature (12- 300 K) were carried out, which gives more insight into the structural data of single and double-filled skutterudites. Our results show that due to the annealing treatment, a Sb deficiency is detectable and thus verifies defects at the Sb lattice site of the skutterudite. Furthermore, we show by electron microprobe analysis that amore » considerable amount of indium is lost during synthesis and post-processing for the single indium filled samples, but not for the double cerium and indium skutterudite sample. The double-filled skutterudite is superior to the single-filled skutterudite composition due to a higher charge carrier density, a comparable lattice thermal resistivity, and a higher density of states effective mass in our experiment. Finally, we obtained a significantly higher Einstein temperature for the double-filled skutterudite composition in comparison to the single-filled species, which reflects the high sensitivity due to filling of the void lattice position within the skutterudite crystal.« less
NASA Astrophysics Data System (ADS)
Khidirov, I.
2015-09-01
The kinetics of formation and growth of ordered antiphase domains (APDs) in titanium carbohydride TiC0.50H0.21 has been investigated by neutron diffraction. A model of ordered APDs is proposed. It is established that the pronounced ordering of interstitial atoms and APDs begin at 450°C. It is shown that the period of ordered APDs ( Р ≈ 10-12) is independent of the exposure time at a constant temperature. It is found that the temperature of ordered APDs, T OAPD, increases nonlinearly with an increase in the carbon concentration in the range 0.50 ≤ C/Ti ≤ 0.70. The formation temperature of ordered APDs is found to correlate with the concentration dependence of the order-disorder transition temperature and be 0.60 of the order-disorder transition temperature: T APD = 0.60 Т С.
Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine
2014-12-01
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.
Structural properties of Fe-doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Mori, Kazuhiro; Fukunaga, Toshiharu; Shibata, Koji; Iwase, Kenji; Harjo, Stefanus; Hoshikawa, Akinori; Itoh, Keiji; Kamiyama, Takashi; Ishigaki, Toru
2004-10-01
Structural characteristics of Fe-doped LaGaO3-δ were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R 3 bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga3+ with Fe3+ leads to an electronic configuration of t2g3eg2 (high-spin state, HS).
High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials
NASA Technical Reports Server (NTRS)
Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.
2004-01-01
Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.
High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms
Li, Fankang; Feng, Hao; Thaler, Alexander N.; ...
2017-04-13
The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. Our experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. Here, we conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup canmore » be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. Furthermore, the use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.« less
Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation
Keller, L.; White, J. S.; Babkevich, P.; ...
2015-01-29
The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground-state towards and in the vicinity of the superconducting phase. Neutron diffraction on polycrystalline CrAs was employed from zero pressure to 0.65 GPa and at various temperatures. The helimagnetic long-range order is sustained under pressure and the magnetic propagation vector does not show any considerable change. The average ordered magnetic moment is reduced from 1.73(2) μ B at ambient pressure to 0.4(1) μ B close to themore » critical pressure P c ≈ 0.7 GPa, at which magnetic order is completely suppressed. The width of the magnetic Bragg peaks strongly depends on temperature and pressure, showing a maximum in the region of the onset of superconductivity. In conclusion, we interpret this as associated with competing ground-states in the vicinity of the superconducting phase.« less
Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, L.; White, J. S.; Babkevich, P.
The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground-state towards and in the vicinity of the superconducting phase. Neutron diffraction on polycrystalline CrAs was employed from zero pressure to 0.65 GPa and at various temperatures. The helimagnetic long-range order is sustained under pressure and the magnetic propagation vector does not show any considerable change. The average ordered magnetic moment is reduced from 1.73(2) μ B at ambient pressure to 0.4(1) μ B close to themore » critical pressure P c ≈ 0.7 GPa, at which magnetic order is completely suppressed. The width of the magnetic Bragg peaks strongly depends on temperature and pressure, showing a maximum in the region of the onset of superconductivity. In conclusion, we interpret this as associated with competing ground-states in the vicinity of the superconducting phase.« less
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
Mühlbauer, Martin J.
2018-01-01
The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055
NASA Astrophysics Data System (ADS)
Bernert, T.; Winkler, B.; Haussühl, E.; Trouw, F.; Vogel, S. C.; Hurd, A. J.; Smilowitz, L.; Henson, B. F.; Merrill, F. E.; Morris, C. L.; Mariam, F. G.; Saunders, A.; Juarez-Arellano, E. A.
2013-08-01
Self-propagating high temperature reactions of tantalum and titanium with silicon and titanium with boron were studied using proton and X-ray radiography, small-angle neutron scattering, neutron time-of-flight, X-ray and neutron diffraction, dilatometry and video recording. We show that radiography allows the observation of the propagation of the flame front in all investigated systems and the determination of the widths of the burning zones. X-ray and neutron diffraction showed that the reaction products consisted of ≈90 wt% of the main phase and one or two secondary phases. For the reaction 5Ti + 3Si → Ti5Si3 flame front velocities of 7.1(3)-34.2(4) mm/s were determined depending on the concentration of a retardant added to the starting material, the geometry and the green density of the samples. The flame front width was determined to be 1.17(4)-1.82(8) mm and depends exponentially on the flame front velocity. Similarly, for the reaction Ti + 2B → TiB2 flame front velocities of 15(2)-26.6(4) mm/s were determined, while for a 5Ta + 3Si → Ta5Si3 reaction the flame front velocity was 7.05(4) mm/s. The micro structure of the product phase Ta5Si3 shows no texture. From SANS measurements the dependence of the specific surface of the product phase on the particle sizes of the starting materials was studied.
NASA Astrophysics Data System (ADS)
Pokharel, G.; May, A. F.; Parker, D. S.; Calder, S.; Ehlers, G.; Huq, A.; Kimber, S. A. J.; Arachchige, H. Suriya; Poudel, L.; McGuire, M. A.; Mandrus, D.; Christianson, A. D.
2018-04-01
The physical properties of the spinel LiGaCr4S8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. These results indicate strong magnetoelastic coupling in LiGaCr4S8 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo
In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less
Low Temperature Magnetic Ordering of the Magnetic Ionic Plastic Crystal, Choline[FeCl4
NASA Astrophysics Data System (ADS)
de Pedro, I.; García-Saiz, A.; Andreica, D.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Amato, A.; Rodríguez Fernández, J.
2015-11-01
We report on the nature of the low temperature magnetic ordering of a magnetic ionic plastic crystal, Choline[FeCl4]. This investigation was carried out using heat capacity measurements, neutron diffraction experiments and muon spin relaxation (μSR) spectroscopy. The calorimetric measurements show the onset of an unusual magnetic ordering below 4 K with a possible second magnetic phase transition below 2 K. Low temperature neutron diffraction data reveal a three dimensional antiferromagnetic ordering at 2 K compatible with the previous magnetometry results. The analysis of μSR spectra indicates a magnetic phase transition below 2.2 K. At 1.6 K, the analysis of the shape of the μSR spectra suggests the existence of an additional magnetic phase with features of a possible incommensurate magnetic structure.
Synthesis and characterization of Ca-doped LaMnAsO
NASA Astrophysics Data System (ADS)
Liu, Yong; Straszheim, Warren E.; Das, Pinaki; Islam, Farhan; Heitmann, Thomas W.; McQueeney, Robert J.; Vaknin, David
2018-05-01
We report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La3 + site by Ca2 +. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La1 -xCax)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤0.01 . Magnetic susceptibility of the parent and the x =0.002 (xnom=0.04 ) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of both the tetragonal (P 4 /n m m ) structure upon doping and the antiferromagnetic ordering temperature, TN=355 ±5 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn
The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rheinstaedter, Maikel C.; Enderle, Mechthild; Kloepperpieper, Axel
2005-01-01
Methanol-{beta}-hydroquinone clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In x-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations. A coupling of the 1D fluctuations to local strains leads to an anomalous temperature dependence of the 1D lattice parameter in the paraelectric regime.
Cesium vacancy ordering in phase-separated C s x F e 2 - y S e 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddei, K. M.; Sturza, M.; Chung, D. Y.
2015-09-01
By simultaneously displaying magnetism and superconductivity in a single phase, the iron based superconductors provide a model system for the study of magnetism’s role in superconductivity. The class of intercalated iron selenide superconductors is unique amongst these in having the additional property of phase separation and coexistence of two distinct phases - one majority phase with iron vacancy ordering and strong antiferromagnetism and the other a poorly understood minority microscopic phase with a contested structure. Adding to the intrigue, the majority phase has never been found to show superconductivity on its own while the minority phase has never been successfullymore » synthesized separate from the majority phase. In order to better understand this minority phase, a series of high quality CsxFe2-ySe2 single crystals with (0.8 ≤ x ≤ 1; 0 ≤ y ≤ 0.3) were grown and studied. Neutron and x-ray powder diffraction performed on ground crystals show the average structure of the minority phase to be I4/mmm, however, the temperature evolution of its lattice parameters shows it to be distinct from the high temperature I4/mmm parent structure. Neutron and x-ray diffraction experiments performed on single crystal samples reveal the presence of previously unobserved discrete superlattice reflections that remove the degeneracy of the Cs sites in both the majority and minority phases and reduce their structural symmetries from body-centered to primitive. Group theoretical analysis in conjunction with structural modeling shows that the observed superlattice reflections originate from a three-dimensional Cs vacancy ordering in the minority phase. This model predicts a 25% vacancy of the Cs site which is consistent with the site’s refined occupancy. Magnetization measurements performed in tandem with neutron single crystal diffraction provide evidence that the minority phase is the host of superconductivity. Our results also reveal a superconducting dome in which the superconducting transition temperature varies as a function of the valence of iron.« less
Huang, Gilbert Y.; Gerlits, Oksana O.; Blakeley, Matthew P.; ...
2014-10-01
High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). Finally, the XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted,more » explaining its low affinity for cAMP.« less
Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.; ...
2017-12-02
The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less
Diffraction in neutron imaging-A review
NASA Astrophysics Data System (ADS)
Woracek, Robin; Santisteban, Javier; Fedrigo, Anna; Strobl, Markus
2018-01-01
Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that - supported by powerful neutron sources - are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.
Hydration of Caffeine at High Temperature by Neutron Scattering and Simulation Studies.
Tavagnacco, L; Brady, J W; Bruni, F; Callear, S; Ricci, M A; Saboungi, M L; Cesàro, A
2015-10-22
The solvation of caffeine in water is examined with neutron diffraction experiments at 353 K. The experimental data, obtained by taking advantage of isotopic H/D substitution in water, were analyzed by empirical potential structure refinement (EPSR) in order to extract partial structure factors and site-site radial distribution functions. In parallel, molecular dynamics (MD) simulations were carried out to interpret the data and gain insight into the intermolecular interactions in the solutions and the solvation process. The results obtained with the two approaches evidence differences in the individual radial distribution functions, although both confirm the presence of caffeine stacks at this temperature. The two approaches point to different accessibility of water to the caffeine sites due to different stacking configurations.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com
2015-05-15
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less
Muller; Baudour; Bedoya; Bouree; Soubeyroux; Roubin
2000-02-01
Neutron powder diffraction data, collected over the temperature range 10-770 K, have been analysed in order to make a detailed characterization of the sequence of phase transitions occurring in the Hf-rich ferroelectric PbHf(0.8)Ti(0.2)O3, titanium hafnium lead oxide. Over the whole temperature range this compound undergoes two phase transitions, which involve cationic displacements and octahedral deformations (tilt and/or distortion) leading to strongly distorted perovskite-type structures. The first transition appears around 415 K between two ferroelectric rhombohedral phases: a low-temperature nonzero-tilt phase F(RL) (space group R3c) and an intermediate zero-tilt phase FRH (space group R3m). The second one, detected around 520 K, is associated with a ferroelectric to-paraelectric transition between the FRH phase and the Pc cubic phase (space group Pm3m). From high-resolution neutron powder diffraction data (diffractometer 3T2-LLB, Saclay, France, lambda = 1.2251 A), the crystallographic structure of the three successive phases has been accurately determined at the following temperatures: T = 10 K (FRL): space group R3c, Z = 6, a(hex) = 5.7827 (1), c(hex) = 14.2702 (4) A, V(hex) = 413.26 (2) A3; T = 150 K (F(RL)): space group R3c, Z = 6, a(hex) = 5.7871 (1), C(hex) = 14.2735 (4) A, V(hex) = 413.98 (3) A3; T = 290 K (FRL): space group R3c, Z = 6, a(hex) = 5.7943 (1), C(hex) = 14.2742 (5) A, V(hex) = 415.04 (3) A3; T = 440 K (F(RH)): space group R3c, Z = 6, a(hex) = 5.8025 (1), c(hex) = 14.2648 (4) A, V(hex) = 415.94 (3) A3; T = 520 K (Pc): space group Pm3m, Z = 1, a(cub) = 4.1072 (2) A, V(cub) = 69.29 (1) A3. In addition, a neutron powder thermodiffractometry experiment, performed between 290 and 770 K (diffractometer D1B-ILL, Grenoble, France, lambda = 2.533 A), has been used to study in situ the temperature-induced phase transitions. From sequential Rietveld refinements, the temperature dependence of the cation displacements and the rotation and/or distortion of oxygen octahedra was derived.
NASA Astrophysics Data System (ADS)
Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.
1990-02-01
Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlea, Elena; Steiner, M. A.; Calhoun, C. A.
The α-phase transformation kinetics of as-cast U - 8 wt% Mo below the eutectoid temperature have been established by in situ neutron diffraction. α-phase weight fraction data acquired through Rietveld refinement at five different isothermal hold temperatures can be modeled accurately utilizing a simple Johnson-Mehl-Avrami-Kolmogorov impingement-based theory, and the results are validated by a corresponding evolution in the γ-phase lattice parameter during transformation that follows Vegard’s law. Neutron diffraction data is used to produce a detailed Time-Temperature-Transformation diagram that improves upon inconsistencies in the current literature, exhibiting a minimum transformation start time of 40 min at temperatures between 500 °Cmore » and 510 °C. Lastly, the transformation kinetics of U – 8 wt% Mo can vary significantly from as-cast conditions after extensive heat treatments, due to homogenization of the typical dendritic microstructure which possesses non-negligible solute segregation.« less
The magnetic structure of Co(NCNH)₂ as determined by (spin-polarized) neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Senyshyn, Anatoliy
The magnetic structure of Co(NCNH)₂ has been studied by neutron diffraction data below 10 K using the SPODI and DNS instruments at FRM II, Munich. There is an intensity change in the (1 1 0) and (0 2 0) reflections around 4 K, to be attributed to the onset of a magnetic ordering of the Co²⁺ spins. Four different spin orientations have been evaluated on the basis of Rietveld refinements, comprising antiferromagnetic as well as ferromagnetic ordering along all three crystallographic axes. Both residual values and supplementary susceptibility measurements evidence that only a ferromagnetic ordering with all Co²⁺ spins parallelmore » to the c axis is a suitable description of the low-temperature magnetic ground state of Co(NCNH)₂. The deviation of the magnetic moment derived by the Rietveld refinement from the expectancy value may be explained either by an incomplete saturation of the moment at temperatures slightly below the Curie temperature or by a small Jahn–Teller distortion. - Graphical abstract: The magnetic ground state of Co(NCNH)₂ has been clarified by (spin-polarized) neutron diffraction data at low temperatures. Intensity changes below 4 K arise due to the onset of ferromagnetic ordering of the Co²⁺ spins parallel to the c axis, corroborated by various (magnetic) Rietveld refinements. Highlights: • Powderous Co(NCNH)₂ has been subjected to (spin-polarized) neutron diffraction. • Magnetic susceptibility data of Co(NCNH)₂ have been collected. • Below 4 K, the magnetic moments align ferromagnetically with all Co²⁺ spins parallel to the c axis. • The magnetic susceptibility data yield an effective magnetic moment of 4.68 and a Weiss constant of -13(2) K. • The ferromagnetic Rietveld refinement leads to a magnetic moment of 2.6 which is close to the expectancy value of 3.« less
Real time neutron diffraction and NMR of the Empress II glass-ceramic system.
O'Donnell, M D; Hill, R G; Karpukhina, N; Law, R V
2011-10-01
This study reports real time neutron diffraction on the Empress II glass-ceramic system. The commercial glass-ceramics was characterized by real time neutron diffraction, ³¹P and ²⁹Si solid-state MAS-NMR, DSC and XRD. On heating, the as-received glass ceramic contained lithium disilicate (Li₂Si₂O₅), which melted with increasing temperature. This was revealed by neutron diffraction which showed the Bragg peaks for this phase had disappeared by 958°C in agreement with thermal analysis. On cooling lithium metasilicate (Li₂SiO₃) started to form at around 916°C and a minor phase of cristobalite at around 852°C. The unit cell volume of both Li-silicate phases increased linearly with temperature at a rate of +17×10⁻³ ų.°C⁻¹. Room temperature powder X-ray diffraction (XRD) of the material after cooling confirms presence of the lithium metasilicate and cristobalite as the main phases and shows, in addition, small amount of lithium disilicate and orthophosphate. ³¹P MAS-NMR reveals presence of the lithiorthophosphate (Li₃PO₄) before and after heat treatment. The melting of lithium disilicate on heating and crystallisation of lithium metasilicate on cooling agree with endothermic and exotermic features respectively observed by DSC. ²⁹Si MAS-NMR shows presence of lithium disilicate phase in the as-received glass-ceramic, though not in the major proportion, and lithium metasilicate in the material after heat treatment. Both phases have significantly long T₁ relaxation time, especially the lithium metasilicate, therefore, a quantitative analysis of the ²⁹Si MAS-NMR spectra was not attempted. Significance. The findings of the present work demonstrate importance of the commercially designed processing parameters in order to preserve desired characteristics of the material. Processing the Empress II at a rate slower than recommended 60°C min⁻¹ or long isothermal hold at the maximal processing temperature 920°C can cause crystallization of lithium metasilicate and cristobalite instead of lithium disilicate as major phase. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, D. M.; Smirnov, Lev S; Kolesnikov, Alexander I
2013-01-01
The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and staticmore » orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.« less
Pressure-dependent structure of the null-scattering alloy Ti 0.676 Zr 0.324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeidler, Anita; Guthrie, Malcolm; Salmon, Philip S.
2015-05-13
The room temperature structure of the alloy Ti0.676Zr0.324Ti0.676Zr0.324 was measured by X-ray diffraction under compression at pressures up to ~30GPa. This alloy is used as a construction material in high pressure neutron-scattering research and has a mean coherent neutron scattering length of zero, that is, it is a so-called null-scattering alloy. A broad phase transition was observed from a hexagonal close-packed α-phase to a hexagonal ω-phase, which started at a pressure of ≲12GPa≲12GPa and was completed by ~25GPa. The data for the α-phase were fitted by using a third-order Birch–Murnaghan equation of state, giving an isothermal bulk modulus B0=87(4)GPaB0=87(4)GPa andmore » pressure derivative B'0=6.6(8)B0'=6.6(8). The results will help to ensure that accurate structural information can be gained from in situ high pressure neutron diffraction work on amorphous and liquid materials where the Ti0.676Zr0.324Ti0.676Zr0.324 alloy is used as a gasket material.« less
Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction
NASA Astrophysics Data System (ADS)
Chatterji, Tapan; Iles, Gail N.; Ouladdiaf, Bachir; Hansen, Thomas C.
2010-08-01
We have investigated the magnetoelastic effects in MF2 (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature TN by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μB, 4.05 ± 0.05 μB and 1.99 ± 0.05 μB per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF2 (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.
Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction.
Chatterji, Tapan; Iles, Gail N; Ouladdiaf, Bachir; Hansen, Thomas C
2010-08-11
We have investigated the magnetoelastic effects in MF(2) (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature T(N) by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μ(B), 4.05 ± 0.05 μ(B) and 1.99 ± 0.05 μ(B) per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF(2) (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.
Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films.
Li, Haoqi; Aulin, Yaroslav V; Frazer, Laszlo; Borguet, Eric; Kakodkar, Rohit; Feser, Joseph; Chen, Yan; An, Ke; Dikin, Dmitriy A; Ren, Fei
2017-03-01
Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. The largest room-temperature ZT of 2 × 10 -4 was obtained on samples heat-treated at 800 °C, which is higher than that of reduced graphene oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T. K.; Wu, Z.; Stoica, A. D.
The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less
Liu, T. K.; Wu, Z.; Stoica, A. D.; ...
2017-06-17
The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less
Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro
2016-01-11
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokharel, G.; May, A. F.; Parker, D. S.
In this paper, the physical properties of the spinel LiGaCr 4S 8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. Finally, these results indicate strong magnetoelastic coupling in LiGaCrmore » 4S 8.« less
Pokharel, G.; May, A. F.; Parker, D. S.; ...
2018-04-30
In this paper, the physical properties of the spinel LiGaCr 4S 8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. Finally, these results indicate strong magnetoelastic coupling in LiGaCrmore » 4S 8.« less
NASA Astrophysics Data System (ADS)
Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B.; Kuhs, W. F.
2011-12-01
Neutron diffraction has become a routine method in Geoscience for the quantitative analysis of crystallographic preferred orientations (CPOs) and for (experimental) powder diffraction. Quantitative texture analysis is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Furthermore the quantitative characterization of anisotropic physical properties by bulk texture measurements can be achieved due to the high penetration capabilities of neutrons. To cope with increasing needs for beam time at neutron diffraction facilities with the corresponding technical characteristics and equipment, POWTEX (POWder and TEXture Diffractometer) is designed as a high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast (texture) measurements for either time-resolved experiments or the measurement of larger sample series as necessary for the study of large scale geological structures. By utilizing a range of neutron wavelengths simultaneously (TOF-technique), a high flux (~1 x 107 n/cm2s) and a high detector coverage ( 9.8 sr) effective texture measurements without sample tilting and rotation are possible. Furthermore the instrument and the angular detector resolution is sufficient for strong recrystallisation textures as well as weak textures of polyphase rocks. Thereby large sample environments will be implemented at POWTEX allowing in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials. Furthermore a furnace for 3D-recrystallisation analysis of single grains will be realized complementary to the furnace that already exists for fine grained materials at the synchrotron beamline BW5 at HASYLAB, Germany (e.g. Klein et al. 2009). The in-situ triaxial deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 200 kN, which will be redesigned to minimize shadowing effects on the detector. The HT experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The furnace for the recrystallization analysis will be a mirror furnace with temperatures up to 1500° C, which will be rotatable around a vertical axis to obtain the required stereologic orientation information.
NASA Astrophysics Data System (ADS)
Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.
2018-06-01
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
Variation of Ionic Conductivity with Annealing Temperature in Argyrodite Solid Electrolytes
NASA Astrophysics Data System (ADS)
Rao, R. Prasada; Chen, Maohua; Adams, Stefan
2013-07-01
In situ neutron diffraction studies of argyrodite-type Li6PS5X (X = Cl, Br, I) were conducted for mechanically milled sample to reveal the formation and growth of crystalline phases. These studies indicated the formation of crystals in all the compounds started from as low as 80°C. The Rietveld refinements of the resulting crystalline phases at 150°C indicate the formation of the argyrodite structure. Structure refinements using high-intensity neutron diffraction provide insight into the influence of disorder on the fast ionic conductivity. Besides the disorder in the lithium distribution, it is the disorder in the S2-/Cl- or S2-/Br- distribution that we find to promote ion mobility. Among the samples studied Li6PS5Br, annealed at 250°C, exhibited the highest ionic conductivity, 1.05 × 10-3 S/cm at room temperature. An all solid state battery with Li4Ti5O12/Li6PS5Br/Li exhibited 57 mAh/g first discharge capacity at 75°C with 91% coulombic efficiency after 60 cycles.
Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe 3-xGeTe 2
May, Andrew F.; Calder, Stuart A.; Cantoni, Claudia; ...
2016-01-08
The magnetic structure and phase diagram of the layered ferromagnetic compound Fe 3GeTe 2 have been investigated by a combination of synthesis, x-ray and neutron diffraction, high-resolution microscopy, and magnetization measurements. Single crystals were synthesized by self-flux reactions, and single-crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)μ B/Fe aligned along the c axis at 4 K. These flux-grown crystals have a lower Curie temperature T c ≈ 150 K than crystals previously grown by vapor transport (T c = 220 K). The difference is a reduced Fe content in the flux-grown crystals, as illustrated by the behavior observedmore » in a series of polycrystalline samples. As Fe content decreases, so do the Curie temperature, magnetic anisotropy, and net magnetization. Furthermore, Hall-effect and thermoelectric measurements on flux-grown crystals suggest that multiple carrier types contribute to electrical transport in Fe 3–xGeTe 2 and structurally similar Ni 3–xGeTe 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Alexandru Dan
2011-01-01
Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, {approx}85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplasticstrain of {approx}5.5%, which is in agreement with measured macroscopic strain.
NASA Astrophysics Data System (ADS)
Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.
1997-08-01
The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; ...
2017-02-23
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less
NASA Astrophysics Data System (ADS)
Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.
2017-09-01
The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.
Phase Concentration Determination of Fe 16N 2 Using State of the Art Neutron Scattering Techniques
Bennett, S. P.; Feygenson, M.; Jiang, Y.; ...
2016-03-25
Limitation on the availability of rare earth elements have made it imperative that new high energy product rare earth free permanent magnet materials are developed for the next generation of energy systems. One promising low cost permanent magnet candidate for a high energy magnet is -Fe 16N 2, whose giant magnetic moment has been predicted to be well above any other from conventional first principles calculations. Despite its great promise, the phase is metastable; making synthesis of the pure phase difficult, resulting in less than ideal magnetic characteristics. This instability gives way to a slew of possible secondary phases (i.e.more » -Fe, Fe 2O 3, Fe 8N, Fe 4N ) whose concentrations are difficult to detect by conventional x-ray diffraction. Moreover, we show how high resolution neutron diffraction and polarized neutron reflectometry can be used to extract the phase concentration ratio of the giant magnetic phase from ultra-small powder sample sizes (~0.1g) and thin films. These studies have led to the discovery of promising fabrication methods for both homogeneous thin films, and nanopowders containing the highest reported to date (>95%) phase concentrations of room temperature stable -Fe 16N 2.« less
Synthesis and characterization of Ca-doped LaMnAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Straszheim, Warren E.; Das, Pinaki
Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less
Synthesis and characterization of Ca-doped LaMnAsO
Liu, Yong; Straszheim, Warren E.; Das, Pinaki; ...
2018-05-18
Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less
Successive field-induced transitions in BiFeO 3 around room temperature
Kawachi, Shiro; Miyake, Atsushi; Ito, Toshimitsu; ...
2017-07-21
The effects of high magnetic fields applied perpendicular to the spontaneous ferroelectric polarization on single crystals of BiFeO 3 were investigated in this paper through magnetization, magnetostriction, and neutron diffraction measurements. The magnetostriction measurements revealed lattice distortion of 2 x 10 -5 during the reorientation process of the cycloidal spin order by applied magnetic fields. Furthermore, anomalous changes in magnetostriction and electric polarization at a larger field demonstrate an intermediate phase between cycloidal and canted antiferromagnetic states, where a large magnetoelectric effect was observed. Neutron diffraction measurements clarified that incommensurate spin modulation along the [110] hex direction in the cycloidalmore » phase becomes Q = 0 commensurate along this direction in the intermediate phase. Finally, theoretical calculations based on the standard spin Hamiltonian of this material suggest an antiferromagnetic cone-type spin order in the intermediate phase.« less
Radiation-induced amorphization of Langasite La3Ga5SiO14
NASA Astrophysics Data System (ADS)
Yao, Tiankai; Lu, Fengyuan; Zhang, Haifeng; Gong, Bowen; Ji, Wei; Zuo, Lei; Lian, Jie
2018-03-01
Single crystals of Langasite La3Ga5SiO14 (LGS) were irradiated by 1 MeV Kr2+ ions at temperature range from 298 to 898 K in order to simulate the damage effect of neutron radiation on Langasite, a candidate sensor material proposed as high temperature and pressure sensors in nuclear reactors. The microstructure evolution of LGS as functions of irradiation dose and temperature was followed by in-situ TEM observation through electron diffraction pattern. LGS is found to be sensitive to ion beam irradiation-induced amorphization from displacive heavy ions with a low critical dose of ∼0.5 ± 0.2 dpa (neutron fluence of (1.6 ± 0.6) × 1019 neutrons/cm2) at room temperature. The critical amorphization temperature, Tc, is determined to be 910 ± 10 K. Under simultaneous ionizing electron (300 keV, 45 nA) and displacive heavy ion irradiations (1-MeV Kr2+ and flux of 6.25 × 1011 ions/cm2·s), LGS displayed greater stability of crystal structure against amorphization, possibly due to the electron radiation-induced recovery of displacive damage by heavy ions.
Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers
NASA Astrophysics Data System (ADS)
Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.
2005-08-01
The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.
Microstructural evolution of neutron irradiated 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural evolution of neutron irradiated 3C-SiC
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...
2017-03-18
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
High performance aluminum–cerium alloys for high-temperature applications
Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...
2017-08-01
Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less
Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A
2016-03-01
Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.
Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P
2017-10-01
The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khidirov, I., E-mail: khidirov@inp.uz
2015-09-15
The kinetics of formation and growth of ordered antiphase domains (APDs) in titanium carbohydride TiC{sub 0.50}H{sub 0.21} has been investigated by neutron diffraction. A model of ordered APDs is proposed. It is established that the pronounced ordering of interstitial atoms and APDs begin at 450°C. It is shown that the period of ordered APDs (P ≈ 10–12) is independent of the exposure time at a constant temperature. It is found that the temperature of ordered APDs, T{sub OAPD}, increases nonlinearly with an increase in the carbon concentration in the range 0.50 ≤ C/Ti ≤ 0.70. The formation temperature of orderedmore » APDs is found to correlate with the concentration dependence of the order–disorder transition temperature and be 0.60 of the order–disorder transition temperature: T{sub APD} = 0.60Τ{sub C}.« less
NASA Astrophysics Data System (ADS)
Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.
2017-08-01
Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...
2016-12-30
The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less
Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...
2014-12-24
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less
NASA Astrophysics Data System (ADS)
Smith, A. L.; Kauric, G.; van Eijck, L.; Goubitz, K.; Wallez, G.; Griveau, J.-C.; Colineau, E.; Clavier, N.; Konings, R. J. M.
2017-09-01
The structure of α-Cs2Mo2O7 (monoclinic in space group P21 / c), which can form during irradiation in fast breeder reactors in the space between nuclear fuel and cladding, has been refined in this work at room temperature from neutron diffraction data. Furthermore, the compounds' thermal expansion and polymorphism have been investigated using high temperature X-ray diffraction combined with high temperature Raman spectroscopy. A phase transition has been observed at Ttr(α → β)=(621.9±0.8) K using Differential Scanning Calorimetry, and the structure of the β-Cs2Mo2O7 phase, orthorhombic in space group Pbcm, has been solved ab initio from the high temperature X-ray diffraction data. Furthermore, the low temperature heat capacity of α-Cs2Mo2O7 has been measured in the temperature range T=(1.9-313.2) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The heat capacity and entropy values at T=298.15 K have been derived as Cp,mo (Cs2Mo2O7 , cr , 298.15 K) = (211.9 ± 2.1) J K-1mol-1 and Smo (Cs2Mo2O7 , cr , 298.15 K) = (317.4 ± 4.3) J K-1mol-1 . When combined with the enthalpy of formation reported in the literature, these data yield standard entropy and Gibbs energy of formation as Δf Smo (Cs2Mo2O7 , cr , 298.15 K) = - (628.2 ± 4.4) J K-1mol-1 and Δf Gmo (Cs2Mo2O7 , cr , 298.15 K) = - (2115.1 ± 2.5) kJmol-1 . Finally, the cesium partial pressure expected in the gap between fuel and cladding following the disproportionation reaction 2Cs2MoO4=Cs2Mo2O7+2Cs(g)+ 1/2 O2(g) has been calculated from the newly determined thermodynamic functions.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel
NASA Astrophysics Data System (ADS)
Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.
2018-05-01
Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.
Neutron diffraction, specific heat and magnetization studies on Nd{sub 2}CuTiO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayaprol, S., E-mail: sudhindra@csr.res.in; Kaushik, S. D.; Kumar, Naresh
2016-05-23
Structural and physical properties of a double-perovskite compound, Nd{sub 2}CuTiO{sub 6} have been studied using neutron diffraction, magnetization and specific heat measurements. The compound crystallizes in an orthorhombic structure in space group Pnma. The interesting observation we make here is that, though no long range magnetic order is observed between 2 and 300 K, the low temperature specific heat and magnetic susceptibility behavior exhibits non-Fermi liquid like behavior in this insulating compound. The magnetization and specific heat data are presented and discussed in light of these observations.
Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses
Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; ...
2015-05-12
Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less
The discovery of robust magnetism in a technetium oxide: The structure of CaTcO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeev, Maxim; Thorogood, Gordon J.; Carter, Melody L.
The technetium perovskite CaTcO{sub 3} has been synthesized. Combining synchrotron X-ray and neutron diffraction, we found that CaTcO{sub 3} is an antiferromagnetic with a surprisingly high Neel temperature of 800 K. The transition to the magnetic state does not involve a structural change, but there is obvious magnetostriction. Electronic structure calculations confirm the experimental results.
Structure evolution and thermoelectric properties of carbonized polydopamine thin films
Li, Haoqi; Aulin, Yaroslav V.; Frazer, Laszlo; ...
2017-02-13
Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. Finally, the largest room-temperature ZT of 2 × 10 –4 was obtained on samples heat-treated at 800 °C, which is higher than that of reducedmore » graphene oxide.« less
Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron
Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April
Quantitative analysis of thoria phase in Th-U alloys using diffraction studies
NASA Astrophysics Data System (ADS)
Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.
2017-05-01
In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.
NASA Astrophysics Data System (ADS)
Périgo, Élio A.; Titov, Ivan; Weber, Raoul; Mettus, Denis; Peral, Inma; Vallcorba, Oriol; Honecker, Dirk; Feoktystov, Artem; Michels, Andreas
2018-03-01
We have investigated the effect of the annealing conditions (heating rate and temperature) on the magnetic microstructure of sintered Nd-Fe-B magnets by means of magnetometry, scanning electron microscopy, high-energy synchrotron x-ray diffraction, and small-angle neutron scattering (SANS). While the temperature treatment has a strong effect on the coercivity (reduction by about 50% on annealing), the associated changes in the microstructure do surprisingly not show up (or at best only very weakly) in the neutron-scattering signal, which probes a mesoscopic real-space length scale ranging between about 1–300 nm. On the other hand, the x-ray data reveal microstructural changes in the Nd-rich phases, presumably due to modifications in grain-boundary regions. Moreover, we observe an unusual diamond-shaped angular anisotropy in the SANS cross section, which strongly points towards the existence of texture in the nuclear microstructure.
Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos santos-Garcia, A.J., E-mail: adossant@quim.ucm.es; Climent-Pascual, E.; Gallardo-Amores, J.M.
The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagneticmore » interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet. Black-Right-Pointing-Pointer The paper will be a great contribution in the study of 3d-4f magnetic interactions.« less
Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; ...
2015-10-21
Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitatesmore » that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.« less
Non-congruence of high-temperature mechanical and structural behaviors of LaCoO 3 based perovskites
Aman, Amjad; Jordan, Ryan; Chen, Yan; ...
2016-11-29
Our paper presents the mechanical behavior of LaCoO 3 and La 0.8Ca 0.2CoO3 ceramics under four-point bending in which the two cobaltites are subjected to a low stress of ~8 MPa at temperatures ranging from room temperature to 1000 °C. Unexpected stiffening is observed in pure LaCoO 3 in the 700–900 °C temperature range, leading to a significant increase in the measured Young’s modulus, whereas La 0.8Ca 0.2CoO 3 exhibits softening from 100 °C to 1000 °C, as expected for most materials upon heating. we use neutron diffraction, X-ray diffraction and micro-Raman spectroscopy to study the crystal structure of themore » two materials in the RT–1000 °C temperature range. Despite a detailed study, there is no conclusive evidence to explain the stiffening behavior observed in pure LaCoO 3 as opposed to the softening behavior in La 0.8Ca 0.2CoO 3 at high temperatures (above 500 °C).« less
Instrument and method for focusing X-rays, gamma rays and neutrons
Smither, Robert K.
1984-01-01
A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.
Instrument and method for focusing x rays, gamma rays, and neutrons
Smither, R.K.
1982-03-25
A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.
NASA Astrophysics Data System (ADS)
Pietropaolo, A.; Claps, G.; Fedrigo, A.; Grazzi, F.; Höglund, C.; Murtas, F.; Scherillo, A.; Schmidt, S.; Schooneveld, E. M.
2018-03-01
The upgraded version of the GEM side-on thermal neutron detector was successfully tested in a neutron diffraction experiment on a reference sample using the INES diffractometer at the ISIS spallation neutron source, UK. The performance of the new 10B4C-based detector is compared to that of a standard 3He tube, operating at the instrument as a part of the detectors assembly. The results show that the upgraded detector has a better resolution and an efficiency of the same order of magnitude of a 3He-based detector.
Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M = Mn and Zn)
NASA Astrophysics Data System (ADS)
Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Ohoyama, Kenji
2009-01-01
Crystal structures and magnetic properties of quaternary oxides MTeMoO6 (M = Mn and Zn) were investigated. From the Rietveld analyses for the powder x-ray and neutron diffraction measurements, their detailed structures have been determined. Both compounds have orthorhombic structure with space group P 21212 and a charge configuration of M2+Te4+Mo6+O6. ZnTeMoO6 shows diamagnetic behavior. In this structure, M ions are arranged in a square-planar manner. The temperature dependence of the magnetic susceptibility for MnTeMoO6 shows a broad peak at ~33 K, which is due to a two-dimensional characteristic of the magnetic interaction. In addition, this compound shows an antiferromagnetic transition at 20 K. The magnetic structure was determined by the powder neutron diffraction measurement at 3.3 K. The magnetic moments of Mn2+ ions (4.45 μB) order in a collinear antiferromagnetic arrangement along the b axis.
Neutron diffraction study of the in situ oxidation of UO(2).
Desgranges, Lionel; Baldinozzi, Gianguido; Rousseau, Gurvan; Nièpce, Jean-Claude; Calvarin, Gilbert
2009-08-17
This paper discusses uranium oxide crystal structure modifications that are observed during the low-temperature oxidation which transforms UO(2) into U(3)O(8). The symmetries and the structural parameters of UO(2), beta-U(4)O(9), beta-U(3)O(7), and U(3)O(8) were determined by refining neutron diffraction patterns on pure single-phase samples. Neutron diffraction patterns were also collected during the in situ oxidation of powder samples at 483 K. The lattice parameters and relative ratios of the four pure phases were measured during the progression of the isothermal oxidation. The transformation of UO(2) into U(3)O(8) involves a complex modification of the oxygen sublattice and the onset of complex superstructures for U(4)O(9) and U(3)O(7), associated with regular stacks of complex defects known as cuboctahedra, which consist of 13 oxygen atoms. The kinetics of the oxidation process are discussed on the basis of the results of the structural analysis.
Magnetic order in the frustrated Ising-like chain compound Sr3NiIrO6
NASA Astrophysics Data System (ADS)
Lefrançois, E.; Chapon, L. C.; Simonet, V.; Lejay, P.; Khalyavin, D.; Rayaprol, S.; Sampathkumaran, E. V.; Ballou, R.; Adroja, D. T.
2014-07-01
We have studied the field and temperature dependencies of the magnetization of single crystals of Sr3NiIrO6. These measurements evidence the presence of an easy axis of anisotropy and two anomalies in the magnetic susceptibility. Neutron powder diffraction realized on a polycrystalline sample reveals the emergence of magnetic reflections below 75 K with magnetic propagation vector k ˜ (0, 0, 1), undetected in previous neutron studies [T. N. Nguyen and H.-C. zur Loye, J. Solid State Chem. 117, 300 (1995), 10.1006/jssc.1995.1277]. The nature of the magnetic ground state, and the presence of two anomalies common to this family of material, are discussed on the basis of the results obtained by neutron diffraction, magnetization measurements, and symmetry arguments.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, Peter; Zhang, Fan; Zhang, Chuan
2016-07-30
To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The Al xCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC)more » + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in Al xCoCrFeNi HEAs. There are mainly three structural features in Al xCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al 0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al 0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al 0.1CoCrFeNi and Al 0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al 0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al 0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.« less
High-resolution neutron-diffraction measurements to 8 kbar
NASA Astrophysics Data System (ADS)
Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.
2017-10-01
We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.
2015-11-15
High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir
We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed tomore » two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.« less
Popuri, Srinivasa R; Redpath, Debbie; Chan, Gavin; Smith, Ronald I; Cespedes, Oscar; Bos, Jan-Willem G
2015-06-21
Structure analysis using X-ray and neutron powder diffraction and elemental mapping has been used to demonstrate that nominal A-site deficient Sr(2-x)FeMoO(6-δ) (0 ≤x≤ 0.5) compositions form as Mo-rich Sr(2)Fe(1-y)Mo(1+y)O(6) (0 ≤y≤ 0.2) perovskites at high temperatures and under reducing atmospheres. These materials show a gradual transition from the Fe and Mo rock salt ordered double perovskite structure to a B-site disordered arrangement. Analysis of the fractions of B-O-B' linkages revealed a gradual increase in the number of Mo-O-Mo linkages at the expense of the ferrimagnetic (FIM) Fe-O-Mo linkages that dominate the y = 0 material. All samples contain about 10-15% antiferromagnetic (AF) Fe-O-Fe linkages, independent of the degree of B-site ordering. The magnetic susceptibility of the y = 0.2 sample is characteristic of a small domain ferrimagnet (T(c)∼ 250 K), while room temperature neutron powder diffraction demonstrated the presence of G-type AF ordering linked to the Fe-O-Fe linkages (m(Fe) = 1.25(7)μ(B)). The high temperature thermoelectric properties are characteristic of a metal with a linear temperature dependence of the Seebeck coefficient, S (for all y) and electrical resistivity ρ (y≥ 0.1). The largest thermoelectric power factor S(2)/ρ = 0.12 mW m(-1) K(-1) is observed for Sr(2)FeMoO(6) at 1000 K.
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.
2015-01-01
The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().
Interpretation of small-angle diffraction experiments on opal-like photonic crystals
NASA Astrophysics Data System (ADS)
Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.
2011-08-01
Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj
2018-04-01
The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298–220 K). We interpret this change in terms of the dynamic transition previously discussed using othermore » probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.« less
NASA Astrophysics Data System (ADS)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-01
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Yoshida, Koji; Baron, Alfred Q R; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-07
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn 1 + δ Sb
Taylor, Alice E.; Berlijn, Tom; Hahn, Steven E.; ...
2015-06-15
We repormore » t elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn 1 + δ Sb . Measurements were performed on a large, T C = 434 K, single crystal with interstitial Mn content of δ ≈ 0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (H K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. Finally, the results show that the influence of the interstitial Mn on the magnetic state in this system is more important than previously understood.« less
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Sikolenko, Vadim
2004-09-01
The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.
Instrument and method for focusing x rays, gamma rays, and neutrons
Smither, R.K.
1981-04-20
A crystal diffraction instrument is described which has an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques.
NASA Astrophysics Data System (ADS)
Maruyama, Shingo; Anbusathaiah, Varatharajan; Fennell, Amy; Enderle, Mechthild; Takeuchi, Ichiro; Ratcliff, William D.
2014-11-01
We report on the evolution of the magnetic structure of BiFeO3 thin films grown on SrTiO3 substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.
Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction
NASA Astrophysics Data System (ADS)
Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.
2018-05-01
The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.
Spin-liquid ground state in the frustrated J 1 - J 2 zigzag chain system BaTb 2 O 4
Aczel, A. A.; Li, L.; Garlea, V. O.; ...
2015-07-13
We have investigated polycrystalline samples of the zigzag chain system BaTb 2O 4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb 3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb 2O 4.
Neutron diffraction studies of some rare earth-transition metal deuterides
NASA Astrophysics Data System (ADS)
James, W. J.
1984-04-01
Neutron diffraction studies of the ternary alloy system Y6(Fel-xMnx)23 reveal that the unusual magnetic behavior upon substitution of Mn or Fe into the end members, is a consequence of atomic ordering wherein there is strong site preference of Mn for the f sub 2 sites and of Fe for the f sub 1 sites. In the Mn-rich compositions, Fe is found to have no spontaneous moments. Therefore, the long range magnetic ordering arises solely from Mn-Mn interactions. Upon substitution of Mn into the Fe-rich ternaries, the Fe moments are considerably reduced. Neutron diffraction studies of Y6Mn23D23 show that a transition occurs below 180K from a fcc structure to a primitive tetragonal structure, space group P4/mmm with the onset of antiferromagnetic ordering. The Mn moments are directed along the c-axis. The transition probably results from atomic ordering of the D atoms at low temperature which induces c axis magnetic ordering. The question of the appropriate space group of LaNi4.5Al0.5D4.5, P6/mmm or P3/m has been resolved by a careful refinement and analysis of neutron diffraction data. The preferred space group is P6/mmm. Neutron powder diffraction and thermal magnetization measurements on small single crystals of ErNi3, ErCo3, and ErFe3 (space group R3m) show that the magnetocrystalline properties are a consequence of competing local site anisotropies between the two non-equivalent crystallographic sites of Er and two of the three non-equivalent sites of the 3d-transition metal.
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...
2016-12-01
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction
NASA Astrophysics Data System (ADS)
Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua
2012-02-01
Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Rodriguez, E. E.; Gao, J.
2014-11-17
We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less
Phase transformations in amorphous fullerite C60 under high pressure and high temperature
NASA Astrophysics Data System (ADS)
Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.
2015-08-01
First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.
A high-temperature neutron diffraction study of Nb 2AlC and TiNbAlC
Bentzel, Grady W.; Lane, Nina J.; Vogel, Sven C.; ...
2014-12-16
In this paper, we report on the crystal structures of Nb 2AlC and TiNbAlC actual composition (Ti 0.45,Nb 0.55) 2AlC compounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173 K temperature range. The average linear thermal expansion coefficients of a Nb 2AlC sample in the a and c directions are, respectively, 7.9(5)x10 -6 K -1 and 7.7(5)x10 -6 K -1 on one neutron diffractometer and 7.3(3)x10 -6 K -1 and 7.0(2)x10 -6 K -1 on a second diffractometer. The respective values for the (Ti 0.45,Nb 0.55) 2AlC composition - only tested on one diffractometer - are 8.5(3)x10more » -6 K -1 and 7.5(5)x10 -6 K -1. These values are relatively low compared to other MAX phases. Like other MAX phases, however, the atomic displacement parameters show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and 1 more along the basal planes than normal to them. In addition, when the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative.« less
Empirically testing vaterite structural models using neutron diffraction and thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan
Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less
Empirically testing vaterite structural models using neutron diffraction and thermal analysis
Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan; ...
2016-11-18
Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less
Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K
2017-04-07
The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.
NASA Astrophysics Data System (ADS)
Alam, Khan
As a part of my Ph.D research, initially I was involved in construction and calibration of an ultra-high vacuum thin film facility, and later on I studied structural, electronic, and magnetic properties of GaN, CrN, Fe/CrN bilayers, and Fe islands on CrN thin films. All of these films were grown by molecular beam epitaxy and characterized with a variety of state-of-the-art techniques including variable temperature reflection high energy electron diffraction, low temperature scanning tunneling microscopy and spectroscopy, variable temperature vibrating sample magnetometry, variable temperature neutron diffraction and reflectometry, variable temperature x-ray diffraction, x-ray reflectometry, Rutherford backscattering, Auger electron spectroscopy, and cross-sectional tunneling electron microscopy. The experimental results are furthermore understood by comparing with numerical calculations using generalized gradient approximation, local density approximation with Hubbard correction, Refl1D, and data analysis and visual environment program. In my first research project, I studied Ga gas adatoms on GaN surfaces. We discovered frozen-out gallium gas adatoms on atomically smooth c(6x12) GaN(0001¯) surface using low temperature scanning tunneling microscopy. We identified adsorption sites of the Ga adatoms on c(6x12) reconstructed surface. Their bonding is determined by measuring low unoccupied molecular orbital level. Absorption sites of the Ga gas adatoms on centered 6x12 are identified, and their asymmetric absorption on the chiral domains is investigated. In second project, I investigated magneto-structural phase transition in chromium nitride (CrN) thin films. The CrN thin films are grown by molecular beam epitaxy. Structural and magnetic transition are studied using variable temperature reflection high energy electron diffraction and variable temperature neutron diffraction. We observed a structural phase transition at the surface at 277+/-2 K, and a sharp, first-order magnetic phase transition from paramagnetic (room temperature) to antiferromagnetic (low temperature) at 280+/-3 K. Our experiments suggest that the structural transition in CrN thin films occur in out-of-plane direction, and epitaxial constraints suppress the in-plane transition; therefore, the low temperature crystal structure of CrN is tetragonal. This new model explains our structural and magnetic data at low temperatures, but it is different than the previously published orthorhombic model. In third project, I studied exchange bias and exchange spring effect in MBE grown Fe/CrN bilayer thin films. We grew Fe/CrN bilayer thin films on MgO(001) substrate by molecular beam epitaxy, and studied them using variable temperature vibrating sample magnetometry, polarized neutron reflectometry, x-ray reflectivity, and cross-sectional transmission electron microscopy. We observed exchange bias and exchange spring effect in all bilayer thin films. We studied the relationship of exchange bias, blocking temperature, and coercivity with Fe and CrN layers thicknesses. We used polarized neutron beam reflectometry to see if spins at Fe/CrN interface are pinned. We found a thin ferromagnetically ordered CrN layer at the interface. In my final project, I studied growth of submonolayer Fe islands on CrN thin films. These films are prepared in two stages: first, a CrN layer is grown by MBE and then a submonolayer Fe is deposited at room temperature from a carefully degassed e-beam evaporator. The films are studied at liquid helium temperature using low temperature scanning tunneling microscopy and spectroscopy. Islands are seen in STM images, after the Fe deposition, at the edges as well as at the center of atomically flat CrN terraces. However, numerical calculations performed by our collaborator Ponce-P'erez from Benem'erita Universidad Aut'onoma de Puebla show that the Fe islands are energetically unstable on the surface. The Fe atoms substitute Cr atoms in the surface layer and the Cr atoms comes out and form islands. In order to find out elemental composition of the islands, we attempted to map local density of state by measuring differential conductance spectra as a function of bias voltage using LT-STS. We observed three characteristically different spectra; one in the CrN substrate and two in the islands. The CrN substrate curve has a "U" shape near Fermi level and a peak at ≈ 105 mV. The islands spectra show Kondo-like resonances at Fermi level; some islands produce a peak whereas others produce a dip the dI/dV curves near Fermi level. Further investigations are needed to determine the origin of the peak and dip in the island curves, as well as to find the composition of the islands.
NASA Astrophysics Data System (ADS)
Krishnan, Vinu B.
Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the Rietveld technique. The mechanical characterization of NiTiFe alloys using the cryogenic capability at SMARTS provided considerable insight into the mechanisms of phase transformation and twinning at cryogenic temperatures. Both mechanisms contribute to shape memory and pseudoelasticity phenomena. Three phases (R, B19' and B33 phases) were found to coexist at 92 K in the unloaded condition (nominal holding stress of 8 MPa). For the first time the elastic modulus of R-phase was reported from neutron diffraction experiments. Furthermore, for the first time a base-centered orthorhombic (B33) martensitic phase was identified experimentally in a NiTi-based shape memory alloy. The orthorhombic B33 phase has been theoretically predicted in NiTi from density function theory (DFT) calculations but hitherto has never been observed experimentally. The orthorhombic B33 phase was observed while observing shifting of a peak (identified to be {021}B33) between the {111}R and {100}B19' peaks in the diffraction spectra collected during loading. Given the existing ambiguity in the published literature as to whether the trigonal R-phase belongs to the P3 or P3¯ space groups, Rietveld analyses were separately carried out incorporating the symmetries associated with both space groups and the impact of this choice evaluated. The constrained recovery of the B19' phase to the R-phase recorded approximately 4% strain recovery between 150 K and 170 K, with half of that recovery occurring between 160 K and 162 K. Additionally, the aforementioned research methodology developed for Ni46.8Ti50Fe3.2 shape memory alloys was applied to experiments performed on a new high temperature Ni 29.5Ti50.5Pd20 shape memory alloys. The engineering aspect focused on the development of (i) a NiTiFe based thermal conduction switch that minimized the heat gradient across the shape memory actuator element, (ii) a NiTiFe based thermal conduction switch that incorporated the actuator element in the form of helical springs, and (iii) a NiTi based release mechanism. Patents are being filed for all the three shape memory actuators developed as a part of this work. This work was supported by grants from SRI, NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF. Additionally, this work benefited from the use of the Lujan Center at the Los Alamos Neutron Science Center, funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36.
NASA Astrophysics Data System (ADS)
Vagadia, Megha; Hester, James; Nigam, A. K.
2018-04-01
We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.
Synthesis and study on the luminescence properties of cadmium borate phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annalakshmi, O.; Jose, M.T., E-mail: mtjosein@yahoo.co.in; Venkatraman, B.
2014-02-01
Highlights: • Cadmium borate synthesized by solid state sintering technique. • Neutron sensitivity of the material ten times that of TLD-600. • Gamma sensitivity is found to be twice that of TLD-100. • Gamma response is linear from 0.1 to 10{sup 3} mGy. - Abstract: Cadmium borate compound prepared through wet chemical reaction from the starting chemicals followed by high temperature solid state synthesis below the melting point to get the final TL phosphor powder. Phase purity and bond details of cadmium borate crystals are characterized using X-ray diffraction technique and infrared spectroscopy. Feasibility of these materials for radiation dosimetrymore » applications was studied after gamma and neutron irradiation. Gamma irradiation of undoped phosphors show a single peak around 185 °C whereas doping with gadolinium and silver, new more intense peak observed at 290 °C. Irradiation to thermal neutrons revealed single peak around 170 °C for all the phosphors. TL emission spectra and photoluminescence (PL) studies were also carried out on the phosphors. These borate materials are found to be highly sensitive to neutrons and hence can be used for neutron detection. Neutron sensitivity of the material is about ten times that of TLD-600.« less
Using Neutron Diffraction to Determine the Low-Temperature Behavior of Pb2+ in Lead Feldspar
NASA Astrophysics Data System (ADS)
Kolbus, L. M.; Anovitz, L. M.; Chakoumackos, B. C.; Wesolowski, D. J.
2014-12-01
Feldspar minerals comprise 60% of the Earth's crust, so it imperative that the properties of feldspar be well understood for seismic modeling. The structure of feldspar consists of a three-dimensional framework of strongly-bonded TO4 tetrahedra formed by the sharing of oxygen atoms between tetrahedra. The main solid solution series found in natural feldspars are alkali NaAlSi3O8 -KAlSi3O8 and plagioclase CaAl2Si2O8-NaAlSi3O8. Recently, efforts have been made to systematically quantify feldspars structural change at non-ambient temperatures by considering only the relative tilts of the tetrahedral framework [1]. This serves as a tool to predict various behaviors of the structure such as the relative anisotropy of unit cell parameters and volume evolution with composition and temperature. Monoclinic feldspars are well predicted by the model [1], but discrepancies still remain between the model predictions and real structures with respect to absolute values of the unit cell parameters. To improve the existing model, a modification must be made to account for the M-cation interaction with its surrounding oxygen atoms. We have, therefore, chosen to study the structure of Pb-feldspar (PbAl2Si2O8), which provides the opportunity to characterize a monoclinic Al2Si2 feldspar containing a large M-site divalent cation using neutron diffraction. Neutron diffraction allows for the characterization of the M-site cation interaction between the oxygen atoms in the polyhedral cage by providing information to accurately determine the atomic displacement parameters.. Lead feldspar was synthesized for this study using the method described in [2], and confirmed to have a monoclinic C2/m space group. In this talk we will present structural determinations and atomic displacement parameters of Pb-feldspar from 10 - 300K generated from Neutron diffraction at the POWGEN beamline at the Spallation Neutron Source at Oak Ridge National lab, and compare our results to those predicted by the tetrahedral tilting model. [1] Angel, R.J. Ross, N.L, Zhao, J, Sochalski-Kolbus, L., Kruger, H., Schmidt, B.C. (2013) European Journal of Mineralogy, 25: 597-614. [2] Benna, P., Tribaudino, M., Bruno, E. (1996) American Mineralogist, 81: 1337-1343.
Characterization of Oxygen Defect Clusters in UO2+ x Using Neutron Scattering and PDF Analysis.
Ma, Yue; Garcia, Philippe; Lechelle, Jacques; Miard, Audrey; Desgranges, Lionel; Baldinozzi, Gianguido; Simeone, David; Fischer, Henry E
2018-06-18
In hyper-stoichiometric uranium oxide, both neutron diffraction work and, more recently, theoretical analyses report the existence of clusters such as the 2:2:2 cluster, comprising two anion vacancies and two types of anion interstitials. However, little is known about whether there exists a region of low deviation-from-stoichiometry in which defects remain isolated, or indeed whether at high deviation-from-stoichiometry defect clusters prevail that contain more excess oxygen atoms than the di-interstitial cluster. In this study, we report pair distribution function (PDF) analyses of UO 2 and UO 2+ x ( x ≈ 0.007 and x ≈ 0.16) samples obtained from high-temperature in situ neutron scattering experiments. PDF refinement for the lower deviation from stoichiometry sample suggests the system is too dilute to differentiate between isolated defects and di-interstitial clusters. For the UO 2.16 sample, several defect structures are tested, and it is found that the data are best represented assuming the presence of center-occupied cuboctahedra.
Low temperature magnetic properties of Nd2Ru2O7
NASA Astrophysics Data System (ADS)
Ku, S. T.; Kumar, D.; Lees, M. R.; Lee, W.-T.; Aldus, R.; Studer, A.; Imperia, P.; Asai, S.; Masuda, T.; Chen, S. W.; Chen, J. M.; Chang, L. J.
2018-04-01
We present magnetic susceptibility, heat capacity, and neutron diffraction measurements of polycrystalline Nd2Ru2O7 down to 0.4 K. Three anomalies in the magnetic susceptibility measurements at 146, 21 and 1.8 K are associated with an antiferromagnetic ordering of the Ru4+ moments, a weak ferromagnetic signal attributed to a canting of the Ru4+ and Nd3+ moments, and a long-range-ordering of the Nd3+ moments, respectively. The long-range order of the Nd3+ moments was observed in all the measurements, indicating that the ground state of the compound is not a spin glass. The magnetic entropy of Rln2 accumulated up to 5 K, suggests the Nd3+ has a doublet ground state. Lattice distortions accompany the transitions, as revealed by neutron diffraction measurements, and in agreement with earlier synchrotron x-ray studies. The magnetic moment of the Nd3+ ion at 0.4 K is estimated to be 1.54(2)µ B and the magnetic structure is all-in all-out as determined by our neutron diffraction measurements.
New in-situ neutron diffraction cell for electrode materials
NASA Astrophysics Data System (ADS)
Biendicho, Jordi Jacas; Roberts, Matthew; Offer, Colin; Noréus, Dag; Widenkvist, Erika; Smith, Ronald I.; Svensson, Gunnar; Edström, Kristina; Norberg, Stefan T.; Eriksson, Sten G.; Hull, Stephen
2014-02-01
A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the β-phase (charged) MH electrode obtained by Rietveld refinement are presented.
The early development of neutron diffraction: science in the wings of the Manhattan Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, T. E., E-mail: masont@ornl.gov; Gawne, T. J.; Nagler, S. E.
2013-01-01
Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quitemore » independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.« less
Texture analysis of Napoleonic War Era copper bolts
NASA Astrophysics Data System (ADS)
Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter; Kelleher, Joe
2016-04-01
Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.
Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...
2014-11-28
The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.
1994-12-31
Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon
2016-10-18
This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to the process and analysis can be made, and neutron diffraction can become a viable and efficient technique for gamma/alpha phase composition determination for nuclear fuels.« less
NASA Astrophysics Data System (ADS)
Xu, Nan-Nan; Li, Gong-Ping; Pan, Xiao-Dong; Wang, Yun-Bo; Chen, Jing-Sheng; Bao, Liang-Man
2014-10-01
Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D—D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.
Neutron diffraction investigation of γ manganese hydride
NASA Astrophysics Data System (ADS)
Fedotov, V. K.; Antonov, V. E.; Kolesnikov, A. I.; Beskrovnyi, A. I.; Grosse, G.; Wagner, F. E.
1998-08-01
A profile analysis of the neutron diffraction spectrum of the fcc high pressure hydride λ-MnH 0.41 measured under ambient conditions showed that hydrogen is randomly distributed over the octahedral interstices of the fcc metal lattice and that the hydride is an antiferromagnet with the same collinear spin structure as pure λ-Mn, but with a smaller magnetic moment of about 1.9 Bohr magnetons per Mn atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiangman; Dong, Xiao; Wang, Yajie
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Moreover, following this route produces a pure cis-isomer and more surprisingly, predictsmore » that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.« less
Structural molecular biology: Recent results from neutron diffraction
NASA Astrophysics Data System (ADS)
Timmins, Peter A.
1995-02-01
Neutron diffraction is of importance in structural biology at several different levels of resolution. In most cases the unique possibility arising from deuterium labelling or contrast variation is of fundamental importance in providing information complementary to that which can be obtained from X-ray diffraction. At high resolution, neutron crystallography of proteins allows the location of hydrogen atoms in the molecule or of the hydration water, both of which may be central to biological activity. A major difficulty in this field has been the poor signal-to-noise ratio of the data arising not only from relatively low beam intensities and small crystals but, most importantly from the incoherent background due to hydrogen atoms in the sample. Modern methods of molecular biology now offer ways of producing fully deuterated proteins by cloning in bacteria grown on fully deuterated media. At a slightly lower resolution, there are a number of systems which may be ordered in one or two dimensions. This is the case in the purple membrane where neutron diffraction with deuterium labelling has complemented high resolution electron diffraction. Finally there is a class of very large macromolecular systems which can be crystallised and have been studied by X-ray diffraction but in which part of the structure is locally disordered and usually has insufficient contrast to be seen with X-rays. In this case the use of H 2O/D 2O contrast variation allows these components to be located. Examples of this are the nucleic acid in virus structures and detergent bound to membrane proteins.
Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.
Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I
2006-11-02
Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).
A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Stephen E; Mook Jr, Herbert A
2008-01-01
Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.
Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F
2010-01-14
The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.
Isotope Induced Proton Ordering in Partially Deuterated Aspirin
NASA Astrophysics Data System (ADS)
Schiebel, P.; Papoular, R. J.; Paulus, W.; Zimmermann, H.; Detken, A.; Haeberlen, U.; Prandl, W.
1999-08-01
We report the nuclear density distribution of partially deuterated aspirin, C8H5O4-CH2D, at 300 and 15 K, as determined by neutron diffraction coupled with maximum entropy method image reconstruction. While fully protonated and fully deuterated methyl groups in aspirin are delocalized at low temperatures due to quantum mechanical tunneling, we provide here direct evidence that in aspirin- CH2D at 15 K the methyl hydrogens are localized, while randomly distributed over three sites at 300 K. This is the first observation by diffraction methods of low-temperature isotopic ordering in condensed matter.
Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
NASA Astrophysics Data System (ADS)
Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
Neutron absorption of Al-Si-Mg-B{sub 4}C composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Ibrahim, Anis Syukriah
2016-01-22
Al-Si-Mg-B{sub 4}C composites containing 2-8 wt% of B{sub 4}C were prepared by stir casting technique. Homogenization treatment was carried out at temperatures of 540°C for 4 houra and followed by ageing at 180°C for 2 houra. Microstructure and phase identification were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Neutron absorption study was investigated using neutron source Am/Be{sup 241}. The result indicated that higher B{sub 4}C content improved the neutron absorption property. Meanwhile homogeneity of the composite was increased by ageing processes. This composite is potential to be used as neutron shielding material especially for nuclear reactormore » application.« less
Dynamism or Disorder at High Pressures?
NASA Astrophysics Data System (ADS)
Angel, R. J.; Bismayer, U.; Marshall, W. G.
2002-12-01
Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.
Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok
2008-01-01
An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistentmore » with the high dislocation densities near the crack tip measured by neutron peak broadening.« less
NASA Astrophysics Data System (ADS)
Feng, Lei-hao; Hu, Qi-wei; Lei, Li; Fang, Lei-ming; Qi, Lei; Zhang, Lei-lei; Pu, Mei-fang; Kou, Zi-li; Peng, Fang; Chen, Xi-ping; Xia, Yuan-hua; Kojima, Yohei; Ohfuji, Hiroaki; He, Duan-wei; Chen, Bo; Irifune, Tetsuo
2018-02-01
Not Available Project supported by the Research Foundation of Key Laboratory of Neutron Physics (Grant No. 2015BB03), the National Natural Science Foundation of China (Grant Nos. 11774247), the Science Foundation for Excellent Youth Scholars of Sichuan University (Grant No. 2015SCU04A04), and the Joint Usage/Research Center PRIUS (Ehime University, Japan) and Chinese Academy of Sciences (Grant No. 2017-BEPC-PT-000568).
The structural and magnetic phase transitions in a ``parent'' Fe pnictide compound
NASA Astrophysics Data System (ADS)
Ni, Ni; Allred, Jared; Cao, Huibo; Tian, Wei; Liu, Lian; Cho, Kyuil; Krogstad, Matthew; Ma, Jie; Taddei, Keith; Tanatar, Makariy; Prozorov, Ruslan; Matsuda, Masaaki; Rosenkranz, Stephan; Uemura, Yasutomo; Jiang, Shan
2015-03-01
We will present transport, thermodynamic, synchrotron X-ray, neutron diffraction, μSR, ARPES and polarized optical image measurements on the ``parent'' compound of the 112 high Tc superconducting Fe pnictide family. Structural and magnetic phase transitions are revealed. Detailed magnetic structure was solved by single crystal neutron diffraction. We will discuss the similarity and difference of these transitions comparing to the parent compounds of other Fe pnictide superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q.; Grigereit, T.E.; Lynn, J.W.
The nuclear and magnetic structures of HoNi{sub 2}B{sub 2}C have been investigated by neutron powder diffraction at room temperature and at 10, 5.1 and 2.2K. The compound crystallizes with the symmetry of space group 14/mmm and has room temperature lattice parameters a = 3.5170(1) and c = 10.5217(3) {angstrom}. No phase transitions of the nuclear structure have been observed in the range of temperatures examined. Magnetic peaks begin to appear at about 8K. The magnetic structure is the superposition of two configurations, one in which ferromagnetic sheets of holmium spins parallel to the a-b plane are coupled antiferromagnetically along themore » c-axis, and another in which the ferromagnetic planes are rotated away from the antiparallel configuration to give an incommensurate helicoidal structure with a period approximately equal to twelve times the length of the c-axis. The helicoidal structure competes with superconductivity while the antiferromagnetism coexists with it.« less
Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M
2010-06-09
The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.
NASA Astrophysics Data System (ADS)
Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.
2013-12-01
We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S
2018-01-01
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.
The early development of neutron diffraction: science in the wings of the Manhattan Project
Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.
2013-01-01
Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool. PMID:23250059
Search for the elusive magnetic state of hexagonal iron: The antiferromagnetic Fe71Ru29 hcp alloy
NASA Astrophysics Data System (ADS)
Petrillo, C.; Postorino, P.; Orecchini, A.; Sacchetti, F.
2018-03-01
The magnetic states of iron and their dependence on crystal structure represent an important case study for the physics of magnetism and its role in fundamental and applied science, including geophysical sciences. hcp iron is the most elusive structure as it exists only at high pressure but, at the same time, it is expected to be stable up to very high temperature. Exploring the magnetic state of pure Fe at high pressure is difficult and no conclusive results have been obtained. Simple binary alloys where the hexagonal phase of Fe is stabilized, offer a more controllable alternative to investigate iron magnetism. We carried out a neutron diffraction experiment on hcp Fe71Ru29 disordered alloy as a function of temperature. Fe in the hexagonal lattice of this specific alloy results to be antiferromagnetically aligned with a rather complex structure and a small magnetic moment. The temperature dependence suggests a Néel temperature TN = 124 ± 10 K, a value consistent with the low magnetic moment of 1.04 ± 0.10 μB obtained from the diffraction data that also suggest a non-commensurate magnetic structure with magnetic moments probably aligned along the c axis. The present data provide evidence for magnetic ordering in hcp Fe and support the theoretical description of magnetism of pure Fe at high pressure.
Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...
2016-02-02
Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gian; Sun, Zhiqian; Li, Lin
Here, the ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2TiAl/NiAl or single-Ni 2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxationmore » behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.« less
Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K.
2017-01-01
The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni2TiAl/NiAl or single-Ni2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate. PMID:28387230
Song, Gian; Sun, Zhiqian; Li, Lin; ...
2017-04-07
Here, the ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2TiAl/NiAl or single-Ni 2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxationmore » behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.« less
Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4
NASA Astrophysics Data System (ADS)
Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.
2017-10-01
We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.
Whitfield, Pamela S.
2016-04-29
Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less
High antiferromagnetic transition temperature of a honeycomb compound SrRu 2O 6
Tian, Wei; Svoboda, Chris; Ochi, M.; ...
2015-09-14
We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu 2O 6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu 2O 6 crystallizes into the hexagonal lead antimonate (PbSb 2O 6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr 2+ ions. SrRu 2O 6 is found to order at T N = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μ B/Ru at room temperature and is along the crystallographic c axis in the G-type magneticmore » structure. We perform density functional calculations with constrained random-phase approximation (RPA) to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t 2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed T N .« less
Brambleby, J.; Goddard, P. A.; Johnson, R. D.; ...
2015-10-07
The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF 2)(pyrazine) 2]SbF 6 and (ii) a related compound [Co(HF 2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF 2)(pyrazine) 2]SbF 6 are 0.6(1)μ b, while the ordered moments for the Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6 are 3.02(6)μ b. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We also show from heat capacity and electron spin resonance measurements that due to the crystalmore » electric field splitting of the S=3/2 Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. Furthermore, the Co moments in [Co(HF 2)(pyrazine) 2]SbF 6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.« less
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...
2018-02-06
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Strong magnetic coupling in the hexagonal R5Pb3 compounds (R=Gd-Tm)
NASA Astrophysics Data System (ADS)
Marcinkova, Andrea; de la Cruz, Clarina; Yip, Joshua; Zhao, Liang L.; Wang, Jiakui K.; Svanidze, E.; Morosan, E.
2015-06-01
We have synthesized the R5Pb3 (R=Gd-Tm) compounds in polycrystalline form and performed neutron scattering and magnetization measurements. For all R5Pb3 reported here the Weiss temperatures θW are several times smaller than the ordering temperatures TORD, while the latter are remarkably high (TORD up to 275 K for R=Gd) compared to other known R-M binaries (M=Si, Ge, Sn and Sb). The magnetic order changes from ferromagnetic (FM) in R=Gd, Tb to antiferromagnetic (AFM) in R=Dy-Tm. Below TORD, the magnetization measurements together with neutron powder diffraction show complex magnetic behaviors and reveal the existence of up to three additional phase transitions, believed to be a result of large anisotropic exchange and/or crystal electric field effects, induced high anisotropy. The R5Pb3 magnetic unit cells for R=Tb-Tm can be described with incommensurate magnetic wave vectors with spin modulation either along the c axis in R=Tb, Er and Tm, or within the ab plane in R=Dy and Ho.
Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments
NASA Astrophysics Data System (ADS)
Gussev, M. N.; Cakmak, E.; Field, K. G.
2018-06-01
Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.
Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, David R; Herwig, Kenneth W; Mamontov, Eugene
2006-01-01
There can be no disputing the fact that neutron diffraction and scattering have made a clear contribution to our current understanding of the structural and dynamical characteristics of liquid water and water containing dissolved ions at ambient conditions and to a somewhat lesser degree other state conditions involving a change in temperature and pressure. Indeed, a molecular-level understanding of how fluids (e.g., water, CO{sub 2}, CH{sub 4}, higher hydrocarbons, etc.) interact with and participate in reactions with other solid earth materials are central to the development of predictive models that aim to quantify a wide array of geochemical processes. Inmore » the context of natural systems, interrogation of fluids and fluid-solid interactions at elevated temperatures and pressures is an area requiring much more work, particularly for complex solutions containing geochemically relevant cations, anions, and other important dissolved species such as CO{sub 2} or CH{sub 4}. We have tried to describe a series of prototypical interfacial and surface problems using neutron scattering to stimulate the thinking of earth scientists interested applying some of these approaches to confined systems of mineralogical importance. Our ability to predict the molecular-level properties of fluids and fluid-solid interactions relies heavily on the synergism between experiments such as neutron diffraction or inelastic neutron scattering and molecular-based simulations. Tremendous progress has been made in closing the gap between experimental observations and predicted behavior based on simulations due to improvements in the experimental methodologies and instrumentation on the one hand, and the development of new potential models of water and other simple and complex fluids on the other. For example there has been an emergence of studies taking advantage of advanced computing power that can accommodate the demands of ab initio molecular dynamics. On the neutron instrumentation side while much of the quasielastic work described has been performed using instrumentation located at reactor based sources, the advent of 2{sup nd} generation spallation neutron sources like ISIS, new generation sources like the SNS at the Oak Ridge National Laboratory and the low repetition rate 2{sup nd} target station at ISIS offer significant opportunities for the study of interfacial and entrained liquids. At the very least, an improvement of the counting statistics by one to two orders of magnitude on many instruments such as vibrational and time-of-flight spectrometers at SNS will allow parametric studies of many systems which otherwise would be prohibitively time consuming. The extended-Q SANS diffractometer at SNS will offer very high intensity and unparalleled Q-range to extend the accessible length scale in the real space, from 0. 05 nm to150 nm. The backscattering spectrometer will provide very high intensity and excellent energy resolution through unprecedented range of energy transfers, thereby allowing simultaneous studies of translational and rotational diffusion components in various systems. The vibrational spectrometer with two orders of magnitude improvement in performance and the capability to perform simultaneous structural measurements should present exciting opportunities to and engender an entire new population of users in the neutron community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...
2018-11-21
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Pressure-induced collapsed-tetragonal phase in SrCo2As2 at ambient temperature
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, A.; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'Ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; Fabbris, G.; Feng, Y.; Veiga, L. S. I.; Dos Santos, A. M.
Our recent high-energy (HE) high-pressure (HP) x-ray powder diffraction measurements on tetragonal (T) SrCo2As2 have revealed a first-order pressure-induced structural phase transition to a collapsed tetragonal (cT) phase with a reduction in c by -7.9% and the c / a ratio by -9.9%. The T and cT phases coexist for applied pressures 6 GPa to 18 GPa at 7 K. Resistance measurements up to 5.9 GPa and down to 1.8 K signatures likely associated with the cT phase above 5.5 GPa and found no evidence for superconductivity. Neutron diffraction data show no evidence of magnetic order up to 1.1 GPa. Here, we show that the T to cT transition occurs around 6.8 GPa at ambient temperature, and that the transition is nearly temperature-independent from 300 K down to 7 K, which indicates a steep p - T phase line. Work at Ames Lab. was supported by US DOE, BES, DMSE under DE-AC02-07CH11358. This research used resources at the APS and ORNL, US DOE, SC, User Facilities.
Structure and Dynamics Investigations of Sr/Ca-Doped LaPO 4 Proton Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Wahish, Amal; al-Binni, U.; Tetard, L.
Proton conductors loom out of the pool of candidate materials with great potential to boost hydrogen alternatives to fossil-based resources for energy. Acceptor doped lanthanum orthophosphates are considered for solid oxide fuel cells (SOFCs) for their potential stability and conductivity at high temperature. By exploring the crystal and defect structure of x% Sr/Ca-doped LaPO 4 with different nominal Sr/Ca concentrations (x = 0 – 10) with Neutron powder diffraction (NPD) and X-ray powder diffraction (XRD), we confirm that Sr/Ca-doped LaPO 4 can exist as self-supported structures at high temperatures during solid oxide fuel cell operation. Thermal stability, surface topography, sizemore » distribution are also studied to better understand the proton conductivity for dry and wet compounds obtained at sintering temperatures ranging from 1200 to 1400 °C using a combination of scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). In conclusion, the results suggest that Sr doped samples exhibit the highest proton conductivity of our samples and illustrate the impact of material design and versatile characterization schemes on the development of proton conductors with superior functionality.« less
Tuning magnetic spirals beyond room temperature with chemical disorder
NASA Astrophysics Data System (ADS)
Canevet, Emmanuel; Morin, Mickael; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets with spiral magnetic orders. Such materials are of high current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low magnetic order temperatures (typically lower than 100K) greatly restrict their fields of application. In this talk we will show that chemical disorder is a powerful tool that can be used to stabilize magnetic spiral phases at higher temperatures. To illustrate this mechanism, we will present our recent results obtain by neutron diffraction on the perovskyte YBaFeCuCuO5, where a controlled manipulation of the Cu/Fe chemical disorder was successfully used to increase the spiral order temperature from 154 to 310K.
Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.
2015-05-01
We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goracci, G., E-mail: sckgorag@ehu.es; Arbe, A.; Alegría, A.
2016-04-21
We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly (2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but withoutmore » evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to the lack of cooperativity effects in the relaxation of these molecules within the polymeric matrix.« less
Sensitivity Analysis and Simulation of Theoretical Response of Ceramics to Strong Magnetic Fields
2016-09-01
Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. FOR OFFICIAL USE ONLY...Compounds. 2013;551:568–577. 4. Terada N, Suzuki HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. In situ neutron diffraction study of...TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. Neutron diffraction texture analysis for alpha-Al2O3 oriented by a high magnetic field and sintering
Neutron diffraction study of water freezing on aircraft engine combustor soot.
Tishkova, V; Demirdjian, B; Ferry, D; Johnson, M
2011-12-14
The study of the formation of condensation trails and cirrus clouds on aircraft emitted soot particles is important because of its possible effects on climate. In the present work we studied the freezing of water on aircraft engine combustor (AEC) soot particles under conditions of pressure and temperature similar to the upper troposphere. The microstructure of the AEC soot was found to be heterogeneous containing both primary particles of soot and metallic impurities (Fe, Cu, and Al). We also observed various surface functional groups such as oxygen-containing groups, including sulfate ions, that can act as active sites for water adsorption. Here we studied the formation of ice on the AEC soot particles by using neutron diffraction. We found that for low amount of adsorbed water, cooling even up to 215 K did not lead to the formation of hexagonal ice. Whereas, larger amount of adsorbed water led to the coexistence of liquid water (or amorphous ice) and hexagonal ice (I(h)); 60% of the adsorbed water was in the form of ice I(h) at 255 K. Annealing of the system led to the improvement of the crystal quality of hexagonal ice crystals as demonstrated from neutron diffraction.
Sun, Jiangman; Dong, Xiao; Wang, Yajie; ...
2017-05-02
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Moreover, following this route produces a pure cis-isomer and more surprisingly, predictsmore » that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.« less
Magnetic and magnetoresistance properties of La0.7Sr0.3(Mn,Сo)O3
NASA Astrophysics Data System (ADS)
Troyanchuk, I. O.; Karpinsky, D. V.; Bushinsky, M. V.; Sikolenko, V. V.; Gavrilov, S. A.; Silibin, M. V.
2017-11-01
Magnetic and magnetotransport properties of La0.7Sr0.3Mn1-xCoxO3 ceramics have been investigated by neutron powder diffraction, magnetization and electrical measurements. It is shown that substitution by cobalt ions leads to a decrease of magnetic transition temperature down to 140 K for the compound with x = 0.33. The compounds with cobalt content 0.4 < x < 0.6 are characterized by a presence of small ferromagnetic component due to exchange interactions between cobalt and manganese ions with maximal transition temperature of about 190 K observed for x = 0.5. Further increase of the dopant concentration diminishes ferromagnetic interactions. An evolution of electronic configuration of manganese and cobalt ions upon chemical substitution as well as related changes in the exchange interactions which determine the type of the magnetic state are discussed. Based on the neutron diffraction results and magnetometry data the preliminary magnetic phase diagram has been constructed.
X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.
Girardin, E; Millet, P; Lodini, A
2000-02-01
To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.
Gas loading apparatus for the Paris-Edinburgh press
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocian, A.; Kamenev, K. V.; Bull, C. L.
2010-09-15
We describe the design and operation of an apparatus for loading gases into the sample volume of the Paris-Edinburgh press at room temperature and high pressure. The system can be used for studies of samples loaded as pure or mixed gases as well as for loading gases as pressure-transmitting media in neutron-scattering experiments. The apparatus consists of a high-pressure vessel and an anvil holder with a clamp mechanism. The vessel, designed to operate at gas pressures of up to 150 MPa, is used for applying the load onto the anvils located inside the clamp. This initial load is sufficient formore » sealing the pressurized gas inside the sample containing gasket. The clamp containing the anvils and the sample is then transferred into the Paris-Edinburgh press by which further load can be applied to the sample. The clamp has apertures for scattered neutron beams and remains in the press for the duration of the experiment. The performance of the gas loading system is illustrated with the results of neutron-diffraction experiments on compressed nitrogen.« less
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-06-30
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-01-01
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605
Schoenborn, Benno P
2010-11-01
The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...
2018-01-24
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamal, I., E-mail: imtiaz-kamal26@yahoo.com; Yunus, S. M., E-mail: yunussm11@yahoo.com; Datta, T. K., E-mail: tk-datta4@yahoo.com
2016-07-12
A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with amore » large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6 mm thickness each. The monochromator design was optimized to provide maximum flux on 3 mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30° (2θ) at each step and covers 120° in 4 steps. When the detector is placed at 1.6 m it subtends 20° at each step and covers 120° in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology for diffraction study in our country.« less
NASA Astrophysics Data System (ADS)
Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.
2016-07-01
A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology for diffraction study in our country.
Pressure-induced collapsed-tetragonal phase in SrCo2As2
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.
2015-12-01
We present high-energy x-ray diffraction data under applied pressures up to p =29 GPa , neutron diffraction measurements up to p =1.1 GPa , and electrical resistance measurements up to p =5.9 GPa , on SrCo2As2 . Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T =7 K . The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys
NASA Astrophysics Data System (ADS)
Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely
2018-03-01
An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, Dante G.
Here, we report on the results of a high-energy x-ray diffraction study of Al–Pd–Mn to investigate the solidification products obtained during free-cooling using an electrostatic levitation furnace. The primary solidification product from the melt is i-Al–Pd–Mn which coexists with a significant remaining liquid component. As the sample cools further, we find that the solidification pathway is consistent with the liquidus projection and pseudo-binary cut through the ternary phase diagram reported previously. At ambient temperature we have identified the major phase to be the ξ'-phase orthorhombic approximant, along with minor phases identified as Al and, most likely, the R-phase orthorhombic approximant.more » We have also observed a distinct prepeak in the liquid at high temperature, signifying the presence of extended atomic order. Interestingly, this prepeak was not observed in previous neutron diffraction measurements on the Al–Pd–Mn system. No undercooling was observed preceding the solidification of the i-Al–Pd–Mn phase from the melt which may signal the close similarity of the short-range order in the solid and liquid. However, this can not be clearly determined because of the potential for heterogenous nucleation associated with the presence of an Al2O3 impurity at the surface of the sample.« less
Preferred Orientation of Rare Earth (RE)-Doped Alumina Crystallites by an Applied Magnetic Field
2016-06-01
Magnetic Field by Victoria L Blair, Raymond E Brennan, and Jane W Adams Weapons and Materials Research Directorate, ARL Carli A Moorehead...public release; distribution is unlimited. 16 13. Terada N, Suzuki HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metok N. In situ neutron diffraction...HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. Neutron diffraction texture analysis for alpha-Al2O3 oriented by high magnetic field and
Debye temperatures and magnetic structures of UFe xAl 12- x (3.6⩽ x⩽5) intermetallic alloys
NASA Astrophysics Data System (ADS)
Rećko, K.; Dobrzyński, L.; Szymański, K.; Hoser, A.
2000-03-01
Uranium ternary compounds UFe xAl 12- x crystallize in a body-centred tetragonal structure ThMn 12 (I 4/mmm No.139). The neutron powder diffraction, magnetization measurements as well as Mössbauer investigations clearly indicate the magnetic ordering within the iron sites. The rearrangement of iron magnetic moments from uncompensated antiferromagnetic system in UFe xAl 12- x with x<4, through coexistence of antiferro- and ferromagnetic iron components (4⩽ x<5) to pure ferromagnetic ordering for alloy with x=5 is observed. The neutron diffraction studies of magnetic structures of the aforementioned powder samples show a very rich world of possible uranium-iron magnetic interactions. For all these alloys the magnetic neutron scattering is generally weak in comparison to the nuclear one. Because of identical chemical and magnetic unit cells there are no pure magnetic reflections. Therefore, in order to extract magnetic part of the scattering one should be particularly careful in taking proper account of the thermal vibration effects.
The early development of neutron diffraction: Science in the wings of the Manhattan Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Thom; Gawne, Timothy J; Nagler, Stephen E
2012-01-01
Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan,more » Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.« less
Advanced sample environments for in situ neutron diffraction studies of nuclear materials
NASA Astrophysics Data System (ADS)
Reiche, Helmut Matthias
Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary containment vessel of high temperature heavy water (D2O) inside the reactor core. The measured sample texture shows that upon traversing the phase transition, which proceeded according to the Burger orientation relationship, variant selection occurred during heating and cooling of the zirconium alloy. Experimental results of lattice strains depending on the crystallographic orientation can be used to calculate strain pole figures which grant insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Lastly, I developed a resistive graphite high-temperature furnace with sample motion for in situ crystal structure and texture measurements of nuclear materials at steady-state temperatures up to at least 2200°C. This permits in situ observation of e.g. phase transitions and coefficients of thermal expansion, as well as phase formation and texture development during solidification. Utilizing this apparatus, I investigated the carbothermic reduction of UO2 nanopowder forming uranium carbide, a promising Generation IV reactor fuel. The onset of the UO2 + 2C → UC + CO2 reaction was observed at 1440°C with the bulk portion being complete at 1500°C. I describe the novel synthesis for this nanoparticle UO2 powder, which closely imitates observed nano grains in partially burnt reactor fuels. Of the three opposing structure models reported for the non-quenchable cubic UC2 phase, stable between 1769°C and 2560°C, the NaCl-type structure according to Bowman is found to be correct. This is deemed major progress as the CaF2-type structure was used for recent thermal modeling of safety critical factors in nuclear reactors. A temperature dependent increase in density due to carbon diffusion has been observed and quantified. I provide first experimental data of an unspecified, reversible order-disorder transition in this delta-phase with its onset at ˜1800°C which is likely due to rotating C2 molecules in the sublattice.
Non-invasive characterisation of SIX Japanese hand-guards (tsuba)
NASA Astrophysics Data System (ADS)
Barzagli, Elisa; Grazzi, Francesco; Civita, Francesco; Scherillo, Antonella; Pietropaolo, Antonino; Festa, Giulia; Zoppi, Marco
2013-12-01
In this work we present a systematic study of Japanese sword hand-guards ( tsuba) carried out by means of non-invasive techniques using neutrons. Several tsuba from different periods, belonging to the Japanese Section of the Stibbert Museum, were analysed using an innovative approach to characterise the bulk of the samples, coupling two neutron techniques, namely Time of Flight Neutron Diffraction (ToF-ND) and Nuclear Resonance Capture Analysis (NRCA). The measurements were carried out on the same instrument: the INES beam-line at the ISIS spallation pulsed neutron source (UK). NRCA analysis allows identifying the elements present in the sample gauge volume, while neutron diffraction is exploited to quantify the phase distribution and other micro-structural parameters of the metal specimen. The results show that all samples are made of high-quality metal, either steel or copper alloy, with noticeable changes in composition and working techniques, depending on the place and time of manufacturing.
Thermal-history dependent magnetoelastic transition in (Mn,Fe){sub 2}(P,Si)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, X. F., E-mail: x.f.miao@tudelft.nl; Dijk, N. H. van; Brück, E.
The thermal-history dependence of the magnetoelastic transition in (Mn,Fe){sub 2}(P,Si) compounds has been investigated using high-resolution neutron diffraction. As-prepared samples display a large difference in paramagnetic-ferromagnetic (PM-FM) transition temperature compared to cycled samples. The initial metastable state transforms into a lower-energy stable state when the as-prepared sample crosses the PM-FM transition for the first time. This additional transformation is irreversible around the transition temperature and increases the energy barrier which needs to be overcome through the PM-FM transition. Consequently, the transition temperature on first cooling is found to be lower than on subsequent cycles characterizing the so-called “virgin effect.” High-temperaturemore » annealing can restore the cycled sample to the high-temperature metastable state, which leads to the recovery of the virgin effect. A model is proposed to interpret the formation and recovery of the virgin effect.« less
Thermal defect annealing of swift heavy ion irradiated ThO 2
Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; ...
2017-05-19
Neutron total scattering and Raman spectroscopy were used to characterize the structural recovery of irradiated polycrystalline ThO 2 (2.2 GeV Au, = 1 x 10 13 ions/cm 2) during isochronal annealing. Here, neutron diffraction patterns showed that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275$-$425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.
Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst
NASA Astrophysics Data System (ADS)
Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki
2017-04-01
The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fobes, David M.; Bauer, Eric Dietzgen; Thompson, Joe David
Here, two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn 5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment ofmore » $$m=0.54(2)\\,{{\\mu}_{\\text{B}}}$$. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain.« less
Fobes, David M.; Bauer, Eric Dietzgen; Thompson, Joe David; ...
2017-03-28
Here, two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn 5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment ofmore » $$m=0.54(2)\\,{{\\mu}_{\\text{B}}}$$. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain.« less
The structure of MgO-SiO2 glasses at elevated pressure.
Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G
2012-06-06
The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.
Neutron diffraction study of a non-strichiometric Ni-Mn-Ga MSM alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Gur, Pnina; Garlea, Vasile O
2013-01-01
The structure and chemical order of a Heusler alloy of non-stoichiometric composition Ni-Mn-Ga were studied using constant-wavelength (1.538 ) neutron diffraction at 363K and the diffraction pattern was refined using the FullProf software. At this temperature the structure is austenite (cubic) with Fm-3m space group and lattice constant of a = 5.83913(4) [ ]. The chemical order is of critical importance in these alloys, as Mn becomes antiferromagnetic when the atoms are closer than the radius of the 3d shell. In the studied alloy the refinement of the site occupancy showed that the 4b (Ga site) contained as much asmore » 22% Mn; that significantly alters the distances between the Mn atoms in the crystal and, as a result, also the exchange energy between some of the Mn atoms. Based on the refinement, the composition was determined to be Ni1.91Mn1.29Ga0.8« less
High-pressure/low-temperature neutron scattering of gas inclusion compounds: Progress and prospects
Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L.; Lokshin, Konstantin; Tait, Kimberly T.; Mao, Wendy L.; Luo, Junhua; Currier, Robert P.; Hickmott, Donald D.
2007-01-01
Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H2O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H2–H2 distance of only 2.93 Å. This distance is much shorter than that in the solid/metallic hydrogen (3.78 Å), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu3[Co(CN)6]2 and Cu3(BTC)2 (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387
Neutron diffraction studies of laser welding residual stresses
NASA Astrophysics Data System (ADS)
Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.
2016-01-01
The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.
Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.
Ubic, Rick; Hu, Yi; Abrahams, Isaac
2006-08-01
The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).
Texture analysis at neutron diffractometer STRESS-SPEC
NASA Astrophysics Data System (ADS)
Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.
2011-06-01
In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.
The Structure of Liquid and Amorphous Hafnia.
Gallington, Leighanne C; Ghadar, Yasaman; Skinner, Lawrie B; Weber, J K Richard; Ushakov, Sergey V; Navrotsky, Alexandra; Vazquez-Mayagoitia, Alvaro; Neuefeind, Joerg C; Stan, Marius; Low, John J; Benmore, Chris J
2017-11-10
Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.
The Structure of Liquid and Amorphous Hafnia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie
Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less
The Structure of Liquid and Amorphous Hafnia
Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie; ...
2017-11-10
Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.
2007-12-01
The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritscher, A.; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin; Hoelzel, M.
In this work a series of stoichiometric Cu{sub 2}ZnSnS{sub 4} (CZTS) samples annealed at different temperatures in the range of 473–623 K were investigated. The temperature dependence of the Cu/Zn-order-disorder behavior was analyzed by neutron powder diffraction measurements. Cu fully occupies the 2a and Sn the 2b position within the whole temperature range. For Zn and the remaining Cu on sites 2d and 2c, a clear change from ordered to disordered kesterite structure is found. The critical temperature T{sub c} for this Landau-type second order transition was determined as 552±2 K. It was found that in Cu{sub 2}ZnSnS{sub 4} verymore » long annealing times are necessary to reach equilibrium at low temperatures. - Graphical abstract: The order-disorder transition in Cu{sub 2}ZnSnS{sub 4} was investigated using neutron diffraction techniques on samples annealed in the temperature range of 473–623 K. The critical temperature T{sub c} for this Landau-type second order transition was determined as 552±2 K. Display Omitted - Highlights: • The order-disorder transformation of Cu{sub 2}ZnSnS{sub 4} follows a Landau‐type behavior for a second order transition. • The critical exponent β is 0.57±0.06. • The critical temperature was determined as 552±2 K. • A fully ordered (within the standard deviation) Cu{sub 2}ZnSnS{sub 4} sample was synthesized.« less
Neutron diffraction studies of magnetic ordering in Ni-doped LaCoO3
NASA Astrophysics Data System (ADS)
Rajeevan, N. E.; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi; Kaushik, S. D.
2015-11-01
Research in rare earth cobaltite has recently been intensified due to its fascinating magnetic properties. LaCoO3, an important cobaltite, exhibits two prominent susceptibility features at 90 K and 500 K in low field measurement. The magnetic behavior below 100 K is predominantly antiferromagnetic (AFM), but absence of pure AFM ordering and emergence of ferromagnetic coupling on further decreasing temperature made situation more intricate. The present work of studying the effect of Ni substitution at Co site in polycrystalline LaCo1-xNixO3 (0≤x≤0.3) is motivated by the interesting changes in magnetic and electronic properties. For lucid understanding, temperature dependent neutron diffraction (ND) study was carried out. ND patterns fitted with rhombohedral structure in perovskite form with R-3c space group, elucidated information on phase purity. Further temperature dependent cell parameter, Co-O bond-length and Co-O-Co bond angle were calculated for the series of Ni doped LaCoO3. The results are explained in terms of decrease in the crystal field energy which led to the transition of cobalt from low Spin (LS) state to intermediate spin state (IS).
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...
2016-05-16
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
Structural and physical property study of sol-gel synthesized CoFe2-xHoxO4 nano ferrites
NASA Astrophysics Data System (ADS)
Patankar, K. K.; Ghone, D. M.; Mathe, V. L.; Kaushik, S. D.
2018-05-01
CoFe2-xHoxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ferrites were prepared by the suitably modified Sol-Gel technique. X-ray diffraction (XRD) analysis revealed that the substituted samples show phase pure formation till 10% substitution, which is far higher phase pure than the earlier reports. Upon further substitution an inevitable secondary phase of HoFeO3 along with the spinel phase despite regulating synthesis parameters in the sol-gel reaction route. These results are further corroborated more convincingly by room temperature neutron diffraction. Morphological features of the ferrites were studied by Scanning Electron Microscopy (SEM). The magnetic parameters viz. the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) were determined from room temperature isothermal magnetization. These parameters were found to decrease with increase in Ho substitution. The decrease in magnetization is analyzed in the light of exchange interactions between rare earth and transition metal ions. Magnetostriction measurements revealed interesting results and the presence of a secondary phase was found to be responsible for decreased measu-red magnetostriction values. The solubility limit of Ho in CoFe2O4 lattice is also reflected from the X-ray and neutron diffraction analysis and magnetostriction studies.
Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy
NASA Astrophysics Data System (ADS)
Cochrane, C.; Daymond, M. R.
2018-05-01
This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.
NASA Astrophysics Data System (ADS)
Garces, G.; Perez, P.; Cabeza, S.; Kabra, S.; Gan, W.; Adeva, P.
2017-11-01
The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension-compression asymmetry.
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
Structure and property correlations in FeS
NASA Astrophysics Data System (ADS)
Kuhn, S. J.; Kidder, M. K.; Parker, D. S.; dela Cruz, C.; McGuire, M. A.; Chance, W. M.; Li, Li; Debeer-Schmitt, L.; Ermentrout, J.; Littrell, K. C.; Eskildsen, M. R.; Sefat, A. S.
2017-03-01
For iron-sulfide (FeS), we investigate the correlation between the structural details, including its dimensionality and composition, with its magnetic and superconducting properties. We compare, theoretically and experimentally, the two-dimensional (2D) layered tetragonal (;t-FeS;) phase with the 3D hexagonal ("h-FeS") phase. X-ray diffraction reveals iron-deficient chemical compositions of t-Fe0.93(1)S and h-Fe0.84(1)S that show no low-temperature structural transitions. First-principles calculations reveal a high sensitivity of the 2D structure to the electronic and magnetic properties, predicting marginal antiferromagnetic instability for our compound (sulfur height of zS = 0.252) with an ordering energy of about 11 meV/Fe, while the 3D phase is magnetically stable. Experimentally, h-Fe0.84S orders magnetically well above room temperature, while t-Fe0.93S shows coexistence of antiferromagnetism at TN = 116 and filamentary superconductivity below Tc = 4 K. Low temperature neutron diffraction data reveals antiferromagnetic commensurate ordering with wave vector km = (0.25,0.25,0) and 0.46(2) μB/Fe. Additionally, neutron scattering measurements were used to find the particle size and iron vacancy arrangement of t-FeS and h-FeS. The structure of iron sulfide has a delicate relationship with the superconducting transition; while our sample with a = 3.6772(7) Å is a filamentary superconductor coexisting with an antiferromagnetic phase, previously reported samples with a > 3.68 Å are bulk superconductors with no magnetism, and those with a ≈ 3.674 Å show magnetic properties.
Structure and texture analysis of PVC foils by neutron diffraction.
Kalvoda, L; Dlouhá, M; Vratislav, S
2010-01-01
Crystalline order of molded and then bi-axially stretched foils prepared from atactic PVC resin is investigated by means of wide-angle neutron diffraction (WAND). The observed high-resolution WAND patterns of all samples are dominated by a sharp maximum corresponding to the inter-planar distance 0.52 nm. Two weaker maxima are also resolved at 0.62 and 0.78 nm. Intensities of the peaks vary with deformation ratios of the samples and their diffraction position. Average size of the coherently scattering domains is estimated as approximately 4-8 nm. Based on the experimental data, a novel model of crystalline order of atactic PVC is proposed. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.
2016-04-01
Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; ...
2017-10-13
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb2O6
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; Thompson, C. M.; Flacau, R.; Ding, C.; Guo, S.; Gong, Z.; Aczel, A. A.; Cao, H. B.; Williams, T. J.; Dabkowska, H. A.; Ning, F.; Greedan, J. E.; Luke, G. M.
2017-10-01
Neutron diffraction and muon spin relaxation (μ SR ) studies are presented for the newly characterized polymorph of NiNb2O6 (β -NiNb2O6) with space group P4 2/n and μ SR data only for the previously known columbite structure polymorph with space group P b c n . The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector k ⃗=(1/2 ,1/2 ,1/2 ) . Single-crystal data confirmed the same k ⃗ vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running along the a or b axis in adjacent Ni2 + layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb2O6 and NiTa2O6 . μ SR data finds a transition temperature of TN˜15 K for this system, while the columbite polymorph exhibits a lower TN=5.7 (3 ) K. Our μ SR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25 (3 ) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28 (3 ) for β -NiNb2O6 , in agreement with the μ SR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. In other words, although both systems appear to be well described by S =1 spin chains, the interchain interactions in the β polymorph are likely much larger.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Cesium vacancy ordering in phase-separated C s x F e 2 - y S e 2
Taddei, Keith M.; Sturza, M.; Chung, Duck -Yung; ...
2015-09-14
By simultaneously displaying magnetism and superconductivity in a single phase, the iron-based superconductors provide a model system for the study of magnetism's role in superconductivity. The class of intercalated iron selenide superconductors is unique among these in having the additional property of phase separation and coexistence of two distinct phases—one majority phase with iron vacancy ordering and strong antiferromagnetism, and the other a poorly understood minority microscopic phase with a contested structure. Adding to the intrigue, the majority phase has never been found to show superconductivity on its own while the minority phase has never been successfully synthesized separate frommore » the majority phase. In order to better understand this minority phase, a series of high-quality Cs xFe 2–ySe 2 single crystals with (0.8 ≤ x ≤ 1;0 ≤ y ≤ 0.3) were grown and studied. Neutron and x-ray powder diffraction performed on ground crystals show that the average I4/mmm structure of the minority phase is distinctly different from the high-temperature I4/mmm parent structure. Moreover, single-crystal diffraction reveals the presence of discrete superlattice reflections that remove the degeneracy of the Cs sites in both the majority and minority phases and reduce their structural symmetries from body centered to primitive. Group theoretical analysis in conjunction with structural modeling shows that the observed superlattice reflections originate from three-dimensional Cs vacancy ordering. This model predicts a 25% vacancy of the Cs site in the minority phase which is consistent with the site's refined occupancy. Magnetization measurements performed in tandem with neutron single-crystal diffraction provide evidence that the minority phase is the host of superconductivity. Lastly, our results also reveal a superconducting dome in which the superconducting transition temperature varies as a function of the nominal valence of iron.« less
NASA Astrophysics Data System (ADS)
Reul, A.; Lauhoff, C.; Krooß, P.; Gutmann, M. J.; Kadletz, P. M.; Chumlyakov, Y. I.; Niendorf, T.; Schmahl, W. W.
2018-02-01
Recent studies demonstrated excellent pseudoelastic behavior and cyclic stability under compressive loads in [001]-oriented Co-Ni-Ga high-temperature shape memory alloys (HT-SMAs). A narrow stress hysteresis was related to suppression of detwinning at RT and low defect formation during phase transformation due to the absence of a favorable slip system. Eventually, this behavior makes Co-Ni-Ga HT-SMAs promising candidates for several industrial applications. However, deformation behavior of Co-Ni-Ga has only been studied in the range of theoretical transformation strain in depth so far. Thus, the current study focuses not only on the activity of elementary deformation mechanisms in the pseudoelastic regime up to maximum theoretical transformation strains but far beyond. It is shown that the martensite phase is able to withstand about 5% elastic strain, which significantly increases the overall deformation capability of this alloy system. In situ neutron diffraction experiments were carried out using a newly installed testing setup on Co-Ni-Ga single crystals in order to reveal the nature of the stress-strain response seen in the deformation curves up to 10% macroscopic strain.
Dynamics of crystalline acetanilide: Analysis using neutron scattering and computer simulation
NASA Astrophysics Data System (ADS)
Hayward, R. L.; Middendorf, H. D.; Wanderlingh, U.; Smith, J. C.
1995-04-01
The unusual temperature dependence of several optical spectroscopic vibrational bands in crystalline acetanilide has been interpreted as providing evidence for dynamic localization. Here we examine the vibrational dynamics of crystalline acetanilide over a spectral range of ˜20-4000 cm-1 using incoherent neutron scattering experiments, phonon normal mode calculations and molecular dynamics simulations. A molecular mechanics energy function is parametrized and used to perform the normal mode analyses in the full configurational space of the crystal i.e., including the intramolecular and intermolecular degrees of freedom. One- and multiphonon incoherent inelastic neutron scattering intensities are calculated from harmonic analyses in the first Brillouin zone and compared with the experimental data presented here. Phonon dispersion relations and mean-square atomic displacements are derived from the harmonic model and compared with data derived from coherent inelastic neutron scattering and neutron and x-ray diffraction. To examine the temperature effects on the vibrations the full, anharmonic potential function is used in molecular dynamics simulations of the crystal at 80, 140, and 300 K. Several, but not all, of the spectral features calculated from the molecular dynamics simulations exhibit temperature-dependent behavior in agreement with experiment. The significance of the results for the interpretation of the optical spectroscopic results and possible improvements to the model are discussed.
Locating active-site hydrogen atoms in d-xylose isomerase: Time-of-flight neutron diffraction
Katz, Amy K.; Li, Xinmin; Carrell, H. L.; Hanson, B. Leif; Langan, Paul; Coates, Leighton; Schoenborn, Benno P.; Glusker, Jenny P.; Bunick, Gerard J.
2006-01-01
Time-of-flight neutron diffraction has been used to locate hydrogen atoms that define the ionization states of amino acids in crystals of d-xylose isomerase. This enzyme, from Streptomyces rubiginosus, is one of the largest enzymes studied to date at high resolution (1.8 Å) by this method. We have determined the position and orientation of a metal ion-bound water molecule that is located in the active site of the enzyme; this water has been thought to be involved in the isomerization step in which d-xylose is converted to d-xylulose or d-glucose to d-fructose. It is shown to be water (rather than a hydroxyl group) under the conditions of measurement (pH 8.0). Our analyses also reveal that one lysine probably has an −NH2-terminal group (rather than NH3+). The ionization state of each histidine residue also was determined. High-resolution x-ray studies (at 0.94 Å) indicate disorder in some side chains when a truncated substrate is bound and suggest how some side chains might move during catalysis. This combination of time-of-flight neutron diffraction and x-ray diffraction can contribute greatly to the elucidation of enzyme mechanisms. PMID:16707576
Crystal structure of human tooth enamel studied by neutron diffraction
NASA Astrophysics Data System (ADS)
Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre
2015-02-01
Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.
2011-12-15
The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan
2011-01-01
Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.
The high-temperature phases of WO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, T.; Woodward, P.M.; Hunter, B.A.
1999-04-01
High-temperature, high-resolution neutron powder diffraction experiments were performed to investigate the phases of WO{sub 3} between room temperature and 850 C. Two phases were found and characterized by Rietveld refinements: orthorhombic {beta}-WO{sub 3} (Pbcn, a = 7.3331(2), b = 7.5733(2), c = 7.7401(3) {angstrom} at 350 C, tilt system a{sup 0}b{sup +}c{sup {minus}}) and tetragonal {alpha}-WO{sub 3} (P4/ncc, a = 5.27659(1), b = 5.2759(1), c = 7.8462(3) {angstrom} at 800 C, tilt system a{sup 0}a{sup 0}c{sup {minus}}). The sequence of temperature-induced phase transitions in WO{sub 3} can be rationalized in terms of changes in the octahedral tilt systems and/or displacementsmore » of the tungsten out of the center of the WO{sub 6} octahedron. Above room temperature the two phase transitions are driven by successive softening of phonon modes, M{sub 3} at the {alpha}- to {beta}-transition and R{sub 25} at the {beta}- to {gamma}-transition.« less
Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V
2015-07-01
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet
2014-09-01
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of themore » Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.« less
NASA Astrophysics Data System (ADS)
Guenter, M. M.; Lerch, M.; Boysen, H.; Toebbens, D.; Suard, E.; Baehtz, C.
2006-08-01
Combined neutron diffraction and high-resolution synchrotron X-ray powder diffraction methods have been used to examine the crystal structures of two sample sets of Sr/Mg-doped Lanthanum gallate with the compositions La0.9Sr0.1Ga1-yMgyO3-0.5(0.1+y) (y=0, 0.1, 0.2) and La0.8Sr0.2Ga1-yMgyO3-0.5(0.2+y) (y=0.15, 0.2) up to 900 °C. At room temperature all samples of the first series exhibit orthorhombic structures with space group Imma: La0.9Sr0.1GaO2.95: a=5.4904(1)Å, b=7.7757(1)Å, c=5.5229(1)Å; La0.9Sr0.1Ga0.9Mg0.1O2.9: a=5.5100(1)Å, b=7.8080(1)Å, c=5.5411(1)Å; La0.9Sr0.1Ga0.8Mg0.2O2.85: a=5.5269(1)Å, b=7.8318(2)Å, c=5.5459(1)Å. The samples of the second series have the cubic perovskite structure with space group Pm3¯m at room temperature: La0.8Sr0.2Ga0.85Mg0.15O2.825: a=3.9160(1)Å; La0.8Sr0.2Ga0.8Mg0.20O2.80: a=3.9195(1)Å. Samples of the first series transform from the orthorhombic to a rhombohedral (Imma→R3¯c) structure at ˜170 °C for La0.9Sr0.1GaO2.95, at ˜430 °C for La0.9Sr0.1Ga0.9Mg0.1O2.9, and between 600 and 700 °C for La0.9Sr0.1Ga0.8Mg0.2O2.85. Both La0.8Sr0.2Ga0.85Mg0.15O2.825 and La0.8Sr0.2Ga0.8Mg0.2 show no structural deviations from the cubic aristotype over the whole temperature range. The room temperature Imma structures of the first series are justified by a domain model and are rationalized in terms of static disorder increasing with Mg content, thus driving the phase transition temperatures to higher values in agreement with tolerance factor considerations. The distortion of the rhombohedral high-temperature phases (octahedra tilting and compression) and the effect of phase transitions on the ionic conductivity are discussed.
Effective surface Debye temperature for NiMnSb(100) epitaxial films
NASA Astrophysics Data System (ADS)
Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.
2000-07-01
The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.
Thermal defect annealing of swift heavy ion irradiated ThO2
NASA Astrophysics Data System (ADS)
Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik
2017-08-01
Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.
Experimental Report: ORNL Proposal ID IPTS 8937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirmelstein, A.
2014-02-03
Neutron scattering experiment was performed using fine-resolution Fermi chopper spectrometer “SEQUOIA” installed at the Spallation Neutron Source, ORNL. Although this spectrometer is designed to measure inelastic neutron scattering spectra, during experiments a signal of elastic scattering is also recorded. The coherent nuclear component of this elastic scattering provides Bragg diffraction pattern of a sample, i.e., CeNi single crystal in our case. Therefore, it is possible to follow the CeNi structural variations as a function of pressure and to register structural phase transition. Measurements were performed at the temperature of 15 K under pressure of zero (ambient pressure at 15 K),more » 400, 800, and 2200 bars.« less
The magnetic structure of EuCu 2Sb 2
Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...
2015-05-06
Antiferromagnetic ordering of EuCu 2Sb 2 which forms in the tetragonal CaBe 2Ge 2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (B hf) reaches 28.7(2) T at 2.1 K, indicating a full Eu 2+ magnetic moment. B hf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ B which is the full free-ion moment expected for the Eu 2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less
Hess, Nancy J; Schenter, Gregory K; Hartman, Michael R; Daemen, Luc L; Proffen, Thomas; Kathmann, Shawn M; Mundy, Christopher J; Hartl, Monika; Heldebrant, David J; Stowe, Ashley C; Autrey, Tom
2009-05-14
The structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was observed leading to the alignment of the B-N bond near parallel to the c-axis. The orthorhombic to tetragonal structural phase transition at 225 K is marked by dramatic change in the dynamics of both the amine and borane group. The resulting hydrogen disorder is problematic to extract from the metrics provided by Rietveld refinement but is readily apparent in molecular dynamics simulation and in difference Fourier transform maps. At the phase transition, Rietveld refinement does indicate a disruption of one of two dihydrogen bonds that link adjacent ammonia borane molecules. Metrics determined by Rietveld refinement are in excellent agreement with those determined from molecular simulation. This study highlights the valuable insights added by coupled experimental and computational studies.
Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; ...
2016-05-07
Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe 45Mn 26Ga 29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe 45Mn 26Ga 29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. Themore » atomic occupancies of the alloys are determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.« less
Asymmetric band flipping for time-of-flight neutron diffraction data
Whitfield, Pamela S.; Coelho, Alan A.
2016-08-24
Charge flipping with powder diffraction data is known to produce a result more reliably with high-resolution data,i.e.visible reflections at smalldspacings. This data are readily accessible with the neutron time-of-flight technique but the assumption that negative scattering density is nonphysical is no longer valid where elements with negative scattering lengths are present. The concept of band flipping was introduced in the literature, where a negative threshold is used in addition to a positive threshold during the flipping. But, it was not tested with experimental data at the time. Finallly, band flipping has been implemented inTOPAStogether with the band modification of low-densitymore » elimination and tested with experimental powder and Laue single-crystal neutron data.« less
Neutron detectors for the ESS diffractometers
NASA Astrophysics Data System (ADS)
Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Müller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, J.; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.
2017-01-01
The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated in neutron diffraction or reflectometry experiments requires detectors that can handle high counting rates, while the investigation of sub-millimeter protein crystals will only be possible with large-area detectors that can achieve a position resolution as low as 200 μm. This has motivated an extensive research and development campaign to advance the state-of-the-art detector and to find new technologies that can reach maturity by the time the ESS will operate at full potential. This paper presents the key detector requirements for three of the Time-of-Flight (TOF) diffraction instrument concepts selected by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the detector technologies commonly employed at the existing similar instruments and their major challenges for ESS. The detector technologies selected by the instrument teams to collect the diffraction patterns are also presented. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to estimate the event rate in the diffraction detectors. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs.
NASA Astrophysics Data System (ADS)
Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton
2016-09-01
Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.
Crystallographic and magnetic properties of the spinel-type ferrites ZnxCo1-xFe2O4 (0.0 ≤ x ≤ 0.75)
NASA Astrophysics Data System (ADS)
Azad, A. K.; Zakaria, A. K. M.; Jewel, Md. Yusuf; Khan, Abu Saeed; Yunus, S. M.; Kamal, I.; Datta, T. K.; Eriksson, S.-G.
2015-05-01
Ultrahigh frequencies (UHF) have applications in signal and power electronics to minimize product sizes, increase production quantity and lower manufacturing cost. In the UHF range of 300 MHz to 3 GHz, ferrimagnetic iron oxides (ferrites) are especially useful because they combine the properties of a magnetic material with that of an electrical insulator. Ferrites have much higher electrical resistivity than metallic ferromagnetic materials, resulting in minimization of the eddy current losses, and total penetration of the electromagnetic (EM) field. Hence ferrites are frequently applied as circuit elements, magnetic storage media like read/write heads, phase shifters and Faraday rotators. The electromagnetic properties of ferrites are affected by operating conditions such as field strength, temperature and frequency. The spinel system ZnxCo1-xFe2O4 (x=0.0, 0.25, 0.50 and 0.75) has been prepared by the standard solid state sintering method. X-ray and neutron powder diffraction measurements were performed at room temperature. Neutron diffraction data analysis confirms the cubic symmetry corresponding to the space group Fd3m. The distribution of three cations Zn2+, Co2+ and Fe3+ over the spinel lattice and other crystallographic parameters like lattice constant, oxygen position parameter, overall temperature factor and occupancies of different ions in different lattice sites for the samples have been determined from the analysis of neutron diffraction data. The lattice constant increases with increasing Zn content in the system. The magnetic structure was found to be ferrimagnetic for the samples with x≤0.50. Magnetization measurements show that with the increase of Zn content in the system the value of saturation magnetization first increases and then decreases. The variation of the magnetic moment with Zn substitution has been discussed in terms of the distribution of magnetic and non-magnetic ions over the A and B sub-lattices and their exchange coupling.
Neutron and X-Ray Diffraction Studies of Advanced Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong
2010-01-01
The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternativemore » probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It is predicted that the application of these techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future, which will contribute to the development of materials technology and industrial innovation. Specifically, the use of these techniques provides bulk material properties that further augment new characterization tools including the increased use of atom probe tomography and high-resolution transmission electron microscopy systems. The combination of these techniques greatly assists the material property models that address multi-length-scale mechanisms. Different applications of diffuse scattering for understanding the fundamental materials properties are illustrated in the articles of Welberry et al., Goossens and Welberry, Campbell, Abe et al., Gilles et al., and Zhang et al. Analysis of thin films and two-dimensional structures is described in the articles of Gramlich et al., Brock et al., Vigliante et al., Kuzel et al., and Davydok et al. Recent advances in the line profile analysis are represented by the the articles of Scardi et al., Ungar et al., and Woo et al. Characterization of modern alloys is presented by the articles of Wollmershauser et al., Eidenberger et al., Garlea et al., Jia et al., Soulami et al., Wilson et al., and Wang et al. The collected articles are written by different scientific X-ray and neutron research groups. They represent a general trend in the development and application of diffraction techniques all over the world.« less
Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang
2017-06-01
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Chakoumakos, Bryan C
2013-01-01
We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 Kmore » to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.« less
Monte Carlo analysis of neutron diffuse scattering data
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Heerdegen, A. P.; Welberry, T. R.; Gutmann, M. J.
2006-11-01
This paper presents a discussion of a technique developed for the analysis of neutron diffuse scattering data. The technique involves processing the data into reciprocal space sections and modelling the diffuse scattering in these sections. A Monte Carlo modelling approach is used in which the crystal energy is a function of interatomic distances between molecules and torsional rotations within molecules. The parameters of the model are the spring constants governing the interactions, as they determine the correlations which evolve when the model crystal structure is relaxed at finite temperature. When the model crystal has reached equilibrium its diffraction pattern is calculated and a χ2 goodness-of-fit test between observed and calculated data slices is performed. This allows a least-squares refinement of the fit parameters and so automated refinement can proceed. The first application of this methodology to neutron, rather than X-ray, data is outlined. The sample studied was deuterated benzil, d-benzil, C14D10O2, for which data was collected using time-of-flight Laue diffraction on SXD at ISIS.
NASA Astrophysics Data System (ADS)
Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.
2013-05-01
The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.
NASA Astrophysics Data System (ADS)
Paul, Neelima; Wandt, Johannes; Seidlmayer, Stefan; Schebesta, Sebastian; Mühlbauer, Martin J.; Dolotko, Oleksandr; Gasteiger, Hubert A.; Gilles, Ralph
2017-03-01
The aging behavior of commercially produced 18650-type Li-ion cells consisting of a lithium iron phosphate (LFP) based cathode and a graphite anode based on either mesocarbon microbeads (MCMB) or needle coke (NC) is studied by in situ neutron diffraction and standard electrochemical techniques. While the MCMB cells showed an excellent cycle life with only 8% relative capacity loss (i.e., referenced to the capacity after formation) after 4750 cycles and showed no capacity loss on storage for two years, the needle coke cells suffered a 23% relative capacity loss after cycling and a 11% loss after storage. Based on a combination of neutron diffraction and electrochemical characterization, it is shown that the entire capacity loss for both cell types is dominated by the loss of active lithium; no other aging mechanisms like structural degradation of anode or cathode active materials or deactivation of active material could be found, highlighting the high structural stability of the active material and the excellent quality of the investigated cells.
Structural and magnetic transitions in spinel FeM n 2 O 4 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Roshan; Zhang, Qiang; Dai, Samuel
Materials that form the spinel structure are known to exhibit geometric frustration, which can lead to magnetic frustration as well. Through magnetization and neutron diffraction measurements, we find that FeMn 2O 4 undergoes one structural and two magnetic transitions. The structural transition occurs at T s ~595K from cubic at high temperatures to tetragonal at low temperatures. Here, two magnetic transitions are ferrimagnetic at T FI–1 ~373K and T FI–2 ~50K, respectively. Further investigation of the specific heat, thermal conductivity, and Seebeck coefficient confirms both magnetic transitions. Of particular interest is that there is a significant magnetic contribution to themore » low-temperature specific heat and thermal conductivity, providing a unique system to study heat transport by magnetic excitations.« less
Structural and magnetic transitions in spinel FeM n 2 O 4 single crystals
Nepal, Roshan; Zhang, Qiang; Dai, Samuel; ...
2018-01-11
Materials that form the spinel structure are known to exhibit geometric frustration, which can lead to magnetic frustration as well. Through magnetization and neutron diffraction measurements, we find that FeMn 2O 4 undergoes one structural and two magnetic transitions. The structural transition occurs at T s ~595K from cubic at high temperatures to tetragonal at low temperatures. Here, two magnetic transitions are ferrimagnetic at T FI–1 ~373K and T FI–2 ~50K, respectively. Further investigation of the specific heat, thermal conductivity, and Seebeck coefficient confirms both magnetic transitions. Of particular interest is that there is a significant magnetic contribution to themore » low-temperature specific heat and thermal conductivity, providing a unique system to study heat transport by magnetic excitations.« less
NASA Astrophysics Data System (ADS)
Cole, Jacqueline M.; Bürgi, Hans-Beat; McIntyre, Garry J.
2011-06-01
The solid-state molecular disorder of pentachloronitrobenzene (PCNB) and its role in causing anomalous dielectric properties are investigated. Normal coordinate analysis (NCA) of atomic mean-square displacement parameters (ADPs) is employed to distinguish disorder contributions from classical and quantum-mechanical vibrational contributions. The analysis relies on multitemperature (5-295 K) single-crystal neutron-diffraction data. Vibrational frequencies extracted from the temperature dependence of the ADPs are in good agreement with THz spectroscopic data. Aspects of the static disorder revealed by this work, primarily tilting and displacement of the molecules, are compared with corresponding results from previous, much more in-depth and time-consuming Monte Carlo simulations; their salient findings are reproduced by this work, demonstrating that the faster NCA approach provides reliable constraints for the interpretation of diffuse scattering. The dielectric properties of PCNB can thus be rationalized by an interpretation of the temperature-dependent ADPs in terms of thermal motion and molecular disorder. The use of atomic displacement parameters in the NCA approach is nonetheless hostage to reliable neutron data. The success of this study demonstrates that state-of-the-art single-crystal Laue neutron diffraction affords sufficiently fast the accurate data for this type of study. In general terms, the validation of this work opens up the field for numerous studies of solid-state molecular disorder in organic materials.
Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals
McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; ...
2014-11-18
Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature T SR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropymore » of the atomic displacement parameters for Bi with increasing temperature above T SR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.« less
Investigation of Renal Stones by X-ray and Neutron Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeva, M.; Boianova, A.; Beskrovnyi, A. I.
2007-04-23
Renal stones were investigated by X-ray diffraction. The obtained results showed only one crystal phase in every sample. With the aim to verify eventual availability of second phase (under 3 volume %) the same renal stones were investigated by neutron diffraction. The neutron spectra proved that additional crystal phase was absent in the renal stones. The obtained results are scientific-practical, in aid of the medicine, especially in the case of renal stone disease.
Proton irradiated graphite grades for a long baseline neutrino facility experiment
NASA Astrophysics Data System (ADS)
Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.
2017-07-01
In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ˜5 ×1020 cm-2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.
Proton irradiated graphite grades for a long baseline neutrino facility experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Nocera, P.; Zhong, Z.
In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ~5×10 20 cm -2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.« less
Proton irradiated graphite grades for a long baseline neutrino facility experiment
Simos, N.; Nocera, P.; Zhong, Z.; ...
2017-07-24
In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ~5×10 20 cm -2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.« less
Structural and spectroscopic studies of a commercial glassy carbon
NASA Astrophysics Data System (ADS)
Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.
2013-12-01
Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.
Structure and mechanical behavior of heavily drawn pearlite and martensite in a high carbon steel
NASA Astrophysics Data System (ADS)
Shiota, Y.; Tomota, Y.; Moriai, A.; Kamiyama, T.
2005-10-01
Neutron diffraction measurements have revealed that cementite peaks disappear in a pearlite steel with drawing and that the residual intergranular stresses are generated. The diffraction profiles in a heavily drawn specimen suggest the tetoragonality with a small c/a in the ferrite matrix. Although cementite was hardly observed in the heavily drawn specimen, its c/a value determined by neutron diffraction and mechanical behavior are quite different from those of as-quenched martensite. The changes in hardness and c/a with annealing or tempering were also different between heavily drawn pearlite and marteniste. Hence, most of carbon atoms do not exist inside the ferrite lattice in the drawn pearlite and multi-scaled heterogeneous plastic deformation in pearlite seems to affect the asymmetry in the diffraction profile. Fracture behavior and hardness change with tempering is different in the two microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...
2016-06-02
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Neutron diffraction study of layered Ni dioxides: Ag2NiO2
NASA Astrophysics Data System (ADS)
Nozaki, Hiroshi; Sugiyama, Jun; Janoschek, Marc; Roessli, Bertrand; Pomjakushin, Vladimir; Keller, Lukas; Yoshida, Hiroyuki; Hiroi, Zenji
2008-03-01
In order to elucidate the antiferromagnetic (AF) nature of hexagonal Ag2NiO2 with TN = 56 K and to know the mechanism of the structural phase transition of TS~270 K, neutron powder diffraction patterns have been measured in the temperature range between 1.5 and 330 K. One magnetic Bragg peak indexed as \\frac {1}{3}~\\frac {1}{3}~0 is clearly observed below TN, confirming the formation of long-range AF order, reported by a muon-spin spectroscopy measurement. The weak intensity of the magnetic peak also suggests the two-dimensional nature of the AF order, but the spin structure is still unknown. In addition, the precise structural analysis of the data between 160 and 330 K shows that only the cH-axis length changes drastically at TS, which suggests the appearance of local Jahn-Teller distortion below TS.
Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.
Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue
2016-03-14
We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical Pressure Effects in Layered Manganites
NASA Astrophysics Data System (ADS)
Moritomo, Yutaka; Maruyama, Yousuke; Nakamura, Arao
1998-03-01
Lattice effects on the magnetic and transport properties have been investigated for layered-type doped mangaites. The insulator-to-metal transition temperature for La_1.2Sr_1.8Mn_2O7 (T_C=130 K) is significantly suppressed with chemical substitution of the trivalent La^3+ ions to smaller Nd^3+ (or Sm^3+) ions(Y. Moritomo et al), Phys. Rev. B56(1997)R7057. Similarly, the charge-ordering temperature for La_0.5Sr_1.5MnO4 (T_CO=230 K) is suppresses with chemical substitution(Y. Moritomo et al), Phys. Rev. B56, in press. Systematic x-ray as well as neutron diffraction measurements have revealed that above chemical pressure enhances the static Jahn-Teller distortion of the MnO6 octahedra in both the system. We will explain the suppressions of TC and T_CO in terms of the increasing d_3z^2-r^2 character in the occupied eg state. Our observation indicates that the chemical pressure effects are qualitatively different between the cubic and layered manganites systems. The authors are grateful to K. Ohoyama and M. Ohashi for their help in neutron diffraction measurements, and to S. Mori for his help in electron diffraction measurements. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.
NASA Astrophysics Data System (ADS)
Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai
2013-09-01
Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).
Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; ...
2014-11-01
We present the lattice thermal expansion of mullite-type PbFeBO 4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequenciesmore » of the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.« less
Liu, Jue; Whitfield, Pamela S; Saccomanno, Michael R; Bo, Shou-Hang; Hu, Enyuan; Yu, Xiqian; Bai, Jianming; Grey, Clare P; Yang, Xiao-Qing; Khalifah, Peter G
2017-07-12
Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2 Mg 2 P 3 O 9 N was synthesized by ion exchange from a Na 2 Mg 2 P 3 O 9 N precursor. Impedance spectroscopy measurements indicate that Li 2 Mg 2 P 3 O 9 N has a room temperature Li-ion conductivity of about 10 -6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2 Mg 2 P 3 O 9 N at this temperature. The structure of Li 2 Mg 2 P 3 O 9 N was determined from ex situ synchrotron and time-of-flight neutron diffraction data to retain the P2 1 3 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2 Mg 2 P 3 O 9 N. The two Li-ion sites are found to be very substantially displaced (∼0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2 Mg 2 P 3 O 9 N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li + /Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2-x Li x Mg 2 P 3 O 9 N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2 Mg 2 P 3 O 9 N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. In addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.
Xia, Yan; Li, Ming; Kučerka, Norbert; Li, Shutao; Nieh, Mu-Ping
2015-02-01
We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 10(5) s(-1). Both unidirectional and oscillational flows are achievable by the setting of the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s(-1). Multiple high-order Bragg peaks are observed and the full width at half maximum of the "rocking curve" around the Bragg's condition is found to be 3.5°-4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polsky, Yarom; Anovitz, Lawrence; An, Ke
2013-01-01
Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had bothmore » the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.« less
A neutron diffraction study of the magnetic phases of CsCuCl3 for in-plane fields up to 17 T
NASA Astrophysics Data System (ADS)
Stüßer, N.; Schotte, U.; Hoser, A.; Meschke, M.; Meißner, M.; Wosnitza, J.
2002-05-01
Neutron diffraction investigations have been performed to study the magnetization process of CsCuCl3 with the magnetic field aligned within the ab-plane. In zero field the stacked, triangular-lattice antiferromagnet (TLA) CsCuCl3 has a helical structure incommensurate in the chain direction normal to the ab-plane. The magnetic phase diagram was investigated from 2 K up to TN in fields up to 17 T. The phase line for the expected incommensurate-commensurate (IC-C) phase transition could be determined throughout the whole phase diagram. At low temperature the IC-C transition is roughly at half the saturation field HS. The neutron diffraction patterns were found to be well described by a sinusoidally modulated spiral in fields up to HS/3. The initial increase of the scattering intensity in rising field indicates a continuous reduction of the spin frustration on the triangular lattice. Between HS/3 and HS/2 a new phase occurs where the spiral vector has a plateau in its field dependence. Close to the IC-C transition a growing asymmetry of magnetic satellite-peak intensities indicates domain effects which are related to the lifting of the chiral degeneracy in the ab-plane in rising field. The phase diagram obtained has some similarities with those calculated for stacked TLAs by considering the effects of quantum and thermal fluctuations.
NASA Astrophysics Data System (ADS)
Kurbakov, A. I.; Korshunov, A. N.; Podchezertsev, S. Yu.; Malyshev, A. L.; Evstigneeva, M. A.; Damay, F.; Park, J.; Koo, C.; Klingeler, R.; Zvereva, E. A.; Nalbandyan, V. B.
2017-07-01
The magnetic structure of L i3N i2Sb O6 has been determined by low-temperature neutron diffraction, and the crystal structure has been refined by a combination of synchrotron and neutron powder diffraction. The monoclinic (C 2 /m ) symmetry, assigned previously to this pseudohexagonal layered structure, has been unambiguously proven by peak splitting in the synchrotron diffraction pattern. The structure is based on essentially hexagonal honeycomb-ordered N i2Sb O6 layers alternating with L i3 layers, all cations and anions being in an octahedral environment. The compound orders antiferromagnetically below TN=15 K , with the magnetic supercell being a 2 a ×2 b multiple of the crystal cell. The magnetic structure within the honeycomb layer consists of zigzag ferromagnetic spin chains coupled antiferromagnetically. The ordered magnetic moment amounts to 1.62 (2 ) μB/Ni , which is slightly lower than the full theoretical value. Upon cooling below TN, the spins tilt from the c axis, with a maximum tilting angle of 15 .6∘ at T =1.5 K . Our data imply non-negligible ferromagnetic interactions between the honeycomb layers. The observed antiferromagnetic resonance modes are in agreement with the two-sublattice model derived from the neutron data. Orthorhombic anisotropy shows up in zero-field splitting of Δ =198 ±4 and 218 ±4 GHz . Above TN, the electron spin resonance data imply short-range antiferromagnetic order up to about 80 K.
Spin glass freezing and superconductivity in YBa2(Cu(1-x)Fe(x))3O7 alloys
NASA Technical Reports Server (NTRS)
Mirebeau, I.; Hennion, M.; Dianoux, J.; Caignaert, V.; Phillips, T. E.; Moorjani, K.
1991-01-01
The dynamics were studied of the iron spins in superconducting YBa2(Cu(0.94)Fe(0.06))3O7 by neutron time of flight measurements. Two samples were studied with slightly different characteristics, as shown by resistivity and neutron diffraction measurements. The same dynamical anomalies are observed by neutrons in both samples. Differences appear qualitative but not quantitative. In the whole temperature range, the q-dependence of the magnetic intensity mainly reflects the magnetic form factor of iron which shows that the iron spins are almost uncorrelated. The elastic and quasielastic intensities strongly vary with temperature. A spin glass like freezing is revealed at low temperature by a sharp decrease of the quasielastic intensity, an increase of the 'elastic' or resolution limited intensity and a minimum in the quasielastic width. The freezing temperature (T sub f - 18 K) corresponds to that already determined by a magnetic splitting in Mossbauer experiments. Above T sub f, the relaxation of the iron spins in the paramagnetic state is modified by the occurrence of superconductivity. An increase was observed of the quasielastic intensity and of the quasielastic width at the superconducting transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I
2013-01-01
It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaricmore » temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.« less
NASA Astrophysics Data System (ADS)
Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang
2013-02-01
It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, M.; Pruteanu, C. G.; Donnelly, M. -E.
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...
2017-02-01
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Neutron Reflectivity and Grazing Angle Diffraction
Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.
1993-01-01
Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457
Luscher, Darby J.; Yeager, John D.; Clausen, Bjørn; ...
2017-05-14
Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. A complete understanding of the orientation distribution of TATB particles throughout a PBX charge is required to understand spatially variable, anisotropic macroscale properties of the charge. Although texture of these materials can be measured after they have been subjected to mechanical or thermal loads, measuring texture evolution in situ is important in order to identify mechanisms of crystal deformation and reorientation used to better inform thermomechanical models. Neutron diffraction measurements were used to estimate crystallographic reorientation while deuterated TATB (d-TATB) powder was consolidated into amore » cylindrical pellet via a uniaxial die-pressing operation at room temperature. Both the final texture of the pressed pellet and the in situ evolution of texture during pressing were measured, showing that the d-TATB grains reorient such that (001) poles become preferentially aligned with the pressing direction. A compaction model is used to predict the evolution of texture in the pellet during the pressing process, finding that the original model overpredicted the texture strength compared to these measurements. The theory was extended to account for initial particle shape and pore space, bringing the results into good agreement with the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luscher, Darby J.; Yeager, John D.; Clausen, Bjørn
Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. A complete understanding of the orientation distribution of TATB particles throughout a PBX charge is required to understand spatially variable, anisotropic macroscale properties of the charge. Although texture of these materials can be measured after they have been subjected to mechanical or thermal loads, measuring texture evolution in situ is important in order to identify mechanisms of crystal deformation and reorientation used to better inform thermomechanical models. Neutron diffraction measurements were used to estimate crystallographic reorientation while deuterated TATB (d-TATB) powder was consolidated into amore » cylindrical pellet via a uniaxial die-pressing operation at room temperature. Both the final texture of the pressed pellet and the in situ evolution of texture during pressing were measured, showing that the d-TATB grains reorient such that (001) poles become preferentially aligned with the pressing direction. A compaction model is used to predict the evolution of texture in the pellet during the pressing process, finding that the original model overpredicted the texture strength compared to these measurements. The theory was extended to account for initial particle shape and pore space, bringing the results into good agreement with the data.« less
The preparation of Zr-deuteride and phase stability studies of the Zr-D system
NASA Astrophysics Data System (ADS)
Maimaitiyili, T.; Steuwer, A.; Bjerkén, C.; Blomqvist, J.; Hoelzel, M.; Ion, J. C.; Zanellato, O.
2017-03-01
Deuteride phases in the zirconium-deuterium system in the temperature range 25-286 °C have been studied in-situ by high resolution neutron diffraction. The study primarily focused on observations of δ→γ transformation at 180 °C, and the peritectoid reaction α + δ ↔ γ at 255 °C in commercial grade Zr powder that was deuterated to a deuterium/Zr ratio of one to one. A detailed description of the zirconium deuteride preparation route by high temperature gas loading is also described. The lattice parameters of α-Zr, δ-ZrDx and ε-ZrDx were determined by whole pattern crystal structure analysis, using Rietveld and Pawley refinements, and are in good agreement with values reported in the literature. The controversial γ-hydride phase was observed both in-situ and ex-situ in deuterated Zr powder after a heat treatment at 286 °C and slow cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrano-Sánchez, F.; Gharsallah, M.; Nemes, N. M.
SnSe has been prepared by arc-melting, as mechanically robust pellets, consisting of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy, and transport measurements. A microscopic analysis from NPD data demonstrates a quite perfect stoichiometry SnSe{sub 0.98(2)} and a fair amount of anharmonicity of the chemical bonds. The Seebeck coefficient reaches a record maximum value of 668 μV K{sup −1} at 380 K; simultaneously, this highly oriented sample exhibits an extremely low thermal conductivity lower than 0.1 W m{sup −1} K{sup −1} around room temperature, which are two of the main ingredients of good thermoelectric materials. Thesemore » excellent features exceed the reported values for this semiconducting compound in single crystalline form in the moderate-temperatures region and highlight its possibilities as a potential thermoelectric material.« less
Lattice dynamics and the nature of structural transitions in organolead halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.
Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remarkable optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic x-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our findings confirm the displacive nature of the cubic-to-tetragonal phase transition, which is further shown, using neutron and x-ray diffraction, to be close to a tricritical point. Lastly, we detect quasistatic symmetry-breaking nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These findings reveal key structural properties of these materials, and also bearmore » important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.« less
Orbital glass state of the nearly metallic spinel cobalt vanadate
Koborinai, R.; Dissanayake, Sachith E.; Reehuis, M.; ...
2016-01-19
Strain, magnetization, dielectric relaxation, and unpolarized and polarized neutron diffraction measurements were performed to study the magnetic and structural properties of spinel Co 1–xV 2+xO 4. The strain measurement indicates that, upon cooling, ΔL/L in the order of ~10 –4 starts increasing below T C, becomes maximum at T max, and then decreases and changes its sign at T*. Neutron measurements indicate that a collinear ferrimagnetic order develops below T C and upon further cooling noncollinear ferrimagnetic ordering occurs below T max. At low temperatures, the dielectric constant exhibits a frequency dependence, indicating slow dynamics. Lastly, these results indicate themore » existence of an orbital glassy state at low temperatures in this nearly metallic frustrated magnet.« less
NASA Astrophysics Data System (ADS)
Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki
2013-06-01
To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xinzhe; Nakamoto, Tatsushi; Ogitsu, Toru
2013-06-15
To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an externalmore » driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.« less
Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki
2013-06-01
To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.
Ferroelectric to paraelectric phase transition mechanism in poled PVDF-TrFE copolymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, A.; T. Misture, Scott; Osti, Naresh C.
2017-11-01
Direct experimental insights into the structural and dynamical mechanisms for ferroelectric β to paraelectric α phase transition in a poled PVDF-TrFE copolymer is obtained from in situ x-ray diffraction and quasielastic neutron scattering measurements at high temperatures. It is observed that the β-to-α phase transition proceeds through two energetically distinct processes, which are identified here as the nucleation and growth of an intermediate γ phase with random skew linkages followed by a γ-to-α transition. The two energetically distinct microscopic processes can explain the stages of evolution for β-to-α phase transition observed from heat flow measurements.
Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe
NASA Astrophysics Data System (ADS)
Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; Huang, K.; Baumbach, R. E.; Bauer, E. D.; White, B. D.; Burnett, V. W.; Maple, M. B.; Lynn, J. W.; Janoschek, M.
2015-02-01
We have used specific heat and neutron diffraction measurements on single crystals of URu2 -xFexSi2 for Fe concentrations x ≤0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" Pc h as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011), 10.1103/PhysRevB.84.245122] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x =0.1 , reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px≈0.5 -0.7 GPa in URu2Si2 . Using the unit-cell volume determined from our measurements and an isothermal compressibility κT=5.2 ×10-3 GPa-1 for URu2Si2 , we determine the chemical pressure Pc h in URu2 -xFexSi2 as a function of x . The resulting temperature (T )-chemical pressure (Pc h) phase diagram for URu2 -xFexSi2 is in agreement with the established temperature (T )-external pressure (P ) phase diagram of URu2Si2 .
Chemical pressure tuning of URu 2 Si 2 via isoelectronic substitution of Ru with Fe
Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; ...
2015-02-26
We have used specific heat and neutron diffraction measurements on single crystals of URu 2–xFe xSi₂ for Fe concentrations x ≤ 0.7 to establish that chemical substitution of Ru with Fe acts as “chemical pressure” P ch as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011)] based on bulk measurements on polycrystalline samples. Neutron diffraction reveals a sharp increase of the uranium magnetic moment at x = 0.1, reminiscent of the behavior at the “hidden order” to large moment antiferromagnetic (LMAFM) phase transition observed at a pressure P x ≈ 0.5-0.7 GPa in URu₂Si₂. Using themore » unit cell volume determined from our measurements and an isothermal compressibility κ T = 5.2×10⁻³ GPa⁻¹ for URu₂Si₂, we determine the chemical pressure P ch in URu 2-xFe xSi₂ as a function of x. The resulting temperature T-chemical pressure P ch phase diagram for URu 2-xFe xSi₂ is in agreement with the established temperature T-external pressure P phase diagram of URu₂Si₂.« less
Competing magnetic ground states and their coupling to the crystal lattice in CuFe 2Ge 2
May, Andrew F.; Calder, Stuart; Parker, David S.; ...
2016-10-14
Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe 2Ge 2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. The temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below T N ≈ 175 K, and an incommensuratemore » spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe 2Ge 2. Furthermore, the neutron diffraction data reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. Our results demonstrate that the ground state in CuFe 2Ge 2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.« less
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batuk, Maria, E-mail: Maria.Batuk@uantwerpen.be; Batuk, Dmitry; Abakumov, Artem M.
A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5–550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. The structure is built of truncated Pb{submore » 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μ{sub B} and 3.86(5) μ{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. • The structure has been refined using neutron powder diffraction data at 1.5–550 K. • It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. • Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}≈450 K.« less
Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability
NASA Astrophysics Data System (ADS)
Khong, J. C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A. S.; Mi, J.
2016-11-01
This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications.
Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability.
Khong, J C; Daisenberger, D; Burca, G; Kockelmann, W; Tremsin, A S; Mi, J
2016-11-16
This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications.
Structure and physical properties of YCoO3 at temperatures up to 1000K
NASA Astrophysics Data System (ADS)
Knížek, K.; Jirák, Z.; Hejtmánek, J.; Veverka, M.; Maryško, M.; Hauback, B. C.; Fjellvåg, H.
2006-06-01
The crystal structure of perovskite YCoO3 has been studied by neutron powder diffraction up to high temperatures. The orthorhombic Pbnm symmetry is confirmed in the whole temperature range. A significant isotropic enlargement of CoO6 octahedra is evidenced above 600K leading to unit cell expansion and increased octahedral tilting. Supported by complementary physical measurements, the origin of anomalous expansion is identified with a gradual transition of Co3+ ions from the diamagnetic low-spin (S=0) ground state to excited magnetic states with spin S=1 or 2. The magnetic transition is closely followed by a broad resistivity transition of the insulator-metal type, centered at 750K . The changes in magnetic susceptibility, electric resistivity, thermopower and thermal conductivity associated with transitions in YCoO3 are discussed in comparison with similar data on related perovskite LaCoO3 .
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-01-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-10-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.
Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert
2014-04-24
Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, S.; Guratinder, K.; Stuhr, U.; White, J. S.; Mansson, M.; Roessli, B.; Fennell, T.; Tsurkan, V.; Loidl, A.; Ciomaga Hatnean, M.; Balakrishnan, G.; Raymond, S.; Chapon, L.; Garlea, V. O.; Savici, A. T.; Cervellino, A.; Bombardi, A.; Chernyshov, D.; Rüegg, Ch.; Haraldsen, J. T.; Zaharko, O.
2018-04-01
In spinels A Cr2O4(A =Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002), 10.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0 ) ,k2=(1 0 1/2 ) appear. The ordered moment reaches 1.94(3) μB/Cr3 + for k1 and 2.08(3) μB/Cr3 + for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1 -10 ] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
NASA Astrophysics Data System (ADS)
Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc
2017-03-01
The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.
Temperature and composition phase diagram in the iron-based ladder compounds Ba 1 - x Cs x Fe 2 Se 3
Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; ...
2015-05-28
We investigated the iron-based ladder compounds (Ba,Cs)Fe₂Se₃. Their parent compounds BaFe₂Se₃ and CsFe₂Se₃ have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe₂Se₃ is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe₂Se₃ is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe₂Se₃, but interladder spin configuration is different. Intermediatemore » compounds show insulating behavior, nevertheless a finite T-linear contribution in specific heat was obtained at low temperatures.« less
Temperature and composition phase diagram in the iron-based ladder compounds Ba1-xCsxFe2Se3
NASA Astrophysics Data System (ADS)
Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.
2015-05-01
We investigated the iron-based ladder compounds (Ba,Cs ) Fe2Se3 . Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3 , but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T -linear contribution in specific heat was obtained at low temperatures.
Designer Diamonds: Applications in Iron-based Superconductors and Lanthanides
NASA Astrophysics Data System (ADS)
Vohra, Yogesh
2013-06-01
This talk will focus on the recent progress in the fabrication of designer diamond anvils as well as scientific applications of these diamonds in static high pressure research. The two critical parameters that have emerged in the microwave plasma chemical vapor deposition of designer diamond anvils are (1) the precise [100] alignment of the starting diamond substrate and (2) balancing the competing roles of parts per million levels of nitrogen and oxygen in the diamond growth plasma. The control of these parameters results in the fabrication of high quality designer diamonds with culet size in excess of 300 microns in diameter. The three different applications of designer diamond anvils will be discussed (1) simultaneous electrical resistance and crystal structure measurements using a synchrotron source on Iron-based superconductors with data on both electron and hole doped BaFe2As2 materials and other novel superconducting materials (2) high-pressure high-temperature melting studies on metals using eight-probe Ohmic heating designer diamonds and (3) high pressure low temperature studies on magnetic behavior of 4f-lanthanide metals using four-probe electrical resistance measurements and complementary neutron diffraction studies on a spallation neutron source. Future opportunities in boron-doped conducting designer diamond anvils as well as fabrication of two-stage designer diamonds for ultra high pressure experiments will also be presented. This work was supported by the Department of Energy (DOE) - National Nuclear Security Administration (NNSA) under Grant No. DE-FG52-10NA29660.
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments
NASA Technical Reports Server (NTRS)
Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.
Simultaneous neutron scattering and Raman scattering.
Adams, Mark A; Parker, Stewart F; Fernandez-Alonso, Felix; Cutler, David J; Hodges, Christopher; King, Andrew
2009-07-01
The capability to make simultaneous neutron and Raman scattering measurements at temperatures between 1.5 and 450 K has been developed. The samples to be investigated are attached to one end of a custom-made center-stick suitable for insertion into a 100 mm-bore cryostat. The other end of the center-stick is fiber-optically coupled to a Renishaw in Via Raman spectrometer incorporating a 300 mW Toptica 785 nm wavelength stabilized diode laser. The final path for the laser beam is approximately 1.3 m in vacuo within the center-stick followed by a focusing lens close to the sample. Raman scattering measurements with a resolution of 1 to 4 cm(-1) can be made over a wide range (100-3200 cm(-1)) at the same time as a variety of different types of neutron scattering measurements. In this work we highlight the use of inelastic neutron scattering and neutron diffraction in conjunction with the Raman for studies of the globular protein lysozyme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Ravi
In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energymore » storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO 2 and in graphite/LiMn 2O 4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean α-phase. These experiments have been performed at CG-1D Neutron Imaging Prototype Station at SNS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delacotte, C.; Bréard, Y.; Caignaert, V.
2017-03-15
Magnetic structure of CaFe{sub 5}O{sub 7} ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: T{sub M}=125 K and T{sub N}=360 K. The latter corroborates the structural monoclinic-orthorhombic transition previously reported by transmission electron microscopy techniques and X-ray thermodiffractometry. Complementary heat capacity measurements have confirmed this first order transition with a sharp peak at 360 K. Interestingly, this large study has revealed a second magnetic transition associated to a spin rotation at 125 Kmore » similar to this one reported by Morin in α-Fe{sub 2}O{sub 3} hematite at T{sub M}=260 K. - Graphical abstract: Magnetic structure of CaFe{sub 5}O{sub 7} ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: T{sub M}=125 K and T{sub N}=360 K. Interestingly, this large study has revealed a magnetic transition associated to a spin rotation at 125 K similar to this one reported by Morin in α-Fe{sub 2}O{sub 3} hematite at T{sub M}=260 K.« less
Lee, Tae-Ho; Kim, Sung-Joon; Shin, Eunjoo; Takaki, Setsuo
2006-12-01
The ordered structure of Cr(2)N precipitates in high-nitrogen austenitic steel was investigated utilizing high-resolution neutron powder diffractometry (HRPD). On the basis of the Rietveld refinement of neutron diffraction patterns, the ordered Cr2N superstructure was confirmed to be trigonal (space group P31m), with lattice parameters a=4.800 (4) and c=4.472 (5) A, as suggested in previous transmission electron microscopy studies [Lee, Oh, Han, Lee, Kim & Takaki (2005). Acta Cryst. B61, 137-144; Lee, Kim & Takaki (2006). Acta Cryst. B62, 190-196]. The occupancies of the N atoms in four crystallographic sites [1(a), 1(b), 2(d) and 2(c) Wyckoff sites] were determined to be 1.00 (5), 0.0, 0.74 (9) and 0.12 (3), respectively, reflecting a partial disordering of N atoms along the c axis. The position of the metal atom was specified to be x=0.346 (8) and z=0.244 (6), corresponding to a deviation from the ideal position (x=0.333 and z=0.250). This deviation caused the ((1/3 1/3)(0))-type superlattice reflection to appear. A comparison between the ideal and measured crystal structures of Cr2N was performed using a computer simulation of selected-area diffraction patterns.
Crystal structure studies with the Paris-Edinburgh cell: Neutron scattering aspects
NASA Astrophysics Data System (ADS)
Loveday, J. S.; Wilson, R. M.; Nelmes, R. J.; Besson, J. M.; Klotz, S.; Hamel, G.; Hull, S.
1994-07-01
The count rates achieved in neutron powder diffraction experiments create difficulties for high-pressure experiments because large sample volumes (˜100 mm3) must be used. Until recently it has been difficult to build suitable pressure cells with such large volumes and hence the maximum pressure for neutron diffraction has remained at the relatively low value of 3 GPa. We have now developed a pressure cell (the Paris-Edinburgh cell) which is capable of exceeding 10 GPa with a sample volume of ˜100 mm3 for use at the U.K. spallation source ISIS. Considerable effort has been devoted to the opimization of the cell, shielding, and detector geometry to enable the best possible data to be recorded. Finite-element calculations to correct for the systematic errors introduced by the attenuation of the pressure-cell materials have been developed and tested. As a result of this work we are now able to obtain accurate structural data to ˜12 GPa and recent studies of phase IV of ND3, the behaviour of the O-D bondlength in D2O ice VIII, and the structural pressure dependence of B4C illustrate the importance of the extension of neutron-diffraction studies to such pressures.
The A{sup 2+}Mn{sub 5}(SO{sub 4}){sub 6} family of triangular lattice, ferrimagnetic sulfates
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, D.V., E-mail: barelytone@gmail.co; McQueen, T.M.; Posen, I.D.
2009-06-15
A new family of anhydrous sulfates, A{sup 2+}Mn{sub 5}(SO{sub 4}){sub 6} (A=Pb, Ba, Sr) is reported. The crystal structures of PbMn{sub 5}(SO{sub 4}){sub 6} and SrMn{sub 5}(SO{sub 4}){sub 6} are solved by powder X-ray and neutron diffraction. BaMn{sub 5}(SO{sub 4}){sub 6} is isostructural. PbMn{sub 5}(SO{sub 4}){sub 6} crystallizes with P3-bar symmetry and unit cell parameters of a=14.551(1) A and c=7.535(1) A. The structure has rich features, including dimers of face-sharing MnO{sub 6} octahedra, and two complementary triangular layers of Mn atoms. All compounds undergo a magnetic ordering transition at 10 K, below which, the magnetic susceptibility of the compounds variesmore » systematically with the radius of the non-magnetic cation. Low temperature neutron diffraction shows that the complementary triangular layers result in a ferrimagnet with a net moment corresponding to one high spin Mn{sup 2+} per unit cell, correlating well with the magnetization data. The non-magnetic variant PbMg{sub 5}(SO{sub 4}){sub 6} is also reported. - Graphical abstract: A new family sulfates, A{sup 2+}Mn{sub 5}(SO{sub 4}){sub 6} (A=Pb, Ba, Sr) is reported. Structures are solved by powder neutron diffraction. PbMn{sub 5}(SO{sub 4}){sub 6} is trigonal with lattice parameters of a=14.551(1) A and c=7.535(1) A. The structure has dimers of face-sharing MnO{sub 6} octahedra, and two complementary triangular layers of Mn atoms that result in a ferrimagnet. All compounds magnetically order at 10 K. Low field susceptibility varies systematically with non-magnetic cation radius.« less
Oxygen miscibility gap and spin glass formation in the pyrochlore Lu{sub 2}Mo{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, L.; Ritter, C.; Harrison, A.
2013-07-15
Rare earth (R) molybdate pyrochlores, R{sub 2}Mo{sub 2}O{sub 7}, are of interest as frustrated magnets. Polycrystalline samples of Lu{sub 2}Mo{sub 2}O{sub 7−x} prepared at 1600 °C display a coexistence of cubic pyrochlore phases. Rietveld fits to powder neutron diffraction data and chemical analyses show that the miscibility gap is between a stoichiometric x=0 and an oxygen-deficient x≈0.4 phase. Lu{sub 2}Mo{sub 2}O{sub 7} behaves as a spin glass material, with a divergence of field cooled and zero field cooled DC magnetic susceptibilities at a spin freezing temperature T{sub f}=16 K, that varies with frequency in AC measurements following a Vogel–Fulcher law.more » Lu{sub 2}Mo{sub 2}O{sub 6.6} is more highly frustrated spin glass and has T{sub f}=20 K. - Graphical abstract: The cubic Lu{sub 2}Mo{sub 2}O{sub 7−x} system exhibits a miscibility gap between coexisting pyrochlore phases at 1600 °C. Neutron powder diffraction refinement and chemical analysis shows that the gap separates stoichiometric x=0 and oxygen-deficient x≈0.4 phases. Lu{sub 2}Mo{sub 2}O{sub 7−x} has a frustrated spin glass ground state that is sensitive to the oxygen content. - Highlights: • The cubic Lu{sub 2}Mo{sub 2}O{sub 7−x} system has a miscibility gap between coexisting pyrochlore phases at 1600 °C. • Neutron powder diffraction shows that the gap separates x=0 and oxygen-deficient x≈0.4 phases. • Lu{sub 2}Mo{sub 2}O{sub 7−x} has a frustrated spin glass ground state that is sensitive to the oxygen content.« less
Hyperfine Fields of 181Ta in UFe4Al8
NASA Astrophysics Data System (ADS)
Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.
2001-11-01
The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.
La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study
NASA Astrophysics Data System (ADS)
López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.
2008-11-01
La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
NASA Astrophysics Data System (ADS)
Han, Tianheng
New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration . The realization of a quantum spin liquid in two-dimensions would represent a new state of matter. It is believed that spin liquid physics plays a role in the phenomenon of high-Tc superconductivity, and the topological properties of the spin liquid state may have applications in the field of quantum information. The Zn-paratacamite family, ZnxCu4-- x(OH)6Cl2 for x > 0.33, is an ideal system to look for such an exotic state in the form of antiferromagnetic Cu 2 + kagome planes. The x = 1 end member, named herbertsmithite, has shown promising spin liquid properties from prior studies on powder samples. Here we show a new synthesis by which high-quality centimeter-sized single crystals of Znparatacamite have been produced for the first time. Neutron and synchrotron xray diffraction experiments indicate no structural transition down to T = 2 K. The magnetic susceptibility both perpendicular and parallel to the kagome plane has been measured for the x = 1 sample. A small, temperature-dependent anisotropy has been observed, where chi z / chip > 1 at high temperatures and chiz / chip < 1 at low temperatures. Fits of the high-temperature data to a Curie-Weiss model also reveal anisotropies for thetacw's and g-factors. By comparing with theoretical calculations, the presence of a small easy-axis exchange anisotropy can be deduced as a primary perturbation to the dominant Heisenberg nearest neighbor interaction. These results have great bearing on the interpretation of theoretical calculations based on the kagome Heisenberg antiferromagnet model to the experiments on ZnCu3(OH) 6Cl2. Specific heat measurements down to dilution temperatures and under strong applied magnetic fields show a superlinear temperature dependence with a finite linear term. Most importantly, we present neutron scattering measurements of the spin excitations on a large deuterated single crystal sample of herbertsmithite. Our observation of a spinon continuum in a two-dimensional magnet is unprecedented. The sresults serve as a a key fingerprint of the quantum spin liquid state in herbertsmithite. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Astrophysics Data System (ADS)
Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.
2016-11-01
An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Oliver, E-mail: oliver.clemens@kit.edu; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen; Berry, Frank J.
2015-03-15
In this article we comment on the results published by Thompson et al. (, J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO{sub 2}F, who claim the compound to crystallize in the cubic space group Pm-3m. We give a more detailed explanation of the determination of our previously reported structural model with Imma symmetry (Clemens et al., J. Solid State Chem. 206 (2013) 158–169), with addition of variable temperature XRD measurements with high counting time to provide unambiguous evidence for the Imma model being correct for our sample. - Graphical abstract: The crystal structure of SrFeO{submore » 2}F is discussed with regards to previous reports. - Highlights: • SrFeO{sub 2}F was synthesized by polymer based fluorination of SrFeO{sub 3}. • Evaluation of the diffraction data shows a pseudocubic cell metric. • Superstructure reflections at low d-spacings indicate deviation from cubic symmetry. • The phase transition temperature from orthorhombic to cubic was determined using variable temperature X-ray diffraction. • Results published by Thompson et al. are critically discussed with respect to those observations.« less
NASA Astrophysics Data System (ADS)
Slodczyk, Aneta; Colomban, Philippe; Upasen, Settakorn; Grasset, Frédéric; André, Gilles
2015-08-01
Long-term chemical and structural stability of an ion conducting ceramic is one of the main criteria for its selection as an electrolytic membrane in energy plant devices. Consequently, medium density SrZr0.9Er0.1O3-δ (SZE) anhydrous proton conducting ceramic - a potential electrolyte of SOFC/PCFC, was analysed by neutron diffraction between room temperature and 900 °C. After the first heating/cooling cycle, the ceramic pieces were exposed to water vapour pressure in an autoclave (500 °C, 40 bar, 7 days) in order to incorporate protonic species; the protonated compound was then again analysed by neutron diffraction. This procedure was repeated two times. At each step, the sample was also controlled by TGA and Raman spectroscopy. These studies allow the first comprehensive comparison of structural and chemical stability during the protonation/deprotonation cycling. The results reveal good structural stability, although an irreversible small contraction of the unit-cell volume and local structure modifications near Zr/ErO5[] octahedra are detected after the first protonation. After the second protonation easy ceramic crumbling under a stress is observed because of the presence of secondary phases (SrCO3, Sr(OH)2) well detected by Raman scattering and TGA. The role of crystallographic purity, substituting element and residual porosity in the proton conducting perovskite electrolyte stability is discussed.
NASA Astrophysics Data System (ADS)
Grave, Daniel A.
Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while keeping a large adatom diffusion length on the film surface. Crystallographic texture evolution in the Gd2O3 films was investigated for different substrate types. At high rates, it was shown that films deposited on different substrates (quartz, silicon, sapphire, and GaN) all had similar theta-2theta diffraction patterns, suggesting that films grew similarly on different substrates due to the low adatom mobility. However, significant differences in texture were observed for films deposited at low rates (< 1 A/s) and high temperature (650°C) on different substrates. For evaluation of in-plane texture in the Gd2O 3 films, pole figure analysis was performed. Mixed phase films deposited at high rates and low temperature showed weak out-of-plane texture and random in-plane texture. Mixed phase films deposited at high temperatures possessed a fiber texture (strong out-of-plane texture), but lacked the necessary adatom mobility to develop in-plane texture. For single phase cubic films grown under low rates of deposition, out-of-plane texture was observed on quartz substrates. However, weak and strong in-plane textures were observed for sapphire and GaN substrates, respectively. The use of ion bombardment resulted in the formation of moderate biaxial texture for films grown on quartz. For films grown on sapphire, a very strong biaxial texture was achieved with ion bombardment which adds additional energy to the system. The effects of processing on the structure, composition, and interfacial chemistry of the Gd2O3 films were investigated. The results showed that films primarily adhered to the Structure-Zone models with a few exceptions. The deviation from the Structure-Zone model was explained by the combined effects of columnar growth, shadowing, and adatom mobility. At low deposition temperatures, decreasing oxygen flow resulted in increased film density due to higher adatom mobility. Films deposited at this temperature were characterized by small (10-15 nm) nanocrystalline grains with some porous disordered regions. The dielectric properties of Si(111)/Gd2O3/Ti/Au MOS capacitors were investigated. Moisture absorption in Gd2O 3 films was found to result in both increased dielectric loss (10x) and inflated dielectric constant values ( 40 %). Heat treatment of the films at 100 °C resulted in outgassing of moisture, reduction in dielectric constant, and excellent frequency dispersion of the dielectric constant over a range of 10 kHz-1 MHz. The effect of film processing on the dielectric constant was systematically investigated. Tuning of the dielectric constant from a value of 11 to a value of 24 was possible by manipulating the structure and crystallographic phase of the material via the processing conditions. Capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of GaN/AlGaN/Gd2O3/Ti/Au MOS capacitors were investigated. The effects of processing on fixed oxide charge, trapped oxide charge, and density of interface states were evaluated. Single phase cubic films deposited at low rates with near heteroepitaxial growth were shown to have the lowest density of trapped charge. (Abstract shortened by ProQuest.).
Proton irradiation effects on beryllium – A macroscopic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium – A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-07-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium - A macroscopic assessment
NASA Astrophysics Data System (ADS)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-10-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability
Khong, J. C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A. S.; Mi, J.
2016-01-01
This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications. PMID:27848991
Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...
2014-10-10
Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less
Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; ...
2016-12-07
We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A) 2[Co(NO 3) 4] with different countercations, Ph 4P + (1), MePh 3P + (2), and Ph 4As + (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to themore » zero-field splitting (2(D 2 + 3E 2) 1/2) from 22.5(2) cm –1 in 1 to 26.6(3) cm –1 in 2 and 11.1(5) cm –1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm –1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.« less
New test of the dynamic theory of neutron diffraction by a moving grating
NASA Astrophysics Data System (ADS)
Zakharov, Maxim; Frank, Alexander; Kulin, German; Goryunov, Semyon
2018-04-01
Recently, multiwave dynamical theory of neutron diffraction by a moving grating was developed. The theory predicts that at a certain height of the grating profile a significant suppression of the zero-order diffraction may occur. The experiment to confirm predictions of this theory was performed. The resulting diffracted UCNs spectra were measured using time-of-flight Fourier diffractometer. The experimental data were compared with the results of numerical simulation and were found in a good agreement with theoretical predictions.
Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries
NASA Astrophysics Data System (ADS)
Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard
Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.
Thermal expansion of monogermanides of 3d-metals
NASA Astrophysics Data System (ADS)
Valkovskiy, G. A.; Altynbaev, E. V.; Kuchugura, M. D.; Yashina, E. G.; Sukhanov, A. S.; Dyadkin, V. A.; Tsvyashchenko, A. V.; Sidorov, V. A.; Fomicheva, L. N.; Bykova, E.; Ovsyannikov, S. V.; Chernyshov, D. Yu; Grigoriev, S. V.
2016-09-01
Temperature dependent powder and single-crystal synchrotron diffraction, specific heat, magnetic susceptibility and small-angle neutron scattering experiments have revealed an anomalous response of MnGe. The anomaly becomes smeared out with decreasing Mn content in Mn1-x Co x Ge and Mn1-x Fe x Ge solid solutions. Mn spin state instability is discussed as a possible candidate for the observed effects.
Characterization of a neutron imaging setup at the INES facility
NASA Astrophysics Data System (ADS)
Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.
2013-10-01
The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.
In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material
NASA Astrophysics Data System (ADS)
Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke
2017-05-01
Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.
Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet
NASA Astrophysics Data System (ADS)
Lahoubi, Mahieddine
2018-05-01
The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.
Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; ...
2016-09-01
Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB 9H 10- and CB 11H 12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambientmore » to high temperatures. Finally, this result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.« less
Magnetic and Crystal Structure of α-RuCl3
NASA Astrophysics Data System (ADS)
Sears, Jennifer
The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
Precision determination of absolute neutron flux
Yue, A. T.; Anderson, E. S.; Dewey, M. S.; ...
2018-06-08
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Precision determination of absolute neutron flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, A. T.; Anderson, E. S.; Dewey, M. S.
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Magnetic order and electronic structure of 5d 3 double perovskite Sr 2ScOsO 6
Taylor, A. E.; Morrow, R.; Singh, D. J.; ...
2015-03-01
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr 2ScOsO 6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92 K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Densitymore » functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.« less
Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics
Li, C. W.; Ma, J.; Cao, H. B.; ...
2014-12-29
The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less
Neutron diffraction study of antiferromagnetic ErNi3Ga9 in magnetic fields
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Sato, Takaaki; Matsumoto, Yuji; Moyoshi, Taketo; Nakao, Akiko; Ohishi, Kazuki; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We report specific heat, magnetization, magnetoresistance, and neutron diffraction measurements of single crystals of ErNi3Ga9. This compound crystalizes in a chiral structure with space group R 32 . The erbium ions form a two-dimensional honeycomb structure. ErNi3Ga9 displays antiferromagnetic order below 6.4 K. We determined that the magnetic structure is slightly amplitude-modulated as well as antiferromagnetic with q = (0 , 0 , 0.5) . The magnetic properties are described by an Ising-like model in which the magnetic moment is always along the c-axis owing to the large uniaxial anisotropy caused by the crystalline electric field effect in the low temperature region. When the magnetic field is applied along the c-axis, a metamagnetic transition is observed around 12 kOe at 2 K. ErNi3Ga9 possesses crystal chirality, but the antisymmetric magnetic interaction, the so-called Dzyaloshinskii-Moriya (DM) interaction, does not contribute to the magnetic structure, because the magnetic moments are parallel to the DM-vector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.W.; Eckert, J.; Barthes, M.
1995-11-02
The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenylmore » ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.« less
Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide
NASA Astrophysics Data System (ADS)
Tarne, Michael
Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.
Itinerant Antiferromagnetism in RuO 2
Berlijn, Tom; Snijders, Paul C.; Delaire, Oliver A.; ...
2017-02-15
Bulk rutile RuO 2 has long been considered a Pauli paramagnet. Here, in this article, we report that RuO 2 exhibits a hitherto undetected lattice distortion below approximately 900 K. The distortion is accompanied by antiferromagnetic order up to at least 300 K with a small room temperature magnetic moment of approximately 0.05μ B as evidenced by polarized neutron diffraction. Density functional theory plus U(DFT+U) calculations indicate that antiferromagnetism is favored even for small values of the Hubbard U of the order of 1 eV. The antiferromagnetism may be traced to a Fermi surface instability, lifting the band degeneracy imposedmore » by the rutile crystal field. The combination of high Néel temperature and small itinerant moments make RuO 2 unique among ruthenate compounds and among oxide materials in general.« less
Crystallographic and magnetic structure of UCu{sub 1.5}Sn{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, A.; Robinson, R.A.; Nakotte, H.
1996-04-01
We report on the crystallographic and magnetic structures of the antiferromagnet UCu{sub 1.5}Sn{sub 2}, as determined by x-ray and neutron powder diffraction. It crystallizes in the tetragonal CaBe{sub 2}Ge{sub 2} structure type, with space group P/4nmm, and we find no site disorder between two different Sn2{ital c} sites, in contrast with a previous report. UCu{sub 1.5}Sn{sub 2} orders antiferromagnetically with a N{acute e}el temperature of about 110 K. This is unusually high among uranium intermetallics. The uranium moments align along the {ital c} axis in a collinear arrangement but alternating along the {ital c} axis. The low-temperature uranium moment ismore » 2.01{mu}{sub {ital B}}. {copyright} {ital 1996 American Institute of Physics.}« less
In situ investigation of deformation mechanisms in magnesium-based metal matrix composites
NASA Astrophysics Data System (ADS)
Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter
2015-07-01
We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.
Nuclear techniques in studies of condensed matter
NASA Technical Reports Server (NTRS)
Singh, Jag J.
1987-01-01
Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.
Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed
2017-08-01
Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.
Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.
Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...
2018-01-01
Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.
Gukasov, A; Brown, P J
2010-12-22
Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χ(ij) characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb(2)Sn(2)O(7).
NASA Astrophysics Data System (ADS)
Sediako, Dimitry G.; Kasprzak, Wojciech
2015-09-01
Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.
Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan
2014-09-01
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Capelli, Silvia C.; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan
2014-01-01
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu’s), all other structural parameters agree within less than 2 csu’s. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. PMID:25295177
Moghadam, Peyman Z.; Ivy, Joshua F.; Arvapally, Ravi K.; dos Santos, Antonio M.; Pearson, John C.; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W. H.; Kaipa, Ushasree
2017-01-01
FMOF-1 is a flexible, superhydrophobic metal–organic framework with a network of channels and side pockets decorated with –CF3 groups. CO2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg–1 (11.0 mol L–1) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N2, O2, and CO2. Neutron diffraction in situ experiments on the crystalline powder show that CO2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N2 and O2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO2 in the presence of 80% relative humidity predict that water does not influence the CO2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO2 capture from humid gas streams. PMID:28553541
Moghadam, Peyman Z; Ivy, Joshua F; Arvapally, Ravi K; Dos Santos, Antonio M; Pearson, John C; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W H; Kaipa, Ushasree; Wang, Xiaoping; Wilson, Angela K; Snurr, Randall Q; Omary, Mohammad A
2017-05-01
FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF 3 groups. CO 2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg -1 (11.0 mol L -1 ) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N 2 , O 2 , and CO 2 . Neutron diffraction in situ experiments on the crystalline powder show that CO 2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N 2 and O 2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO 2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO 2 in the presence of 80% relative humidity predict that water does not influence the CO 2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO 2 capture from humid gas streams.
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; ...
2014-09-19
We present neutron dffraction analysis of BaFe 2(As 1-xP x) 2 over a wide temperature (10 to 300 K) and compositional (0.11 < x < 0.79) range, including the normal state, the magnetically ordered state, and the superconducting state. The paramagnetic to spin-density wave and orthorhombic to tetragonal transitions are first order and coincident within the sensitivity of our measurements (~ 0:5 K). Extrapolation of the orthorhombic order parameter down to zero suggests that structural quantum criticality cannot exist at compositions higher than x = 0.28, which is much lower than values determined using other methods, but in good agreementmore » with our observations of the actual phase stability range. Lastly, the onset of spin-density wave order shows a stronger structural anomaly than the charge-doped system in the form of an enhancement of the c/a ratio below the transition.« less
Emergent nanoscale fluctuations in high rock-salt PbTe
NASA Astrophysics Data System (ADS)
Billinge, Simon
2013-03-01
Lead Telluride is one of the most promising thermoelectric materials in the temperature range just above room temperature. It is a narrow band gap semiconductor with a high Seebeck coefficient and a low thermal conductivity. It is structurally much simpler than many other leading candidates for high performance thermoelectrics being a binary rock-salt, isostructural to NaCl. The thermoelectric figure of merit, ZT, can be markedly improved by alloying with various other elements by forming quenched nanostructures. The undoped endmember, PbTe, does not have any such quenched nanostructure, yet has a rather low intrinsic thermal conductivity. There are also a number of interesting and non-canonical behaviors that it exhibits, such as an increasing measured band-gap with increasing temperature, exactly opposite to what is normally seen due to Fermi smearing of the band edge, and an unexpected non-monotonicity of the band gap in the series PbTe - PbSe - PbS. The material is on the surface simple, but hides some interesting complexity. We have investigated in detail the PbTe endmember using x-ray and neutron diffraction and neutron inelastic scattering. To our surprise, using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data we found that an interesting and non-trivial local structure that appears on warming. with the Pb atoms moving off the high-symmetry rock-salt positions towards neighboring Te ions. No evidence for the off-centering of the Pb atoms is seen at low temperature. The crossover from the locally undistorted to the locally distorted state occurs on warming between 100 K and 250 K. This unexpected emergence of local symmetry broken distortions from an undistorted ground-state we have called emphanisis, from the Greek for appearing from nothing. We have also investigated the lattice dynamics of the system to search for a dynamical signature of this behavior and extended the studies to doped systems and I will also describe the results of these experiments. This work gives key insights into PbTe, the possible origin of its anomalous electronic structure properties, and why it is such an attractive parent compound for nanostructured high performance thermoelectric materials. I would like to acknowledge the excellent collaborations that occurred during this work, including Emil Bozin at Brookhaven National Laboratory, Mercouri Kanatzidis and Christos Malliakas at Northwestern University and Argonne National Laboratory, Kirsten Jensen from U. Aarhus, Steve Shapiro at Brookhaven National Laboratory, Matt Stone and Mark Lumsden at Oak Ridge National Laboratory, Nicola Spalding at ETH Zurich and Petros Souvatzis at Los Alamos National Laboratory. I would also like to acknowledge the support of the national user facilities and their staff where the work was done. Financial support for this work was from DOE office of Basic Energy Sciences through award DE-AC02-98CH10886.
Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature
NASA Astrophysics Data System (ADS)
Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A.
2018-01-01
Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond detectors irradiated with 14 MeV neutrons at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunekawa, S.; Fukuda, T.; Kimiyama, T.
Crystal structure analyses by TOF neutron powder diffraction are performed for R TaO{sub 4} (R = rare-earth element) and the Ta-O interatomic distances are determined. The relationship between the covalency of A-O bonds (A = Nb and Ta), which show the most shortening upon phase transition, and the transition temperature is discussed for RAO{sub 4} and LiAO{sub 3}, and the parameters of Ta-O covalence are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekkebus, Allen E
Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop [http://neutrons.ornl.gov/workshops/nst2/], several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons formore » Materials Science and Engineering educational symposium [http://neutrons.ornl.gov/workshops/edsym2007]. It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcr@ornl.gov.« less
Dynamic theory of neutron diffraction from a moving grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushuev, V. A., E-mail: vabushuev@yandex.ru; Frank, A. I.; Kulin, G. V.
2016-01-15
A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.
Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groitl, F., E-mail: felix.groitl@psi.ch; Quintero-Castro, D. L.; Habicht, K.
2015-02-15
We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due tomore » the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.« less
NASA Astrophysics Data System (ADS)
Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.
Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.
Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Lekh; May, Andrew F.; Koehler, Michael R.
2016-11-30
In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less
Pauling, L
1987-06-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).
Pauling, Linus
1987-01-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841
Heterogeneous nucleation in a glass-forming alloy
NASA Astrophysics Data System (ADS)
Wall, J. J.; Liu, C. T.; Rhim, W.-K.; Li, J. J. Z.; Liaw, P. K.; Choo, H.; Johnson, W. L.
2008-06-01
Nucleation in the undercooled liquid state in the bulk metallic glass-forming composition Zr52.5Cu17.9Ni14.6Al10Ti5 (VIT-105), produced using high purity (PA) and commercial purity (CA) raw materials was investigated using electrostatic levitation and ex situ neutron diffraction. The CA material was observed to have a lower density than the PA sample and crystallized at relatively shallow undercooling. The densities of the samples at temperatures above the solidus showed an oxygen-dependent hysteresis associated with the state change, indicating the presence of oxygen-stabilized intermetallics. The PA alloy exhibited three distinct crystallization modes dependent on the thermal history of the melt, one of which showed a net volume expansion.
Large-moment antiferromagnetic order in overdoped high-Tc superconductor 154SmFeAsO1-xDx
NASA Astrophysics Data System (ADS)
Iimura, Soshi; Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C.; Otomo, Toshiya; Hosono, Hideo
2017-05-01
In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1-xDx, and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.
NASA Astrophysics Data System (ADS)
Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.
Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].
Lattice strain measurements on sandstones under load using neutron diffraction
NASA Astrophysics Data System (ADS)
Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.
2000-11-01
Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.
The use of neutron scattering to determine the functional structure of glycoside hydrolase.
Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko
2016-10-01
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fisher, S. Zoë; Aggarwal, Mayank; Kovalevsky, Andrey Y.; Silverman, David N.; McKenna, Robert
2012-01-01
Carbonic anhydrases (CAs) catalyze the hydration of CO2 forming HCO3− and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM, or hydrogen (H) atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target. PMID:22928733
The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
Temleitner, László; Pusztai, László; Schweika, Werner
2007-08-22
The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadlamani, Bhaskar S; An, Ke; Jagannathan, M.
2014-01-01
The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell hasmore » also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Amjad; Chen, Yan; Lugovy, Mykola
2014-01-01
The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresismore » loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.« less
Cao, Huibo B.; Zhao, Zhiying Y.; Lee, Minseong; ...
2015-06-24
High quality single crystals of BaFemore » $$_{12}$$O$$_{19}$$ were grown with the floating zone technique in flowing oxygen atmosphere of 100 atm. BaFe$$_{12}$$O$$_{19}$$ melts incongruently in atmospheric oxygen. High oxygen pressure above 50 atm modifies the melting behavior to be congruent, which allows for the crystal growth with the crucible-free floating zone technique. Single crystal neutron diffraction were measured to determine the nuclear and magnetic structures at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe$$^{3+}$$ ions at the bypyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of specific heat shows no anomaly associated with the long range polar ordering in the temperature range of 1.90-300~K. The inverse dielectric constant along the c-axis shows a $T^2$ temperature dependence below 20 K and then following by a plateau below 10 K, recognized as quantum paraelectric features. Further cooling below 1.4 K, the upturn region was clearly revealed and indicates BaFe$$_{12}$$O$$_{19}$$ is a critical quantum paraelectric system with Fe$$^{3+}$$ ions playing roles for both magnetic and electric dipoles.« less