Sample records for high-throughput functional annotation

  1. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    PubMed Central

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  2. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Elo; Huang, Amy; Cadag, Eithon

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  3. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE PAGES

    Leung, Elo; Huang, Amy; Cadag, Eithon; ...

    2016-01-20

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  4. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    PubMed

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available. Copyright © 2016 Du et al.

  5. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    PubMed Central

    Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting

    2016-01-01

    ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181

  6. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    USDA-ARS?s Scientific Manuscript database

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic mode...

  7. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example ofmore » this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.« less

  8. PANNZER2: a rapid functional annotation web server.

    PubMed

    Törönen, Petri; Medlar, Alan; Holm, Liisa

    2018-05-08

    The unprecedented growth of high-throughput sequencing has led to an ever-widening annotation gap in protein databases. While computational prediction methods are available to make up the shortfall, a majority of public web servers are hindered by practical limitations and poor performance. Here, we introduce PANNZER2 (Protein ANNotation with Z-scoRE), a fast functional annotation web server that provides both Gene Ontology (GO) annotations and free text description predictions. PANNZER2 uses SANSparallel to perform high-performance homology searches, making bulk annotation based on sequence similarity practical. PANNZER2 can output GO annotations from multiple scoring functions, enabling users to see which predictions are robust across predictors. Finally, PANNZER2 predictions scored within the top 10 methods for molecular function and biological process in the CAFA2 NK-full benchmark. The PANNZER2 web server is updated on a monthly schedule and is accessible at http://ekhidna2.biocenter.helsinki.fi/sanspanz/. The source code is available under the GNU Public Licence v3.

  9. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.

    PubMed

    Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W

    2010-09-01

    Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.

  10. DDBJ read annotation pipeline: a cloud computing-based pipeline for high-throughput analysis of next-generation sequencing data.

    PubMed

    Nagasaki, Hideki; Mochizuki, Takako; Kodama, Yuichi; Saruhashi, Satoshi; Morizaki, Shota; Sugawara, Hideaki; Ohyanagi, Hajime; Kurata, Nori; Okubo, Kousaku; Takagi, Toshihisa; Kaminuma, Eli; Nakamura, Yasukazu

    2013-08-01

    High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/.

  11. DDBJ Read Annotation Pipeline: A Cloud Computing-Based Pipeline for High-Throughput Analysis of Next-Generation Sequencing Data

    PubMed Central

    Nagasaki, Hideki; Mochizuki, Takako; Kodama, Yuichi; Saruhashi, Satoshi; Morizaki, Shota; Sugawara, Hideaki; Ohyanagi, Hajime; Kurata, Nori; Okubo, Kousaku; Takagi, Toshihisa; Kaminuma, Eli; Nakamura, Yasukazu

    2013-01-01

    High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/. PMID:23657089

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolker, Eugene

    Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information.

  13. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    PubMed

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  14. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    PubMed

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  15. Evaluating Computational Gene Ontology Annotations.

    PubMed

    Škunca, Nives; Roberts, Richard J; Steffen, Martin

    2017-01-01

    Two avenues to understanding gene function are complementary and often overlapping: experimental work and computational prediction. While experimental annotation generally produces high-quality annotations, it is low throughput. Conversely, computational annotations have broad coverage, but the quality of annotations may be variable, and therefore evaluating the quality of computational annotations is a critical concern.In this chapter, we provide an overview of strategies to evaluate the quality of computational annotations. First, we discuss why evaluating quality in this setting is not trivial. We highlight the various issues that threaten to bias the evaluation of computational annotations, most of which stem from the incompleteness of biological databases. Second, we discuss solutions that address these issues, for example, targeted selection of new experimental annotations and leveraging the existing experimental annotations.

  16. The Proteome Folding Project: Proteome-scale prediction of structure and function

    PubMed Central

    Drew, Kevin; Winters, Patrick; Butterfoss, Glenn L.; Berstis, Viktors; Uplinger, Keith; Armstrong, Jonathan; Riffle, Michael; Schweighofer, Erik; Bovermann, Bill; Goodlett, David R.; Davis, Trisha N.; Shasha, Dennis; Malmström, Lars; Bonneau, Richard

    2011-01-01

    The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions. PMID:21824995

  17. PTMScout, a Web Resource for Analysis of High Throughput Post-translational Proteomics Studies*

    PubMed Central

    Naegle, Kristen M.; Gymrek, Melissa; Joughin, Brian A.; Wagner, Joel P.; Welsch, Roy E.; Yaffe, Michael B.; Lauffenburger, Douglas A.; White, Forest M.

    2010-01-01

    The rate of discovery of post-translational modification (PTM) sites is increasing rapidly and is significantly outpacing our biological understanding of the function and regulation of those modifications. To help meet this challenge, we have created PTMScout, a web-based interface for viewing, manipulating, and analyzing high throughput experimental measurements of PTMs in an effort to facilitate biological understanding of protein modifications in signaling networks. PTMScout is constructed around a custom database of PTM experiments and contains information from external protein and post-translational resources, including gene ontology annotations, Pfam domains, and Scansite predictions of kinase and phosphopeptide binding domain interactions. PTMScout functionality comprises data set comparison tools, data set summary views, and tools for protein assignments of peptides identified by mass spectrometry. Analysis tools in PTMScout focus on informed subset selection via common criteria and on automated hypothesis generation through subset labeling derived from identification of statistically significant enrichment of other annotations in the experiment. Subset selection can be applied through the PTMScout flexible query interface available for quantitative data measurements and data annotations as well as an interface for importing data set groupings by external means, such as unsupervised learning. We exemplify the various functions of PTMScout in application to data sets that contain relative quantitative measurements as well as data sets lacking quantitative measurements, producing a set of interesting biological hypotheses. PTMScout is designed to be a widely accessible tool, enabling generation of multiple types of biological hypotheses from high throughput PTM experiments and advancing functional assignment of novel PTM sites. PTMScout is available at http://ptmscout.mit.edu. PMID:20631208

  18. Annotate-it: a Swiss-knife approach to annotation, analysis and interpretation of single nucleotide variation in human disease

    PubMed Central

    2012-01-01

    The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org. PMID:23013645

  19. Next-Generation High-Throughput Functional Annotation of Microbial Genomes.

    PubMed

    Baric, Ralph S; Crosson, Sean; Damania, Blossom; Miller, Samuel I; Rubin, Eric J

    2016-10-04

    Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community. Copyright © 2016 Baric et al.

  20. GoGene: gene annotation in the fast lane.

    PubMed

    Plake, Conrad; Royer, Loic; Winnenburg, Rainer; Hakenberg, Jörg; Schroeder, Michael

    2009-07-01

    High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is that annotations are restricted to process, function and location and that they do not cover all known genes in model organisms. GoGene addresses this weakness by complementing high-quality manual annotation with high-throughput text mining extracting co-occurrences of genes and ontology terms from literature. GoGene contains over 4,000,000 associations between genes and gene-related terms for 10 model organisms extracted from more than 18,000,000 PubMed entries. It does not cover only process, function and location of genes, but also biomedical categories such as diseases, compounds, techniques and mutations. By bringing it all together, GoGene provides the most recent and most complete facts about genes and can rank them according to novelty and importance. GoGene accepts keywords, gene lists, gene sequences and protein sequences as input and supports search for genes in PubMed, EntrezGene and via BLAST. Since all associations of genes to terms are supported by evidence in the literature, the results are transparent and can be verified by the user. GoGene is available at http://gopubmed.org/gogene.

  1. The what, where, how and why of gene ontology—a primer for bioinformaticians

    PubMed Central

    du Plessis, Louis; Škunca, Nives

    2011-01-01

    With high-throughput technologies providing vast amounts of data, it has become more important to provide systematic, quality annotations. The Gene Ontology (GO) project is the largest resource for cataloguing gene function. Nonetheless, its use is not yet ubiquitous and is still fraught with pitfalls. In this review, we provide a short primer to the GO for bioinformaticians. We summarize important aspects of the structure of the ontology, describe sources and types of functional annotations, survey measures of GO annotation similarity, review typical uses of GO and discuss other important considerations pertaining to the use of GO in bioinformatics applications. PMID:21330331

  2. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing.

    PubMed

    Lagarde, Julien; Uszczynska-Ratajczak, Barbara; Carbonell, Silvia; Pérez-Lluch, Sílvia; Abad, Amaya; Davis, Carrie; Gingeras, Thomas R; Frankish, Adam; Harrow, Jennifer; Guigo, Roderic; Johnson, Rory

    2017-12-01

    Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.

  3. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  4. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results.

    PubMed

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-02-09

    BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform-independent, easily configurable and capable of comprehensive expansion, and user-intuitive. PLAN is freely available to academic users at http://bioinfo.noble.org/plan/. The source code for local deployment is provided under free license. Full support on system utilization, installation, configuration and customization are provided to academic users.

  5. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    PubMed Central

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-01-01

    Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform-independent, easily configurable and capable of comprehensive expansion, and user-intuitive. PLAN is freely available to academic users at . The source code for local deployment is provided under free license. Full support on system utilization, installation, configuration and customization are provided to academic users. PMID:17291345

  6. Gene Ontology annotations at SGD: new data sources and annotation methods

    PubMed Central

    Hong, Eurie L.; Balakrishnan, Rama; Dong, Qing; Christie, Karen R.; Park, Julie; Binkley, Gail; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Krieger, Cynthia J.; Livstone, Michael S.; Miyasato, Stuart R.; Nash, Robert S.; Oughtred, Rose; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.; Zhu, Kathy K.; Dolinski, Kara; Botstein, David; Cherry, J. Michael

    2008-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current. PMID:17982175

  7. Annotare--a tool for annotating high-throughput biomedical investigations and resulting data.

    PubMed

    Shankar, Ravi; Parkinson, Helen; Burdett, Tony; Hastings, Emma; Liu, Junmin; Miller, Michael; Srinivasa, Rashmi; White, Joseph; Brazma, Alvis; Sherlock, Gavin; Stoeckert, Christian J; Ball, Catherine A

    2010-10-01

    Computational methods in molecular biology will increasingly depend on standards-based annotations that describe biological experiments in an unambiguous manner. Annotare is a software tool that enables biologists to easily annotate their high-throughput experiments, biomaterials and data in a standards-compliant way that facilitates meaningful search and analysis. Annotare is available from http://code.google.com/p/annotare/ under the terms of the open-source MIT License (http://www.opensource.org/licenses/mit-license.php). It has been tested on both Mac and Windows.

  8. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findingsmore » is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.« less

  9. Year 2 Report: Protein Function Prediction Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fullymore » automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.« less

  10. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  11. NCBI GEO: archive for high-throughput functional genomic data.

    PubMed

    Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Rudnev, Dmitry; Evangelista, Carlos; Kim, Irene F; Soboleva, Alexandra; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Edgar, Ron

    2009-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as 'Minimum Information About a Microarray Experiment' (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

  12. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)

    PubMed Central

    Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R

    2005-01-01

    Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum. PMID:15819992

  13. AnnotCompute: annotation-based exploration and meta-analysis of genomics experiments

    PubMed Central

    Zheng, Jie; Stoyanovich, Julia; Manduchi, Elisabetta; Liu, Junmin; Stoeckert, Christian J.

    2011-01-01

    The ever-increasing scale of biological data sets, particularly those arising in the context of high-throughput technologies, requires the development of rich data exploration tools. In this article, we present AnnotCompute, an information discovery platform for repositories of functional genomics experiments such as ArrayExpress. Our system leverages semantic annotations of functional genomics experiments with controlled vocabulary and ontology terms, such as those from the MGED Ontology, to compute conceptual dissimilarities between pairs of experiments. These dissimilarities are then used to support two types of exploratory analysis—clustering and query-by-example. We show that our proposed dissimilarity measures correspond to a user's intuition about conceptual dissimilarity, and can be used to support effective query-by-example. We also evaluate the quality of clustering based on these measures. While AnnotCompute can support a richer data exploration experience, its effectiveness is limited in some cases, due to the quality of available annotations. Nonetheless, tools such as AnnotCompute may provide an incentive for richer annotations of experiments. Code is available for download at http://www.cbil.upenn.edu/downloads/AnnotCompute. Database URL: http://www.cbil.upenn.edu/annotCompute/ PMID:22190598

  14. FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions

    PubMed Central

    Li, Hui; Xiao, Li; Zhang, Lili; Wu, Jiarui; Wei, Bin; Sun, Ninghui; Zhao, Yi

    2018-01-01

    smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs) played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP) which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP. PMID:29675032

  15. DBATE: database of alternative transcripts expression.

    PubMed

    Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2013-01-01

    The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/.

  16. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes.

    PubMed

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E; Thomas, Paul D

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo. © The Author(s) 2016. Published by Oxford University Press.

  17. 'PACLIMS': a component LIM system for high-throughput functional genomic analysis.

    PubMed

    Donofrio, Nicole; Rajagopalon, Ravi; Brown, Douglas; Diener, Stephen; Windham, Donald; Nolin, Shelly; Floyd, Anna; Mitchell, Thomas; Galadima, Natalia; Tucker, Sara; Orbach, Marc J; Patel, Gayatri; Farman, Mark; Pampanwar, Vishal; Soderlund, Cari; Lee, Yong-Hwan; Dean, Ralph A

    2005-04-12

    Recent advances in sequencing techniques leading to cost reduction have resulted in the generation of a growing number of sequenced eukaryotic genomes. Computational tools greatly assist in defining open reading frames and assigning tentative annotations. However, gene functions cannot be asserted without biological support through, among other things, mutational analysis. In taking a genome-wide approach to functionally annotate an entire organism, in this application the approximately 11,000 predicted genes in the rice blast fungus (Magnaporthe grisea), an effective platform for tracking and storing both the biological materials created and the data produced across several participating institutions was required. The platform designed, named PACLIMS, was built to support our high throughput pipeline for generating 50,000 random insertion mutants of Magnaporthe grisea. To be a useful tool for materials and data tracking and storage, PACLIMS was designed to be simple to use, modifiable to accommodate refinement of research protocols, and cost-efficient. Data entry into PACLIMS was simplified through the use of barcodes and scanners, thus reducing the potential human error, time constraints, and labor. This platform was designed in concert with our experimental protocol so that it leads the researchers through each step of the process from mutant generation through phenotypic assays, thus ensuring that every mutant produced is handled in an identical manner and all necessary data is captured. Many sequenced eukaryotes have reached the point where computational analyses are no longer sufficient and require biological support for their predicted genes. Consequently, there is an increasing need for platforms that support high throughput genome-wide mutational analyses. While PACLIMS was designed specifically for this project, the source and ideas present in its implementation can be used as a model for other high throughput mutational endeavors.

  18. 'PACLIMS': A component LIM system for high-throughput functional genomic analysis

    PubMed Central

    Donofrio, Nicole; Rajagopalon, Ravi; Brown, Douglas; Diener, Stephen; Windham, Donald; Nolin, Shelly; Floyd, Anna; Mitchell, Thomas; Galadima, Natalia; Tucker, Sara; Orbach, Marc J; Patel, Gayatri; Farman, Mark; Pampanwar, Vishal; Soderlund, Cari; Lee, Yong-Hwan; Dean, Ralph A

    2005-01-01

    Background Recent advances in sequencing techniques leading to cost reduction have resulted in the generation of a growing number of sequenced eukaryotic genomes. Computational tools greatly assist in defining open reading frames and assigning tentative annotations. However, gene functions cannot be asserted without biological support through, among other things, mutational analysis. In taking a genome-wide approach to functionally annotate an entire organism, in this application the ~11,000 predicted genes in the rice blast fungus (Magnaporthe grisea), an effective platform for tracking and storing both the biological materials created and the data produced across several participating institutions was required. Results The platform designed, named PACLIMS, was built to support our high throughput pipeline for generating 50,000 random insertion mutants of Magnaporthe grisea. To be a useful tool for materials and data tracking and storage, PACLIMS was designed to be simple to use, modifiable to accommodate refinement of research protocols, and cost-efficient. Data entry into PACLIMS was simplified through the use of barcodes and scanners, thus reducing the potential human error, time constraints, and labor. This platform was designed in concert with our experimental protocol so that it leads the researchers through each step of the process from mutant generation through phenotypic assays, thus ensuring that every mutant produced is handled in an identical manner and all necessary data is captured. Conclusion Many sequenced eukaryotes have reached the point where computational analyses are no longer sufficient and require biological support for their predicted genes. Consequently, there is an increasing need for platforms that support high throughput genome-wide mutational analyses. While PACLIMS was designed specifically for this project, the source and ideas present in its implementation can be used as a model for other high throughput mutational endeavors. PMID:15826298

  19. Annotare—a tool for annotating high-throughput biomedical investigations and resulting data

    PubMed Central

    Shankar, Ravi; Parkinson, Helen; Burdett, Tony; Hastings, Emma; Liu, Junmin; Miller, Michael; Srinivasa, Rashmi; White, Joseph; Brazma, Alvis; Sherlock, Gavin; Stoeckert, Christian J.; Ball, Catherine A.

    2010-01-01

    Summary: Computational methods in molecular biology will increasingly depend on standards-based annotations that describe biological experiments in an unambiguous manner. Annotare is a software tool that enables biologists to easily annotate their high-throughput experiments, biomaterials and data in a standards-compliant way that facilitates meaningful search and analysis. Availability and Implementation: Annotare is available from http://code.google.com/p/annotare/ under the terms of the open-source MIT License (http://www.opensource.org/licenses/mit-license.php). It has been tested on both Mac and Windows. Contact: rshankar@stanford.edu PMID:20733062

  20. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

    USDA-ARS?s Scientific Manuscript database

    We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (“Assessing Changes to Exons”) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detect...

  1. The identification of complete domains within protein sequences using accurate E-values for semi-global alignment

    PubMed Central

    Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.

    2007-01-01

    The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268

  2. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing

    PubMed Central

    Diroma, Maria Angela; Santorsola, Mariangela; Guttà, Cristiano; Gasparre, Giuseppe; Picardi, Ernesto; Pesole, Graziano; Attimonelli, Marcella

    2014-01-01

    Motivation: The increasing availability of mitochondria-targeted and off-target sequencing data in whole-exome and whole-genome sequencing studies (WXS and WGS) has risen the demand of effective pipelines to accurately measure heteroplasmy and to easily recognize the most functionally important mitochondrial variants among a huge number of candidates. To this purpose, we developed MToolBox, a highly automated pipeline to reconstruct and analyze human mitochondrial DNA from high-throughput sequencing data. Results: MToolBox implements an effective computational strategy for mitochondrial genomes assembling and haplogroup assignment also including a prioritization analysis of detected variants. MToolBox provides a Variant Call Format file featuring, for the first time, allele-specific heteroplasmy and annotation files with prioritized variants. MToolBox was tested on simulated samples and applied on 1000 Genomes WXS datasets. Availability and implementation: MToolBox package is available at https://sourceforge.net/projects/mtoolbox/. Contact: marcella.attimonelli@uniba.it Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028726

  3. Sma3s: a three-step modular annotator for large sequence datasets.

    PubMed

    Muñoz-Mérida, Antonio; Viguera, Enrique; Claros, M Gonzalo; Trelles, Oswaldo; Pérez-Pulido, Antonio J

    2014-08-01

    Automatic sequence annotation is an essential component of modern 'omics' studies, which aim to extract information from large collections of sequence data. Most existing tools use sequence homology to establish evolutionary relationships and assign putative functions to sequences. However, it can be difficult to define a similarity threshold that achieves sufficient coverage without sacrificing annotation quality. Defining the correct configuration is critical and can be challenging for non-specialist users. Thus, the development of robust automatic annotation techniques that generate high-quality annotations without needing expert knowledge would be very valuable for the research community. We present Sma3s, a tool for automatically annotating very large collections of biological sequences from any kind of gene library or genome. Sma3s is composed of three modules that progressively annotate query sequences using either: (i) very similar homologues, (ii) orthologous sequences or (iii) terms enriched in groups of homologous sequences. We trained the system using several random sets of known sequences, demonstrating average sensitivity and specificity values of ~85%. In conclusion, Sma3s is a versatile tool for high-throughput annotation of a wide variety of sequence datasets that outperforms the accuracy of other well-established annotation algorithms, and it can enrich existing database annotations and uncover previously hidden features. Importantly, Sma3s has already been used in the functional annotation of two published transcriptomes. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Issues with RNA-seq analysis in non-model organisms: A salmonid example.

    PubMed

    Sundaram, Arvind; Tengs, Torstein; Grimholt, Unni

    2017-10-01

    High throughput sequencing (HTS) is useful for many purposes as exemplified by the other topics included in this special issue. The purpose of this paper is to look into the unique challenges of using this technology in non-model organisms where resources such as genomes, functional genome annotations or genome complexity provide obstacles not met in model organisms. To describe these challenges, we narrow our scope to RNA sequencing used to study differential gene expression in response to pathogen challenge. As a demonstration species we chose Atlantic salmon, which has a sequenced genome with poor annotation and an added complexity due to many duplicated genes. We find that our RNA-seq analysis pipeline deciphers between duplicates despite high sequence identity. However, annotation issues provide problems in linking differentially expressed genes to pathways. Also, comparing results between approaches and species are complicated due to lack of standardized annotation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A high-quality annotated transcriptome of swine peripheral blood

    USDA-ARS?s Scientific Manuscript database

    Background: High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes an...

  6. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  7. Transcriptome-based differentiation of closely-related Miscanthus lines.

    PubMed

    Chouvarine, Philippe; Cooksey, Amanda M; McCarthy, Fiona M; Ray, David A; Baldwin, Brian S; Burgess, Shane C; Peterson, Daniel G

    2012-01-01

    Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation.

  8. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.

    PubMed

    Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu

    2015-02-15

    Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Query3d: a new method for high-throughput analysis of functional residues in protein structures.

    PubMed

    Ausiello, Gabriele; Via, Allegra; Helmer-Citterich, Manuela

    2005-12-01

    The identification of local similarities between two protein structures can provide clues of a common function. Many different methods exist for searching for similar subsets of residues in proteins of known structure. However, the lack of functional and structural information on single residues, together with the low level of integration of this information in comparison methods, is a limitation that prevents these methods from being fully exploited in high-throughput analyses. Here we describe Query3d, a program that is both a structural DBMS (Database Management System) and a local comparison method. The method conserves a copy of all the residues of the Protein Data Bank annotated with a variety of functional and structural information. New annotations can be easily added from a variety of methods and known databases. The algorithm makes it possible to create complex queries based on the residues' function and then to compare only subsets of the selected residues. Functional information is also essential to speed up the comparison and the analysis of the results. With Query3d, users can easily obtain statistics on how many and which residues share certain properties in all proteins of known structure. At the same time, the method also finds their structural neighbours in the whole PDB. Programs and data can be accessed through the PdbFun web interface.

  10. Query3d: a new method for high-throughput analysis of functional residues in protein structures

    PubMed Central

    Ausiello, Gabriele; Via, Allegra; Helmer-Citterich, Manuela

    2005-01-01

    Background The identification of local similarities between two protein structures can provide clues of a common function. Many different methods exist for searching for similar subsets of residues in proteins of known structure. However, the lack of functional and structural information on single residues, together with the low level of integration of this information in comparison methods, is a limitation that prevents these methods from being fully exploited in high-throughput analyses. Results Here we describe Query3d, a program that is both a structural DBMS (Database Management System) and a local comparison method. The method conserves a copy of all the residues of the Protein Data Bank annotated with a variety of functional and structural information. New annotations can be easily added from a variety of methods and known databases. The algorithm makes it possible to create complex queries based on the residues' function and then to compare only subsets of the selected residues. Functional information is also essential to speed up the comparison and the analysis of the results. Conclusion With Query3d, users can easily obtain statistics on how many and which residues share certain properties in all proteins of known structure. At the same time, the method also finds their structural neighbours in the whole PDB. Programs and data can be accessed through the PdbFun web interface. PMID:16351754

  11. Advancements in zebrafish applications for 21st century toxicology.

    PubMed

    Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L

    2016-05-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Advancements in zebrafish applications for 21st century toxicology

    PubMed Central

    Garcia, Gloria R.; Noyes, Pamela D.; Tanguay, Robert L.

    2016-01-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. PMID:27016469

  13. Rice-Map: a new-generation rice genome browser.

    PubMed

    Wang, Jun; Kong, Lei; Zhao, Shuqi; Zhang, He; Tang, Liang; Li, Zhe; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge

    2011-03-30

    The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.

  14. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    PubMed Central

    Seaver, Samuel M. D.; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M. T.; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D.; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D.; Henry, Christopher S.

    2014-01-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today’s annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599

  15. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

    PubMed

    Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S

    2014-07-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.

  16. An Approach to Function Annotation for Proteins of Unknown Function (PUFs) in the Transcriptome of Indian Mulberry.

    PubMed

    Dhanyalakshmi, K H; Naika, Mahantesha B N; Sajeevan, R S; Mathew, Oommen K; Shafi, K Mohamed; Sowdhamini, Ramanathan; N Nataraja, Karaba

    2016-01-01

    The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.

  17. MEGANTE: A Web-Based System for Integrated Plant Genome Annotation

    PubMed Central

    Numa, Hisataka; Itoh, Takeshi

    2014-01-01

    The recent advancement of high-throughput genome sequencing technologies has resulted in a considerable increase in demands for large-scale genome annotation. While annotation is a crucial step for downstream data analyses and experimental studies, this process requires substantial expertise and knowledge of bioinformatics. Here we present MEGANTE, a web-based annotation system that makes plant genome annotation easy for researchers unfamiliar with bioinformatics. Without any complicated configuration, users can perform genomic sequence annotations simply by uploading a sequence and selecting the species to query. MEGANTE automatically runs several analysis programs and integrates the results to select the appropriate consensus exon–intron structures and to predict open reading frames (ORFs) at each locus. Functional annotation, including a similarity search against known proteins and a functional domain search, are also performed for the predicted ORFs. The resultant annotation information is visualized with a widely used genome browser, GBrowse. For ease of analysis, the results can be downloaded in Microsoft Excel format. All of the query sequences and annotation results are stored on the server side so that users can access their own data from virtually anywhere on the web. The current release of MEGANTE targets 24 plant species from the Brassicaceae, Fabaceae, Musaceae, Poaceae, Salicaceae, Solanaceae, Rosaceae and Vitaceae families, and it allows users to submit a sequence up to 10 Mb in length and to save up to 100 sequences with the annotation information on the server. The MEGANTE web service is available at https://megante.dna.affrc.go.jp/. PMID:24253915

  18. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data.

    PubMed

    Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M

    2012-04-05

    The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.

  19. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    PubMed Central

    2012-01-01

    Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257

  20. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.

    PubMed

    Swain, Martin T; Tsai, Isheng J; Assefa, Samual A; Newbold, Chris; Berriman, Matthew; Otto, Thomas D

    2012-06-07

    Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes ∼24 h: it doubles the average contig size and annotates over 4,300 gene models.

  1. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-09-01

    microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

  2. [Transcriptome analysis of Dunaliella viridis].

    PubMed

    Zhu, Shuai-qi; Gong, Yi-fu; Hang, Yu-qing; Liu, Hao; Wang, He-yu

    2015-08-01

    In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.

  3. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level

    PubMed Central

    Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming

    2016-01-01

    The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071

  4. dictyBase 2015: Expanding data and annotations in a new software environment.

    PubMed

    Basu, Siddhartha; Fey, Petra; Jimenez-Morales, David; Dodson, Robert J; Chisholm, Rex L

    2015-08-01

    dictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations. Through the Dicty Stock Center we provide the community with an impressive amount of annotated strains and plasmids. Recently, dictyBase accomplished a major overhaul to adapt an outdated infrastructure to the current technological advances, thus facilitating the implementation of innovative tools and comparative genomics. It also provides new strategies for high quality annotations that enable bench researchers to benefit from the rapidly increasing volume of available data. dictyBase is highly responsive to its users needs, building a successful relationship that capitalizes on the vast efforts of the Dictyostelium research community. dictyBase has become the trusted data resource for Dictyostelium investigators, other investigators or organizations seeking information about Dictyostelium, as well as educators who use this model system. © 2015 Wiley Periodicals, Inc.

  5. ToxCast Assay Network (TCAN) Viewer: A Visualization Tool for High-throughput Assay Chemical Data (SOT)

    EPA Science Inventory

    USEPA’s ToxCast program has generated high-throughput bioactivity screening (HTS) data on thousands of chemicals. The ToxCast program has described and annotated the HTS assay battery with respect to assay design and target information (e.g., gene target). Recent stakeholder and ...

  6. High-performance web services for querying gene and variant annotation.

    PubMed

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  7. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  8. GAP Final Technical Report 12-14-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew J. Bordner, PhD, Senior Research Scientist

    2004-12-14

    The Genomics Annotation Platform (GAP) was designed to develop new tools for high throughput functional annotation and characterization of protein sequences and structures resulting from genomics and structural proteomics, benchmarking and application of those tools. Furthermore, this platform integrated the genomic scale sequence and structural analysis and prediction tools with the advanced structure prediction and bioinformatics environment of ICM. The development of GAP was primarily oriented towards the annotation of new biomolecular structures using both structural and sequence data. Even though the amount of protein X-ray crystal data is growing exponentially, the volume of sequence data is growing even moremore » rapidly. This trend was exploited by leveraging the wealth of sequence data to provide functional annotation for protein structures. The additional information provided by GAP is expected to assist the majority of the commercial users of ICM, who are involved in drug discovery, in identifying promising drug targets as well in devising strategies for the rational design of therapeutics directed at the protein of interest. The GAP also provided valuable tools for biochemistry education, and structural genomics centers. In addition, GAP incorporates many novel prediction and analysis methods not available in other molecular modeling packages. This development led to signing the first Molsoft agreement in the structural genomics annotation area with the University of oxford Structural Genomics Center. This commercial agreement validated the Molsoft efforts under the GAP project and provided the basis for further development of the large scale functional annotation platform.« less

  9. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    PubMed Central

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  10. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.

    PubMed

    Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott

    2018-05-01

    The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Expanded microbial genome coverage and improved protein family annotation in the COG database

    PubMed Central

    Galperin, Michael Y.; Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.

    2015-01-01

    Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the COGs is expected to become an important tool for microbial genomics. PMID:25428365

  12. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  13. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGES

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  14. TabSQL: a MySQL tool to facilitate mapping user data to public databases.

    PubMed

    Xia, Xiao-Qin; McClelland, Michael; Wang, Yipeng

    2010-06-23

    With advances in high-throughput genomics and proteomics, it is challenging for biologists to deal with large data files and to map their data to annotations in public databases. We developed TabSQL, a MySQL-based application tool, for viewing, filtering and querying data files with large numbers of rows. TabSQL provides functions for downloading and installing table files from public databases including the Gene Ontology database (GO), the Ensembl databases, and genome databases from the UCSC genome bioinformatics site. Any other database that provides tab-delimited flat files can also be imported. The downloaded gene annotation tables can be queried together with users' data in TabSQL using either a graphic interface or command line. TabSQL allows queries across the user's data and public databases without programming. It is a convenient tool for biologists to annotate and enrich their data.

  15. TabSQL: a MySQL tool to facilitate mapping user data to public databases

    PubMed Central

    2010-01-01

    Background With advances in high-throughput genomics and proteomics, it is challenging for biologists to deal with large data files and to map their data to annotations in public databases. Results We developed TabSQL, a MySQL-based application tool, for viewing, filtering and querying data files with large numbers of rows. TabSQL provides functions for downloading and installing table files from public databases including the Gene Ontology database (GO), the Ensembl databases, and genome databases from the UCSC genome bioinformatics site. Any other database that provides tab-delimited flat files can also be imported. The downloaded gene annotation tables can be queried together with users' data in TabSQL using either a graphic interface or command line. Conclusions TabSQL allows queries across the user's data and public databases without programming. It is a convenient tool for biologists to annotate and enrich their data. PMID:20573251

  16. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  17. Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).

    PubMed

    Hu, Yulong; Huang, Meng; Wang, Weiji; Guan, Jiantao; Kong, Jie

    2016-01-01

    The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.

  18. Community annotation and bioinformatics workforce development in concert--Little Skate Genome Annotation Workshops and Jamborees.

    PubMed

    Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.

  19. Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees

    PubMed Central

    Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832

  20. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    PubMed

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M

    Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less

  2. GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle.

    PubMed

    Lardenois, Aurélie; Gattiker, Alexandre; Collin, Olivier; Chalmel, Frédéric; Primig, Michael

    2010-01-01

    GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3'-UTR GeneChips), genome-wide protein-DNA binding assays and protein-protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/

  3. GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle

    PubMed Central

    Lardenois, Aurélie; Gattiker, Alexandre; Collin, Olivier; Chalmel, Frédéric; Primig, Michael

    2010-01-01

    GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3′-UTR GeneChips), genome-wide protein–DNA binding assays and protein–protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/ PMID:21149299

  4. A computational genomics pipeline for prokaryotic sequencing projects.

    PubMed

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  5. A way toward analyzing high-content bioimage data by means of semantic annotation and visual data mining

    NASA Astrophysics Data System (ADS)

    Herold, Julia; Abouna, Sylvie; Zhou, Luxian; Pelengaris, Stella; Epstein, David B. A.; Khan, Michael; Nattkemper, Tim W.

    2009-02-01

    In the last years, bioimaging has turned from qualitative measurements towards a high-throughput and highcontent modality, providing multiple variables for each biological sample analyzed. We present a system which combines machine learning based semantic image annotation and visual data mining to analyze such new multivariate bioimage data. Machine learning is employed for automatic semantic annotation of regions of interest. The annotation is the prerequisite for a biological object-oriented exploration of the feature space derived from the image variables. With the aid of visual data mining, the obtained data can be explored simultaneously in the image as well as in the feature domain. Especially when little is known of the underlying data, for example in the case of exploring the effects of a drug treatment, visual data mining can greatly aid the process of data evaluation. We demonstrate how our system is used for image evaluation to obtain information relevant to diabetes study and screening of new anti-diabetes treatments. Cells of the Islet of Langerhans and whole pancreas in pancreas tissue samples are annotated and object specific molecular features are extracted from aligned multichannel fluorescence images. These are interactively evaluated for cell type classification in order to determine the cell number and mass. Only few parameters need to be specified which makes it usable also for non computer experts and allows for high-throughput analysis.

  6. MiRGOFS: A GO-based functional similarity measure for miRNAs, with applications to the prediction of miRNA subcellular localization and miRNA-disease association.

    PubMed

    Yang, Yang; Fu, Xiaofeng; Qu, Wenhao; Xiao, Yiqun; Shen, Hong-Bin

    2018-04-27

    Benefiting from high-throughput experimental technologies, whole-genome analysis of microRNAs (miRNAs) has been more and more common to uncover important regulatory roles of miRNAs and identify miRNA biomarkers for disease diagnosis. As a complementary information to the high-throughput experimental data, domain knowledge like the Gene Ontology and KEGG pathway is usually used to guide gene function analysis. However, functional annotation for miRNAs is scarce in the public databases. Till now, only a few methods have been proposed for measuring the functional similarity between miRNAs based on public annotation data, and these methods cover a very limited number of miRNAs, which are not applicable to large-scale miRNA analysis. In this paper, we propose a new method to measure the functional similarity for miRNAs, called miRGOFS, which has two notable features: I) it adopts a new GO semantic similarity metric which considers both common ancestors and descendants of GO terms; II) it computes similarity between GO sets in an asymmetric manner, and weights each GO term by its statistical significance. The miRGOFS-based predictor achieves an F1 of 61.2% on a benchmark data set of miRNA localization, and AUC values of 87.7% and 81.1% on two benchmark sets of miRNA-disease association, respectively. Compared with the existing functional similarity measurements of miRNAs, miRGOFS has the advantages of higher accuracy and larger coverage of human miRNAs (over 1000 miRNAs). http://www.csbio.sjtu.edu.cn/bioinf/MiRGOFS/. yangyang@cs.sjtu.edu.cn or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.

  7. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq

    PubMed Central

    Su, Zhipeng; Zhu, Jiawen; Xu, Zhuofei; Xiao, Ran; Zhou, Rui; Li, Lu; Chen, Huanchun

    2016-01-01

    Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumoniae, a highly contagious respiratory disease of swine. Although the genome of A. pleuropneumoniae was sequenced several years ago, limited information is available on the genome-wide transcriptional analysis to accurately annotate the gene structures and regulatory elements. High-throughput RNA sequencing (RNA-seq) has been applied to study the transcriptional landscape of bacteria, which can efficiently and accurately identify gene expression regions and unknown transcriptional units, especially small non-coding RNAs (sRNAs), UTRs and regulatory regions. The aim of this study is to comprehensively analyze the transcriptome of A. pleuropneumoniae by RNA-seq in order to improve the existing genome annotation and promote our understanding of A. pleuropneumoniae gene structures and RNA-based regulation. In this study, we utilized RNA-seq to construct a single nucleotide resolution transcriptome map of A. pleuropneumoniae. More than 3.8 million high-quality reads (average length ~90 bp) from a cDNA library were generated and aligned to the reference genome. We identified 32 open reading frames encoding novel proteins that were mis-annotated in the previous genome annotations. The start sites for 35 genes based on the current genome annotation were corrected. Furthermore, 51 sRNAs in the A. pleuropneumoniae genome were discovered, of which 40 sRNAs were never reported in previous studies. The transcriptome map also enabled visualization of 5'- and 3'-UTR regions, in which contained 11 sRNAs. In addition, 351 operons covering 1230 genes throughout the whole genome were identified. The RNA-Seq based transcriptome map validated annotated genes and corrected annotations of open reading frames in the genome, and led to the identification of many functional elements (e.g. regions encoding novel proteins, non-coding sRNAs and operon structures). The transcriptional units described in this study provide a foundation for future studies concerning the gene functions and the transcriptional regulatory architectures of this pathogen. PMID:27018591

  8. Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes.

    PubMed

    Engqvist, Martin K M

    2016-01-01

    The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees - with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms.

  9. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  10. Expanded microbial genome coverage and improved protein family annotation in the COG database.

    PubMed

    Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2015-01-01

    Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the COGs is expected to become an important tool for microbial genomics. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.

  11. Illuminating structural proteins in viral "dark matter" with metaproteomics

    DOE PAGES

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun -Hae; ...

    2016-02-16

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional darkmatter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore,more » four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Altogether, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.« less

  12. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    PubMed

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.

  13. Illuminating structural proteins in viral “dark matter” with metaproteomics

    PubMed Central

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; VerBerkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-01-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional “viral dark matter.” Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world’s oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  14. An integrative approach to inferring biologically meaningful gene modules.

    PubMed

    Cho, Ji-Hoon; Wang, Kai; Galas, David J

    2011-07-26

    The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  15. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.

    PubMed

    Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge

    2017-01-04

    With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Quantification of the impact of PSI:Biology according to the annotations of the determined structures.

    PubMed

    DePietro, Paul J; Julfayev, Elchin S; McLaughlin, William A

    2013-10-21

    Protein Structure Initiative:Biology (PSI:Biology) is the third phase of PSI where protein structures are determined in high-throughput to characterize their biological functions. The transition to the third phase entailed the formation of PSI:Biology Partnerships which are composed of structural genomics centers and biomedical science laboratories. We present a method to examine the impact of protein structures determined under the auspices of PSI:Biology by measuring their rates of annotations. The mean numbers of annotations per structure and per residue are examined. These are designed to provide measures of the amount of structure to function connections that can be leveraged from each structure. One result is that PSI:Biology structures are found to have a higher rate of annotations than structures determined during the first two phases of PSI. A second result is that the subset of PSI:Biology structures determined through PSI:Biology Partnerships have a higher rate of annotations than those determined exclusive of those partnerships. Both results hold when the annotation rates are examined either at the level of the entire protein or for annotations that are known to fall at specific residues within the portion of the protein that has a determined structure. We conclude that PSI:Biology determines structures that are estimated to have a higher degree of biomedical interest than those determined during the first two phases of PSI based on a broad array of biomedical annotations. For the PSI:Biology Partnerships, we see that there is an associated added value that represents part of the progress toward the goals of PSI:Biology. We interpret the added value to mean that team-based structural biology projects that utilize the expertise and technologies of structural genomics centers together with biological laboratories in the community are conducted in a synergistic manner. We show that the annotation rates can be used in conjunction with established metrics, i.e. the numbers of structures and impact of publication records, to monitor the progress of PSI:Biology towards its goals of examining structure to function connections of high biomedical relevance. The metric provides an objective means to quantify the overall impact of PSI:Biology as it uses biomedical annotations from external sources.

  17. Quantification of the impact of PSI:Biology according to the annotations of the determined structures

    PubMed Central

    2013-01-01

    Background Protein Structure Initiative:Biology (PSI:Biology) is the third phase of PSI where protein structures are determined in high-throughput to characterize their biological functions. The transition to the third phase entailed the formation of PSI:Biology Partnerships which are composed of structural genomics centers and biomedical science laboratories. We present a method to examine the impact of protein structures determined under the auspices of PSI:Biology by measuring their rates of annotations. The mean numbers of annotations per structure and per residue are examined. These are designed to provide measures of the amount of structure to function connections that can be leveraged from each structure. Results One result is that PSI:Biology structures are found to have a higher rate of annotations than structures determined during the first two phases of PSI. A second result is that the subset of PSI:Biology structures determined through PSI:Biology Partnerships have a higher rate of annotations than those determined exclusive of those partnerships. Both results hold when the annotation rates are examined either at the level of the entire protein or for annotations that are known to fall at specific residues within the portion of the protein that has a determined structure. Conclusions We conclude that PSI:Biology determines structures that are estimated to have a higher degree of biomedical interest than those determined during the first two phases of PSI based on a broad array of biomedical annotations. For the PSI:Biology Partnerships, we see that there is an associated added value that represents part of the progress toward the goals of PSI:Biology. We interpret the added value to mean that team-based structural biology projects that utilize the expertise and technologies of structural genomics centers together with biological laboratories in the community are conducted in a synergistic manner. We show that the annotation rates can be used in conjunction with established metrics, i.e. the numbers of structures and impact of publication records, to monitor the progress of PSI:Biology towards its goals of examining structure to function connections of high biomedical relevance. The metric provides an objective means to quantify the overall impact of PSI:Biology as it uses biomedical annotations from external sources. PMID:24139526

  18. A computational genomics pipeline for prokaryotic sequencing projects

    PubMed Central

    Kislyuk, Andrey O.; Katz, Lee S.; Agrawal, Sonia; Hagen, Matthew S.; Conley, Andrew B.; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C.; Sammons, Scott A.; Govil, Dhwani; Mair, Raydel D.; Tatti, Kathleen M.; Tondella, Maria L.; Harcourt, Brian H.; Mayer, Leonard W.; Jordan, I. King

    2010-01-01

    Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. Results: We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. Availability and implementation: The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems. Contact: king.jordan@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20519285

  19. GeneSCF: a real-time based functional enrichment tool with support for multiple organisms.

    PubMed

    Subhash, Santhilal; Kanduri, Chandrasekhar

    2016-09-13

    High-throughput technologies such as ChIP-sequencing, RNA-sequencing, DNA sequencing and quantitative metabolomics generate a huge volume of data. Researchers often rely on functional enrichment tools to interpret the biological significance of the affected genes from these high-throughput studies. However, currently available functional enrichment tools need to be updated frequently to adapt to new entries from the functional database repositories. Hence there is a need for a simplified tool that can perform functional enrichment analysis by using updated information directly from the source databases such as KEGG, Reactome or Gene Ontology etc. In this study, we focused on designing a command-line tool called GeneSCF (Gene Set Clustering based on Functional annotations), that can predict the functionally relevant biological information for a set of genes in a real-time updated manner. It is designed to handle information from more than 4000 organisms from freely available prominent functional databases like KEGG, Reactome and Gene Ontology. We successfully employed our tool on two of published datasets to predict the biologically relevant functional information. The core features of this tool were tested on Linux machines without the need for installation of more dependencies. GeneSCF is more reliable compared to other enrichment tools because of its ability to use reference functional databases in real-time to perform enrichment analysis. It is an easy-to-integrate tool with other pipelines available for downstream analysis of high-throughput data. More importantly, GeneSCF can run multiple gene lists simultaneously on different organisms thereby saving time for the users. Since the tool is designed to be ready-to-use, there is no need for any complex compilation and installation procedures.

  20. Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Shao, Wenjun; Baumohl, Jason K.; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W.; Arkin, Adam P.

    2011-01-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  1. The Representation of Heart Development in the Gene Ontology

    PubMed Central

    Khodiyar, Varsha K.; Hill, David P.; Howe, Doug; Berardini, Tanya Z.; Tweedie, Susan; Talmud, Philippa J.; Breckenridge, Ross; Bhattarcharya, Shoumo; Riley, Paul; Scambler, Peter; Lovering, Ruth C.

    2012-01-01

    An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development and aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area. PMID:21419760

  2. EuroPhenome: a repository for high-throughput mouse phenotyping data

    PubMed Central

    Morgan, Hugh; Beck, Tim; Blake, Andrew; Gates, Hilary; Adams, Niels; Debouzy, Guillaume; Leblanc, Sophie; Lengger, Christoph; Maier, Holger; Melvin, David; Meziane, Hamid; Richardson, Dave; Wells, Sara; White, Jacqui; Wood, Joe; de Angelis, Martin Hrabé; Brown, Steve D. M.; Hancock, John M.; Mallon, Ann-Marie

    2010-01-01

    The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies. PMID:19933761

  3. Primary Characterization of Small RNAs in Symbiotic Nitrogen-Fixing Bacteria.

    PubMed

    Robledo, Marta; García-Tomsig, Natalia I; Jiménez-Zurdo, José I

    2018-01-01

    High-throughput transcriptome profiling (RNAseq) has uncovered large and heterogeneous populations of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated and rely on protein-assisted antisense interactions to trans-encoded target mRNAs to fine-tune posttranscriptional reprogramming of gene expression in response to external cues. However, annotation and function of sRNAs are still largely overlooked in nonmodel bacteria with complex lifestyles. Here, we describe experimental protocols successfully applied for the accurate annotation, expression profiling and target mRNA identification of trans-acting sRNAs in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The protocols presented here can be similarly applied for the characterization of trans-sRNAs in genetically tractable α-proteobacteria of agronomical or clinical relevance interacting with eukaryotic hosts.

  4. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    PubMed

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  5. An integrative approach to inferring biologically meaningful gene modules

    PubMed Central

    2011-01-01

    Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051

  6. De novo transcriptomic analysis during Lentinula edodes fruiting body growth.

    PubMed

    Wang, Yingzhu; Zeng, Xianlu; Liu, Wenguang

    2018-01-30

    The fruiting body of Lentinula edodes is a popular edible mushroom, and extracts from the mycelium and the fruiting body of this species have diverse therapeutic potential. To gain insights into the molecular mechanisms underlying the fruiting body growth of L. edodes from the early bud stage (EBS), through the intermediate developing stage (IDS), to the fully developed stage (FDS), we performed de novo transcriptomic analysis using high-throughput Illumina RNA-sequencing. First, we generated three cDNA libraries representative of the three respective stages. We then obtained 38,933,148, 44,594,472, and 37,905,646 high-quality reads from the respective libraries and assembled the reads into 25,104 transcriptional contigs, containing 15,199 unigenes. We found that only 9331 of the unigenes had been annotated in the NCBI non-redundant protein database, and we functionally annotated 4758 of them through Gene Ontology (GO) analysis and 2921 of them through Clusters of Orthologous Groups of proteins (COGs) analysis. We also assigned 3995 unigenes to metabolic pathways by using the Kyoto Encyclopedia of Genes and Genomes (KEGG). We further identified 399 differentially expressed genes (DEGs) between EBS and IDS, 1428 between IDS and FDS, and 1830 between EBS and FDS, uncovering 769 DEGs in multiple metabolic and signaling pathways. Interestingly, there were a limited number of DEGs whose expression was dramatically associated with FDS. Finally, genes, whose expression was either highly up-regulated in FDS or remained at a high level during fruiting body growth, were annotated specifically in the pathways of purine metabolism, unsaturated fatty acid metabolism and meiosis, suggesting that these key molecular events were actively occurring in the fruiting body. Our work is the first high-throughput transcriptome study on the growth of L. edodes fruiting bodies, and the results uncovered candidate genes for future gene identification and utilization of this commercially and medically important mushroom. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    PubMed

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  8. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.

  9. OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer.

    PubMed

    Van Coillie, Samya; Liang, Lunxi; Zhang, Yao; Wang, Huanbin; Fang, Jing-Yuan; Xu, Jie

    2016-04-05

    High-throughput methods such as co-immunoprecipitationmass spectrometry (coIP-MS) and yeast 2 hybridization (Y2H) have suggested a broad range of unannotated protein-protein interactions (PPIs), and interpretation of these PPIs remains a challenging task. The advancements in cancer genomic researches allow for the inference of "coactivation pairs" in cancer, which may facilitate the identification of PPIs involved in cancer. Here we present OncoBinder as a tool for the assessment of proteomic interaction data based on the functional synergy of oncoproteins in cancer. This decision tree-based method combines gene mutation, copy number and mRNA expression information to infer the functional status of protein-coding genes. We applied OncoBinder to evaluate the potential binders of EGFR and ERK2 proteins based on the gastric cancer dataset of The Cancer Genome Atlas (TCGA). As a result, OncoBinder identified high confidence interactions (annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) or validated by low-throughput assays) more efficiently than co-expression based method. Taken together, our results suggest that evaluation of gene functional synergy in cancer may facilitate the interpretation of proteomic interaction data. The OncoBinder toolbox for Matlab is freely accessible online.

  10. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    PubMed

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  11. MIPS: curated databases and comprehensive secondary data resources in 2010.

    PubMed

    Mewes, H Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F X; Stümpflen, Volker; Antonov, Alexey

    2011-01-01

    The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).

  12. MIPS: curated databases and comprehensive secondary data resources in 2010

    PubMed Central

    Mewes, H. Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F.X.; Stümpflen, Volker; Antonov, Alexey

    2011-01-01

    The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38 000 000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de). PMID:21109531

  13. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  14. BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires.

    PubMed

    Lee, Donald W; Khavrutskii, Ilja V; Wallqvist, Anders; Bavari, Sina; Cooper, Christopher L; Chaudhury, Sidhartha

    2016-01-01

    The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate BRILIA's utility in B-cell repertoire studies related to VDJ gene usage, mechanisms for adenosine mutations, and SHM hot spot motifs. Furthermore, we show that the complete gene usage annotation and SHM identification across the entire CDR3 are essential for studying the B-cell affinity maturation process through immunosequencing methods.

  15. High-throughput protein analysis integrating bioinformatics and experimental assays

    PubMed Central

    del Val, Coral; Mehrle, Alexander; Falkenhahn, Mechthild; Seiler, Markus; Glatting, Karl-Heinz; Poustka, Annemarie; Suhai, Sandor; Wiemann, Stefan

    2004-01-01

    The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins. PMID:14762202

  16. web cellHTS2: a web-application for the analysis of high-throughput screening data.

    PubMed

    Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael

    2010-04-12

    The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  17. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  18. Prediction of Gene Expression in Embryonic Structures of Drosophila melanogaster

    PubMed Central

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-01-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms. PMID:17658945

  19. Metagenomic insights into the effect of oxytetracycline on microbial structures, functions and functional genes in sediment denitrification.

    PubMed

    Zou, Yong; Lin, Manxia; Xiong, Wenguang; Wang, Mei; Zhang, Jiaxuan; Wang, Mianzhi; Sun, Yongxue

    2018-06-02

    Denitrification is an indispensable pathway of nitrogen removal in aquatic ecosystems, and plays an important role in decreasing eutrophication induced by excessive reactive nitrogen pollution. Aquatic environments also suffer from antibiotic pollution due to runoff from farms and sewage systems. The aim of this study was to investigate the effect of oxytetracycline stress on denitrifying functional genes, the microbial community and metabolic pathways in sediments using high-throughput sequencing and metagenomic analysis. The oxytetracycline was observed to significantly inhibit the abundance of nirK and nosZ genes (P < 0.001). KEGG pathway annotation indicated that oxytetracycline treatment decreased the abundance of nitrate reductase, nitrite reductase and N 2 O reductase. Functional annotations revealed that oxytetracycline exposure decreased the abundance of the protein metabolism subsystem in the bacterial community. Metagenomic sequencing demonstrated that the abundance of Proteobacteria and Firmicutes increased with oxytetracycline exposure while the Actinobacteria decreased. In sediments, Pseudomonas and Bradyrhizobium were major contributors to denitrification and oxytetracycline exposure resulted in a decreased abundance of Bradyrhizobium. These results indicated that oxytetracycline residues influences the denitrifier community and may heighten occurrence of reactive nitrogen in aquatic ecosystems. Copyright © 2018. Published by Elsevier Inc.

  20. ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level

    PubMed Central

    Rocca-Serra, Philippe; Brandizi, Marco; Maguire, Eamonn; Sklyar, Nataliya; Taylor, Chris; Begley, Kimberly; Field, Dawn; Harris, Stephen; Hide, Winston; Hofmann, Oliver; Neumann, Steffen; Sterk, Peter; Tong, Weida; Sansone, Susanna-Assunta

    2010-01-01

    Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories. Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org Contact: isatools@googlegroups.com PMID:20679334

  1. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.

    PubMed

    Zeng, Victor; Extavour, Cassandra G

    2012-01-01

    The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL: asgard.rc.fas.harvard.edu.

  2. Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.

    PubMed

    Tripathi, Kumar Parijat; Evangelista, Daniela; Zuccaro, Antonio; Guarracino, Mario Rosario

    2015-01-01

    RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequencing at an extraordinary accuracy. It provides quantitative means to explore the transcriptome of an organism of interest. However, interpreting this extremely large data into biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we developed Transcriptator, a web application based on a computational Python pipeline with a user-friendly Java interface. This pipeline uses the web services available for BLAST (Basis Local Search Alignment Tool), QuickGO and DAVID (Database for Annotation, Visualization and Integrated Discovery) tools. It offers a report on statistical analysis of functional and Gene Ontology (GO) annotation's enrichment. It helps users to identify enriched biological themes, particularly GO terms, pathways, domains, gene/proteins features and protein-protein interactions related informations. It clusters the transcripts based on functional annotations and generates a tabular report for functional and gene ontology annotations for each submitted transcript to the web server. The implementation of QuickGo web-services in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA) by ab initio methods) helps to identify the non coding RNAs and their regulatory role in transcriptome. In summary, Transcriptator is a useful software for both NGS and array data. It helps the users to characterize the de-novo assembled reads, obtained from NGS experiments for non-referenced organisms, while it also performs the functional enrichment analysis of differentially expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates easy to read tables and interactive charts for better understanding of the data. The pipeline is modular in nature, and provides an opportunity to add new plugins in the future. Web application is freely available at: http://www-labgtp.na.icar.cnr.it/Transcriptator.

  3. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  4. A comprehensive collection of annotations to interpret sequence variation in human mitochondrial transfer RNAs.

    PubMed

    Diroma, Maria Angela; Lubisco, Paolo; Attimonelli, Marcella

    2016-11-08

    The abundance of biological data characterizing the genomics era is contributing to a comprehensive understanding of human mitochondrial genetics. Nevertheless, many aspects are still unclear, specifically about the variability of the 22 human mitochondrial transfer RNA (tRNA) genes and their involvement in diseases. The complex enrichment and isolation of tRNAs in vitro leads to an incomplete knowledge of their post-transcriptional modifications and three-dimensional folding, essential for correct tRNA functioning. An accurate annotation of mitochondrial tRNA variants would be definitely useful and appreciated by mitochondrial researchers and clinicians since the most of bioinformatics tools for variant annotation and prioritization available so far cannot shed light on the functional role of tRNA variations. To this aim, we updated our MToolBox pipeline for mitochondrial DNA analysis of high throughput and Sanger sequencing data by integrating tRNA variant annotations in order to identify and characterize relevant variants not only in protein coding regions, but also in tRNA genes. The annotation step in the pipeline now provides detailed information for variants mapping onto the 22 mitochondrial tRNAs. For each mt-tRNA position along the entire genome, the relative tRNA numbering, tRNA type, cloverleaf secondary domains (loops and stems), mature nucleotide and interactions in the three-dimensional folding were reported. Moreover, pathogenicity predictions for tRNA and rRNA variants were retrieved from the literature and integrated within the annotations provided by MToolBox, both in the stand-alone version and web-based tool at the Mitochondrial Disease Sequence Data Resource (MSeqDR) website. All the information available in the annotation step of MToolBox were exploited to generate custom tracks which can be displayed in the GBrowse instance at MSeqDR website. To the best of our knowledge, specific data regarding mitochondrial variants in tRNA genes were introduced for the first time in a tool for mitochondrial genome analysis, supporting the interpretation of genetic variants in specific genomic contexts.

  5. Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate.

    PubMed

    Gallois, Nicolas; Alpha-Bazin, Béatrice; Ortet, Philippe; Barakat, Mohamed; Piette, Laurie; Long, Justine; Berthomieu, Catherine; Armengaud, Jean; Chapon, Virginie

    2018-04-15

    Microbacterium oleivorans A9 is a uranium-tolerant actinobacteria isolated from the trench T22 located near the Chernobyl nuclear power plant. This site is contaminated with different radionuclides including uranium. To observe the molecular changes at the proteome level occurring in this strain upon uranyl exposure and understand molecular mechanisms explaining its uranium tolerance, we established its draft genome and used this raw information to perform an in-depth proteogenomics study. High-throughput proteomics were performed on cells exposed or not to 10μM uranyl nitrate sampled at three previously identified phases of uranyl tolerance. We experimentally detected and annotated 1532 proteins and highlighted a total of 591 proteins for which abundances were significantly differing between conditions. Notably, proteins involved in phosphate and iron metabolisms show high dynamics. A large ratio of proteins more abundant upon uranyl stress, are distant from functionally-annotated known proteins, highlighting the lack of fundamental knowledge regarding numerous key molecular players from soil bacteria. Microbacterium oleivorans A9 is an interesting environmental model to understand biological processes engaged in tolerance to radionuclides. Using an innovative proteogenomics approach, we explored its molecular mechanisms involved in uranium tolerance. We sequenced its genome, interpreted high-throughput proteomic data against a six-reading frame ORF database deduced from the draft genome, annotated the identified proteins and compared protein abundances from cells exposed or not to uranyl stress after a cascade search. These data show that a complex cellular response to uranium occurs in Microbacterium oleivorans A9, where one third of the experimental proteome is modified. In particular, the uranyl stress perturbed the phosphate and iron metabolic pathways. Furthermore, several transporters have been identified to be specifically associated to uranyl stress, paving the way to the development of biotechnological tools for uranium decontamination. Copyright © 2017. Published by Elsevier B.V.

  6. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  7. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    PubMed

    Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  8. Transcriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis

    PubMed Central

    Ma, Jun; Kanakala, S.; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. Conclusion The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus. PMID:25769053

  9. A Novel Approach to Semantic and Coreference Annotation at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firpo, M

    A case is made for the importance of high quality semantic and coreference annotation. The challenges of providing such annotation are described. Asperger's Syndrome is introduced, and the connections are drawn between the needs of text annotation and the abilities of persons with Asperger's Syndrome to meet those needs. Finally, a pilot program is recommended wherein semantic annotation is performed by people with Asperger's Syndrome. The primary points embodied in this paper are as follows: (1) Document annotation is essential to the Natural Language Processing (NLP) projects at Lawrence Livermore National Laboratory (LLNL); (2) LLNL does not currently have amore » system in place to meet its need for text annotation; (3) Text annotation is challenging for a variety of reasons, many related to its very rote nature; (4) Persons with Asperger's Syndrome are particularly skilled at rote verbal tasks, and behavioral experts agree that they would excel at text annotation; and (6) A pilot study is recommend in which two to three people with Asperger's Syndrome annotate documents and then the quality and throughput of their work is evaluated relative to that of their neuro-typical peers.« less

  10. Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons

    PubMed Central

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth

    2015-01-01

    ABSTRACT Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative d-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. PMID:25968644

  11. Sophia: A Expedient UMLS Concept Extraction Annotator.

    PubMed

    Divita, Guy; Zeng, Qing T; Gundlapalli, Adi V; Duvall, Scott; Nebeker, Jonathan; Samore, Matthew H

    2014-01-01

    An opportunity exists for meaningful concept extraction and indexing from large corpora of clinical notes in the Veterans Affairs (VA) electronic medical record. Currently available tools such as MetaMap, cTAKES and HITex do not scale up to address this big data need. Sophia, a rapid UMLS concept extraction annotator was developed to fulfill a mandate and address extraction where high throughput is needed while preserving performance. We report on the development, testing and benchmarking of Sophia against MetaMap and cTAKEs. Sophia demonstrated improved performance on recall as compared to cTAKES and MetaMap (0.71 vs 0.66 and 0.38). The overall f-score was similar to cTAKES and an improvement over MetaMap (0.53 vs 0.57 and 0.43). With regard to speed of processing records, we noted Sophia to be several fold faster than cTAKES and the scaled-out MetaMap service. Sophia offers a viable alternative for high-throughput information extraction tasks.

  12. Relax with CouchDB - Into the non-relational DBMS era of Bioinformatics

    PubMed Central

    Manyam, Ganiraju; Payton, Michelle A.; Roth, Jack A.; Abruzzo, Lynne V.; Coombes, Kevin R.

    2012-01-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. PMID:22609849

  13. Sophia: A Expedient UMLS Concept Extraction Annotator

    PubMed Central

    Divita, Guy; Zeng, Qing T; Gundlapalli, Adi V.; Duvall, Scott; Nebeker, Jonathan; Samore, Matthew H.

    2014-01-01

    An opportunity exists for meaningful concept extraction and indexing from large corpora of clinical notes in the Veterans Affairs (VA) electronic medical record. Currently available tools such as MetaMap, cTAKES and HITex do not scale up to address this big data need. Sophia, a rapid UMLS concept extraction annotator was developed to fulfill a mandate and address extraction where high throughput is needed while preserving performance. We report on the development, testing and benchmarking of Sophia against MetaMap and cTAKEs. Sophia demonstrated improved performance on recall as compared to cTAKES and MetaMap (0.71 vs 0.66 and 0.38). The overall f-score was similar to cTAKES and an improvement over MetaMap (0.53 vs 0.57 and 0.43). With regard to speed of processing records, we noted Sophia to be several fold faster than cTAKES and the scaled-out MetaMap service. Sophia offers a viable alternative for high-throughput information extraction tasks. PMID:25954351

  14. BμG@Sbase—a microbial gene expression and comparative genomic database

    PubMed Central

    Witney, Adam A.; Waldron, Denise E.; Brooks, Lucy A.; Tyler, Richard H.; Withers, Michael; Stoker, Neil G.; Wren, Brendan W.; Butcher, Philip D.; Hinds, Jason

    2012-01-01

    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future. PMID:21948792

  15. BμG@Sbase--a microbial gene expression and comparative genomic database.

    PubMed

    Witney, Adam A; Waldron, Denise E; Brooks, Lucy A; Tyler, Richard H; Withers, Michael; Stoker, Neil G; Wren, Brendan W; Butcher, Philip D; Hinds, Jason

    2012-01-01

    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future.

  16. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  17. HiTC: exploration of high-throughput ‘C’ experiments

    PubMed Central

    Servant, Nicolas; Lajoie, Bryan R.; Nora, Elphège P.; Giorgetti, Luca; Chen, Chong-Jian; Heard, Edith; Dekker, Job; Barillot, Emmanuel

    2012-01-01

    Summary: The R/Bioconductor package HiTC facilitates the exploration of high-throughput 3C-based data. It allows users to import and export ‘C’ data, to transform, normalize, annotate and visualize interaction maps. The package operates within the Bioconductor framework and thus offers new opportunities for future development in this field. Availability and implementation: The R package HiTC is available from the Bioconductor website. A detailed vignette provides additional documentation and help for using the package. Contact: nicolas.servant@curie.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22923296

  18. De novo assembly and characterization of the transcriptome in the desiccation-tolerant moss Syntrichia caninervis

    PubMed Central

    2014-01-01

    Background Syntrichia caninervis is a desiccation-tolerant moss and the dominant bryophyte of the Biological Soil Crusts (BSCs) found in the Mojave and Gurbantunggut deserts. Next generation high throughput sequencing technologies offer an efficient and economic choice for characterizing non-model organism transcriptomes with little or no prior molecular information available. Results In this study, we employed next generation, high-throughput, Illumina RNA-Seq to analyze the poly-(A) + mRNA from hydrated, dehydrating and desiccated S. caninervis gametophores. Approximately 58.0 million paired-end short reads were obtained and 92,240 unigenes were assembled with an average size of 493 bp, N50 value of 662 bp and a total size of 45.48 Mbp. Sequence similarity searches against five public databases (NR, Swiss-Prot, COSMOSS, KEGG and COG) found 54,125 unigenes (58.7%) with significant similarity to an existing sequence (E-value ≤ 1e-5) and could be annotated. Gene Ontology (GO) annotation assigned 24,183 unigenes to the three GO terms: Biological Process, Cellular Component or Molecular Function. GO comparison between P. patens and S. caninervis demonstrated similar sequence enrichment across all three GO categories. 29,370 deduced polypeptide sequences were assigned Pfam domain information and categorized into 4,212 Pfam domains/families. Using the PlantTFDB, 778 unigenes were predicted to be involved in the regulation of transcription and were classified into 49 transcription factor families. Annotated unigenes were mapped to the KEGG pathways and further annotated using MapMan. Comparative genomics revealed that 44% of protein families are shared in common by S. caninervis, P. patens and Arabidopsis thaliana and that 80% are shared by both moss species. Conclusions This study is one of the first comprehensive transcriptome analyses of the moss S. caninervis. Our data extends our knowledge of bryophyte transcriptomes, provides an insight to plants adapted to the arid regions of central Asia, and continues the development of S. caninervis as a model for understanding the molecular aspects of desiccation-tolerance. PMID:25086984

  19. Muscle Research and Gene Ontology: New standards for improved data integration

    PubMed Central

    Feltrin, Erika; Campanaro, Stefano; Diehl, Alexander D; Ehler, Elisabeth; Faulkner, Georgine; Fordham, Jennifer; Gardin, Chiara; Harris, Midori; Hill, David; Knoell, Ralph; Laveder, Paolo; Mittempergher, Lorenza; Nori, Alessandra; Reggiani, Carlo; Sorrentino, Vincenzo; Volpe, Pompeo; Zara, Ivano; Valle, Giorgio; Deegan née Clark, Jennifer

    2009-01-01

    Background The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. Results The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. Conclusion The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki . PMID:19178689

  20. Integrating 400 million variants from 80,000 human samples with extensive annotations: towards a knowledge base to analyze disease cohorts.

    PubMed

    Hakenberg, Jörg; Cheng, Wei-Yi; Thomas, Philippe; Wang, Ying-Chih; Uzilov, Andrew V; Chen, Rong

    2016-01-08

    Data from a plethora of high-throughput sequencing studies is readily available to researchers, providing genetic variants detected in a variety of healthy and disease populations. While each individual cohort helps gain insights into polymorphic and disease-associated variants, a joint perspective can be more powerful in identifying polymorphisms, rare variants, disease-associations, genetic burden, somatic variants, and disease mechanisms. We have set up a Reference Variant Store (RVS) containing variants observed in a number of large-scale sequencing efforts, such as 1000 Genomes, ExAC, Scripps Wellderly, UK10K; various genotyping studies; and disease association databases. RVS holds extensive annotations pertaining to affected genes, functional impacts, disease associations, and population frequencies. RVS currently stores 400 million distinct variants observed in more than 80,000 human samples. RVS facilitates cross-study analysis to discover novel genetic risk factors, gene-disease associations, potential disease mechanisms, and actionable variants. Due to its large reference populations, RVS can also be employed for variant filtration and gene prioritization. A web interface to public datasets and annotations in RVS is available at https://rvs.u.hpc.mssm.edu/.

  1. PANDORA: keyword-based analysis of protein sets by integration of annotation sources.

    PubMed

    Kaplan, Noam; Vaaknin, Avishay; Linial, Michal

    2003-10-01

    Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.

  2. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. Results We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes. Conclusions ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as GenomicFeatures and BSgenome, provides flexibility. Tight integration to the biomaRt package enables up-to-date annotation retrieval from the BioMart database. PMID:20459804

  3. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics

    PubMed Central

    Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed

    2016-01-01

    In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003

  4. Transposons As Tools for Functional Genomics in Vertebrate Models.

    PubMed

    Kawakami, Koichi; Largaespada, David A; Ivics, Zoltán

    2017-11-01

    Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes

    DOE PAGES

    Vetting, Matthew W.; Al-Obaidi, Nawar; Zhao, Suwen; ...

    2014-12-25

    The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. Here in this paper, we describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of themore » library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of D-Ala-D-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.« less

  6. Integrated genome browser: visual analytics platform for genomics.

    PubMed

    Freese, Nowlan H; Norris, David C; Loraine, Ann E

    2016-07-15

    Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.

  7. High-throughput illumina strand-specific RNA sequencing library preparation

    USDA-ARS?s Scientific Manuscript database

    Conventional Illumina RNA-Seq does not have the resolution to decode the complex eukaryote transcriptome due to the lack of RNA polarity information. Strand-specific RNA sequencing (ssRNA-Seq) can overcome these limitations and as such is better suited for genome annotation, de novo transcriptome as...

  8. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping

    PubMed Central

    Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid

    2016-01-01

    With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments. PMID:27529152

  9. [Weighted gene co-expression network analysis in biomedicine research].

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Tu, Wei

    2017-11-25

    High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.

  10. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping.

    PubMed

    Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid

    2016-08-16

    With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments.

  11. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.

    PubMed

    Lowe, Todd M; Chan, Patricia P

    2016-07-08

    High-throughput genome sequencing continues to grow the need for rapid, accurate genome annotation and tRNA genes constitute the largest family of essential, ever-present non-coding RNA genes. Newly developed tRNAscan-SE 2.0 has advanced the state-of-the-art methodology in tRNA gene detection and functional prediction, captured by rich new content of the companion Genomic tRNA Database. Previously, web-server tRNA detection was isolated from knowledge of existing tRNAs and their annotation. In this update of the tRNAscan-SE On-line resource, we tie together improvements in tRNA classification with greatly enhanced biological context via dynamically generated links between web server search results, the most relevant genes in the GtRNAdb and interactive, rich genome context provided by UCSC genome browsers. The tRNAscan-SE On-line web server can be accessed at http://trna.ucsc.edu/tRNAscan-SE/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

    PubMed Central

    Majoros, William H.; Campbell, Michael S.; Holt, Carson; DeNardo, Erin K.; Ware, Doreen; Allen, Andrew S.; Yandell, Mark; Reddy, Timothy E.

    2017-01-01

    Abstract Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype–phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (‘Assessing Changes to Exons’) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Availability and Implementation: ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE Contact: myandell@genetics.utah.edu or tim.reddy@duke.edu Supplementary information: Supplementary information is available at Bioinformatics online. PMID:28011790

  13. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE.

    PubMed

    Majoros, William H; Campbell, Michael S; Holt, Carson; DeNardo, Erin K; Ware, Doreen; Allen, Andrew S; Yandell, Mark; Reddy, Timothy E

    2017-05-15

    The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.

    PubMed

    Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar

    2017-01-01

    The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.

  15. BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation

    PubMed Central

    Schomburg, Dietmar

    2017-01-01

    The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104

  16. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-04

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing

    PubMed Central

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation. PMID:27446103

  18. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing.

    PubMed

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation.

  19. An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.).

    PubMed

    Duan, Yongbo; Zhai, Chenguang; Li, Hao; Li, Juan; Mei, Wenqian; Gui, Huaping; Ni, Dahu; Song, Fengshun; Li, Li; Zhang, Wanggen; Yang, Jianbo

    2012-09-01

    A number of Agrobacterium-mediated rice transformation systems have been developed and widely used in numerous laboratories and research institutes. However, those systems generally employ antibiotics like kanamycin and hygromycin, or herbicide as selectable agents, and are used for the small-scale experiments. To address high-throughput production of transgenic rice plants via Agrobacterium-mediated transformation, and to eliminate public concern on antibiotic markers, we developed a comprehensive efficient protocol, covering from explant preparation to the acquisition of low copy events by real-time PCR analysis before transplant to field, for high-throughput production of transgenic plants of Japonica rice varieties Wanjing97 and Nipponbare using Escherichia coli phosphomannose isomerase gene (pmi) as a selectable marker. The transformation frequencies (TF) of Wanjing97 and Nipponbare were achieved as high as 54.8 and 47.5%, respectively, in one round of selection of 7.5 or 12.5 g/L mannose appended with 5 g/L sucrose. High-throughput transformation from inoculation to transplant of low copy events was accomplished within 55-60 days. Moreover, the Taqman assay data from a large number of transformants showed 45.2% in Wanjing97 and 31.5% in Nipponbare as a low copy rate, and the transformants are fertile and follow the Mendelian segregation ratio. This protocol facilitates us to perform genome-wide functional annotation of the open reading frames and utilization of the agronomically important genes in rice under a reduced public concern on selectable markers. We describe a comprehensive protocol for large scale production of transgenic Japonica rice plants using non-antibiotic selectable agent, at simplified, cost- and labor-saving manners.

  20. M-Finder: Uncovering functionally associated proteins from interactome data integrated with GO annotations

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale. Results We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters. Conclusions M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http://bionet.ecs.baylor.edu/mfinder PMID:24565382

  1. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    PubMed

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  2. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  3. The Functional Genomics Network in the evolution of biological text mining over the past decade.

    PubMed

    Blaschke, Christian; Valencia, Alfonso

    2013-03-25

    Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Relax with CouchDB--into the non-relational DBMS era of bioinformatics.

    PubMed

    Manyam, Ganiraju; Payton, Michelle A; Roth, Jack A; Abruzzo, Lynne V; Coombes, Kevin R

    2012-07-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. STOP using just GO: a multi-ontology hypothesis generation tool for high throughput experimentation

    PubMed Central

    2013-01-01

    Background Gene Ontology (GO) enrichment analysis remains one of the most common methods for hypothesis generation from high throughput datasets. However, we believe that researchers strive to test other hypotheses that fall outside of GO. Here, we developed and evaluated a tool for hypothesis generation from gene or protein lists using ontological concepts present in manually curated text that describes those genes and proteins. Results As a consequence we have developed the method Statistical Tracking of Ontological Phrases (STOP) that expands the realm of testable hypotheses in gene set enrichment analyses by integrating automated annotations of genes to terms from over 200 biomedical ontologies. While not as precise as manually curated terms, we find that the additional enriched concepts have value when coupled with traditional enrichment analyses using curated terms. Conclusion Multiple ontologies have been developed for gene and protein annotation, by using a dataset of both manually curated GO terms and automatically recognized concepts from curated text we can expand the realm of hypotheses that can be discovered. The web application STOP is available at http://mooneygroup.org/stop/. PMID:23409969

  6. categoryCompare, an analytical tool based on feature annotations

    PubMed Central

    Flight, Robert M.; Harrison, Benjamin J.; Mohammad, Fahim; Bunge, Mary B.; Moon, Lawrence D. F.; Petruska, Jeffrey C.; Rouchka, Eric C.

    2014-01-01

    Assessment of high-throughput—omics data initially focuses on relative or raw levels of a particular feature, such as an expression value for a transcript, protein, or metabolite. At a second level, analyses of annotations including known or predicted functions and associations of each individual feature, attempt to distill biological context. Most currently available comparative- and meta-analyses methods are dependent on the availability of identical features across data sets, and concentrate on determining features that are differentially expressed across experiments, some of which may be considered “biomarkers.” The heterogeneity of measurement platforms and inherent variability of biological systems confounds the search for robust biomarkers indicative of a particular condition. In many instances, however, multiple data sets show involvement of common biological processes or signaling pathways, even though individual features are not commonly measured or differentially expressed between them. We developed a methodology, categoryCompare, for cross-platform and cross-sample comparison of high-throughput data at the annotation level. We assessed the utility of the approach using hypothetical data, as well as determining similarities and differences in the set of processes in two instances: (1) denervated skin vs. denervated muscle, and (2) colon from Crohn's disease vs. colon from ulcerative colitis (UC). The hypothetical data showed that in many cases comparing annotations gave superior results to comparing only at the gene level. Improved analytical results depended as well on the number of genes included in the annotation term, the amount of noise in relation to the number of genes expressing in unenriched annotation categories, and the specific method in which samples are combined. In the skin vs. muscle denervation comparison, the tissues demonstrated markedly different responses. The Crohn's vs. UC comparison showed gross similarities in inflammatory response in the two diseases, with particular processes specific to each disease. PMID:24808906

  7. Pooled assembly of marine metagenomic datasets: enriching annotation through chimerism.

    PubMed

    Magasin, Jonathan D; Gerloff, Dietlind L

    2015-02-01

    Despite advances in high-throughput sequencing, marine metagenomic samples remain largely opaque. A typical sample contains billions of microbial organisms from thousands of genomes and quadrillions of DNA base pairs. Its derived metagenomic dataset underrepresents this complexity by orders of magnitude because of the sparseness and shortness of sequencing reads. Read shortness and sequencing errors pose a major challenge to accurate species and functional annotation. This includes distinguishing known from novel species. Often the majority of reads cannot be annotated and thus cannot help our interpretation of the sample. Here, we demonstrate quantitatively how careful assembly of marine metagenomic reads within, but also across, datasets can alleviate this problem. For 10 simulated datasets, each with species complexity modeled on a real counterpart, chimerism remained within the same species for most contigs (97%). For 42 real pyrosequencing ('454') datasets, assembly increased the proportion of annotated reads, and even more so when datasets were pooled, by on average 1.6% (max 6.6%) for species, 9.0% (max 28.7%) for Pfam protein domains and 9.4% (max 22.9%) for PANTHER gene families. Our results outline exciting prospects for data sharing in the metagenomics community. While chimeric sequences should be avoided in other areas of metagenomics (e.g. biodiversity analyses), conservative pooled assembly is advantageous for annotation specificity and sensitivity. Intriguingly, our experiment also found potential prospects for (low-cost) discovery of new species in 'old' data. dgerloff@ffame.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Strategy to Identify and Test Putative Light-Sensitive Non-Opsin G-Protein-Coupled Receptors: A Case Study.

    PubMed

    Faggionato, Davide; Serb, Jeanne M

    2017-08-01

    The rise of high-throughput RNA sequencing (RNA-seq) and de novo transcriptome assembly has had a transformative impact on how we identify and study genes in the phototransduction cascade of non-model organisms. But the advantage provided by the nearly automated annotation of RNA-seq transcriptomes may at the same time hinder the possibility for gene discovery and the discovery of new gene functions. For example, standard functional annotation based on domain homology to known protein families can only confirm group membership, not identify the emergence of new biochemical function. In this study, we show the importance of developing a strategy that circumvents the limitations of semiautomated annotation and apply this workflow to photosensitivity as a means to discover non-opsin photoreceptors. We hypothesize that non-opsin G-protein-coupled receptor (GPCR) proteins may have chromophore-binding lysines in locations that differ from opsin. Here, we provide the first case study describing non-opsin light-sensitive GPCRs based on tissue-specific RNA-seq data of the common bay scallop Argopecten irradians (Lamarck, 1819). Using a combination of sequence analysis and three-dimensional protein modeling, we identified two candidate proteins. We tested their photochemical properties and provide evidence showing that these two proteins incorporate 11-cis and/or all-trans retinal and react to light photochemically. Based on this case study, we demonstrate that there is potential for the discovery of new light-sensitive GPCRs, and we have developed a workflow that starts from RNA-seq assemblies to the discovery of new non-opsin, GPCR-based photopigments.

  9. Discovery of sex-related genes through high-throughput transcriptome sequencing from the salmon louse Caligus rogercresseyi.

    PubMed

    Farlora, Rodolfo; Araya-Garay, José; Gallardo-Escárate, Cristian

    2014-06-01

    Understanding the molecular underpinnings involved in the reproduction of the salmon louse is critical for designing novel strategies of pest management for this ectoparasite. However, genomic information on sex-related genes is still limited. In the present work, sex-specific gene transcription was revealed in the salmon louse Caligus rogercresseyi using high-throughput Illumina sequencing. A total of 30,191,914 and 32,292,250 high quality reads were generated for females and males, and these were de novo assembled into 32,173 and 38,177 contigs, respectively. Gene ontology analysis showed a pattern of higher expression in the female as compared to the male transcriptome. Based on our sequence analysis and known sex-related proteins, several genes putatively involved in sex differentiation, including Dmrt3, FOXL2, VASA, and FEM1, and other potentially significant candidate genes in C. rogercresseyi, were identified for the first time. In addition, the occurrence of SNPs in several differentially expressed contigs annotating for sex-related genes was found. This transcriptome dataset provides a useful resource for future functional analyses, opening new opportunities for sea lice pest control. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The Gene Ontology of eukaryotic cilia and flagella.

    PubMed

    Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane

    2017-01-01

    Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.

  11. Muscle Research and Gene Ontology: New standards for improved data integration.

    PubMed

    Feltrin, Erika; Campanaro, Stefano; Diehl, Alexander D; Ehler, Elisabeth; Faulkner, Georgine; Fordham, Jennifer; Gardin, Chiara; Harris, Midori; Hill, David; Knoell, Ralph; Laveder, Paolo; Mittempergher, Lorenza; Nori, Alessandra; Reggiani, Carlo; Sorrentino, Vincenzo; Volpe, Pompeo; Zara, Ivano; Valle, Giorgio; Deegan, Jennifer

    2009-01-29

    The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  12. iCopyDAV: Integrated platform for copy number variations—Detection, annotation and visualization

    PubMed Central

    Vogeti, Sriharsha

    2018-01-01

    Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/. PMID:29621297

  13. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.

    PubMed

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammad A; Olivares-Hernandes, Roberto; Maury, Jérôme; Farinelli, Laurent; Barlocher, Loïc; Osterås, Magne; Schalk, Michel; Clark, Anthony; Nielsen, Jens

    2010-12-22

    The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.

  14. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    PubMed Central

    2010-01-01

    Background The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. Results In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. Conclusions With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk. PMID:21176163

  15. Proposal for a common nomenclature for fragment ions in mass spectra of lipids

    PubMed Central

    Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304

  16. Proposal for a common nomenclature for fragment ions in mass spectra of lipids.

    PubMed

    Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.

  17. INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles

    PubMed Central

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.

    2013-01-01

    Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID:24324765

  18. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    PubMed

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B

    2013-01-01

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  19. Comparative Proteomics Reveals a Significant Bias Toward Alternative Protein Isoforms with Conserved Structure and Function

    PubMed Central

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L.

    2012-01-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and strongly suggests that the translation of alternative transcripts may be subject to selective constraints. PMID:22446687

  20. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Treesearch

    C.L. Schoch; B. Robbertse; V. Robert; R.G. Haight; K. Kovacs; B. Leung; W. Meyer; R.H. Nilsson; K. Hughes; A.N. Miller; P.M. Kirk; K. Abarenkov; M.C. Aime; H.A. Ariyawansa; M. Bidartondo; T. Boekhout; B. Buyck; Q. Cai; J. Chen; A. Crespo; P.W. Crous; U. Damm; Z.W. De Beer; B.T.M. Dentinger; P.K. Divakar; M. Duenas; N. Feau; K. Fliegerova; M.A. Garcia; Z.-W. Ge; G.W. Griffith; J.Z. Groenewald; M. Groenewald; M. Grube; M. Gryzenhout; C. Gueidan; L. Guo; S. Hambleton; R. Hamelin; K. Hansen; V. Hofstetter; S.-B. Hong; J. Houbraken; K.D. Hyde; P. Inderbitzin; P.R. Johnston; S.C. Karunarathna; U. Koljalg; G.M. Kovacs; E. Kraichak; K. Krizsan; C.P. Kurtzman; K.-H. Larsson; S. Leavitt; P.M. Letcher; K. Liimatainen; J.-K. Liu; D.J. Lodge; J. Jennifer Luangsa-ard; H.T. Lumbsch; S.S.N. Maharachchikumbura; D. Manamgoda; M.P. Martin; A.M. Minnis; J.-M. Moncalvo; G. Mule; K.K. Nakasone; T. Niskanen; I. Olariaga; T. Papp; T. Petkovits; R. Pino-Bodas; M.J. Powell; H.A. Raja; D. Redecker; J.M. Sarmiento-Ramirez; K.A. Seifert; B. Shrestha; S. Stenroos; B. Stielow; S.-O. Suh; K. Tanaka; L. Tedersoo; M.T. Telleria; D. Udayanga; W.A. Untereiner; J. Dieguez Uribeondo; K.V. Subbarao; C. Vagvolgyi; C. Visagie; K. Voigt; D.M. Walker; B.S. Weir; M. Weiss; N.N. Wijayawardene; M.J. Wingfield; J.P. Xu; Z.L. Yang; N. Zhang; W.-Y. Zhuang; S. Federhen

    2014-01-01

    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput...

  1. Applications of systems approaches in the study of rheumatic diseases.

    PubMed

    Kim, Ki-Jo; Lee, Saseong; Kim, Wan-Uk

    2015-03-01

    The complex interaction of molecules within a biological system constitutes a functional module. These modules are then acted upon by both internal and external factors, such as genetic and environmental stresses, which under certain conditions can manifest as complex disease phenotypes. Recent advances in high-throughput biological analyses, in combination with improved computational methods for data enrichment, functional annotation, and network visualization, have enabled a much deeper understanding of the mechanisms underlying important biological processes by identifying functional modules that are temporally and spatially perturbed in the context of disease development. Systems biology approaches such as these have produced compelling observations that would be impossible to replicate using classical methodologies, with greater insights expected as both the technology and methods improve in the coming years. Here, we examine the use of systems biology and network analysis in the study of a wide range of rheumatic diseases to better understand the underlying molecular and clinical features.

  2. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  3. Transcriptome analysis of Capsicum annuum varieties Mandarin and Blackcluster: assembly, annotation and molecular marker discovery.

    PubMed

    Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Cho, Young-Il; Lee, Hye-Eun; Kim, Do-Sun; Woo, Jong-Gyu; Cho, Myeong-Cheoul

    2014-01-10

    Next generation sequencing technologies have proven to be a rapid and cost-effective means to assemble and characterize gene content and identify molecular markers in various organisms. Pepper (Capsicum annuum L., Solanaceae) is a major staple vegetable crop, which is economically important and has worldwide distribution. High-throughput transcriptome profiling of two pepper cultivars, Mandarin and Blackcluster, using 454 GS-FLX pyrosequencing yielded 279,221 and 316,357 sequenced reads with a total 120.44 and 142.54Mb of sequence data (average read length of 431 and 450 nucleotides). These reads resulted from 17,525 and 16,341 'isogroups' and were assembled into 19,388 and 18,057 isotigs, and 22,217 and 13,153 singletons for both the cultivars, respectively. Assembled sequences were annotated functionally based on homology to genes in multiple public databases. Detailed sequence variant analysis identified a total of 9701 and 12,741 potential SNPs which eventually resulted in 1025 and 1059 genotype specific SNPs, for both the varieties, respectively, after examining SNP frequency distribution for each mapped unigenes. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies. © 2013 Elsevier B.V. All rights reserved.

  4. [Complete genome sequencing of polymalic acid-producing strain Aureobasidium pullulans CCTCC M2012223].

    PubMed

    Wang, Yongkang; Song, Xiaodan; Li, Xiaorong; Yang, Sang-tian; Zou, Xiang

    2017-01-04

    To explore the genome sequence of Aureobasidium pullulans CCTCC M2012223, analyze the key genes related to the biosynthesis of important metabolites, and provide genetic background for metabolic engineering. Complete genome of A. pullulans CCTCC M2012223 was sequenced by Illumina HiSeq high throughput sequencing platform. Then, fragment assembly, gene prediction, functional annotation, and GO/COG cluster were analyzed in comparison with those of other five A. pullulans varieties. The complete genome sequence of A. pullulans CCTCC M2012223 was 30756831 bp with an average GC content of 47.49%, and 9452 genes were successfully predicted. Genome-wide analysis showed that A. pullulans CCTCC M2012223 had the biggest genome assembly size. Protein sequences involved in the pullulan and polymalic acid pathway were highly conservative in all of six A. pullulans varieties. Although both A. pullulans CCTCC M2012223 and A. pullulans var. melanogenum have a close affinity, some point mutation and inserts were occurred in protein sequences involved in melanin biosynthesis. Genome information of A. pullulans CCTCC M2012223 was annotated and genes involved in melanin, pullulan and polymalic acid pathway were compared, which would provide a theoretical basis for genetic modification of metabolic pathway in A. pullulans.

  5. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE PAGES

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; ...

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less

  6. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less

  7. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening.

    PubMed

    Santos, Carla S; Pinheiro, Miguel; Silva, Ana I; Egas, Conceição; Vasconcelos, Marta W

    2012-11-07

    Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.

  8. Incorporating molecular and functional context into the analysis and prioritization of human variants associated with cancer

    PubMed Central

    Peterson, Thomas A; Nehrt, Nathan L; Park, DoHwan

    2012-01-01

    Background and objective With recent breakthroughs in high-throughput sequencing, identifying deleterious mutations is one of the key challenges for personalized medicine. At the gene and protein level, it has proven difficult to determine the impact of previously unknown variants. A statistical method has been developed to assess the significance of disease mutation clusters on protein domains by incorporating domain functional annotations to assist in the functional characterization of novel variants. Methods Disease mutations aggregated from multiple databases were mapped to domains, and were classified as either cancer- or non-cancer-related. The statistical method for identifying significantly disease-associated domain positions was applied to both sets of mutations and to randomly generated mutation sets for comparison. To leverage the known function of protein domain regions, the method optionally distributes significant scores to associated functional feature positions. Results Most disease mutations are localized within protein domains and display a tendency to cluster at individual domain positions. The method identified significant disease mutation hotspots in both the cancer and non-cancer datasets. The domain significance scores (DS-scores) for cancer form a bimodal distribution with hotspots in oncogenes forming a second peak at higher DS-scores than non-cancer, and hotspots in tumor suppressors have scores more similar to non-cancers. In addition, on an independent mutation benchmarking set, the DS-score method identified mutations known to alter protein function with very high precision. Conclusion By aggregating mutations with known disease association at the domain level, the method was able to discover domain positions enriched with multiple occurrences of deleterious mutations while incorporating relevant functional annotations. The method can be incorporated into translational bioinformatics tools to characterize rare and novel variants within large-scale sequencing studies. PMID:22319177

  9. TogoTable: cross-database annotation system using the Resource Description Framework (RDF) data model.

    PubMed

    Kawano, Shin; Watanabe, Tsutomu; Mizuguchi, Sohei; Araki, Norie; Katayama, Toshiaki; Yamaguchi, Atsuko

    2014-07-01

    TogoTable (http://togotable.dbcls.jp/) is a web tool that adds user-specified annotations to a table that a user uploads. Annotations are drawn from several biological databases that use the Resource Description Framework (RDF) data model. TogoTable uses database identifiers (IDs) in the table as a query key for searching. RDF data, which form a network called Linked Open Data (LOD), can be searched from SPARQL endpoints using a SPARQL query language. Because TogoTable uses RDF, it can integrate annotations from not only the reference database to which the IDs originally belong, but also externally linked databases via the LOD network. For example, annotations in the Protein Data Bank can be retrieved using GeneID through links provided by the UniProt RDF. Because RDF has been standardized by the World Wide Web Consortium, any database with annotations based on the RDF data model can be easily incorporated into this tool. We believe that TogoTable is a valuable Web tool, particularly for experimental biologists who need to process huge amounts of data such as high-throughput experimental output. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  11. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  12. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    PubMed

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  13. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    PubMed Central

    Hahn, Aria S.; Altman, Tomer; Konwar, Kishori M.; Hanson, Niels W.; Kim, Dongjae; Relman, David A.; Dill, David L.; Hallam, Steven J.

    2017-01-01

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools. PMID:28398290

  14. GenomeGraphs: integrated genomic data visualization with R.

    PubMed

    Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine

    2009-01-06

    Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.

  15. MyWEST: my Web Extraction Software Tool for effective mining of annotations from web-based databanks.

    PubMed

    Masseroli, Marco; Stella, Andrea; Meani, Natalia; Alcalay, Myriam; Pinciroli, Francesco

    2004-12-12

    High-throughput technologies create the necessity to mine large amounts of gene annotations from diverse databanks, and to integrate the resulting data. Most databanks can be interrogated only via Web, for a single gene at a time, and query results are generally available only in the HTML format. Although some databanks provide batch retrieval of data via FTP, this requires expertise and resources for locally reimplementing the databank. We developed MyWEST, a tool aimed at researchers without extensive informatics skills or resources, which exploits user-defined templates to easily mine selected annotations from different Web-interfaced databanks, and aggregates and structures results in an automatically updated database. Using microarray results from a model system of retinoic acid-induced differentiation, MyWEST effectively gathered relevant annotations from various biomolecular databanks, highlighted significant biological characteristics and supported a global approach to the understanding of complex cellular mechanisms. MyWEST is freely available for non-profit use at http://www.medinfopoli.polimi.it/MyWEST/

  16. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience.

    PubMed

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

  17. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience

    PubMed Central

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992

  18. Intuitive web-based experimental design for high-throughput biomedical data.

    PubMed

    Friedrich, Andreas; Kenar, Erhan; Kohlbacher, Oliver; Nahnsen, Sven

    2015-01-01

    Big data bioinformatics aims at drawing biological conclusions from huge and complex biological datasets. Added value from the analysis of big data, however, is only possible if the data is accompanied by accurate metadata annotation. Particularly in high-throughput experiments intelligent approaches are needed to keep track of the experimental design, including the conditions that are studied as well as information that might be interesting for failure analysis or further experiments in the future. In addition to the management of this information, means for an integrated design and interfaces for structured data annotation are urgently needed by researchers. Here, we propose a factor-based experimental design approach that enables scientists to easily create large-scale experiments with the help of a web-based system. We present a novel implementation of a web-based interface allowing the collection of arbitrary metadata. To exchange and edit information we provide a spreadsheet-based, humanly readable format. Subsequently, sample sheets with identifiers and metainformation for data generation facilities can be created. Data files created after measurement of the samples can be uploaded to a datastore, where they are automatically linked to the previously created experimental design model.

  19. ProbCD: enrichment analysis accounting for categorization uncertainty.

    PubMed

    Vêncio, Ricardo Z N; Shmulevich, Ilya

    2007-10-12

    As in many other areas of science, systems biology makes extensive use of statistical association and significance estimates in contingency tables, a type of categorical data analysis known in this field as enrichment (also over-representation or enhancement) analysis. In spite of efforts to create probabilistic annotations, especially in the Gene Ontology context, or to deal with uncertainty in high throughput-based datasets, current enrichment methods largely ignore this probabilistic information since they are mainly based on variants of the Fisher Exact Test. We developed an open-source R-based software to deal with probabilistic categorical data analysis, ProbCD, that does not require a static contingency table. The contingency table for the enrichment problem is built using the expectation of a Bernoulli Scheme stochastic process given the categorization probabilities. An on-line interface was created to allow usage by non-programmers and is available at: http://xerad.systemsbiology.net/ProbCD/. We present an analysis framework and software tools to address the issue of uncertainty in categorical data analysis. In particular, concerning the enrichment analysis, ProbCD can accommodate: (i) the stochastic nature of the high-throughput experimental techniques and (ii) probabilistic gene annotation.

  20. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.

    PubMed

    Grabundzija, Ivana; Izsvák, Zsuzsanna; Ivics, Zoltán

    2011-01-01

    Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.

  1. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    PubMed

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  2. Network-based function prediction and interactomics: the case for metabolic enzymes.

    PubMed

    Janga, S C; Díaz-Mejía, J Javier; Moreno-Hagelsieb, G

    2011-01-01

    As sequencing technologies increase in power, determining the functions of unknown proteins encoded by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due to the conservation of position-specific patterns, important for a protein's three dimensional folding and function. Nevertheless, prediction of protein function from homology-driven approaches is not without problems. Homologous proteins might evolve different functions and the power of homology detection has already started to reach its maximum. Computational methods for inferring protein function, which exploit the context of a protein in cellular networks, have come to be built on top of homology-based approaches. These network-based functional inference techniques provide both a first hand hint into a proteins' functional role and offer complementary insights to traditional methods for understanding the function of uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds of functional interactions to boost both coverage and confidence level. These techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with multiple functions, but also increase our understanding on the interplay between different functional classes in a cell. In this article we review the state of the art in network-based function prediction and describe some of the underlying difficulties and successes. Given the volume of high-throughput data that is being reported the time is ripe to employ these network-based approaches, which can be used to unravel the functions of the uncharacterized proteins accumulating in the genomic databases. © 2010 Elsevier Inc. All rights reserved.

  3. MIPS bacterial genomes functional annotation benchmark dataset.

    PubMed

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  4. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  5. The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation.

    PubMed

    McNeil, Leslie Klis; Reich, Claudia; Aziz, Ramy K; Bartels, Daniela; Cohoon, Matthew; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Hwang, Kaitlyn; Kubal, Michael; Margaryan, Gohar Rem; Meyer, Folker; Mihalo, William; Olsen, Gary J; Olson, Robert; Osterman, Andrei; Paarmann, Daniel; Paczian, Tobias; Parrello, Bruce; Pusch, Gordon D; Rodionov, Dmitry A; Shi, Xinghua; Vassieva, Olga; Vonstein, Veronika; Zagnitko, Olga; Xia, Fangfang; Zinner, Jenifer; Overbeek, Ross; Stevens, Rick

    2007-01-01

    The National Microbial Pathogen Data Resource (NMPDR) (http://www.nmpdr.org) is a National Institute of Allergy and Infections Disease (NIAID)-funded Bioinformatics Resource Center that supports research in selected Category B pathogens. NMPDR contains the complete genomes of approximately 50 strains of pathogenic bacteria that are the focus of our curators, as well as >400 other genomes that provide a broad context for comparative analysis across the three phylogenetic Domains. NMPDR integrates complete, public genomes with expertly curated biological subsystems to provide the most consistent genome annotations. Subsystems are sets of functional roles related by a biologically meaningful organizing principle, which are built over large collections of genomes; they provide researchers with consistent functional assignments in a biologically structured context. Investigators can browse subsystems and reactions to develop accurate reconstructions of the metabolic networks of any sequenced organism. NMPDR provides a comprehensive bioinformatics platform, with tools and viewers for genome analysis. Results of precomputed gene clustering analyses can be retrieved in tabular or graphic format with one-click tools. NMPDR tools include Signature Genes, which finds the set of genes in common or that differentiates two groups of organisms. Essentiality data collated from genome-wide studies have been curated. Drug target identification and high-throughput, in silico, compound screening are in development.

  6. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  7. MorphDB: Prioritizing Genes for Specialized Metabolism Pathways and Gene Ontology Categories in Plants.

    PubMed

    Zwaenepoel, Arthur; Diels, Tim; Amar, David; Van Parys, Thomas; Shamir, Ron; Van de Peer, Yves; Tzfadia, Oren

    2018-01-01

    Recent times have seen an enormous growth of "omics" data, of which high-throughput gene expression data are arguably the most important from a functional perspective. Despite huge improvements in computational techniques for the functional classification of gene sequences, common similarity-based methods often fall short of providing full and reliable functional information. Recently, the combination of comparative genomics with approaches in functional genomics has received considerable interest for gene function analysis, leveraging both gene expression based guilt-by-association methods and annotation efforts in closely related model organisms. Besides the identification of missing genes in pathways, these methods also typically enable the discovery of biological regulators (i.e., transcription factors or signaling genes). A previously built guilt-by-association method is MORPH, which was proven to be an efficient algorithm that performs particularly well in identifying and prioritizing missing genes in plant metabolic pathways. Here, we present MorphDB, a resource where MORPH-based candidate genes for large-scale functional annotations (Gene Ontology, MapMan bins) are integrated across multiple plant species. Besides a gene centric query utility, we present a comparative network approach that enables researchers to efficiently browse MORPH predictions across functional gene sets and species, facilitating efficient gene discovery and candidate gene prioritization. MorphDB is available at http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/index/. We also provide a toolkit, named "MORPH bulk" (https://github.com/arzwa/morph-bulk), for running MORPH in bulk mode on novel data sets, enabling researchers to apply MORPH to their own species of interest.

  8. A high-throughput pipeline for the production of synthetic antibodies for analysis of ribonucleoprotein complexes

    PubMed Central

    Na, Hong; Laver, John D.; Jeon, Jouhyun; Singh, Fateh; Ancevicius, Kristin; Fan, Yujie; Cao, Wen Xi; Nie, Kun; Yang, Zhenglin; Luo, Hua; Wang, Miranda; Rissland, Olivia; Westwood, J. Timothy; Kim, Philip M.; Smibert, Craig A.; Lipshitz, Howard D.; Sidhu, Sachdev S.

    2016-01-01

    Post-transcriptional regulation of mRNAs plays an essential role in the control of gene expression. mRNAs are regulated in ribonucleoprotein (RNP) complexes by RNA-binding proteins (RBPs) along with associated protein and noncoding RNA (ncRNA) cofactors. A global understanding of post-transcriptional control in any cell type requires identification of the components of all of its RNP complexes. We have previously shown that these complexes can be purified by immunoprecipitation using anti-RBP synthetic antibodies produced by phage display. To develop the large number of synthetic antibodies required for a global analysis of RNP complex composition, we have established a pipeline that combines (i) a computationally aided strategy for design of antigens located outside of annotated domains, (ii) high-throughput antigen expression and purification in Escherichia coli, and (iii) high-throughput antibody selection and screening. Using this pipeline, we have produced 279 antibodies against 61 different protein components of Drosophila melanogaster RNPs. Together with those produced in our low-throughput efforts, we have a panel of 311 antibodies for 67 RNP complex proteins. Tests of a subset of our antibodies demonstrated that 89% immunoprecipitate their endogenous target from embryo lysate. This panel of antibodies will serve as a resource for global studies of RNP complexes in Drosophila. Furthermore, our high-throughput pipeline permits efficient production of synthetic antibodies against any large set of proteins. PMID:26847261

  9. The double-stranded transcriptome of Escherichia coli.

    PubMed

    Lybecker, Meghan; Zimmermann, Bob; Bilusic, Ivana; Tukhtubaeva, Nadezda; Schroeder, Renée

    2014-02-25

    Advances in high-throughput transcriptome analyses have revealed hundreds of antisense RNAs (asRNAs) for many bacteria, although few have been characterized, and the number of functional asRNAs remains unknown. We have developed a genome-wide high-throughput method to identify functional asRNAs in vivo. Most mechanisms of gene regulation via asRNAs require an RNA-RNA interaction with its target RNA, and we hypothesized that a functional asRNA would be found in a double strand (dsRNA), duplexed with its cognate RNA in a single cell. We developed a method of isolating dsRNAs from total RNA by immunoprecipitation with a ds-RNA specific antibody. Total RNA and immunoprecipitated dsRNA from Escherichia coli RNase III WT and mutant strains were deep-sequenced. A statistical model was applied to filter for biologically relevant dsRNA regions, which were subsequently categorized by location relative to annotated genes. A total of 316 potentially functional asRNAs were identified in the RNase III mutant strain and are encoded primarily opposite to the 5' ends of transcripts, but are also found opposite ncRNAs, gene junctions, and the 3' ends. A total of 21 sense/antisense RNA pairs identified in dsRNAs were confirmed by Northern blot analyses. Most of the RNA steady-state levels were higher or detectable only in the RNase III mutant strain. Taken together, our data indicate that a significant amount of dsRNA is formed in the cell, that RNase III degrades or processes these dsRNAs, and that dsRNA plays a major role in gene regulation in E. coli.

  10. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012more » alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.« less

  11. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  12. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  13. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing.

    PubMed

    Zhang, Fengjiao; Dong, Wen; Huang, Lulu; Song, Aiping; Wang, Haibin; Fang, Weimin; Chen, Fadi; Teng, Nianjun

    2015-01-01

    MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3'-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.

  14. Identification of Development-Related Genes in the Ovaries of Adult Harmonia axyridis (Pallas) Lady Beetles Using a Time- Series Analysis by RNA-seq.

    PubMed

    Du, Wenxiao; Zeng, Fanrong

    2016-12-14

    Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.

  15. A homology-based pipeline for global prediction of post-translational modification sites

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Shi, Shao-Ping; Xu, Hao-Dong; Suo, Sheng-Bao; Qiu, Jian-Ding

    2016-05-01

    The pathways of protein post-translational modifications (PTMs) have been shown to play particularly important roles for almost any biological process. Identification of PTM substrates along with information on the exact sites is fundamental for fully understanding or controlling biological processes. Alternative computational strategies would help to annotate PTMs in a high-throughput manner. Traditional algorithms are suited for identifying the common organisms and tissues that have a complete PTM atlas or extensive experimental data. While annotation of rare PTMs in most organisms is a clear challenge. In this work, to this end we have developed a novel homology-based pipeline named PTMProber that allows identification of potential modification sites for most of the proteomes lacking PTMs data. Cross-promotion E-value (CPE) as stringent benchmark has been used in our pipeline to evaluate homology to known modification sites. Independent-validation tests show that PTMProber achieves over 58.8% recall with high precision by CPE benchmark. Comparisons with other machine-learning tools show that PTMProber pipeline performs better on general predictions. In addition, we developed a web-based tool to integrate this pipeline at http://bioinfo.ncu.edu.cn/PTMProber/index.aspx. In addition to pre-constructed prediction models of PTM, the website provides an extensional functionality to allow users to customize models.

  16. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    PubMed

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  17. Transcriptome-Based Differentiation of Closely-Related Miscanthus Lines

    DOE PAGES

    Chouvarine, Philippe; Cooksey, Amanda M.; McCarthy, Fiona M.; ...

    2012-01-10

    Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthusmore » (Miscanthus6giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations."« less

  18. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    PubMed

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  19. OVAS: an open-source variant analysis suite with inheritance modelling.

    PubMed

    Mozere, Monika; Tekman, Mehmet; Kari, Jameela; Bockenhauer, Detlef; Kleta, Robert; Stanescu, Horia

    2018-02-08

    The advent of modern high-throughput genetics continually broadens the gap between the rising volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally important variants has now shifted towards identifying the critical differences between normal variants and disease-causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible environment to process patient data, especially in circumstances where continuous internet usage is limited. To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS) pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling module in conjunction with 11 other filtering components can be used in sequence ranging from single quality control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of interpretation required, additional annotation is performed to identify organ specificity through gene expression and protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous disease pattern from exome-capture sequence input samples. OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a top-down filtering schema of swappable modules, run entirely off a live bootable medium and accessed locally through a web-browser.

  20. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

    PubMed Central

    2012-01-01

    Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD. PMID:23134679

  1. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing.

    PubMed

    Lee, Xuezhu; Yi, Yang; Weng, Shaoping; Zeng, Jie; Zhang, Hetong; He, Jianguo; Dong, Chuanfu

    2016-02-01

    Cyprinid Herpesvirus 3 (CyHV-3) can infect and specifically cause a huge economic loss in both common carp (Cyprinus carpio) and its ornamental koi variety. The molecular mechanisms underlying CyHV-3 infection are not well understood. In this study, koi spleen tissues of both mock and CyHV-3 infection groups were collected, and high-throughput sequencing technology was used to analyze the differentially expressed genes (DEGs) at the transcriptome level. A total of 105,356,188 clean reads from two libraries were obtained. After the de novo assembly of the transcripts, 129,314 unigenes were generated. Of these unigenes, 70,655 unigenes were matched to the known proteins in the database, while 2190 unigenes were predicted by ESTScan software. Comparing the infection group to the mock group, a total of 23,029 significantly differentially expressed unigenes were identified, including 10,493 up-regulated DEGs and 12,536 down-regulated DEGs. GO (Gene Ontology) annotation and functional enrichment analysis indicated that all of the DEGs were annotated into GO terms in three main GO categories: biological process, cellular component and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the DEGs showed that a total of 12,002 DEG unigenes were annotated into 256 pathways classified into 6 main categories. Additionally, 20 differentially expressed genes were validated by quantitative real-time PCR. As the first report of a transcriptome analysis of koi carp with CyHV-3 infection, the data presented here provide knowledge of the innate immune response against CyHV-3 in koi carp and useful data for further research of the molecular mechanism of CyHV-3 infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Transcriptome profiling analysis of Mactra veneriformis by deep sequencing after exposure to 2,2',4,4'-tetrabromodiphenyl ether

    NASA Astrophysics Data System (ADS)

    Shi, Pengju; Dong, Shihang; Zhang, Huanjun; Wang, Peiliang; Niu, Zhuang; Fang, Yan

    2018-03-01

    Polybrominated diphenyl ethers (PBDEs) are ubiquitous global pollutants, which are known to have immune, development, reproduction, and endocrine toxicity in aquatic organisms, including bivalves. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is the predominant PBDE congener detected in environmental samples and the tissues of organisms. However, the mechanism of its toxicity remains unclear. In this study, high-throughput sequencing was performed using the clam Mactra veneriformis, a good model for toxicological research, to clarify the transcriptomic response to BDE-47 and the mechanism responsible for the toxicity of BDE-47. The clams were exposed to 5 μg/L BDE-47 for 3 days and the digestive glands were sampled for high-throughput sequencing analysis. We obtained 127 648, 154 225, and 124 985 unigenes by de novo assembly of the control group reads (CG), BDE-47 group reads (BDEG), and control and BDE-47 reads (CG & BDEG), respectively. We annotated 32 176 unigenes from the CG & BDEG reads using the NR database. We categorized 24 401 unigenes into 25 functional COG clusters and 21 749 unigenes were assigned to 259 KEGG pathways. Moreover, 17 625 differentially expressed genes (DEGs) were detected, with 10 028 upregulated DEGs and 7 597 downregulated DEGs. Functional enrichment analysis showed that the DEGs were involved with detoxification, antioxidant defense, immune response, apoptosis, and other functions. The mRNA expression levels of 26 DEGs were verified by quantitative real-time PCR, which demonstrated the high agreement between the two methods. These results provide a good basis for future research using the M. veneriformis model into the mechanism of PBDEs toxicity and molecular biomarkers for BDE-47 pollution. The regulation and interaction of the DEGs would be studied in the future for clarifying the mechanism of PBDEs toxicity.

  3. Considerations to improve functional annotations in biological databases.

    PubMed

    Benítez-Páez, Alfonso

    2009-12-01

    Despite the great effort to design efficient systems allowing the electronic indexation of information concerning genes, proteins, structures, and interactions published daily in scientific journals, some problems are still observed in specific tasks such as functional annotation. The annotation of function is a critical issue for bioinformatic routines, such as for instance, in functional genomics and the further prediction of unknown protein function, which are highly dependent of the quality of existing annotations. Some information management systems evolve to efficiently incorporate information from large-scale projects, but often, annotation of single records from the literature is difficult and slow. In this short report, functional characterizations of a representative sample of the entire set of uncharacterized proteins from Escherichia coli K12 was compiled from Swiss-Prot, PubMed, and EcoCyc and demonstrate a functional annotation deficit in biological databases. Some issues are postulated as causes of the lack of annotation, and different solutions are evaluated and proposed to avoid them. The hope is that as a consequence of these observations, there will be new impetus to improve the speed and quality of functional annotation and ultimately provide updated, reliable information to the scientific community.

  4. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

    PubMed

    Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  5. htsint: a Python library for sequencing pipelines that combines data through gene set generation.

    PubMed

    Richards, Adam J; Herrel, Anthony; Bonneaud, Camille

    2015-09-24

    Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint.

  6. Functional cohesion of gene sets determined by latent semantic indexing of PubMed abstracts.

    PubMed

    Xu, Lijing; Furlotte, Nicholas; Lin, Yunyue; Heinrich, Kevin; Berry, Michael W; George, Ebenezer O; Homayouni, Ramin

    2011-04-14

    High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05). These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature. GCAT is freely available at http://binf1.memphis.edu/gcat.

  7. TAM 2.0: tool for MicroRNA set analysis.

    PubMed

    Li, Jianwei; Han, Xiaofen; Wan, Yanping; Zhang, Shan; Zhao, Yingshu; Fan, Rui; Cui, Qinghua; Zhou, Yuan

    2018-06-06

    With the rapid accumulation of high-throughput microRNA (miRNA) expression profile, the up-to-date resource for analyzing the functional and disease associations of miRNAs is increasingly demanded. We here describe the updated server TAM 2.0 for miRNA set enrichment analysis. Through manual curation of over 9000 papers, a more than two-fold growth of reference miRNA sets has been achieved in comparison with previous TAM, which covers 9945 and 1584 newly collected miRNA-disease and miRNA-function associations, respectively. Moreover, TAM 2.0 allows users not only to test the functional and disease annotations of miRNAs by overrepresentation analysis, but also to compare the input de-regulated miRNAs with those de-regulated in other disease conditions via correlation analysis. Finally, the functions for miRNA set query and result visualization are also enabled in the TAM 2.0 server to facilitate the community. The TAM 2.0 web server is freely accessible at http://www.scse.hebut.edu.cn/tam/ or http://www.lirmed.com/tam2/.

  8. Patome: a database server for biological sequence annotation and analysis in issued patents and published patent applications.

    PubMed

    Lee, Byungwook; Kim, Taehyung; Kim, Seon-Kyu; Lee, Kwang H; Lee, Doheon

    2007-01-01

    With the advent of automated and high-throughput techniques, the number of patent applications containing biological sequences has been increasing rapidly. However, they have attracted relatively little attention compared to other sequence resources. We have built a database server called Patome, which contains biological sequence data disclosed in patents and published applications, as well as their analysis information. The analysis is divided into two steps. The first is an annotation step in which the disclosed sequences were annotated with RefSeq database. The second is an association step where the sequences were linked to Entrez Gene, OMIM and GO databases, and their results were saved as a gene-patent table. From the analysis, we found that 55% of human genes were associated with patenting. The gene-patent table can be used to identify whether a particular gene or disease is related to patenting. Patome is available at http://www.patome.org/; the information is updated bimonthly.

  9. Patome: a database server for biological sequence annotation and analysis in issued patents and published patent applications

    PubMed Central

    Lee, Byungwook; Kim, Taehyung; Kim, Seon-Kyu; Lee, Kwang H.; Lee, Doheon

    2007-01-01

    With the advent of automated and high-throughput techniques, the number of patent applications containing biological sequences has been increasing rapidly. However, they have attracted relatively little attention compared to other sequence resources. We have built a database server called Patome, which contains biological sequence data disclosed in patents and published applications, as well as their analysis information. The analysis is divided into two steps. The first is an annotation step in which the disclosed sequences were annotated with RefSeq database. The second is an association step where the sequences were linked to Entrez Gene, OMIM and GO databases, and their results were saved as a gene–patent table. From the analysis, we found that 55% of human genes were associated with patenting. The gene–patent table can be used to identify whether a particular gene or disease is related to patenting. Patome is available at ; the information is updated bimonthly. PMID:17085479

  10. Phage phenomics: Physiological approaches to characterize novel viral proteins

    ScienceCinema

    Sanchez, Savannah E. [San Diego State Univ., San Diego, CA (United States); Cuevas, Daniel A. [San Diego State Univ., San Diego, CA (United States); Rostron, Jason E. [San Diego State Univ., San Diego, CA (United States); Liang, Tiffany Y. [San Diego State Univ., San Diego, CA (United States); Pivaroff, Cullen G. [San Diego State Univ., San Diego, CA (United States); Haynes, Matthew R. [San Diego State Univ., San Diego, CA (United States); Nulton, Jim [San Diego State Univ., San Diego, CA (United States); Felts, Ben [San Diego State Univ., San Diego, CA (United States); Bailey, Barbara A. [San Diego State Univ., San Diego, CA (United States); Salamon, Peter [San Diego State Univ., San Diego, CA (United States); Edwards, Robert A. [San Diego State Univ., San Diego, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Burgin, Alex B. [Broad Institute, Cambridge, MA (United States); Segall, Anca M. [San Diego State Univ., San Diego, CA (United States); Rohwer, Forest [San Diego State Univ., San Diego, CA (United States)

    2018-06-21

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.

  11. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    PubMed

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  13. Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus

    PubMed Central

    Gaitán-Espitia, Juan Diego; Sánchez, Roland; Bruning, Paulina; Cárdenas, Leyla

    2016-01-01

    The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates. PMID:27805042

  14. Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells.

    PubMed

    De Sutter, Valerie; Vanderhaeghen, Rudy; Tilleman, Sofie; Lammertyn, Freya; Vanhoutte, Isabelle; Karimi, Mansour; Inzé, Dirk; Goossens, Alain; Hilson, Pierre

    2005-12-01

    Although sequence information and genome annotation are improving at an impressive pace, functional ontology is still non-existent or rudimentary for most genes. In this regard, transient expression assays are very valuable for identification of short functional segments in particular pathways, because they can be performed rapidly and at a scale unattainable in stably transformed tissues. Vectors were constructed and protocols developed for systematic transient assays in plant protoplasts. To enhance throughput and reproducibility, protoplast treatments were performed entirely by a liquid-handling robot in multiwell plates, including polyethylene glycol/Ca2+ cell transfection with plasmid mixtures, washes and lysis. All transcriptional readouts were measured using a dual firefly/Renilla luciferase assay, in which the former was controlled by a reporter promoter and the latter by the 35S CaMV promoter, which served as internal normalization standard. The automated protocols were suitable for transient assays in protoplasts prepared from cell cultures of Nicotiana tabacum Bright Yellow-2 and Arabidopsis thaliana. They were implemented in a screen to discover potential regulators of genes coding for key enzymes in nicotine biosynthesis. Two novel tobacco transcription factors were found, NtORC1 and NtJAP1, that positively regulate the putrescine N-methyltransferase (PMT) promoter. In addition, combinatorial tests showed that these two factors act synergistically to induce PMT transcriptional activity. The development and use of high-throughput plant transient expression assays are discussed.

  15. Large-scale prediction of ADAR-mediated effective human A-to-I RNA editing.

    PubMed

    Yao, Li; Wang, Heming; Song, Yuanyuan; Dai, Zhen; Yu, Hao; Yin, Ming; Wang, Dongxu; Yang, Xin; Wang, Jinlin; Wang, Tiedong; Cao, Nan; Zhu, Jimin; Shen, Xizhong; Song, Guangqi; Zhao, Yicheng

    2017-08-10

    Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions (3' UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis. After analysing plenty of previously reported RNA editing events and human normal tissues RNA high-seq data, >60 000 potentially effective RNA editing events on functional genes were found. The RNA Editing Plus platform is available for free at https://www.rnaeditplus.org/, and we believe our platform governing multiple optimized methods will improve further studies of A-to-I-induced editing post-transcriptional regulation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.

    PubMed

    Jiang, Xiao-Sheng; Dai, Jie; Sheng, Quan-Hu; Zhang, Lei; Xia, Qi-Chang; Wu, Jia-Rui; Zeng, Rong

    2005-01-01

    Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.

  17. Neural network control of focal position during time-lapse microscopy of cells.

    PubMed

    Wei, Ling; Roberts, Elijah

    2018-05-09

    Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.

  18. Dexterity: A MATLAB-based analysis software suite for processing and visualizing data from tasks that measure arm or forelimb function.

    PubMed

    Butensky, Samuel D; Sloan, Andrew P; Meyers, Eric; Carmel, Jason B

    2017-07-15

    Hand function is critical for independence, and neurological injury often impairs dexterity. To measure hand function in people or forelimb function in animals, sensors are employed to quantify manipulation. These sensors make assessment easier and more quantitative and allow automation of these tasks. While automated tasks improve objectivity and throughput, they also produce large amounts of data that can be burdensome to analyze. We created software called Dexterity that simplifies data analysis of automated reaching tasks. Dexterity is MATLAB software that enables quick analysis of data from forelimb tasks. Through a graphical user interface, files are loaded and data are identified and analyzed. These data can be annotated or graphed directly. Analysis is saved, and the graph and corresponding data can be exported. For additional analysis, Dexterity provides access to custom scripts created by other users. To determine the utility of Dexterity, we performed a study to evaluate the effects of task difficulty on the degree of impairment after injury. Dexterity analyzed two months of data and allowed new users to annotate the experiment, visualize results, and save and export data easily. Previous analysis of tasks was performed with custom data analysis, requiring expertise with analysis software. Dexterity made the tools required to analyze, visualize and annotate data easy to use by investigators without data science experience. Dexterity increases accessibility to automated tasks that measure dexterity by making analysis of large data intuitive, robust, and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Three-dimensional genome organization: a lesson from the Polycomb-Group proteins].

    PubMed

    Bantignies, Frédéric

    2013-01-01

    As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function. © Société de Biologie, 2013.

  20. Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis.

    PubMed

    Fu, Lili; Jiang, Binhui; Liu, Jinliang; Zhao, Xin; Liu, Qian; Hu, Xiaomin

    2016-03-01

    To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.

  1. Uniform, optimal signal processing of mapped deep-sequencing data.

    PubMed

    Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2013-07-01

    Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.

  2. Current Research on Non-Coding Ribonucleic Acid (RNA).

    PubMed

    Wang, Jing; Samuels, David C; Zhao, Shilin; Xiang, Yu; Zhao, Ying-Yong; Guo, Yan

    2017-12-05

    Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.

  3. From Saccharomyces cerevisiae to human: The important gene co-expression modules.

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Chen, Haiwei; Shen, Weibiao; Zhong, Yuexian; Tian, Tian; He, Huaqin

    2017-08-01

    Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co-expression network analysis algorithm was applied to construct a gene co-expression network in Saccharomyces cerevisiae . Seventeen stable gene co-expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra-modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.

  4. Exploring FlyBase Data Using QuickSearch.

    PubMed

    Marygold, Steven J; Antonazzo, Giulia; Attrill, Helen; Costa, Marta; Crosby, Madeline A; Dos Santos, Gilberto; Goodman, Joshua L; Gramates, L Sian; Matthews, Beverley B; Rey, Alix J; Thurmond, Jim

    2016-12-08

    FlyBase (flybase.org) is the primary online database of genetic, genomic, and functional information about Drosophila species, with a major focus on the model organism Drosophila melanogaster. The long and rich history of Drosophila research, combined with recent surges in genomic-scale and high-throughput technologies, mean that FlyBase now houses a huge quantity of data. Researchers need to be able to rapidly and intuitively query these data, and the QuickSearch tool has been designed to meet these needs. This tool is conveniently located on the FlyBase homepage and is organized into a series of simple tabbed interfaces that cover the major data and annotation classes within the database. This unit describes the functionality of all aspects of the QuickSearch tool. With this knowledge, FlyBase users will be equipped to take full advantage of all QuickSearch features and thereby gain improved access to data relevant to their research. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation

    PubMed Central

    Hardison, Ross C.

    2017-01-01

    Abstract The Roadmap Epigenomics Consortium has published whole-genome functional annotation maps in 127 human cell types by integrating data from studies of multiple epigenetic marks. These maps have been widely used for studying gene regulation in cell type-specific contexts and predicting the functional impact of DNA mutations on disease. Here, we present a new map of functional elements produced by applying a method called IDEAS on the same data. The method has several unique advantages and outperforms existing methods, including that used by the Roadmap Epigenomics Consortium. Using five categories of independent experimental datasets, we compared the IDEAS and Roadmap Epigenomics maps. While the overall concordance between the two maps is high, the maps differ substantially in the prediction details and in their consistency of annotation of a given genomic position across cell types. The annotation from IDEAS is uniformly more accurate than the Roadmap Epigenomics annotation and the improvement is substantial based on several criteria. We further introduce a pipeline that improves the reproducibility of functional annotation maps. Thus, we provide a high-quality map of candidate functional regions across 127 human cell types and compare the quality of different annotation methods in order to facilitate biomedical research in epigenomics. PMID:28973456

  6. High-Throughput Sequence Analysis of Turbot (Scophthalmus maximus) Transcriptome Using 454-Pyrosequencing for the Discovery of Antiviral Immune Genes

    PubMed Central

    Pereiro, Patricia; Balseiro, Pablo; Romero, Alejandro; Dios, Sonia; Forn-Cuni, Gabriel; Fuste, Berta; Planas, Josep V.; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio

    2012-01-01

    Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an enormous variety of sequences belonging to genes involved in the defense mechanisms. PMID:22629298

  7. Large-scale annotation of small-molecule libraries using public databases.

    PubMed

    Zhou, Yingyao; Zhou, Bin; Chen, Kaisheng; Yan, S Frank; King, Frederick J; Jiang, Shumei; Winzeler, Elizabeth A

    2007-01-01

    While many large publicly accessible databases provide excellent annotation for biological macromolecules, the same is not true for small chemical compounds. Commercial data sources also fail to encompass an annotation interface for large numbers of compounds and tend to be cost prohibitive to be widely available to biomedical researchers. Therefore, using annotation information for the selection of lead compounds from a modern day high-throughput screening (HTS) campaign presently occurs only under a very limited scale. The recent rapid expansion of the NIH PubChem database provides an opportunity to link existing biological databases with compound catalogs and provides relevant information that potentially could improve the information garnered from large-scale screening efforts. Using the 2.5 million compound collection at the Genomics Institute of the Novartis Research Foundation (GNF) as a model, we determined that approximately 4% of the library contained compounds with potential annotation in such databases as PubChem and the World Drug Index (WDI) as well as related databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and ChemIDplus. Furthermore, the exact structure match analysis showed 32% of GNF compounds can be linked to third party databases via PubChem. We also showed annotations such as MeSH (medical subject headings) terms can be applied to in-house HTS databases in identifying signature biological inhibition profiles of interest as well as expediting the assay validation process. The automated annotation of thousands of screening hits in batch is becoming feasible and has the potential to play an essential role in the hit-to-lead decision making process.

  8. Identification and Characterization of miRNA Transcriptome in Asiatic Cotton (Gossypium arboreum) Using High Throughput Sequencing

    PubMed Central

    Farooq, Muhammad; Mansoor, Shahid; Guo, Hui; Amin, Imran; Chee, Peng W.; Azim, M. Kamran; Paterson, Andrew H.

    2017-01-01

    MicroRNAs (miRNAs) are small 20–24nt molecules that have been well studied over the past decade due to their important regulatory roles in different cellular processes. The mature sequences are more conserved across vast phylogenetic scales than their precursors and some are conserved within entire kingdoms, hence, their loci and function can be predicted by homology searches. Different studies have been performed to elucidate miRNAs using de novo prediction methods but due to complex regulatory mechanisms or false positive in silico predictions, not all of them express in reality and sometimes computationally predicted mature transcripts differ from the actual expressed ones. With the availability of a complete genome sequence of Gossypium arboreum, it is important to annotate the genome for both coding and non-coding regions using high confidence transcript evidence, for this cotton species that is highly resistant to various biotic and abiotic stresses. Here we have analyzed the small RNA transcriptome of G. arboreum leaves and provided genome annotation of miRNAs with evidence from miRNA/miRNA∗ transcripts. A total of 446 miRNAs clustered into 224 miRNA families were found, among which 48 families are conserved in other plants and 176 are novel. Four short RNA libraries were used to shortlist best predictions based on high reads per million. The size, origin, copy numbers and transcript depth of all miRNAs along with their isoforms and targets has been reported. The highest gene copy number was observed for gar-miR7504 followed by gar-miR166, gar-miR8771, gar-miR156, and gar-miR7484. Altogether, 1274 target genes were found in G. arboreum that are enriched for 216 KEGG pathways. The resultant genomic annotations are provided in UCSC, BED format. PMID:28663752

  9. Comparison of methods for library construction and short read annotation of shellfish viral metagenomes.

    PubMed

    Wei, Hong-Ying; Huang, Sheng; Wang, Jiang-Yong; Gao, Fang; Jiang, Jing-Zhe

    2018-03-01

    The emergence and widespread use of high-throughput sequencing technologies have promoted metagenomic studies on environmental or animal samples. Library construction for metagenome sequencing and annotation of the produced sequence reads are important steps in such studies and influence the quality of metagenomic data. In this study, we collected some marine mollusk samples, such as Crassostrea hongkongensis, Chlamys farreri, and Ruditapes philippinarum, from coastal areas in South China. These samples were divided into two batches to compare two library construction methods for shellfish viral metagenome. Our analysis showed that reverse-transcribing RNA into cDNA and then amplifying it simultaneously with DNA by whole genome amplification (WGA) yielded a larger amount of DNA compared to using only WGA or WTA (whole transcriptome amplification). Moreover, higher quality libraries were obtained by agarose gel extraction rather than with AMPure bead size selection. However, the latter can also provide good results if combined with the adjustment of the filter parameters. This, together with its simplicity, makes it a viable alternative. Finally, we compared three annotation tools (BLAST, DIAMOND, and Taxonomer) and two reference databases (NCBI's NR and Uniprot's Uniref). Considering the limitations of computing resources and data transfer speed, we propose the use of DIAMOND with Uniref for annotating metagenomic short reads as its running speed can guarantee a good annotation rate. This study may serve as a useful reference for selecting methods for Shellfish viral metagenome library construction and read annotation.

  10. Proteome-wide Prediction of Self-interacting Proteins Based on Multiple Properties*

    PubMed Central

    Liu, Zhongyang; Guo, Feifei; Zhang, Jiyang; Wang, Jian; Lu, Liang; Li, Dong; He, Fuchu

    2013-01-01

    Self-interacting proteins, whose two or more copies can interact with each other, play important roles in cellular functions and the evolution of protein interaction networks (PINs). Knowing whether a protein can self-interact can contribute to and sometimes is crucial for the elucidation of its functions. Previous related research has mainly focused on the structures and functions of specific self-interacting proteins, whereas knowledge on their overall properties is limited. Meanwhile, the two current most common high throughput protein interaction assays have limited ability to detect self-interactions because of biological artifacts and design limitations, whereas the bioinformatic prediction method of self-interacting proteins is lacking. This study aims to systematically study and predict self-interacting proteins from an overall perspective. We find that compared with other proteins the self-interacting proteins in the structural aspect contain more domains; in the evolutionary aspect they tend to be conserved and ancient; in the functional aspect they are significantly enriched with enzyme genes, housekeeping genes, and drug targets, and in the topological aspect tend to occupy important positions in PINs. Furthermore, based on these features, after feature selection, we use logistic regression to integrate six representative features, including Gene Ontology term, domain, paralogous interactor, enzyme, model organism self-interacting protein, and betweenness centrality in the PIN, to develop a proteome-wide prediction model of self-interacting proteins. Using 5-fold cross-validation and an independent test, this model shows good performance. Finally, the prediction model is developed into a user-friendly web service SLIPPER (SeLf-Interacting Protein PrEdictoR). Users may submit a list of proteins, and then SLIPPER will return the probability_scores measuring their possibility to be self-interacting proteins and various related annotation information. This work helps us understand the role self-interacting proteins play in cellular functions from an overall perspective, and the constructed prediction model may contribute to the high throughput finding of self-interacting proteins and provide clues for elucidating their functions. PMID:23422585

  11. TSSAR: TSS annotation regime for dRNA-seq data.

    PubMed

    Amman, Fabian; Wolfinger, Michael T; Lorenz, Ronny; Hofacker, Ivo L; Stadler, Peter F; Findeiß, Sven

    2014-03-27

    Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.

  12. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    PubMed

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  13. Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    PubMed Central

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J.

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair. PMID:19399174

  14. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks.

    PubMed

    Rajkomar, Alvin; Lingam, Sneha; Taylor, Andrew G; Blum, Michael; Mongan, John

    2017-02-01

    The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73-100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.

  15. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.

    PubMed

    Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-04

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    PubMed Central

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  17. Insight into the transcriptome of Arthrobotrys conoides using high throughput sequencing.

    PubMed

    Ramesh, Pandit; Reena, Patel; Amitbikram, Mohapatra; Chaitanya, Joshi; Anju, Kunjadia

    2015-12-01

    Arthrobotrys conoides is a nematode-trapping fungus belonging to Orbiliales, Ascomycota group, and traps prey nematodes by means of adhesive network. Fungus has a potential to be used as a biocontrol agent against plant parasitic nematodes. In the present study, we characterized the transcriptome of A. conoides using high-throughput sequencing technology and characterized its virulence unigenes. Total 7,255 cDNA contigs with an average length of 425 bp were generated and 6184 (61.81%) transcripts were functionally annotated and characterized. Majority of unigenes were found analogous to the genes of plant pathogenic fungi. A total of 1749 transcripts were found to be orthologous with eukaryotic proteins of KOG database. Several carbohydrate active enzymes and peptidases were identified. We also analyzed classically and nonclassically secreted proteins and confirmed by BLASTP against fungal secretome database. A total of 916 contigs were analogous to 556 unique proteins of Pathogen Host Interaction (PHI) database. Further, we identified 91 unigenes homologous to the database of fungal virulence factor (DFVF). A total of 104 putative protein kinases coding transcripts were identified by BLASTP against KinBase database, which are major players in signaling pathways. This study provides a comprehensive look at the transcriptome of A. conoides and the identified unigenes might have a role in catching and killing prey nematodes by A. conoides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.

    PubMed

    Riewe, David; Wiebach, Janine; Altmann, Thomas

    2017-10-01

    Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.

  19. Solving the Problem: Genome Annotation Standards before the Data Deluge.

    PubMed

    Klimke, William; O'Donovan, Claire; White, Owen; Brister, J Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D; Tatusova, Tatiana

    2011-10-15

    The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries.

  20. Solving the Problem: Genome Annotation Standards before the Data Deluge

    PubMed Central

    Klimke, William; O'Donovan, Claire; White, Owen; Brister, J. Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D.; Tatusova, Tatiana

    2011-01-01

    The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries. PMID:22180819

  1. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  2. Approaches for Defining the Hsp90-dependent Proteome

    PubMed Central

    Hartson, Steven D.; Matts, Robert L.

    2011-01-01

    Hsp90 is the target of ongoing drug discovery studies seeking new compounds to treat cancer, neurodegenerative diseases, and protein folding disorders. To better understand Hsp90’s roles in cellular pathologies and in normal cells, numerous studies have utilized proteomics assays and related high-throughput tools to characterize its physical and functional protein partnerships. This review surveys these studies, and summarizes the strengths and limitations of the individual attacks. We also include downloadable spreadsheets compiling all of the Hsp90-interacting proteins identified in more than 23 studies. These tools include cross-references among gene aliases, human homologues of yeast Hsp90-interacting proteins, hyperlinks to database entries, summaries of canonical pathways that are enriched in the Hsp90 interactome, and additional bioinformatic annotations. In addition to summarizing Hsp90 proteomics studies performed to date and the insights they have provided, we identify gaps in our current understanding of Hsp90-mediated proteostasis. PMID:21906632

  3. Identification of FGF-dependent genes in the Drosophila tracheal system.

    PubMed

    Stahl, Markus; Schuh, Reinhard; Adryan, Boris

    2007-01-01

    The embryonic development of the tracheal system of the fruit fly Drosophila provides a paradigm for genetic studies of branching morphogenesis. Efforts of many laboratories have identified Branchless (Bnl, a fibroblast growth factor homologue) and Breathless (Btl, the receptor homologue) as crucial factors at many stages of tracheal system development. The downstream targets of the Bnl/Btl signalling cascade, however, remain mostly unknown. Misexpression of the bnl gene results in specific tracheal phenotypes that lead to larval death. We characterised the transcriptional profiles of targeted over-expression of bnl in the embryonic trachea and of loss-of-function bnl(P1) mutant embryos. Gene expression data was mapped to high-throughput in situ hybridisation based ImaGO-annotation. Thus, we identified and confirmed by quantitative PCR 13 Bnl-dependent genes that are expressed in cells within and outside of the tracheal system.

  4. Signal Processing for Metagenomics: Extracting Information from the Soup

    PubMed Central

    Rosen, Gail L.; Sokhansanj, Bahrad A.; Polikar, Robi; Bruns, Mary Ann; Russell, Jacob; Garbarine, Elaine; Essinger, Steve; Yok, Non

    2009-01-01

    Traditionally, studies in microbial genomics have focused on single-genomes from cultured species, thereby limiting their focus to the small percentage of species that can be cultured outside their natural environment. Fortunately, recent advances in high-throughput sequencing and computational analyses have ushered in the new field of metagenomics, which aims to decode the genomes of microbes from natural communities without the need for cultivation. Although metagenomic studies have shed a great deal of insight into bacterial diversity and coding capacity, several computational challenges remain due to the massive size and complexity of metagenomic sequence data. Current tools and techniques are reviewed in this paper which address challenges in 1) genomic fragment annotation, 2) phylogenetic reconstruction, 3) functional classification of samples, and 4) interpreting complementary metaproteomics and metametabolomics data. Also surveyed are important applications of metagenomic studies, including microbial forensics and the roles of microbial communities in shaping human health and soil ecology. PMID:20436876

  5. Rose Scent

    PubMed Central

    Guterman, Inna; Shalit, Moshe; Menda, Naama; Piestun, Dan; Dafny-Yelin, Mery; Shalev, Gil; Bar, Einat; Davydov, Olga; Ovadis, Mariana; Emanuel, Michal; Wang, Jihong; Adam, Zach; Pichersky, Eran; Lewinsohn, Efraim; Zamir, Dani; Vainstein, Alexander; Weiss, David

    2002-01-01

    For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of ∼2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolism–related genes whose expression coincides with scent production, led to the discovery of several novel flower scent–related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants. PMID:12368489

  6. High-Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification.

    PubMed

    Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia

    2016-07-01

    High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  7. Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus

    PubMed Central

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567

  8. eClims: An Extensible and Dynamic Integration Framework for Biomedical Information Systems.

    PubMed

    Savonnet, Marinette; Leclercq, Eric; Naubourg, Pierre

    2016-11-01

    Biomedical information systems (BIS) require consideration of three types of variability: data variability induced by new high throughput technologies, schema or model variability induced by large scale studies or new fields of research, and knowledge variability resulting from new discoveries. Beyond data heterogeneity, managing variabilities in the context of BIS requires extensible and dynamic integration process. In this paper, we focus on data and schema variabilities and we propose an integration framework based on ontologies, master data, and semantic annotations. The framework addresses issues related to: 1) collaborative work through a dynamic integration process; 2) variability among studies using an annotation mechanism; and 3) quality control over data and semantic annotations. Our approach relies on two levels of knowledge: BIS-related knowledge is modeled using an application ontology coupled with UML models that allow controlling data completeness and consistency, and domain knowledge is described by a domain ontology, which ensures data coherence. A system build with the eClims framework has been implemented and evaluated in the context of a proteomic platform.

  9. Phage phenomics: Physiological approaches to characterize novel viral proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  10. Phage phenomics: Physiological approaches to characterize novel viral proteins

    DOE PAGES

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.; ...

    2015-06-11

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  11. deepNF: Deep network fusion for protein function prediction.

    PubMed

    Gligorijevic, Vladimir; Barot, Meet; Bonneau, Richard

    2018-06-01

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly-nonlinear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting GO terms of varying type and specificity. deepNF is freely available at: https://github.com/VGligorijevic/deepNF. vgligorijevic@flatironinstitute.org, rb133@nyu.edu. Supplementary data are available at Bioinformatics online.

  12. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallaher, Sean D.; Fitz-Gibbon, Sorel T.; Strenkert, Daniela

    Chlamydomonas reinhardtii is a unicellular chlorophyte alga that is widely studied as a reference organism for understanding photosynthesis, sensory and motile cilia, and for development of an algal-based platform for producing biofuels and bio-products. Its highly repetitive, ~205-kbp circular chloroplast genome and ~15.8-kbp linear mitochondrial genome were sequenced prior to the advent of high-throughput sequencing technologies. Here, high coverage shotgun sequencing was used to assemble both organellar genomes de novo. These new genomes correct dozens of errors in the prior genome sequences and annotations. Gen-ome sequencing coverage indicates that each cell contains on average 83 copies of the chloroplast genomemore » and 130 copies of the mitochondrial genome. Using protocols and analyses optimized for organellar tran-scripts, RNA-Seq was used to quantify their relative abundances across 12 different growth conditions. Forty-six percent of total cellular mRNA is attributable to high expression from a few dozen chloroplast genes. RNA-Seq data were used to guide gene annotation, to demonstrate polycistronic gene expression, and to quantify splicing of psaA and psbA introns. In contrast to a conclusion from a recent study, we found that chloroplast transcripts are not edited. Unexpectedly, cytosine-rich polynucleotide tails were observed at the 3’-end of all mitochondrial transcripts. A comparative genomics analysis of eight laboratory strains and 11 wild isolates of C. reinhardtii identified 2658 variants in the organellargenomes, which is 1/10th as much genetic diversity as is found in the nucleus.« less

  13. Standardized description of scientific evidence using the Evidence Ontology (ECO)

    PubMed Central

    Chibucos, Marcus C.; Mungall, Christopher J.; Balakrishnan, Rama; Christie, Karen R.; Huntley, Rachael P.; White, Owen; Blake, Judith A.; Lewis, Suzanna E.; Giglio, Michelle

    2014-01-01

    The Evidence Ontology (ECO) is a structured, controlled vocabulary for capturing evidence in biological research. ECO includes diverse terms for categorizing evidence that supports annotation assertions including experimental types, computational methods, author statements and curator inferences. Using ECO, annotation assertions can be distinguished according to the evidence they are based on such as those made by curators versus those automatically computed or those made via high-throughput data review versus single test experiments. Originally created for capturing evidence associated with Gene Ontology annotations, ECO is now used in other capacities by many additional annotation resources including UniProt, Mouse Genome Informatics, Saccharomyces Genome Database, PomBase, the Protein Information Resource and others. Information on the development and use of ECO can be found at http://evidenceontology.org. The ontology is freely available under Creative Commons license (CC BY-SA 3.0), and can be downloaded in both Open Biological Ontologies and Web Ontology Language formats at http://code.google.com/p/evidenceontology. Also at this site is a tracker for user submission of term requests and questions. ECO remains under active development in response to user-requested terms and in collaborations with other ontologies and database resources. Database URL: Evidence Ontology Web site: http://evidenceontology.org PMID:25052702

  14. g:Profiler-a web server for functional interpretation of gene lists (2016 update).

    PubMed

    Reimand, Jüri; Arak, Tambet; Adler, Priit; Kolberg, Liis; Reisberg, Sulev; Peterson, Hedi; Vilo, Jaak

    2016-07-08

    Functional enrichment analysis is a key step in interpreting gene lists discovered in diverse high-throughput experiments. g:Profiler studies flat and ranked gene lists and finds statistically significant Gene Ontology terms, pathways and other gene function related terms. Translation of hundreds of gene identifiers is another core feature of g:Profiler. Since its first publication in 2007, our web server has become a popular tool of choice among basic and translational researchers. Timeliness is a major advantage of g:Profiler as genome and pathway information is synchronized with the Ensembl database in quarterly updates. g:Profiler supports 213 species including mammals and other vertebrates, plants, insects and fungi. The 2016 update of g:Profiler introduces several novel features. We have added further functional datasets to interpret gene lists, including transcription factor binding site predictions, Mendelian disease annotations, information about protein expression and complexes and gene mappings of human genetic polymorphisms. Besides the interactive web interface, g:Profiler can be accessed in computational pipelines using our R package, Python interface and BioJS component. g:Profiler is freely available at http://biit.cs.ut.ee/gprofiler/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. LipidHome: a database of theoretical lipids optimized for high throughput mass spectrometry lipidomics.

    PubMed

    Foster, Joseph M; Moreno, Pablo; Fabregat, Antonio; Hermjakob, Henning; Steinbeck, Christoph; Apweiler, Rolf; Wakelam, Michael J O; Vizcaíno, Juan Antonio

    2013-01-01

    Protein sequence databases are the pillar upon which modern proteomics is supported, representing a stable reference space of predicted and validated proteins. One example of such resources is UniProt, enriched with both expertly curated and automatic annotations. Taken largely for granted, similar mature resources such as UniProt are not available yet in some other "omics" fields, lipidomics being one of them. While having a seasoned community of wet lab scientists, lipidomics lies significantly behind proteomics in the adoption of data standards and other core bioinformatics concepts. This work aims to reduce the gap by developing an equivalent resource to UniProt called 'LipidHome', providing theoretically generated lipid molecules and useful metadata. Using the 'FASTLipid' Java library, a database was populated with theoretical lipids, generated from a set of community agreed upon chemical bounds. In parallel, a web application was developed to present the information and provide computational access via a web service. Designed specifically to accommodate high throughput mass spectrometry based approaches, lipids are organised into a hierarchy that reflects the variety in the structural resolution of lipid identifications. Additionally, cross-references to other lipid related resources and papers that cite specific lipids were used to annotate lipid records. The web application encompasses a browser for viewing lipid records and a 'tools' section where an MS1 search engine is currently implemented. LipidHome can be accessed at http://www.ebi.ac.uk/apweiler-srv/lipidhome.

  16. The Hemiptera (Insecta) of Canada: Constructing a Reference Library of DNA Barcodes

    PubMed Central

    Gwiazdowski, Rodger A.; Foottit, Robert G.; Maw, H. Eric L.; Hebert, Paul D. N.

    2015-01-01

    DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided. PMID:25923328

  17. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome.

    PubMed

    Kronewitter, Scott R; An, Hyun Joo; de Leoz, Maria Lorna; Lebrilla, Carlito B; Miyamoto, Suzanne; Leiserowitz, Gary S

    2009-06-01

    Annotation of the human serum N-linked glycome is a formidable challenge but is necessary for disease marker discovery. A new theoretical glycan library was constructed and proposed to provide all possible glycan compositions in serum. It was developed based on established glycobiology and retrosynthetic state-transition networks. We find that at least 331 compositions are possible in the serum N-linked glycome. By pairing the theoretical glycan mass library with a high mass accuracy and high-resolution MS, human serum glycans were effectively profiled. Correct isotopic envelope deconvolution to monoisotopic masses and the high mass accuracy instruments drastically reduced the amount of false composition assignments. The high throughput capacity enabled by this library permitted the rapid glycan profiling of large control populations. With the use of the library, a human serum glycan mass profile was developed from 46 healthy individuals. This paper presents a theoretical N-linked glycan mass library that was used for accurate high-throughput human serum glycan profiling. Rapid methods for evaluating a patient's glycome are instrumental for studying glycan-based markers.

  18. Maize - GO annotation methods, evaluation, and review (Maize-GAMER)

    USDA-ARS?s Scientific Manuscript database

    Making a genome sequence accessible and useful involves three basic steps: genome assembly, structural annotation, and functional annotation. The quality of data generated at each step influences the accuracy of inferences that can be made, with high-quality analyses produce better datasets resultin...

  19. Fungal proteomics: from identification to function.

    PubMed

    Doyle, Sean

    2011-08-01

    Some fungi cause disease in humans and plants, while others have demonstrable potential for the control of insect pests. In addition, fungi are also a rich reservoir of therapeutic metabolites and industrially useful enzymes. Detailed analysis of fungal biochemistry is now enabled by multiple technologies including protein mass spectrometry, genome and transcriptome sequencing and advances in bioinformatics. Yet, the assignment of function to fungal proteins, encoded either by in silico annotated, or unannotated genes, remains problematic. The purpose of this review is to describe the strategies used by many researchers to reveal protein function in fungi, and more importantly, to consolidate the nomenclature of 'unknown function protein' as opposed to 'hypothetical protein' - once any protein has been identified by protein mass spectrometry. A combination of approaches including comparative proteomics, pathogen-induced protein expression and immunoproteomics are outlined, which, when used in combination with a variety of other techniques (e.g. functional genomics, microarray analysis, immunochemical and infection model systems), appear to yield comprehensive and definitive information on protein function in fungi. The relative advantages of proteomic, as opposed to transcriptomic-only, analyses are also described. In the future, combined high-throughput, quantitative proteomics, allied to transcriptomic sequencing, are set to reveal much about protein function in fungi. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.

    PubMed

    McKain, Michael R; Hartsock, Ryan H; Wohl, Molly M; Kellogg, Elizabeth A

    2017-01-01

    Chloroplast genomes are now produced in the hundreds for angiosperm phylogenetics projects, but current methods for annotation, alignment and tree estimation still require some manual intervention reducing throughput and increasing analysis time for large chloroplast systematics projects. Verdant is a web-based software suite and database built to take advantage a novel annotation program, annoBTD. Using annoBTD, Verdant provides accurate annotation of chloroplast genomes without manual intervention. Subsequent alignment and tree estimation can incorporate newly annotated and publically available plastomes and can accommodate a large number of taxa. Verdant sharply reduces the time required for analysis of assembled chloroplast genomes and removes the need for pipelines and software on personal hardware. Verdant is available at: http://verdant.iplantcollaborative.org/plastidDB/ It is implemented in PHP, Perl, MySQL, Javascript, HTML and CSS with all major browsers supported. mrmckain@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  1. Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2007-02-15

    Viruses can reproduce their progenies only within a host cell, and their actions depend both on its destructive tendencies toward a specific host cell and on environmental conditions. Therefore, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very useful for in-depth studying of their functions and mechanisms as well as designing antiviral drugs. An analysis on the Swiss-Prot database (version 50.0, released on May 30, 2006) indicates that only 23.5% of viral protein entries are annotated for their subcellular locations in this regard. As for the gene ontology database, the corresponding percentage is 23.8%. Such a gap calls for the development of high throughput tools for timely annotating the localization of viral proteins within host and virus-infected cells. In this article, a predictor called "Virus-PLoc" has been developed that is featured by fusing many basic classifiers with each engineered according to the K-nearest neighbor rule. The overall jackknife success rate obtained by Virus-PLoc in identifying the subcellular compartments of viral proteins was 80% for a benchmark dataset in which none of proteins has more than 25% sequence identity to any other in a same location site. Virus-PLoc will be freely available as a web-server at http://202.120.37.186/bioinf/virus for the public usage. Furthermore, Virus-PLoc has been used to provide large-scale predictions of all viral protein entries in Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Virus-PLoc.xls." This file is available at the same website and will be updated twice a year to include the new entries of viral proteins and reflect the continuous development of Virus-PLoc. 2006 Wiley Periodicals, Inc.

  2. mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host -parasite interaction

    PubMed Central

    2013-01-01

    Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212

  3. mRNA-Seq and microarray development for the Grooved Carpet shell clam, Ruditapes decussatus: a functional approach to unravel host-parasite interaction.

    PubMed

    Leite, Ricardo B; Milan, Massimo; Coppe, Alessandro; Bortoluzzi, Stefania; dos Anjos, António; Reinhardt, Richard; Saavedra, Carlos; Patarnello, Tomaso; Cancela, M Leonor; Bargelloni, Luca

    2013-10-29

    The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.

  4. MannDB: A microbial annotation database for protein characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C; Lam, M; Smith, J

    2006-05-19

    MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-sourcemore » tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports.« less

  5. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    PubMed

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation. © 2013 AlphaMed Press.

  6. Mutant phenotypes for thousands of bacterial genes of unknown function

    DOE PAGES

    Price, Morgan N.; Wetmore, Kelly M.; Waters, R. Jordan; ...

    2018-05-16

    One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because theymore » are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Lastly, our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.« less

  7. Mutant phenotypes for thousands of bacterial genes of unknown function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Wetmore, Kelly M.; Waters, R. Jordan

    One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because theymore » are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Lastly, our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.« less

  8. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.

  9. Optimizing high performance computing workflow for protein functional annotation

    PubMed Central

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-01-01

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296

  10. Two new gene clusters involved in the degradation of plant cell wall from the fecal microbiota of Tunisian dromedary

    PubMed Central

    Ameri, Rihab; Laville, Elisabeth; Potocki-Véronèse, Gabrielle; Trabelsi, Sahar; Mezghani, Monia; Elgharbi, Fatma

    2018-01-01

    Dromedaries are capable of digesting plant cell wall with high content of lignocellulose of poor digestibility. Consequently, their intestinal microbiota can be a source of novel carbohydrate-active enzymes (CAZymes). To the best of our knowledge, no data are available describing the biochemical analysis of enzymes in dromedary intestinal microbiota. To investigate new hydrolytic enzymes from the dromedary gut, a fosmid library was constructed using metagenomic DNA from feces of non-domestic adult dromedary camels living in the Tunisian desert. High-throughput functional screening of 13756 clones resulted in 47 hit clones active on a panel of various chromogenic and non-chromogenic glycan substrates. Two of them, harboring multiple activities, were retained for further analysis. Clone 26H3 displayed activity on AZO-CM-cellulose, AZCL Carob galactomannan and Tween 20, while clone 36A23 was active on AZCL carob galactomannan and AZCL barley β-glucan. The functional annotation of their sequences highlighted original metagenomic loci originating from bacteria of the Bacteroidetes/Chlorobi group, involved in the metabolization of mannosides and β-glucans thanks to a complete battery of endo- and exo-acting glycoside hydrolases, esterases, phosphorylases and transporters. PMID:29601586

  11. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes

    PubMed Central

    Kofoed, Megan; Milbury, Karissa L.; Chiang, Jennifer H.; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C.

    2015-01-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  12. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  13. Enabling phenotypic big data with PheNorm.

    PubMed

    Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi

    2018-01-01

    Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  15. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    PubMed Central

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  17. Cross-organism learning method to discover new gene functionalities.

    PubMed

    Domeniconi, Giacomo; Masseroli, Marco; Moro, Gianluca; Pinoli, Pietro

    2016-04-01

    Knowledge of gene and protein functions is paramount for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. Analyses for biomedical knowledge discovery greatly benefit from the availability of gene and protein functional feature descriptions expressed through controlled terminologies and ontologies, i.e., of gene and protein biomedical controlled annotations. In the last years, several databases of such annotations have become available; yet, these valuable annotations are incomplete, include errors and only some of them represent highly reliable human curated information. Computational techniques able to reliably predict new gene or protein annotations with an associated likelihood value are thus paramount. Here, we propose a novel cross-organisms learning approach to reliably predict new functionalities for the genes of an organism based on the known controlled annotations of the genes of another, evolutionarily related and better studied, organism. We leverage a new representation of the annotation discovery problem and a random perturbation of the available controlled annotations to allow the application of supervised algorithms to predict with good accuracy unknown gene annotations. Taking advantage of the numerous gene annotations available for a well-studied organism, our cross-organisms learning method creates and trains better prediction models, which can then be applied to predict new gene annotations of a target organism. We tested and compared our method with the equivalent single organism approach on different gene annotation datasets of five evolutionarily related organisms (Homo sapiens, Mus musculus, Bos taurus, Gallus gallus and Dictyostelium discoideum). Results show both the usefulness of the perturbation method of available annotations for better prediction model training and a great improvement of the cross-organism models with respect to the single-organism ones, without influence of the evolutionary distance between the considered organisms. The generated ranked lists of reliably predicted annotations, which describe novel gene functionalities and have an associated likelihood value, are very valuable both to complement available annotations, for better coverage in biomedical knowledge discovery analyses, and to quicken the annotation curation process, by focusing it on the prioritized novel annotations predicted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. DaMold: A data-mining platform for variant annotation and visualization in molecular diagnostics research.

    PubMed

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2017-07-01

    Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.

  19. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation

    PubMed Central

    Engel, Krysta L.; Mackiewicz, Mark; Hardigan, Andrew A.; Myers, Richard M.; Savic, Daniel

    2016-01-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938

  1. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    PubMed

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SpliceRover: Interpretable Convolutional Neural: Networks for Improved Splice Site Prediction.

    PubMed

    Zuallaert, Jasper; Godin, Fréderic; Kim, Mijung; Soete, Arne; Saeys, Yvan; De Neve, Wesley

    2018-06-21

    During the last decade, improvements in high-throughput sequencing have generated a wealth of genomic data. Functionally interpreting these sequences and finding the biological signals that are hallmarks of gene function and regulation is currently mostly done using automated genome annotation platforms, which mainly rely on integrated machine learning frameworks to identify different functional sites of interest, including splice sites. Splicing is an essential step in the gene regulation process, and the correct identification of splice sites is a major cornerstone in a genome annotation system. In this paper, we present SpliceRover, a predictive deep learning approach that outperforms the state-of-the-art in splice site prediction. SpliceRover uses convolutional neural networks (CNNs), which have been shown to obtain cutting edge performance on a wide variety of prediction tasks. We adapted this approach to deal with genomic sequence inputs, and show it consistently outperforms already existing approaches, with relative improvements in prediction effectiveness of up to 80.9% when measured in terms of false discovery rate. However, a major criticism of CNNs concerns their "black box" nature, as mechanisms to obtain insight into their reasoning processes are limited. To facilitate interpretability of the SpliceRover models, we introduce an approach to visualize the biologically relevant information learnt. We show that our visualization approach is able to recover features known to be important for splice site prediction (binding motifs around the splice site, presence of polypyrimidine tracts and branch points), as well as reveal new features (e.g., several types of exclusion patterns near splice sites). SpliceRover is available as a web service. The prediction tool and instructions can be found at http://bioit2.irc.ugent.be/splicerover/. Supplementary materials are available at Bioinformatics online.

  3. [Current applications of high-throughput DNA sequencing technology in antibody drug research].

    PubMed

    Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong

    2012-03-01

    Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.

  4. MPact: the MIPS protein interaction resource on yeast.

    PubMed

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.

  5. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in collaboration with domain disease experts. We elucidate the step-by-step guidelines used to critically prioritize studies from public archives and their metadata curation and discuss the key challenges encountered. Curated metadata for Alzheimer's disease gene expression studies are available for download. Database URL: www.scai.fraunhofer.de/NeuroTransDB.html. © The Author(s) 2015. Published by Oxford University Press.

  6. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases

    PubMed Central

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article’s supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in collaboration with domain disease experts. We elucidate the step-by-step guidelines used to critically prioritize studies from public archives and their metadata curation and discuss the key challenges encountered. Curated metadata for Alzheimer’s disease gene expression studies are available for download. Database URL: www.scai.fraunhofer.de/NeuroTransDB.html PMID:26475471

  7. EuroPineDB: a high-coverage web database for maritime pine transcriptome

    PubMed Central

    2011-01-01

    Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488

  8. De Novo Transcriptome Analysis of Two Seahorse Species (Hippocampus erectus and H. mohnikei) and the Development of Molecular Markers for Population Genetics

    PubMed Central

    Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia

    2016-01-01

    Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus. PMID:27128031

  9. De Novo Transcriptome Analysis of Two Seahorse Species (Hippocampus erectus and H. mohnikei) and the Development of Molecular Markers for Population Genetics.

    PubMed

    Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia

    2016-01-01

    Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus.

  10. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline*

    PubMed Central

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-01-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207

  11. Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique

    PubMed Central

    Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng

    2012-01-01

    Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809

  12. PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments.

    PubMed

    Usadel, Björn; Nagel, Axel; Steinhauser, Dirk; Gibon, Yves; Bläsing, Oliver E; Redestig, Henning; Sreenivasulu, Nese; Krall, Leonard; Hannah, Matthew A; Poree, Fabien; Fernie, Alisdair R; Stitt, Mark

    2006-12-18

    Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/. PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.

  13. An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench).

    PubMed

    Woldesemayat, Adugna Abdi; Van Heusden, Peter; Ndimba, Bongani K; Christoffels, Alan

    2017-12-22

    Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the interplay of biochemical reactions that make up the metabolic network, constituting fundamental interface for sorghum defence mechanism against drought stress. This study suggests untapped natural variability in sorghum that could be used for developing drought tolerance. The data presented here, may be regarded as an initial reference point in functional and comparative genomics in the Gramineae family.

  14. Evaluation and integration of functional annotation pipelines for newly sequenced organisms: the potato genome as a test case.

    PubMed

    Amar, David; Frades, Itziar; Danek, Agnieszka; Goldberg, Tatyana; Sharma, Sanjeev K; Hedley, Pete E; Proux-Wera, Estelle; Andreasson, Erik; Shamir, Ron; Tzfadia, Oren; Alexandersson, Erik

    2014-12-05

    For most organisms, even if their genome sequence is available, little functional information about individual genes or proteins exists. Several annotation pipelines have been developed for functional analysis based on sequence, 'omics', and literature data. However, researchers encounter little guidance on how well they perform. Here, we used the recently sequenced potato genome as a case study. The potato genome was selected since its genome is newly sequenced and it is a non-model plant even if there is relatively ample information on individual potato genes, and multiple gene expression profiles are available. We show that the automatic gene annotations of potato have low accuracy when compared to a "gold standard" based on experimentally validated potato genes. Furthermore, we evaluate six state-of-the-art annotation pipelines and show that their predictions are markedly dissimilar (Jaccard similarity coefficient of 0.27 between pipelines on average). To overcome this discrepancy, we introduce a simple GO structure-based algorithm that reconciles the predictions of the different pipelines. We show that the integrated annotation covers more genes, increases by over 50% the number of highly co-expressed GO processes, and obtains much higher agreement with the gold standard. We find that different annotation pipelines produce different results, and show how to integrate them into a unified annotation that is of higher quality than each single pipeline. We offer an improved functional annotation of both PGSC and ITAG potato gene models, as well as tools that can be applied to additional pipelines and improve annotation in other organisms. This will greatly aid future functional analysis of '-omics' datasets from potato and other organisms with newly sequenced genomes. The new potato annotations are available with this paper.

  15. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR library

    PubMed Central

    Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng

    2017-01-01

    CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563

  16. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.

  17. Data partitioning enables the use of standard SOAP Web Services in genome-scale workflows.

    PubMed

    Sztromwasser, Pawel; Puntervoll, Pål; Petersen, Kjell

    2011-07-26

    Biological databases and computational biology tools are provided by research groups around the world, and made accessible on the Web. Combining these resources is a common practice in bioinformatics, but integration of heterogeneous and often distributed tools and datasets can be challenging. To date, this challenge has been commonly addressed in a pragmatic way, by tedious and error-prone scripting. Recently however a more reliable technique has been identified and proposed as the platform that would tie together bioinformatics resources, namely Web Services. In the last decade the Web Services have spread wide in bioinformatics, and earned the title of recommended technology. However, in the era of high-throughput experimentation, a major concern regarding Web Services is their ability to handle large-scale data traffic. We propose a stream-like communication pattern for standard SOAP Web Services, that enables efficient flow of large data traffic between a workflow orchestrator and Web Services. We evaluated the data-partitioning strategy by comparing it with typical communication patterns on an example pipeline for genomic sequence annotation. The results show that data-partitioning lowers resource demands of services and increases their throughput, which in consequence allows to execute in-silico experiments on genome-scale, using standard SOAP Web Services and workflows. As a proof-of-principle we annotated an RNA-seq dataset using a plain BPEL workflow engine.

  18. Characterisation of the Manduca sexta sperm proteome: Genetic novelty underlying sperm composition in Lepidoptera.

    PubMed

    Whittington, Emma; Zhao, Qian; Borziak, Kirill; Walters, James R; Dorus, Steve

    2015-07-01

    The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. De novo transcriptome of the muga silkworm, Antheraea assamensis (Helfer).

    PubMed

    Chetia, Hasnahana; Kabiraj, Debajyoti; Singh, Deepika; Mosahari, Ponnala Vimal; Das, Suradip; Sharma, Pragya; Neog, Kartik; Sharma, Swagata; Jayaprakash, P; Bora, Utpal

    2017-05-05

    Antheraea assamensis (Lepidoptera: Saturniidae), is a semi-domesticated silkworm known to be endemic to Assam and the adjoining hilly areas of Northeast India. It is the only producer of a unique, commercially important variety of golden silk called "muga silk". Herein, we report the de novo transcriptome of A. assamensis reared on Machilus bombycina leaves for the first time. Short reads generated by high throughput sequencing of cDNA libraries from multiple tissues, viz. alimentary canal, silk gland and residual body of the 5 th instar of muga silkworm were assembled into transcripts via a de novo assembly pipeline followed by functional annotation and classification. A total of 1,21,433 transcripts were generated from ~231 million raw reads of which ~74% (89,583) were either allocated a functional annotation or categorized under Pfam/COG/KEGG categories. Identification of differentially expressed transcripts and their comparative sequence analysis revealed candidate genes related to silk synthesis, viz. silk gland factor-1 and 3, sericin-like transcript, etc. with conserved forkhead, homeo- and POU domains. Several candidate anti-microbial peptides which may have potential anti-bacterial, anti-fungal or anti-parasitic activity in A. assamensis were also identified. T/A and AT/TA were predicted to be the most abundant mono- and di-nucleotide simple sequence repeat markers in the transcriptome. Transcriptome validation was carried out by quantitative real-time PCR (qPCR) amplification of eight transcripts. The resources generated by this study will expand the periphery of existing genomic data on A. assamensis facilitating future in-depth studies on its unknown aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Advancing data reuse in phyloinformatics using an ontology-driven Semantic Web approach.

    PubMed

    Panahiazar, Maryam; Sheth, Amit P; Ranabahu, Ajith; Vos, Rutger A; Leebens-Mack, Jim

    2013-01-01

    Phylogenetic analyses can resolve historical relationships among genes, organisms or higher taxa. Understanding such relationships can elucidate a wide range of biological phenomena, including, for example, the importance of gene and genome duplications in the evolution of gene function, the role of adaptation as a driver of diversification, or the evolutionary consequences of biogeographic shifts. Phyloinformaticists are developing data standards, databases and communication protocols (e.g. Application Programming Interfaces, APIs) to extend the accessibility of gene trees, species trees, and the metadata necessary to interpret these trees, thus enabling researchers across the life sciences to reuse phylogenetic knowledge. Specifically, Semantic Web technologies are being developed to make phylogenetic knowledge interpretable by web agents, thereby enabling intelligently automated, high-throughput reuse of results generated by phylogenetic research. This manuscript describes an ontology-driven, semantic problem-solving environment for phylogenetic analyses and introduces artefacts that can promote phyloinformatic efforts to promote accessibility of trees and underlying metadata. PhylOnt is an extensible ontology with concepts describing tree types and tree building methodologies including estimation methods, models and programs. In addition we present the PhylAnt platform for annotating scientific articles and NeXML files with PhylOnt concepts. The novelty of this work is the annotation of NeXML files and phylogenetic related documents with PhylOnt Ontology. This approach advances data reuse in phyloinformatics.

  1. FACETS: multi-faceted functional decomposition of protein interaction networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2012-10-15

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/

  2. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes.

    PubMed

    Wang, Ying; Yang, Liandong; Wu, Bo; Song, Zhaobin; He, Shunping

    2015-07-10

    Triplophysa dalaica, endemic species of Qinghai-Tibetan Plateau, is informative for understanding the genetic basis of adaptation to hypoxic conditions of high altitude habitats. Here, a comprehensive gene repertoire for this plateau fish was generated using the Illumina deep paired-end high-throughput sequencing technology. De novo assembly yielded 145, 256 unigenes with an average length of 1632 bp. Blast searches against GenBank non-redundant database annotated 74,594 (51.4%) unigenes encoding for 30,047 gene descriptions in T. dalaica. Functional annotation and classification of assembled sequences were performed using Gene Ontology (GO), clusters of euKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. After comparison with other fish transcriptomes, including silver carp (Hypophthalmichthys molitrix) and mud loach (Misgurnus anguillicaudatus), 2621 high-quality orthologous gene alignments were constructed among these species. 61 (2.3%) of the genes were identified as having undergone positive selection in the T. dalaica lineage. Within the positively selected genes, 13 genes were involved in hypoxia response, of which 11 were listed in HypoxiaDB. Furthermore, duplicated hif-α (hif-1αA/B and hif-2αA/B), EGLN1 and PPARA candidate genes involved in adaptation to hypoxia were identified in T. dalaica transcriptome. Branch-site model in PAML validated that hif-1αB and hif-2αA genes have undergone positive selection in T.dalaica. Finally, 37,501 simple sequence repeats (SSRs) and 19,497 high-quality single nucleotide polymorphisms (SNPs) were identified in T. dalaica. The identified SSR and SNP markers will facilitate the genetic structure, population geography and ecological studies of Triplophysa fishes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The UniProtKB guide to the human proteome

    PubMed Central

    Breuza, Lionel; Poux, Sylvain; Estreicher, Anne; Famiglietti, Maria Livia; Magrane, Michele; Tognolli, Michael; Bridge, Alan; Baratin, Delphine; Redaschi, Nicole

    2016-01-01

    Advances in high-throughput and advanced technologies allow researchers to routinely perform whole genome and proteome analysis. For this purpose, they need high-quality resources providing comprehensive gene and protein sets for their organisms of interest. Using the example of the human proteome, we will describe the content of a complete proteome in the UniProt Knowledgebase (UniProtKB). We will show how manual expert curation of UniProtKB/Swiss-Prot is complemented by expert-driven automatic annotation to build a comprehensive, high-quality and traceable resource. We will also illustrate how the complexity of the human proteome is captured and structured in UniProtKB. Database URL: www.uniprot.org PMID:26896845

  4. De novo assembly of the Japanese lawngrass (Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress

    PubMed Central

    Xie, Qi; Niu, Jun; Xu, Xilin; Xu, Lixin; Zhang, Yinbing; Fan, Bo; Liang, Xiaohong; Zhang, Lijuan; Yin, Shuxia; Han, Liebao

    2015-01-01

    Japanese lawngrass (Zoysia japonica Steud.) is an important warm-season turfgrass that is able to survive in a range of soils, from infertile sands to clays, and to grow well under saline conditions. However, little is known about the molecular mechanisms involved in its resistance to salt stress. Here, we used high-throughput RNA sequencing (RNA-seq) to investigate the changes in gene expression of Zoysia grass at high NaCl concentrations. We first constructed two sequencing libraries, including control and NaCl-treated samples, and sequenced them using the Illumina HiSeq™ 2000 platform. Approximately 157.20 million paired-end reads with a total length of 68.68 Mb were obtained. Subsequently, 32,849 unigenes with an N50 length of 1781 bp were assembled using Trinity. Furthermore, three public databases, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-prot, and Clusters of Orthologous Groups (COGs), were used for gene function analysis and enrichment. The annotated genes included 57 Gene Ontology (GO) terms, 120 KEGG pathways, and 24 COGs. Compared with the control, 1455 genes were significantly different (false discovery rate ≤0.01, |log2Ratio |≥1) in the NaCl-treated samples. These genes were enriched in 10 KEGG pathways and 73 GO terms, and subjected to 25 COG categories. Using high-throughput next-generation sequencing, we built a database as a global transcript resource for Z. japonica Steud. roots. The results of this study will advance our understanding of the early salt response in Japanese lawngrass roots. PMID:26347751

  5. Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis.

    PubMed

    Grossmann, Steffen; Bauer, Sebastian; Robinson, Peter N; Vingron, Martin

    2007-11-15

    High-throughput experiments such as microarray hybridizations often yield long lists of genes found to share a certain characteristic such as differential expression. Exploring Gene Ontology (GO) annotations for such lists of genes has become a widespread practice to get first insights into the potential biological meaning of the experiment. The standard statistical approach to measuring overrepresentation of GO terms cannot cope with the dependencies resulting from the structure of GO because they analyze each term in isolation. Especially the fact that annotations are inherited from more specific descendant terms can result in certain types of false-positive results with potentially misleading biological interpretation, a phenomenon which we term the inheritance problem. We present here a novel approach to analysis of GO term overrepresentation that determines overrepresentation of terms in the context of annotations to the term's parents. This approach reduces the dependencies between the individual term's measurements, and thereby avoids producing false-positive results owing to the inheritance problem. ROC analysis using study sets with overrepresented GO terms showed a clear advantage for our approach over the standard algorithm with respect to the inheritance problem. Although there can be no gold standard for exploratory methods such as analysis of GO term overrepresentation, analysis of biological datasets suggests that our algorithm tends to identify the core GO terms that are most characteristic of the dataset being analyzed.

  6. The draft genome sequence of cork oak

    PubMed Central

    Ramos, António Marcos; Usié, Ana; Barbosa, Pedro; Barros, Pedro M.; Capote, Tiago; Chaves, Inês; Simões, Fernanda; Abreu, Isabl; Carrasquinho, Isabel; Faro, Carlos; Guimarães, Joana B.; Mendonça, Diogo; Nóbrega, Filomena; Rodrigues, Leandra; Saibo, Nelson J. M.; Varela, Maria Carolina; Egas, Conceição; Matos, José; Miguel, Célia M.; Oliveira, M. Margarida; Ricardo, Cândido P.; Gonçalves, Sónia

    2018-01-01

    Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species. PMID:29786699

  7. The draft genome sequence of cork oak.

    PubMed

    Ramos, António Marcos; Usié, Ana; Barbosa, Pedro; Barros, Pedro M; Capote, Tiago; Chaves, Inês; Simões, Fernanda; Abreu, Isabl; Carrasquinho, Isabel; Faro, Carlos; Guimarães, Joana B; Mendonça, Diogo; Nóbrega, Filomena; Rodrigues, Leandra; Saibo, Nelson J M; Varela, Maria Carolina; Egas, Conceição; Matos, José; Miguel, Célia M; Oliveira, M Margarida; Ricardo, Cândido P; Gonçalves, Sónia

    2018-05-22

    Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species.

  8. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    PubMed Central

    Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  9. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    PubMed

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  10. Identification of functional modules using network topology and high-throughput data.

    PubMed

    Ulitsky, Igor; Shamir, Ron

    2007-01-26

    With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.

  11. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    PubMed

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  12. Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated "Knowledge-Based" Platform.

    PubMed

    Dubovenko, Alexey; Nikolsky, Yuri; Rakhmatulin, Eugene; Nikolskaya, Tatiana

    2017-01-01

    Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).

  13. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    PubMed

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    PubMed

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  15. Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics.

    PubMed

    Chen, Wenan; McDonnell, Shannon K; Thibodeau, Stephen N; Tillmans, Lori S; Schaid, Daniel J

    2016-11-01

    Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities. Copyright © 2016 by the Genetics Society of America.

  16. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  17. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom.

    PubMed

    Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica

    2016-02-18

    The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through the graphical user interface ( http://compbio.math.hr/ ). Our results show that scanning with a carefully parameterized motif-HMM is an effective approach for annotation of protein families with low sequence similarity and conserved motifs. The results of this study expand current knowledge and provide new insights into the evolution of the large GDSL-lipase family in land plants.

  18. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverifiedmore » reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.« less

  19. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    PubMed Central

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates. PMID:25540776

  20. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    PubMed

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  1. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    PubMed

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  2. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    PubMed

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  3. Protein sequence annotation in the genome era: the annotation concept of SWISS-PROT+TREMBL.

    PubMed

    Apweiler, R; Gateau, A; Contrino, S; Martin, M J; Junker, V; O'Donovan, C; Lang, F; Mitaritonna, N; Kappus, S; Bairoch, A

    1997-01-01

    SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotation, a minimal level of redundancy and high level of integration with other databases. Ongoing genome sequencing projects have dramatically increased the number of protein sequences to be incorporated into SWISS-PROT. Since we do not want to dilute the quality standards of SWISS-PROT by incorporating sequences without proper sequence analysis and annotation, we cannot speed up the incorporation of new incoming data indefinitely. However, as we also want to make the sequences available as fast as possible, we introduced TREMBL (TRanslation of EMBL nucleotide sequence database), a supplement to SWISS-PROT. TREMBL consists of computer-annotated entries in SWISS-PROT format derived from the translation of all coding sequences (CDS) in the EMBL nucleotide sequence database, except for CDS already included in SWISS-PROT. While TREMBL is already of immense value, its computer-generated annotation does not match the quality of SWISS-PROTs. The main difference is in the protein functional information attached to sequences. With this in mind, we are dedicating substantial effort to develop and apply computer methods to enhance the functional information attached to TREMBL entries.

  4. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    PubMed

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  5. Systematically Differentiating Functions for Alternatively Spliced Isoforms through Integrating RNA-seq Data

    PubMed Central

    Menon, Rajasree; Wen, Yuchen; Omenn, Gilbert S.; Kretzler, Matthias; Guan, Yuanfang

    2013-01-01

    Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However, no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic data. This is because standard supervised learning requires ‘ground-truth’ functional annotations, which are lacking at the isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies the ‘responsible’ isoform(s) of a gene and generates classifying models at the isoform level instead of at the gene level. Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the ‘responsible’ isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-centered function prediction to isoform-level predictions. PMID:24244129

  6. Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP).

    PubMed

    Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho

    2017-01-01

    Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.

  7. Enrichment analysis in high-throughput genomics - accounting for dependency in the NULL.

    PubMed

    Gold, David L; Coombes, Kevin R; Wang, Jing; Mallick, Bani

    2007-03-01

    Translating the overwhelming amount of data generated in high-throughput genomics experiments into biologically meaningful evidence, which may for example point to a series of biomarkers or hint at a relevant pathway, is a matter of great interest in bioinformatics these days. Genes showing similar experimental profiles, it is hypothesized, share biological mechanisms that if understood could provide clues to the molecular processes leading to pathological events. It is the topic of further study to learn if or how a priori information about the known genes may serve to explain coexpression. One popular method of knowledge discovery in high-throughput genomics experiments, enrichment analysis (EA), seeks to infer if an interesting collection of genes is 'enriched' for a Consortium particular set of a priori Gene Ontology Consortium (GO) classes. For the purposes of statistical testing, the conventional methods offered in EA software implicitly assume independence between the GO classes. Genes may be annotated for more than one biological classification, and therefore the resulting test statistics of enrichment between GO classes can be highly dependent if the overlapping gene sets are relatively large. There is a need to formally determine if conventional EA results are robust to the independence assumption. We derive the exact null distribution for testing enrichment of GO classes by relaxing the independence assumption using well-known statistical theory. In applications with publicly available data sets, our test results are similar to the conventional approach which assumes independence. We argue that the independence assumption is not detrimental.

  8. Guidelines for the functional annotation of microRNAs using the Gene Ontology

    PubMed Central

    D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna

    2016-01-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558

  9. QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays.

    PubMed

    Kalita, Cynthia A; Moyerbrailean, Gregory A; Brown, Christopher; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2018-03-01

    The majority of the human genome is composed of non-coding regions containing regulatory elements such as enhancers, which are crucial for controlling gene expression. Many variants associated with complex traits are in these regions, and may disrupt gene regulatory sequences. Consequently, it is important to not only identify true enhancers but also to test if a variant within an enhancer affects gene regulation. Recently, allele-specific analysis in high-throughput reporter assays, such as massively parallel reporter assays (MPRAs), have been used to functionally validate non-coding variants. However, we are still missing high-quality and robust data analysis tools for these datasets. We have further developed our method for allele-specific analysis QuASAR (quantitative allele-specific analysis of reads) to analyze allele-specific signals in barcoded read counts data from MPRA. Using this approach, we can take into account the uncertainty on the original plasmid proportions, over-dispersion, and sequencing errors. The provided allelic skew estimate and its standard error also simplifies meta-analysis of replicate experiments. Additionally, we show that a beta-binomial distribution better models the variability present in the allelic imbalance of these synthetic reporters and results in a test that is statistically well calibrated under the null. Applying this approach to the MPRA data, we found 602 SNPs with significant (false discovery rate 10%) allele-specific regulatory function in LCLs. We also show that we can combine MPRA with QuASAR estimates to validate existing experimental and computational annotations of regulatory variants. Our study shows that with appropriate data analysis tools, we can improve the power to detect allelic effects in high-throughput reporter assays. http://github.com/piquelab/QuASAR/tree/master/mpra. fluca@wayne.edu or rpique@wayne.edu. Supplementary data are available online at Bioinformatics. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. A curated catalog of canine and equine keratin genes

    PubMed Central

    Pujar, Shashikant; McGarvey, Kelly M.; Welle, Monika; Galichet, Arnaud; Müller, Eliane J.; Pruitt, Kim D.; Leeb, Tosso

    2017-01-01

    Keratins represent a large protein family with essential structural and functional roles in epithelial cells of skin, hair follicles, and other organs. During evolution the genes encoding keratins have undergone multiple rounds of duplication and humans have two clusters with a total of 55 functional keratin genes in their genomes. Due to the high similarity between different keratin paralogs and species-specific differences in gene content, the currently available keratin gene annotation in species with draft genome assemblies such as dog and horse is still imperfect. We compared the National Center for Biotechnology Information (NCBI) (dog annotation release 103, horse annotation release 101) and Ensembl (release 87) gene predictions for the canine and equine keratin gene clusters to RNA-seq data that were generated from adult skin of five dogs and two horses and from adult hair follicle tissue of one dog. Taking into consideration the knowledge on the conserved exon/intron structure of keratin genes, we annotated 61 putatively functional keratin genes in both the dog and horse, respectively. Subsequently, curators in the RefSeq group at NCBI reviewed their annotation of keratin genes in the dog and horse genomes (Annotation Release 104 and Annotation Release 102, respectively) and updated annotation and gene nomenclature of several keratin genes. The updates are now available in the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene). PMID:28846680

  11. Phylogenomics of plant genomes: a methodology for genome-wide searches for orthologs in plants

    PubMed Central

    Conte, Matthieu G; Gaillard, Sylvain; Droc, Gaetan; Perin, Christophe

    2008-01-01

    Background Gene ortholog identification is now a major objective for mining the increasing amount of sequence data generated by complete or partial genome sequencing projects. Comparative and functional genomics urgently need a method for ortholog detection to reduce gene function inference and to aid in the identification of conserved or divergent genetic pathways between several species. As gene functions change during evolution, reconstructing the evolutionary history of genes should be a more accurate way to differentiate orthologs from paralogs. Phylogenomics takes into account phylogenetic information from high-throughput genome annotation and is the most straightforward way to infer orthologs. However, procedures for automatic detection of orthologs are still scarce and suffer from several limitations. Results We developed a procedure for ortholog prediction between Oryza sativa and Arabidopsis thaliana. Firstly, we established an efficient method to cluster A. thaliana and O. sativa full proteomes into gene families. Then, we developed an optimized phylogenomics pipeline for ortholog inference. We validated the full procedure using test sets of orthologs and paralogs to demonstrate that our method outperforms pairwise methods for ortholog predictions. Conclusion Our procedure achieved a high level of accuracy in predicting ortholog and paralog relationships. Phylogenomic predictions for all validated gene families in both species were easily achieved and we can conclude that our methodology outperforms similarly based methods. PMID:18426584

  12. clubber: removing the bioinformatics bottleneck in big data analyses.

    PubMed

    Miller, Maximilian; Zhu, Chengsheng; Bromberg, Yana

    2017-06-13

    With the advent of modern day high-throughput technologies, the bottleneck in biological discovery has shifted from the cost of doing experiments to that of analyzing results. clubber is our automated cluster-load balancing system developed for optimizing these "big data" analyses. Its plug-and-play framework encourages re-use of existing solutions for bioinformatics problems. clubber's goals are to reduce computation times and to facilitate use of cluster computing. The first goal is achieved by automating the balance of parallel submissions across available high performance computing (HPC) resources. Notably, the latter can be added on demand, including cloud-based resources, and/or featuring heterogeneous environments. The second goal of making HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for job monitoring and result retrieval. We used clubber to speed up our pipeline for annotating molecular functionality of metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study data to quantitatively show that the beach sands have not yet entirely recovered. Further, our analysis of the CAMI-challenge data revealed that microbiome taxonomic shifts do not necessarily correlate with functional shifts. These examples (21 metagenomes processed in 172 min) clearly illustrate the importance of clubber in the everyday computational biology environment.

  13. clubber: removing the bioinformatics bottleneck in big data analyses

    PubMed Central

    Miller, Maximilian; Zhu, Chengsheng; Bromberg, Yana

    2018-01-01

    With the advent of modern day high-throughput technologies, the bottleneck in biological discovery has shifted from the cost of doing experiments to that of analyzing results. clubber is our automated cluster-load balancing system developed for optimizing these “big data” analyses. Its plug-and-play framework encourages re-use of existing solutions for bioinformatics problems. clubber’s goals are to reduce computation times and to facilitate use of cluster computing. The first goal is achieved by automating the balance of parallel submissions across available high performance computing (HPC) resources. Notably, the latter can be added on demand, including cloud-based resources, and/or featuring heterogeneous environments. The second goal of making HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for job monitoring and result retrieval. We used clubber to speed up our pipeline for annotating molecular functionality of metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study data to quantitatively show that the beach sands have not yet entirely recovered. Further, our analysis of the CAMI-challenge data revealed that microbiome taxonomic shifts do not necessarily correlate with functional shifts. These examples (21 metagenomes processed in 172 min) clearly illustrate the importance of clubber in the everyday computational biology environment. PMID:28609295

  14. MeRIP-PF: An Easy-to-use Pipeline for High-resolution Peak-finding in MeRIP-Seq Data

    PubMed Central

    Li, Yuli; Song, Shuhui; Li, Cuiping; Yu, Jun

    2013-01-01

    RNA modifications, especially methylation of the N6 position of adenosine (A)—m6A, represent an emerging research frontier in RNA biology. With the rapid development of high-throughput sequencing technology, in-depth study of m6A distribution and function relevance becomes feasible. However, a robust method to effectively identify m6A-modified regions has not been available yet. Here, we present a novel high-efficiency and user-friendly analysis pipeline called MeRIP-PF for the signal identification of MeRIP-Seq data in reference to controls. MeRIP-PF provides a statistical P-value for each identified m6A region based on the difference of read distribution when compared to the controls and also calculates false discovery rate (FDR) as a cut off to differentiate reliable m6A regions from the background. Furthermore, MeRIP-PF also achieves gene annotation of m6A signals or peaks and produce outputs in both XLS and graphical format, which are useful for further study. MeRIP-PF is implemented in Perl and is freely available at http://software.big.ac.cn/MeRIP-PF.html. PMID:23434047

  15. Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging

    PubMed Central

    Reid, Brian G.; Stratton, Matthew S.; Bowers, Samantha; Cavasin, Maria A.; Demos-Davies, Kimberley M.; Susano, Isidro; McKinsey, Timothy A.

    2016-01-01

    Chronic cardiac hypertrophy is maladaptive and contributes to the pathogenesis of heart failure. The objective of this study was to identify small molecule inhibitors of pathological cardiomyocyte hypertrophy. High content screening was performed with primary neonatal rat ventricular myocytes (NRVMs) cultured on 96-well plates and treated with a library of 3241 distinct small molecules. Non-toxic hit compounds that blocked hypertrophy in response to phenylephrine (PE) and phorbol myristate acetate (PMA) were identified based on their ability to reduce cell size and inhibit expression of atrial natriuretic factor (ANF), which is a biomarker of pathological cardiac hypertrophy. Many of the hit compounds are existing drugs that have not previously been evaluated for benefit in the setting of cardiovascular disease. One such compound, the anti-malarial drug artesunate, blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). These findings demonstrate that phenotypic screening with primary cardiomyocytes can be used to discover anti-hypertrophic lead compounds for heart failure drug discovery. Using annotated libraries of compounds with known selectivity profiles, this screening methodology also facilitates chemical biological dissection of signaling networks that control pathological growth of the heart. PMID:27130278

  16. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.

    PubMed

    Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry

    2014-01-01

    We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.

  17. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  18. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  19. Mapping the Human Toxome by Systems Toxicology

    PubMed Central

    Bouhifd, Mounir; Hogberg, Helena T.; Kleensang, Andre; Maertens, Alexandra; Zhao, Liang; Hartung, Thomas

    2014-01-01

    Toxicity testing typically involves studying adverse health outcomes in animals subjected to high doses of toxicants with subsequent extrapolation to expected human responses at lower doses. The low-throughput of current toxicity testing approaches (which are largely the same for industrial chemicals, pesticides and drugs) has led to a backlog of more than 80,000 chemicals to which human beings are potentially exposed whose potential toxicity remains largely unknown. Employing new testing strategies that employ the use of predictive, high-throughput cell-based assays (of human origin) to evaluate perturbations in key pathways, referred as pathways of toxicity, and to conduct targeted testing against those pathways, we can begin to greatly accelerate our ability to test the vast “storehouses” of chemical compounds using a rational, risk-based approach to chemical prioritization, and provide test results that are more predictive of human toxicity than current methods. The NIH Transformative Research Grant project Mapping the Human Toxome by Systems Toxicology aims at developing the tools for pathway mapping, annotation and validation as well as the respective knowledge base to share this information. PMID:24443875

  20. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    PubMed Central

    2011-01-01

    Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms. PMID:21791039

  1. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update.

    PubMed

    Ye, Jia; Zhang, Yong; Cui, Huihai; Liu, Jiawei; Wu, Yuqing; Cheng, Yun; Xu, Huixing; Huang, Xingxin; Li, Shengting; Zhou, An; Zhang, Xiuqing; Bolund, Lars; Chen, Qiang; Wang, Jian; Yang, Huanming; Fang, Lin; Shi, Chunmei

    2018-05-18

    WEGO (Web Gene Ontology Annotation Plot), created in 2006, is a simple but useful tool for visualizing, comparing and plotting GO (Gene Ontology) annotation results. Owing largely to the rapid development of high-throughput sequencing and the increasing acceptance of GO, WEGO has benefitted from outstanding performance regarding the number of users and citations in recent years, which motivated us to update to version 2.0. WEGO uses the GO annotation results as input. Based on GO's standardized DAG (Directed Acyclic Graph) structured vocabulary system, the number of genes corresponding to each GO ID is calculated and shown in a graphical format. WEGO 2.0 updates have targeted four aspects, aiming to provide a more efficient and up-to-date approach for comparative genomic analyses. First, the number of input files, previously limited to three, is now unlimited, allowing WEGO to analyze multiple datasets. Also added in this version are the reference datasets of nine model species that can be adopted as baselines in genomic comparative analyses. Furthermore, in the analyzing processes each Chi-square test is carried out for multiple datasets instead of every two samples. At last, WEGO 2.0 provides an additional output graph along with the traditional WEGO histogram, displaying the sorted P-values of GO terms and indicating their significant differences. At the same time, WEGO 2.0 features an entirely new user interface. WEGO is available for free at http://wego.genomics.org.cn.

  2. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights.

    PubMed

    Bertelli, Claire; Aeby, Sébastien; Chassot, Bérénice; Clulow, James; Hilfiker, Olivier; Rappo, Samuel; Ritzmann, Sébastien; Schumacher, Paolo; Terrettaz, Céline; Benaglio, Paola; Falquet, Laurent; Farinelli, Laurent; Gharib, Walid H; Goesmann, Alexander; Harshman, Keith; Linke, Burkhard; Miyazaki, Ryo; Rivolta, Carlo; Robinson-Rechavi, Marc; van der Meer, Jan Roelof; Greub, Gilbert

    2015-01-01

    With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by "embedded bioinformaticians," i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the "Sequence a genome" class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s) and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.

  3. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  4. Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct.

    PubMed

    Funk, Christopher S; Kahanda, Indika; Ben-Hur, Asa; Verspoor, Karin M

    2015-01-01

    Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated.

  5. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    PubMed

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  6. The UCSC genome browser and associated tools

    PubMed Central

    Haussler, David; Kent, W. James

    2013-01-01

    The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213

  7. The UCSC genome browser and associated tools.

    PubMed

    Kuhn, Robert M; Haussler, David; Kent, W James

    2013-03-01

    The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.

  8. Computational active site analysis of molecular pathways to improve functional classification of enzymes.

    PubMed

    Ozyurt, A Sinem; Selby, Thomas L

    2008-07-01

    This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.

  9. A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool.

    PubMed

    Mazandu, Gaston K; Chimusa, Emile R; Mbiyavanga, Mamana; Mulder, Nicola J

    2016-02-01

    Gene Ontology (GO) semantic similarity measures are being used for biological knowledge discovery based on GO annotations by integrating biological information contained in the GO structure into data analyses. To empower users to quickly compute, manipulate and explore these measures, we introduce A-DaGO-Fun (ADaptable Gene Ontology semantic similarity-based Functional analysis). It is a portable software package integrating all known GO information content-based semantic similarity measures and relevant biological applications associated with these measures. A-DaGO-Fun has the advantage not only of handling datasets from the current high-throughput genome-wide applications, but also allowing users to choose the most relevant semantic similarity approach for their biological applications and to adapt a given module to their needs. A-DaGO-Fun is freely available to the research community at http://web.cbio.uct.ac.za/ITGOM/adagofun. It is implemented in Linux using Python under free software (GNU General Public Licence). gmazandu@cbio.uct.ac.za or Nicola.Mulder@uct.ac.za Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Updated regulation curation model at the Saccharomyces Genome Database

    PubMed Central

    Engel, Stacia R; Skrzypek, Marek S; Hellerstedt, Sage T; Wong, Edith D; Nash, Robert S; Weng, Shuai; Binkley, Gail; Sheppard, Travis K; Karra, Kalpana; Cherry, J Michael

    2018-01-01

    Abstract The Saccharomyces Genome Database (SGD) provides comprehensive, integrated biological information for the budding yeast Saccharomyces cerevisiae, along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms. We have recently expanded our data model for regulation curation to address regulation at the protein level in addition to transcription, and are presenting the expanded data on the ‘Regulation’ pages at SGD. These pages include a summary describing the context under which the regulator acts, manually curated and high-throughput annotations showing the regulatory relationships for that gene and a graphical visualization of its regulatory network and connected networks. For genes whose products regulate other genes or proteins, the Regulation page includes Gene Ontology enrichment analysis of the biological processes in which those targets participate. For DNA-binding transcription factors, we also provide other information relevant to their regulatory function, such as DNA binding site motifs and protein domains. As with other data types at SGD, all regulatory relationships and accompanying data are available through YeastMine, SGD’s data warehouse based on InterMine. Database URL: http://www.yeastgenome.org PMID:29688362

  11. Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Huang, Hao; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    Penaeid shrimp has a distinctive metamorphosis stage during early development. Although morphological and biochemical studies about this ontogeny have been developed for decades, researches on gene expression level are still scarce. In this study, we have investigated the transcriptomes of five continuous developmental stages in Pacific white shrimp (Litopenaeus vannamei) with high throughput Illumina sequencing technology. The reads were assembled and clustered into 66,815 unigenes, of which 32,398 have putative homologues in nr database, 14,981 have been classified into diverse functional categories by Gene Ontology (GO) annotation and 26,257 have been associated with 255 pathways by KEGG pathway mapping. Meanwhile, the differentially expressed genes (DEGs) between adjacent developmental stages were identified and gene expression patterns were clustered. By GO term enrichment analysis, KEGG pathway enrichment analysis and functional gene profiling, the physiological changes during shrimp metamorphosis could be better understood, especially histogenesis, diet transition, muscle development and exoskeleton reconstruction. In conclusion, this is the first study that characterized the integrated transcriptomic profiles during early development of penaeid shrimp, and these findings will serve as significant references for shrimp developmental biology and aquaculture research. PMID:25197823

  12. De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.

    PubMed

    Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min

    2013-02-01

    Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs. Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single software environment with the added capability to interact with public data sources and visual analytic tools for HTP data analysis at a systems level. BRM is developed using Java™ and other open-source technologies for free distribution (http://www.sysbio.org/dataresources/brm.stm). PMID:23174015

  14. Curation of food-relevant chemicals in ToxCast.

    PubMed

    Karmaus, Agnes L; Trautman, Thomas D; Krishan, Mansi; Filer, Dayne L; Fix, Laurel A

    2017-05-01

    High-throughput in vitro assays and exposure prediction efforts are paving the way for modeling chemical risk; however, the utility of such extensive datasets can be limited or misleading when annotation fails to capture current chemical usage. To address this data gap and provide context for food-use in the United States (US), manual curation of food-relevant chemicals in ToxCast was conducted. Chemicals were categorized into three food-use categories: (1) direct food additives, (2) indirect food additives, or (3) pesticide residues. Manual curation resulted in 30% of chemicals having new annotation as well as the removal of 319 chemicals, most due to cancellation or only foreign usage. These results highlight that manual curation of chemical use information provided significant insight affecting the overall inventory and chemical categorization. In total, 1211 chemicals were confirmed as current day food-use in the US by manual curation; 1154 of these chemicals were also identified as food-related in the globally sourced chemical use information from Chemical/Product Categories database (CPCat). The refined list of food-use chemicals and the sources highlighted for compiling annotated information required to confirm food-use are valuable resources for providing needed context when evaluating large-scale inventories such as ToxCast. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.

    PubMed

    Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W

    2010-07-02

    The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease.

  16. MimoSA: a system for minimotif annotation

    PubMed Central

    2010-01-01

    Background Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature. Results We have built the MimoSA application for minimotif annotation. The application supports management of the Minimotif Miner database, literature tracking, and annotation of new minimotifs. MimoSA enables the visualization, organization, selection and editing functions of minimotifs and their attributes in the MnM database. For the literature components, Mimosa provides paper status tracking and scoring of papers for annotation through a freely available machine learning approach, which is based on word correlation. The paper scoring algorithm is also available as a separate program, TextMine. Form-driven annotation of minimotif attributes enables entry of new minimotifs into the MnM database. Several supporting features increase the efficiency of annotation. The layered architecture of MimoSA allows for extensibility by separating the functions of paper scoring, minimotif visualization, and database management. MimoSA is readily adaptable to other annotation efforts that manually curate literature into a MySQL database. Conclusions MimoSA is an extensible application that facilitates minimotif annotation and integrates with the Minimotif Miner database. We have built MimoSA as an application that integrates dynamic abstract scoring with a high performance relational model of minimotif syntax. MimoSA's TextMine, an efficient paper-scoring algorithm, can be used to dynamically rank papers with respect to context. PMID:20565705

  17. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  18. RATT: Rapid Annotation Transfer Tool

    PubMed Central

    Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew

    2011-01-01

    Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991

  19. High-throughput physical mapping of chromosomes using automated in situ hybridization.

    PubMed

    George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V

    2012-06-28

    Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.

  20. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93–96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13–89%)/functional allelic diversity (18–77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54–0.68) and extended LD decay (400–500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating important complex quantitative agronomic traits in chickpea. The numerous informative genome-wide SNPs, natural allelic diversity-led domestication pattern, and LD-based information generated in our study have got multidimensional applicability with respect to chickpea genomics-assisted breeding. PMID:25873920

  1. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis.

    PubMed

    Houston, Simon; Lithgow, Karen Vivien; Osbak, Kara Krista; Kenyon, Chris Richard; Cameron, Caroline E

    2018-05-16

    Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome.

  2. MICRA: an automatic pipeline for fast characterization of microbial genomes from high-throughput sequencing data.

    PubMed

    Caboche, Ségolène; Even, Gaël; Loywick, Alexandre; Audebert, Christophe; Hot, David

    2017-12-19

    The increase in available sequence data has advanced the field of microbiology; however, making sense of these data without bioinformatics skills is still problematic. We describe MICRA, an automatic pipeline, available as a web interface, for microbial identification and characterization through reads analysis. MICRA uses iterative mapping against reference genomes to identify genes and variations. Additional modules allow prediction of antibiotic susceptibility and resistance and comparing the results of several samples. MICRA is fast, producing few false-positive annotations and variant calls compared to current methods, making it a tool of great interest for fully exploiting sequencing data.

  3. High precision multi-genome scale reannotation of enzyme function by EFICAz

    PubMed Central

    Arakaki, Adrian K; Tian, Weidong; Skolnick, Jeffrey

    2006-01-01

    Background The functional annotation of most genes in newly sequenced genomes is inferred from similarity to previously characterized sequences, an annotation strategy that often leads to erroneous assignments. We have performed a reannotation of 245 genomes using an updated version of EFICAz, a highly precise method for enzyme function prediction. Results Based on our three-field EC number predictions, we have obtained lower-bound estimates for the average enzyme content in Archaea (29%), Bacteria (30%) and Eukarya (18%). Most annotations added in KEGG from 2005 to 2006 agree with EFICAz predictions made in 2005. The coverage of EFICAz predictions is significantly higher than that of KEGG, especially for eukaryotes. Thousands of our novel predictions correspond to hypothetical proteins. We have identified a subset of 64 hypothetical proteins with low sequence identity to EFICAz training enzymes, whose biochemical functions have been recently characterized and find that in 96% (84%) of the cases we correctly identified their three-field (four-field) EC numbers. For two of the 64 hypothetical proteins: PA1167 from Pseudomonas aeruginosa, an alginate lyase (EC 4.2.2.3) and Rv1700 of Mycobacterium tuberculosis H37Rv, an ADP-ribose diphosphatase (EC 3.6.1.13), we have detected annotation lag of more than two years in databases. Two examples are presented where EFICAz predictions act as hypothesis generators for understanding the functional roles of hypothetical proteins: FLJ11151, a human protein overexpressed in cancer that EFICAz identifies as an endopolyphosphatase (EC 3.6.1.10), and MW0119, a protein of Staphylococcus aureus strain MW2 that we propose as candidate virulence factor based on its EFICAz predicted activity, sphingomyelin phosphodiesterase (EC 3.1.4.12). Conclusion Our results suggest that we have generated enzyme function annotations of high precision and recall. These predictions can be mined and correlated with other information sources to generate biologically significant hypotheses and can be useful for comparative genome analysis and automated metabolic pathway reconstruction. PMID:17166279

  4. Maize GO annotation—methods, evaluation, and review (maize-GAMER)

    USDA-ARS?s Scientific Manuscript database

    We created a new high-coverage, robust, and reproducible functional annotation of maize protein-coding genes based on Gene Ontology (GO) term assignments. Whereas the existing Phytozome and Gramene maize GO annotation sets only cover 41% and 56% of maize protein-coding genes, respectively, this stu...

  5. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production

    PubMed Central

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac_0437 and Csac_0424 encode for glycoside hydrolases (GH) and are proposed to be involved in the decomposition of recalcitrant plant polysaccharides. Similarly, HPs: Csac_0732, Csac_1862, Csac_1294 and Csac_0668 are suggested to play a significant role in biohydrogen production. Function prediction of these HPs by using our integrated approach will considerably enhance the interpretation of large-scale experiments targeting this industrially important organism. PMID:26196387

  6. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    PubMed

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac_0437 and Csac_0424 encode for glycoside hydrolases (GH) and are proposed to be involved in the decomposition of recalcitrant plant polysaccharides. Similarly, HPs: Csac_0732, Csac_1862, Csac_1294 and Csac_0668 are suggested to play a significant role in biohydrogen production. Function prediction of these HPs by using our integrated approach will considerably enhance the interpretation of large-scale experiments targeting this industrially important organism.

  7. The FLIGHT Drosophila RNAi database

    PubMed Central

    Bursteinas, Borisas; Jain, Ekta; Gao, Qiong; Baum, Buzz; Zvelebil, Marketa

    2010-01-01

    FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila. PMID:20855970

  8. MIPHENO: Data normalization for high throughput metabolic analysis.

    EPA Science Inventory

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  9. Phaedra, a protocol-driven system for analysis and validation of high-content imaging and flow cytometry.

    PubMed

    Cornelissen, Frans; Cik, Miroslav; Gustin, Emmanuel

    2012-04-01

    High-content screening has brought new dimensions to cellular assays by generating rich data sets that characterize cell populations in great detail and detect subtle phenotypes. To derive relevant, reliable conclusions from these complex data, it is crucial to have informatics tools supporting quality control, data reduction, and data mining. These tools must reconcile the complexity of advanced analysis methods with the user-friendliness demanded by the user community. After review of existing applications, we realized the possibility of adding innovative new analysis options. Phaedra was developed to support workflows for drug screening and target discovery, interact with several laboratory information management systems, and process data generated by a range of techniques including high-content imaging, multicolor flow cytometry, and traditional high-throughput screening assays. The application is modular and flexible, with an interface that can be tuned to specific user roles. It offers user-friendly data visualization and reduction tools for HCS but also integrates Matlab for custom image analysis and the Konstanz Information Miner (KNIME) framework for data mining. Phaedra features efficient JPEG2000 compression and full drill-down functionality from dose-response curves down to individual cells, with exclusion and annotation options, cell classification, statistical quality controls, and reporting.

  10. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model–based analyses of transposon-insertion sequencing data

    PubMed Central

    Chao, Michael C.; Pritchard, Justin R.; Zhang, Yanjia J.; Rubin, Eric J.; Livny, Jonathan; Davis, Brigid M.; Waldor, Matthew K.

    2013-01-01

    The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data. PMID:23901011

  11. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  12. Database citation in full text biomedical articles.

    PubMed

    Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R

    2013-01-01

    Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services.

  13. Database Citation in Full Text Biomedical Articles

    PubMed Central

    Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R.

    2013-01-01

    Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services. PMID:23734176

  14. ChemicalTagger: A tool for semantic text-mining in chemistry.

    PubMed

    Hawizy, Lezan; Jessop, David M; Adams, Nico; Murray-Rust, Peter

    2011-05-16

    The primary method for scientific communication is in the form of published scientific articles and theses which use natural language combined with domain-specific terminology. As such, they contain free owing unstructured text. Given the usefulness of data extraction from unstructured literature, we aim to show how this can be achieved for the discipline of chemistry. The highly formulaic style of writing most chemists adopt make their contributions well suited to high-throughput Natural Language Processing (NLP) approaches. We have developed the ChemicalTagger parser as a medium-depth, phrase-based semantic NLP tool for the language of chemical experiments. Tagging is based on a modular architecture and uses a combination of OSCAR, domain-specific regex and English taggers to identify parts-of-speech. The ANTLR grammar is used to structure this into tree-based phrases. Using a metric that allows for overlapping annotations, we achieved machine-annotator agreements of 88.9% for phrase recognition and 91.9% for phrase-type identification (Action names). It is possible parse to chemical experimental text using rule-based techniques in conjunction with a formal grammar parser. ChemicalTagger has been deployed for over 10,000 patents and has identified solvents from their linguistic context with >99.5% precision.

  15. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline.

    PubMed

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-06-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Chromatin accessibility prediction via a hybrid deep convolutional neural network.

    PubMed

    Liu, Qiao; Xia, Fei; Yin, Qijin; Jiang, Rui

    2018-03-01

    A majority of known genetic variants associated with human-inherited diseases lie in non-coding regions that lack adequate interpretation, making it indispensable to systematically discover functional sites at the whole genome level and precisely decipher their implications in a comprehensive manner. Although computational approaches have been complementing high-throughput biological experiments towards the annotation of the human genome, it still remains a big challenge to accurately annotate regulatory elements in the context of a specific cell type via automatic learning of the DNA sequence code from large-scale sequencing data. Indeed, the development of an accurate and interpretable model to learn the DNA sequence signature and further enable the identification of causative genetic variants has become essential in both genomic and genetic studies. We proposed Deopen, a hybrid framework mainly based on a deep convolutional neural network, to automatically learn the regulatory code of DNA sequences and predict chromatin accessibility. In a series of comparison with existing methods, we show the superior performance of our model in not only the classification of accessible regions against background sequences sampled at random, but also the regression of DNase-seq signals. Besides, we further visualize the convolutional kernels and show the match of identified sequence signatures and known motifs. We finally demonstrate the sensitivity of our model in finding causative noncoding variants in the analysis of a breast cancer dataset. We expect to see wide applications of Deopen with either public or in-house chromatin accessibility data in the annotation of the human genome and the identification of non-coding variants associated with diseases. Deopen is freely available at https://github.com/kimmo1019/Deopen. ruijiang@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Self-organizing ontology of biochemically relevant small molecules

    PubMed Central

    2012-01-01

    Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development. PMID:22221313

  18. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti

    PubMed Central

    Li, Ming; Bui, Michelle; Yang, Ting; Bowman, Christian S.; White, Bradley J.; Akbari, Omar S.

    2017-01-01

    The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti. Here, we describe the generation of multiple stable, transgenic Ae. aegypti strains expressing Cas9 in the germline, resulting in dramatic improvements in both the consistency and efficiency of genome modifications using CRISPR. Using these strains, we disrupted numerous genes important for normal morphological development, and even generated triple mutants from a single injection. We have also managed to increase the rates of homology-directed repair by more than an order of magnitude. Given the exceptional mutagenic efficiency and specificity of the Cas9 strains we engineered, they can be used for high-throughput reverse genetic screens to help functionally annotate the Ae. aegypti genome. Additionally, these strains represent a step toward the development of novel population control technologies targeting Ae. aegypti that rely on Cas9-based gene drives. PMID:29138316

  19. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti.

    PubMed

    Li, Ming; Bui, Michelle; Yang, Ting; Bowman, Christian S; White, Bradley J; Akbari, Omar S

    2017-12-05

    The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti Here, we describe the generation of multiple stable, transgenic Ae. aegypti strains expressing Cas9 in the germline, resulting in dramatic improvements in both the consistency and efficiency of genome modifications using CRISPR. Using these strains, we disrupted numerous genes important for normal morphological development, and even generated triple mutants from a single injection. We have also managed to increase the rates of homology-directed repair by more than an order of magnitude. Given the exceptional mutagenic efficiency and specificity of the Cas9 strains we engineered, they can be used for high-throughput reverse genetic screens to help functionally annotate the Ae. aegypti genome. Additionally, these strains represent a step toward the development of novel population control technologies targeting Ae. aegypti that rely on Cas9-based gene drives. Copyright © 2017 the Author(s). Published by PNAS.

  20. Current challenges in genome annotation through structural biology and bioinformatics.

    PubMed

    Furnham, Nicholas; de Beer, Tjaart A P; Thornton, Janet M

    2012-10-01

    With the huge volume in genomic sequences being generated from high-throughout sequencing projects the requirement for providing accurate and detailed annotations of gene products has never been greater. It is proving to be a huge challenge for computational biologists to use as much information as possible from experimental data to provide annotations for genome data of unknown function. A central component to this process is to use experimentally determined structures, which provide a means to detect homology that is not discernable from just the sequence and permit the consequences of genomic variation to be realized at the molecular level. In particular, structures also form the basis of many bioinformatics methods for improving the detailed functional annotations of enzymes in combination with similarities in sequence and chemistry. Copyright © 2012. Published by Elsevier Ltd.

  1. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386

  2. Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach

    NASA Astrophysics Data System (ADS)

    Kotaru, Appala Raju; Joshi, Ramesh C.

    Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.

  3. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets

    PubMed Central

    2010-01-01

    Background The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. Findings We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. Conclusions TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease. PMID:20598141

  4. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.

    PubMed

    Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki

    2016-01-01

    Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.

  5. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  6. HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES

    EPA Science Inventory

    Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...

  7. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  8. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality.

    PubMed

    Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle

    2018-01-01

    Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.

  9. Linking microarray reporters with protein functions.

    PubMed

    Gaj, Stan; van Erk, Arie; van Haaften, Rachel I M; Evelo, Chris T A

    2007-09-26

    The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.

  10. Analysis of ChIP-seq Data in R/Bioconductor.

    PubMed

    de Santiago, Ines; Carroll, Thomas

    2018-01-01

    The development of novel high-throughput sequencing methods for ChIP (chromatin immunoprecipitation) has provided a very powerful tool to study gene regulation in multiple conditions at unprecedented resolution and scale. Proactive quality-control and appropriate data analysis techniques are of critical importance to extract the most meaningful results from the data. Over the last years, an array of R/Bioconductor tools has been developed allowing researchers to process and analyze ChIP-seq data. This chapter provides an overview of the methods available to analyze ChIP-seq data based primarily on software packages from the open-source Bioconductor project. Protocols described in this chapter cover basic steps including data alignment, peak calling, quality control and data visualization, as well as more complex methods such as the identification of differentially bound regions and functional analyses to annotate regulatory regions. The steps in the data analysis process were demonstrated on publicly available data sets and will serve as a demonstration of the computational procedures routinely used for the analysis of ChIP-seq data in R/Bioconductor, from which readers can construct their own analysis pipelines.

  11. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences

    PubMed Central

    Madi, Asaf; Poran, Asaf; Shifrut, Eric; Reich-Zeliger, Shlomit; Greenstein, Erez; Zaretsky, Irena; Arnon, Tomer; Laethem, Francois Van; Singer, Alfred; Lu, Jinghua; Sun, Peter D; Cohen, Irun R; Friedman, Nir

    2017-01-01

    Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA rearrangements, is central to immune system function. However, the level of sequence similarity of TCR repertoires within and between species has not been characterized. Using network analysis of high-throughput TCR sequencing data, we found that abundant CDR3-TCRβ sequences were clustered within networks generated by sequence similarity. We discovered a substantial number of public CDR3-TCRβ segments that were identical in mice and humans. These conserved public sequences were central within TCR sequence-similarity networks. Annotated TCR sequences, previously associated with self-specificities such as autoimmunity and cancer, were linked to network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and were reduced following immunization, immune checkpoint blockade or aging. Our findings provide a new view of T cell repertoire organization and physiology, and suggest that the immune system distributes its TCR sequences unevenly, attending to specific foci of reactivity. DOI: http://dx.doi.org/10.7554/eLife.22057.001 PMID:28731407

  12. Ten steps to get started in Genome Assembly and Annotation

    PubMed Central

    Dominguez Del Angel, Victoria; Hjerde, Erik; Sterck, Lieven; Capella-Gutierrez, Salvadors; Notredame, Cederic; Vinnere Pettersson, Olga; Amselem, Joelle; Bouri, Laurent; Bocs, Stephanie; Klopp, Christophe; Gibrat, Jean-Francois; Vlasova, Anna; Leskosek, Brane L.; Soler, Lucile; Binzer-Panchal, Mahesh; Lantz, Henrik

    2018-01-01

    As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR). PMID:29568489

  13. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    PubMed Central

    2011-01-01

    Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy. PMID:22014111

  14. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen.

    PubMed

    Le Breton, Marc; Meyniel-Schicklin, Laurène; Deloire, Alexandre; Coutard, Bruno; Canard, Bruno; de Lamballerie, Xavier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent; Davoust, Nathalie

    2011-10-20

    The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  15. What time is it? Deep learning approaches for circadian rhythms.

    PubMed

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-06-15

    Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/ fagostin@uci.edu or pfbaldi@uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. What time is it? Deep learning approaches for circadian rhythms

    PubMed Central

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-01-01

    Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. Results: We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. Availability and Implementation: All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/. Contacts: fagostin@uci.edu or pfbaldi@uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307647

  17. High-throughput fabrication and screening improves gold nanoparticle chemiresistor sensor performance.

    PubMed

    Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard

    2015-02-09

    Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.

  18. The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

    PubMed

    Childs, Kevin L; Konganti, Kranti; Buell, C Robin

    2012-01-01

    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.

  19. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.

    PubMed

    May, Patrick; Christian, Jan-Ole; Kempa, Stefan; Walther, Dirk

    2009-05-04

    The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  20. New Toxico-Cheminformatics & Computational Toxicology ...

    EPA Pesticide Factsheets

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining, and data read-across. The DSSTox Structure-Browser provides structure searchability across all published DSSTox toxicity-related inventory, and is enabling linkages between previously isolated toxicity data resources. As of early March 2008, the public DSSTox inventory has been integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. The most recent DSSTox version of the Carcinogenic Potency Database file (CPDBAS) illustrates ways in which various summary definitions of carcinogenic activity can be employed in modeling and data mining. Phase I of the ToxCastTM project is generating high-throughput screening data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives, with rich toxicology profiles. Incorporating and expanding traditional SAR concepts into this new high-throughput and data-rich world pose conceptual and practical challenges, but also holds great promise for improving predictive capabilities.

  1. High-Throughput Functional Validation of Progression Drivers in Lung Adenocarcinoma

    DTIC Science & Technology

    2013-09-01

    2) a novel molecular barcoding approach that facilitates cost- effective detection of driver events following in vitro and in vivo functional screens...aberration construction pipeline, which we named High-Throughput 3 Mutagenesis and Molecular Barcoding (HiTMMoB; Fig.1). We have therefore been able...lentiviral vector specially constructed for this project. This vector is compatible with our flexible molecular barcoding technology (Fig. 1), thus each

  2. The pig genome project has plenty to squeal about.

    PubMed

    Fan, B; Gorbach, D M; Rothschild, M F

    2011-01-01

    Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.

  3. Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis

    PubMed Central

    Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.

    2014-01-01

    Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462

  4. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.

    PubMed

    Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar

    2013-10-15

    High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.

  5. Single-Nucleotide Polymorphism Markers from De-Novo Assembly of the Pomegranate Transcriptome Reveal Germplasm Genetic Diversity

    PubMed Central

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature. PMID:24558460

  6. Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity.

    PubMed

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature.

  7. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi.

    PubMed

    Schoch, Conrad L; Robbertse, Barbara; Robert, Vincent; Vu, Duong; Cardinali, Gianluigi; Irinyi, Laszlo; Meyer, Wieland; Nilsson, R Henrik; Hughes, Karen; Miller, Andrew N; Kirk, Paul M; Abarenkov, Kessy; Aime, M Catherine; Ariyawansa, Hiran A; Bidartondo, Martin; Boekhout, Teun; Buyck, Bart; Cai, Qing; Chen, Jie; Crespo, Ana; Crous, Pedro W; Damm, Ulrike; De Beer, Z Wilhelm; Dentinger, Bryn T M; Divakar, Pradeep K; Dueñas, Margarita; Feau, Nicolas; Fliegerova, Katerina; García, Miguel A; Ge, Zai-Wei; Griffith, Gareth W; Groenewald, Johannes Z; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Gueidan, Cécile; Guo, Liangdong; Hambleton, Sarah; Hamelin, Richard; Hansen, Karen; Hofstetter, Valérie; Hong, Seung-Beom; Houbraken, Jos; Hyde, Kevin D; Inderbitzin, Patrik; Johnston, Peter R; Karunarathna, Samantha C; Kõljalg, Urmas; Kovács, Gábor M; Kraichak, Ekaphan; Krizsan, Krisztina; Kurtzman, Cletus P; Larsson, Karl-Henrik; Leavitt, Steven; Letcher, Peter M; Liimatainen, Kare; Liu, Jian-Kui; Lodge, D Jean; Luangsa-ard, Janet Jennifer; Lumbsch, H Thorsten; Maharachchikumbura, Sajeewa S N; Manamgoda, Dimuthu; Martín, María P; Minnis, Andrew M; Moncalvo, Jean-Marc; Mulè, Giuseppina; Nakasone, Karen K; Niskanen, Tuula; Olariaga, Ibai; Papp, Tamás; Petkovits, Tamás; Pino-Bodas, Raquel; Powell, Martha J; Raja, Huzefa A; Redecker, Dirk; Sarmiento-Ramirez, J M; Seifert, Keith A; Shrestha, Bhushan; Stenroos, Soili; Stielow, Benjamin; Suh, Sung-Oui; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M Teresa; Udayanga, Dhanushka; Untereiner, Wendy A; Diéguez Uribeondo, Javier; Subbarao, Krishna V; Vágvölgyi, Csaba; Visagie, Cobus; Voigt, Kerstin; Walker, Donald M; Weir, Bevan S; Weiß, Michael; Wijayawardene, Nalin N; Wingfield, Michael J; Xu, J P; Yang, Zhu L; Zhang, Ning; Zhuang, Wen-Ying; Federhen, Scott

    2014-01-01

    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi. Database URL: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.

  8. MeRIP-PF: an easy-to-use pipeline for high-resolution peak-finding in MeRIP-Seq data.

    PubMed

    Li, Yuli; Song, Shuhui; Li, Cuiping; Yu, Jun

    2013-02-01

    RNA modifications, especially methylation of the N(6) position of adenosine (A)-m(6)A, represent an emerging research frontier in RNA biology. With the rapid development of high-throughput sequencing technology, in-depth study of m(6)A distribution and function relevance becomes feasible. However, a robust method to effectively identify m(6)A-modified regions has not been available yet. Here, we present a novel high-efficiency and user-friendly analysis pipeline called MeRIP-PF for the signal identification of MeRIP-Seq data in reference to controls. MeRIP-PF provides a statistical P-value for each identified m(6)A region based on the difference of read distribution when compared to the controls and also calculates false discovery rate (FDR) as a cut off to differentiate reliable m(6)A regions from the background. Furthermore, MeRIP-PF also achieves gene annotation of m(6)A signals or peaks and produce outputs in both XLS and graphical format, which are useful for further study. MeRIP-PF is implemented in Perl and is freely available at http://software.big.ac.cn/MeRIP-PF.html. Copyright © 2013. Production and hosting by Elsevier Ltd.

  9. An Atlas of annotations of Hydra vulgaris transcriptome.

    PubMed

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  10. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum.

    PubMed

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.

  11. FACETS: multi-faceted functional decomposition of protein interaction networks

    PubMed Central

    Seah, Boon-Siew; Bhowmick, Sourav S.; Forbes Dewey, C.

    2012-01-01

    Motivation: The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein–protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. Results: We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Contact: seah0097@ntu.edu.sg or assourav@ntu.edu.sg Supplementary information: Supplementary data are available at the Bioinformatics online. Availability: Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/∼assourav/Facets/ PMID:22908217

  12. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening.

    PubMed

    Zhang, Guoyun; Chen, Daoguo; Zhang, Tong; Duan, Aiguo; Zhang, Jianguo; He, Caiyun

    2018-06-04

    Fruit ripening is a developmental process regulated by a complex network of endogenous and exogenous cues. Sea buckthorn is an excellent material for fruit ripening studies due to its dramatic ripening process and high contents of nutritional and anti-oxidant compounds in berries. Here, the whole transcriptome of sea buckthorn fruit at three development stages were analysed using multiple high-throughput sequencings. We assembled and annotated 9,008 long non-coding RNAs (lncRNAs) in sea buckthorn fruits, and identified 118 differentially expressed lncRNAs (DE-lncRNAs) and 32 differentially expressed microRNAs in fruit developmental process. In addition, we predicted 1,061 cis-regulated and 782 trans-regulated targets of DE-lncRNAs, and these DE-lncRNAs are specifically enriched in the biosynthesis of ascorbic acid, carotenoids and flavonoids. Moreover, the silencing of two lncRNAs (LNC1 and LNC2) in vivo and expression analysis revealed that LNC1 and LNC2 can act as endogenous target mimics of miR156a and miR828a to reduce SPL9 and induce MYB114 expression, respectively, which lead to increased and decreased anthocyanin content as revealed by high-performance liquid chromatography analysis. Our results present the first global functional analysis of lncRNA in sea buckthorn and provide two essential regulators of anthocyanin biosynthesis, which provides new insights into the regulation of fruit quality.

  13. Critical Assessment of Small Molecule Identification 2016: automated methods.

    PubMed

    Schymanski, Emma L; Ruttkies, Christoph; Krauss, Martin; Brouard, Céline; Kind, Tobias; Dührkop, Kai; Allen, Felicity; Vaniya, Arpana; Verdegem, Dries; Böcker, Sebastian; Rousu, Juho; Shen, Huibin; Tsugawa, Hiroshi; Sajed, Tanvir; Fiehn, Oliver; Ghesquière, Bart; Neumann, Steffen

    2017-03-27

    The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest ( www.casmi-contest.org ) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification. The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in "Category 2: Best Automatic Structural Identification-In Silico Fragmentation Only", won by Team Brouard with 41% challenge wins. The winner of "Category 3: Best Automatic Structural Identification-Full Information" was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for "known unknowns". As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for "real life" annotations. The true "unknown unknowns" remain to be evaluated in future CASMI contests. Graphical abstract .

  14. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research

    PubMed Central

    Seiler, Catherine Y.; Park, Jin G.; Sharma, Amit; Hunter, Preston; Surapaneni, Padmini; Sedillo, Casey; Field, James; Algar, Rhys; Price, Andrea; Steel, Jason; Throop, Andrea; Fiacco, Michael; LaBaer, Joshua

    2014-01-01

    The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids from external researchers, and large collections from consortia such as the ORFeome Collaboration and the NIGMS-funded Protein Structure Initiative: Biology (PSI:Biology). Through DNASU, researchers can search for and access detailed information about each plasmid such as the full length gene insert sequence, vector information, associated publications, and links to external resources that provide additional protein annotations and experimental protocols. Plasmids can be requested directly through the DNASU website. DNASU and the PSI:Biology-Materials Repositories were previously described in the 2010 NAR Database Issue (Cormier, C.Y., Mohr, S.E., Zuo, D., Hu, Y., Rolfs, A., Kramer, J., Taycher, E., Kelley, F., Fiacco, M., Turnbull, G. et al. (2010) Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res., 38, D743–D749.). In this update we will describe the plasmid collection and highlight the new features in the website redesign, including new browse/search options, plasmid annotations and a dynamic vector mapping feature that was developed in collaboration with LabGenius. Overall, these plasmid resources continue to enable research with the goal of elucidating the role of proteins in both normal biological processes and disease. PMID:24225319

  15. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are a class of endogenous, small, non-coding RNAs that regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in high plants. However, the diversity of miRNAs and their roles in floral development in Japanese apricot (Prunus mume Sieb. et Zucc) remains largely unexplored. Imperfect flowers with pistil abortion seriously decrease production yields. To understand the role of miRNAs in pistil development, pistil development-related miRNAs were identified by Solexa sequencing in Japanese apricot. Results Solexa sequencing was used to identify and quantitatively profile small RNAs from perfect and imperfect flower buds of Japanese apricot. A total of 22,561,972 and 24,952,690 reads were sequenced from two small RNA libraries constructed from perfect and imperfect flower buds, respectively. Sixty-one known miRNAs, belonging to 24 families, were identified. Comparative profiling revealed that seven known miRNAs exhibited significant differential expression between perfect and imperfect flower buds. A total of 61 potentially novel miRNAs/new members of known miRNA families were also identified by the presence of mature miRNAs and corresponding miRNA*s in the sRNA libraries. Comparative analysis showed that six potentially novel miRNAs were differentially expressed between perfect and imperfect flower buds. Target predictions of the 13 differentially expressed miRNAs resulted in 212 target genes. Gene ontology (GO) annotation revealed that high-ranking miRNA target genes are those implicated in the developmental process, the regulation of transcription and response to stress. Conclusions This study represents the first comparative identification of miRNAomes between perfect and imperfect Japanese apricot flowers. Seven known miRNAs and six potentially novel miRNAs associated with pistil development were identified, using high-throughput sequencing of small RNAs. The findings, both computationally and experimentally, provide valuable information for further functional characterisation of miRNAs associated with pistil development in plants. PMID:22863067

  16. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing.

    PubMed

    Hao, Da-Cheng; Zhang, Cai-Rong; Xiao, Pei-Gen

    2018-06-01

    In the present study, the shotgun high throughput metagenomic sequencing was implemented to globally capture the features of Taxus rhizosphere microbiome. Total reads could be assigned to 6925 species belonging to 113 bacteria phyla and 301 species of nine fungi phyla. For archaea and virus, 263 and 134 species were for the first time identified, respectively. More than 720,000 Unigenes were identified by clean reads assembly. The top five assigned phyla were Actinobacteria (363,941 Unigenes), Proteobacteria (182,053), Acidobacteria (44,527), Ascomycota (fungi; 18,267), and Chloroflexi (15,539). KEGG analysis predicted numerous functional genes; 7101 Unigenes belong to "Xenobiotics biodegradation and metabolism." A total of 12,040 Unigenes involved in defense mechanisms (e.g., xenobiotic metabolism) were annotated by eggNOG. Talaromyces addition could influence not only the diversity and structure of microbial communities of Taxus rhizosphere, but also the relative abundance of functional genes, including metabolic genes, antibiotic resistant genes, and genes involved in pathogen-host interaction, bacterial virulence, and bacterial secretion system. The structure and function of rhizosphere microbiome could be sensitive to non-native microbe addition, which could impact on the pollutant degradation. This study, complementary to the amplicon sequencing, more objectively reflects the native microbiome of Taxus rhizosphere and its response to environmental pressure, and lays a foundation for potential combination of phytoremediation and bioaugmentation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD

    NASA Astrophysics Data System (ADS)

    Cox, M. A.; Reed, R.; Mellado, B.

    2015-01-01

    After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.

  18. Methylation guide RNA evolution in archaea: structure, function and genomic organization of 110 C/D box sRNA families across six Pyrobaculum species.

    PubMed

    Lui, Lauren M; Uzilov, Andrew V; Bernick, David L; Corredor, Andrea; Lowe, Todd M; Dennis, Patrick P

    2018-05-16

    Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.

  19. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation

    PubMed Central

    Prüß, Birgit M.; Verma, Karan; Samanta, Priyankar; Sule, Preeti; Kumar, Sunil; Wu, Jianfei; Christianson, David; Horne, Shelley M.; Stafslien, Shane J.; Wolfe, Alan J.; Denton, Anne

    2010-01-01

    Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinationsd, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure. PMID:20559621

  20. Transcriptomic Profiling Analysis of Arabidopsis thaliana Treated with Exogenous Myo-Inositol

    PubMed Central

    Ye, Wenxing; Ren, Weibo; Kong, Lingqi; Zhang, Wanjun; Wang, Tao

    2016-01-01

    Myo-insositol (MI) is a crucial substance in the growth and developmental processes in plants. It is commonly added to the culture medium to promote adventitious shoot development. In our previous work, MI was found in influencing Agrobacterium-mediated transformation. In this report, a high-throughput RNA sequencing technique (RNA-Seq) was used to investigate differently expressed genes in one-month-old Arabidopsis seedling grown on MI free or MI supplemented culture medium. The results showed that 21,288 and 21,299 genes were detected with and without MI treatment, respectively. The detected genes included 184 new genes that were not annotated in the Arabidopsis thaliana reference genome. Additionally, 183 differentially expressed genes were identified (DEGs, FDR ≤0.05, log2 FC≥1), including 93 up-regulated genes and 90 down-regulated genes. The DEGs were involved in multiple pathways, such as cell wall biosynthesis, biotic and abiotic stress response, chromosome modification, and substrate transportation. Some significantly differently expressed genes provided us with valuable information for exploring the functions of exogenous MI. RNA-Seq results showed that exogenous MI could alter gene expression and signaling transduction in plant cells. These results provided a systematic understanding of the functions of exogenous MI in detail and provided a foundation for future studies. PMID:27603208

  1. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.

    PubMed

    Li, Min; Li, Qi; Ganegoda, Gamage Upeksha; Wang, JianXin; Wu, FangXiang; Pan, Yi

    2014-11-01

    Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.

  2. Characterising the enzymatic profile of crude tentacle extracts from the South Atlantic jellyfish Olindias sambaquiensis (Cnidaria: Hydrozoa).

    PubMed

    Knittel, Paloma S; Long, Paul F; Brammall, Lucas; Marques, Antonio C; Almeida, Michelle T; Padilla, Gabriel; Moura-da-Silva, Ana M

    2016-09-01

    Jellyfish venoms are of medical and biotechnological importance, with toxins displaying antimicrobial, analgesic and anti-tumor activities. Although proteolytic enzymes have also been described, detailed characterisation of these proteins is scant in Olindias spp. High throughput mass spectrometry profiling of cnidarian venoms has become increasingly popular since the first description of the proteomic profile of putative toxins isolated from nematocysts of the hydrozoan jellyfish Olindias sambaquiensis describing the presence of orthologous enzymes as presented in venoms of advanced species as snakes. Rigorous bioinformatics analyses can aid functional annotation, but biochemical assays are prerequisite to unambiguously assign toxic function to a peptide or protein. Here we present results that experimentally confirm previously predicted proteomic analysis that crude venom extracts from tentacles of O. sambaquiensis are composed of polypeptides with metalloproteinase, serine proteinase and phospholipases A2 activities. Surprisingly, levels of serine proteinase and phospholipase A2 activities were comparable to those observed in venoms of Bothrops snakes which were used as positive controls in this study. Hence, these data offer new opportunities to explore serine proteinase and phospholipase A2 activities in the clinical sequelae following O. sambaquiensis envenomation, with future possible biopharmaceutical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity

    PubMed Central

    2011-01-01

    Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function. PMID:21272326

  4. A graph-based semantic similarity measure for the gene ontology.

    PubMed

    Alvarez, Marco A; Yan, Changhui

    2011-12-01

    Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.

  5. Emory University: High-Throughput Protein-Protein Interaction Analysis for Hippo Pathway Profiling | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Emory University used high-throughput protein-protein interaction (PPI) mapping for Hippo signaling pathway profiling to rapidly unveil promising PPIs as potential therapeutic targets and advance functional understanding of signaling circuitry in cells. Read the abstract.

  6. Linking microarray reporters with protein functions

    PubMed Central

    Gaj, Stan; van Erk, Arie; van Haaften, Rachel IM; Evelo, Chris TA

    2007-01-01

    Background The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. Results This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Conclusion Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/. PMID:17897448

  7. High throughput profile-profile based fold recognition for the entire human proteome.

    PubMed

    McGuffin, Liam J; Smith, Richard T; Bryson, Kevin; Sørensen, Søren-Aksel; Jones, David T

    2006-06-07

    In order to maintain the most comprehensive structural annotation databases we must carry out regular updates for each proteome using the latest profile-profile fold recognition methods. The ability to carry out these updates on demand is necessary to keep pace with the regular updates of sequence and structure databases. Providing the highest quality structural models requires the most intensive profile-profile fold recognition methods running with the very latest available sequence databases and fold libraries. However, running these methods on such a regular basis for every sequenced proteome requires large amounts of processing power. In this paper we describe and benchmark the JYDE (Job Yield Distribution Environment) system, which is a meta-scheduler designed to work above cluster schedulers, such as Sun Grid Engine (SGE) or Condor. We demonstrate the ability of JYDE to distribute the load of genomic-scale fold recognition across multiple independent Grid domains. We use the most recent profile-profile version of our mGenTHREADER software in order to annotate the latest version of the Human proteome against the latest sequence and structure databases in as short a time as possible. We show that our JYDE system is able to scale to large numbers of intensive fold recognition jobs running across several independent computer clusters. Using our JYDE system we have been able to annotate 99.9% of the protein sequences within the Human proteome in less than 24 hours, by harnessing over 500 CPUs from 3 independent Grid domains. This study clearly demonstrates the feasibility of carrying out on demand high quality structural annotations for the proteomes of major eukaryotic organisms. Specifically, we have shown that it is now possible to provide complete regular updates of profile-profile based fold recognition models for entire eukaryotic proteomes, through the use of Grid middleware such as JYDE.

  8. A draft annotation and overview of the human genome

    PubMed Central

    Wright, Fred A; Lemon, William J; Zhao, Wei D; Sears, Russell; Zhuo, Degen; Wang, Jian-Ping; Yang, Hee-Yung; Baer, Troy; Stredney, Don; Spitzner, Joe; Stutz, Al; Krahe, Ralf; Yuan, Bo

    2001-01-01

    Background The recent draft assembly of the human genome provides a unified basis for describing genomic structure and function. The draft is sufficiently accurate to provide useful annotation, enabling direct observations of previously inferred biological phenomena. Results We report here a functionally annotated human gene index placed directly on the genome. The index is based on the integration of public transcript, protein, and mapping information, supplemented with computational prediction. We describe numerous global features of the genome and examine the relationship of various genetic maps with the assembly. In addition, initial sequence analysis reveals highly ordered chromosomal landscapes associated with paralogous gene clusters and distinct functional compartments. Finally, these annotation data were synthesized to produce observations of gene density and number that accord well with historical estimates. Such a global approach had previously been described only for chromosomes 21 and 22, which together account for 2.2% of the genome. Conclusions We estimate that the genome contains 65,000-75,000 transcriptional units, with exon sequences comprising 4%. The creation of a comprehensive gene index requires the synthesis of all available computational and experimental evidence. PMID:11516338

  9. Functionally Enigmatic Genes: A Case Study of the Brain Ignorome

    PubMed Central

    Pandey, Ashutosh K.; Lu, Lu; Wang, Xusheng; Homayouni, Ramin; Williams, Robert W.

    2014-01-01

    What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum—a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases—ELMOD1, TMEM88B, and DZANK1—we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes. PMID:24523945

  10. Functionally enigmatic genes: a case study of the brain ignorome.

    PubMed

    Pandey, Ashutosh K; Lu, Lu; Wang, Xusheng; Homayouni, Ramin; Williams, Robert W

    2014-01-01

    What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed--the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum--a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases--ELMOD1, TMEM88B, and DZANK1--we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes.

  11. Cancer-Related Analysis of Variants Toolkit (CRAVAT) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    CRAVAT is an easy to use web-based tool for analysis of cancer variants (missense, nonsense, in-frame indel, frameshift indel, splice site). CRAVAT provides scores and a variety of annotations that assist in identification of important variants. Results are provided in an interactive, highly graphical webpage and include annotated 3D structure visualization. CRAVAT is also available for local or cloud-based installation as a Docker container. MuPIT provides 3D visualization of mutation clusters and functional annotation and is now integrated with CRAVAT.

  12. High Performance Computing Modernization Program Kerberos Throughput Test Report

    DTIC Science & Technology

    2017-10-26

    functionality as Kerberos plugins. The pre -release production kit was used in these tests to compare against the current release kit. YubiKey support...HPCMP Kerberos Throughput Test Report 3 2. THROUGHPUT TESTING 2.1 Testing Components Throughput testing was done to determine the benefits of the pre ...both the current release kit and the pre -release production kit for a total of 378 individual tests in order to note any improvements. Based on work

  13. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes

    PubMed Central

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  14. Formalization, Annotation and Analysis of Diverse Drug and Probe Screening Assay Datasets Using the BioAssay Ontology (BAO)

    PubMed Central

    Vempati, Uma D.; Przydzial, Magdalena J.; Chung, Caty; Abeyruwan, Saminda; Mir, Ahsan; Sakurai, Kunie; Visser, Ubbo; Lemmon, Vance P.; Schürer, Stephan C.

    2012-01-01

    Huge amounts of high-throughput screening (HTS) data for probe and drug development projects are being generated in the pharmaceutical industry and more recently in the public sector. The resulting experimental datasets are increasingly being disseminated via publically accessible repositories. However, existing repositories lack sufficient metadata to describe the experiments and are often difficult to navigate by non-experts. The lack of standardized descriptions and semantics of biological assays and screening results hinder targeted data retrieval, integration, aggregation, and analyses across different HTS datasets, for example to infer mechanisms of action of small molecule perturbagens. To address these limitations, we created the BioAssay Ontology (BAO). BAO has been developed with a focus on data integration and analysis enabling the classification of assays and screening results by concepts that relate to format, assay design, technology, target, and endpoint. Previously, we reported on the higher-level design of BAO and on the semantic querying capabilities offered by the ontology-indexed triple store of HTS data. Here, we report on our detailed design, annotation pipeline, substantially enlarged annotation knowledgebase, and analysis results. We used BAO to annotate assays from the largest public HTS data repository, PubChem, and demonstrate its utility to categorize and analyze diverse HTS results from numerous experiments. BAO is publically available from the NCBO BioPortal at http://bioportal.bioontology.org/ontologies/1533. BAO provides controlled terminology and uniform scope to report probe and drug discovery screening assays and results. BAO leverages description logic to formalize the domain knowledge and facilitate the semantic integration with diverse other resources. As a consequence, BAO offers the potential to infer new knowledge from a corpus of assay results, for example molecular mechanisms of action of perturbagens. PMID:23155465

  15. AutoFACT: An Automatic Functional Annotation and Classification Tool

    PubMed Central

    Koski, Liisa B; Gray, Michael W; Lang, B Franz; Burger, Gertraud

    2005-01-01

    Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1) analyzes nucleotide and protein sequence data; (2) determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3) assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4) generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at . PMID:15960857

  16. EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome

    PubMed Central

    Thibaud-Nissen, Françoise; Campbell, Matthew; Hamilton, John P; Zhu, Wei; Buell, C Robin

    2007-01-01

    Background Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation) is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1) the submission of gene annotation to an annotation project, 2) the review of the submitted models by project annotators, and 3) the incorporation of the submitted models in the ongoing annotation effort. Results We have developed the Eukaryotic Community Annotation Package (EuCAP), an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA) has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs) in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website , as well as in the Community Annotation track of the Genome Browser. Conclusion We have applied EuCAP to rice. As of July 2007, the structural and/or functional annotation of 1,094 genes representing 57 families have been deposited and integrated into the current gene set. All of the EuCAP components are open-source, thereby allowing the implementation of EuCAP for the annotation of other genomes. EuCAP is available at . PMID:17961238

  17. Segtor: Rapid Annotation of Genomic Coordinates and Single Nucleotide Variations Using Segment Trees

    PubMed Central

    Renaud, Gabriel; Neves, Pedro; Folador, Edson Luiz; Ferreira, Carlos Gil; Passetti, Fabio

    2011-01-01

    Various research projects often involve determining the relative position of genomic coordinates, intervals, single nucleotide variations (SNVs), insertions, deletions and translocations with respect to genes and their potential impact on protein translation. Due to the tremendous increase in throughput brought by the use of next-generation sequencing, investigators are routinely faced with the need to annotate very large datasets. We present Segtor, a tool to annotate large sets of genomic coordinates, intervals, SNVs, indels and translocations. Our tool uses segment trees built using the start and end coordinates of the genomic features the user wishes to use instead of storing them in a database management system. The software also produces annotation statistics to allow users to visualize how many coordinates were found within various portions of genes. Our system currently can be made to work with any species available on the UCSC Genome Browser. Segtor is a suitable tool for groups, especially those with limited access to programmers or with interest to analyze large amounts of individual genomes, who wish to determine the relative position of very large sets of mapped reads and subsequently annotate observed mutations between the reads and the reference. Segtor (http://lbbc.inca.gov.br/segtor/) is an open-source tool that can be freely downloaded for non-profit use. We also provide a web interface for testing purposes. PMID:22069465

  18. Combining evidence, biomedical literature and statistical dependence: new insights for functional annotation of gene sets

    PubMed Central

    Aubry, Marc; Monnier, Annabelle; Chicault, Celine; de Tayrac, Marie; Galibert, Marie-Dominique; Burgun, Anita; Mosser, Jean

    2006-01-01

    Background Large-scale genomic studies based on transcriptome technologies provide clusters of genes that need to be functionally annotated. The Gene Ontology (GO) implements a controlled vocabulary organised into three hierarchies: cellular components, molecular functions and biological processes. This terminology allows a coherent and consistent description of the knowledge about gene functions. The GO terms related to genes come primarily from semi-automatic annotations made by trained biologists (annotation based on evidence) or text-mining of the published scientific literature (literature profiling). Results We report an original functional annotation method based on a combination of evidence and literature that overcomes the weaknesses and the limitations of each approach. It relies on the Gene Ontology Annotation database (GOA Human) and the PubGene biomedical literature index. We support these annotations with statistically associated GO terms and retrieve associative relations across the three GO hierarchies to emphasise the major pathways involved by a gene cluster. Both annotation methods and associative relations were quantitatively evaluated with a reference set of 7397 genes and a multi-cluster study of 14 clusters. We also validated the biological appropriateness of our hybrid method with the annotation of a single gene (cdc2) and that of a down-regulated cluster of 37 genes identified by a transcriptome study of an in vitro enterocyte differentiation model (CaCo-2 cells). Conclusion The combination of both approaches is more informative than either separate approach: literature mining can enrich an annotation based only on evidence. Text-mining of the literature can also find valuable associated MEDLINE references that confirm the relevance of the annotation. Eventually, GO terms networks can be built with associative relations in order to highlight cooperative and competitive pathways and their connected molecular functions. PMID:16674810

  19. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.

    PubMed

    Song, Huwei; Zhao, Xiangxiang; Hu, Weicheng; Wang, Xinfeng; Shen, Ting; Yang, Liming

    2016-11-04

    Loquat ( Eriobotrya japonica Lindl.) is an important non-climacteric fruit and rich in essential nutrients such as minerals and carotenoids. During fruit development and ripening, thousands of the differentially expressed genes (DEGs) from various metabolic pathways cause a series of physiological and biochemical changes. To better understand the underlying mechanism of fruit development, the Solexa/Illumina RNA-seq high-throughput sequencing was used to evaluate the global changes of gene transcription levels. More than 51,610,234 high quality reads from ten runs of fruit development were sequenced and assembled into 48,838 unigenes. Among 3256 DEGs, 2304 unigenes could be annotated to the Gene Ontology database. These DEGs were distributed into 119 pathways described in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A large number of DEGs were involved in carbohydrate metabolism, hormone signaling, and cell-wall degradation. The real-time reverse transcription (qRT)-PCR analyses revealed that several genes related to cell expansion, auxin signaling and ethylene response were differentially expressed during fruit development. Other members of transcription factor families were also identified. There were 952 DEGs considered as novel genes with no annotation in any databases. These unigenes will serve as an invaluable genetic resource for loquat molecular breeding and postharvest storage.

  20. ChemicalTagger: A tool for semantic text-mining in chemistry

    PubMed Central

    2011-01-01

    Background The primary method for scientific communication is in the form of published scientific articles and theses which use natural language combined with domain-specific terminology. As such, they contain free owing unstructured text. Given the usefulness of data extraction from unstructured literature, we aim to show how this can be achieved for the discipline of chemistry. The highly formulaic style of writing most chemists adopt make their contributions well suited to high-throughput Natural Language Processing (NLP) approaches. Results We have developed the ChemicalTagger parser as a medium-depth, phrase-based semantic NLP tool for the language of chemical experiments. Tagging is based on a modular architecture and uses a combination of OSCAR, domain-specific regex and English taggers to identify parts-of-speech. The ANTLR grammar is used to structure this into tree-based phrases. Using a metric that allows for overlapping annotations, we achieved machine-annotator agreements of 88.9% for phrase recognition and 91.9% for phrase-type identification (Action names). Conclusions It is possible parse to chemical experimental text using rule-based techniques in conjunction with a formal grammar parser. ChemicalTagger has been deployed for over 10,000 patents and has identified solvents from their linguistic context with >99.5% precision. PMID:21575201

  1. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics

    PubMed Central

    Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent

    2016-01-01

    Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778

  2. Automated processing of zebrafish imaging data: a survey.

    PubMed

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  3. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  4. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    PubMed

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  5. An annotation of cuts, depicted locations, and temporal progression in the motion picture "Forrest Gump"

    PubMed Central

    Häusler, Christian O.; Hanke, Michael

    2016-01-01

    Here we present an annotation of locations and temporal progression depicted in the movie “Forrest Gump”, as an addition to a large public functional brain imaging dataset ( http://studyforrest.org). The annotation provides information about the exact timing of each of the 870 shots, and the depicted location after every cut with a high, medium, and low level of abstraction. Additionally, four classes are used to distinguish the differences of the depicted time between shots. Each shot is also annotated regarding the type of location (interior/exterior) and time of day. This annotation enables further studies of visual perception, memory of locations, and the perception of time under conditions of real-life complexity using the studyforrest dataset. PMID:27781092

  6. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  7. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.

    PubMed

    Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C

    2017-01-01

    The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.

  8. Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation

    PubMed Central

    Beijbom, Oscar; Edmunds, Peter J.; Roelfsema, Chris; Smith, Jennifer; Kline, David I.; Neal, Benjamin P.; Dunlap, Matthew J.; Moriarty, Vincent; Fan, Tung-Yung; Tan, Chih-Jui; Chan, Stephen; Treibitz, Tali; Gamst, Anthony; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys. PMID:26154157

  9. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  10. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    PubMed

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  11. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis.

    PubMed

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing

    2015-01-01

    The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.

  12. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis

    PubMed Central

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J.; Quan, Guoxing

    2015-01-01

    Background The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. Methodology and Principal Findings High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. Conclusions and Significance This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects. PMID:26244979

  13. Assaying gene function by growth competition experiment.

    PubMed

    Merritt, Joshua; Edwards, Jeremy S

    2004-07-01

    High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.

  14. High throughput system for magnetic manipulation of cells, polymers, and biomaterials

    PubMed Central

    Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.

    2008-01-01

    In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357

  15. A domain-centric solution to functional genomics via dcGO Predictor

    PubMed Central

    2013-01-01

    Background Computational/manual annotations of protein functions are one of the first routes to making sense of a newly sequenced genome. Protein domain predictions form an essential part of this annotation process. This is due to the natural modularity of proteins with domains as structural, evolutionary and functional units. Sometimes two, three, or more adjacent domains (called supra-domains) are the operational unit responsible for a function, e.g. via a binding site at the interface. These supra-domains have contributed to functional diversification in higher organisms. Traditionally functional ontologies have been applied to individual proteins, rather than families of related domains and supra-domains. We expect, however, to some extent functional signals can be carried by protein domains and supra-domains, and consequently used in function prediction and functional genomics. Results Here we present a domain-centric Gene Ontology (dcGO) perspective. We generalize a framework for automatically inferring ontological terms associated with domains and supra-domains from full-length sequence annotations. This general framework has been applied specifically to primary protein-level annotations from UniProtKB-GOA, generating GO term associations with SCOP domains and supra-domains. The resulting 'dcGO Predictor', can be used to provide functional annotation to protein sequences. The functional annotation of sequences in the Critical Assessment of Function Annotation (CAFA) has been used as a valuable opportunity to validate our method and to be assessed by the community. The functional annotation of all completely sequenced genomes has demonstrated the potential for domain-centric GO enrichment analysis to yield functional insights into newly sequenced or yet-to-be-annotated genomes. This generalized framework we have presented has also been applied to other domain classifications such as InterPro and Pfam, and other ontologies such as mammalian phenotype and disease ontology. The dcGO and its predictor are available at http://supfam.org/SUPERFAMILY/dcGO including an enrichment analysis tool. Conclusions As functional units, domains offer a unique perspective on function prediction regardless of whether proteins are multi-domain or single-domain. The 'dcGO Predictor' holds great promise for contributing to a domain-centric functional understanding of genomes in the next generation sequencing era. PMID:23514627

  16. Identification of Functional Candidates amongst Hypothetical Proteins of Treponema pallidum ssp. pallidum

    PubMed Central

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md. Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions. PMID:25894582

  17. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.

    2015-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  18. Application of Genomic Technologies to the Breeding of Trees

    PubMed Central

    Badenes, Maria L.; Fernández i Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J.

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species. PMID:27895664

  19. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

    PubMed Central

    Ryan, Natalia; Chorley, Brian; Tice, Raymond R.; Judson, Richard; Corton, J. Christopher

    2016-01-01

    Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. PMID:26865669

  20. Application of Genomic Technologies to the Breeding of Trees.

    PubMed

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.

  1. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  2. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea

    PubMed Central

    2013-01-01

    Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea. PMID:23514374

  3. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs

    PubMed Central

    Pavy, Nathalie; Parsons, Lee S; Paule, Charles; MacKay, John; Bousquet, Jean

    2006-01-01

    Background High-throughput genotyping technologies represent a highly efficient way to accelerate genetic mapping and enable association studies. As a first step toward this goal, we aimed to develop a resource of candidate Single Nucleotide Polymorphisms (SNP) in white spruce (Picea glauca [Moench] Voss), a softwood tree of major economic importance. Results A white spruce SNP resource encompassing 12,264 SNPs was constructed from a set of 6,459 contigs derived from Expressed Sequence Tags (EST) and by using the bayesian-based statistical software PolyBayes. Several parameters influencing the SNP prediction were analysed including the a priori expected polymorphism, the probability score (PSNP), and the contig depth and length. SNP detection in 3' and 5' reads from the same clones revealed a level of inconsistency between overlapping sequences as low as 1%. A subset of 245 predicted SNPs were verified through the independent resequencing of genomic DNA of a genotype also used to prepare cDNA libraries. The validation rate reached a maximum of 85% for SNPs predicted with either PSNP ≥ 0.95 or ≥ 0.99. A total of 9,310 SNPs were detected by using PSNP ≥ 0.95 as a criterion. The SNPs were distributed among 3,590 contigs encompassing an array of broad functional categories, with an overall frequency of 1 SNP per 700 nucleotide sites. Experimental and statistical approaches were used to evaluate the proportion of paralogous SNPs, with estimates in the range of 8 to 12%. The 3,789 coding SNPs identified through coding region annotation and ORF prediction, were distributed into 39% nonsynonymous and 61% synonymous substitutions. Overall, there were 0.9 SNP per 1,000 nonsynonymous sites and 5.2 SNPs per 1,000 synonymous sites, for a genome-wide nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of 0.17. Conclusion We integrated the SNP data in the ForestTreeDB database along with functional annotations to provide a tool facilitating the choice of candidate genes for mapping purposes or association studies. PMID:16824208

  4. Methodology for the inference of gene function from phenotype data.

    PubMed

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and phenotypes that would be overlooked by a semantics-based approach. Future work will include the implementation of the described algorithms for a variety of other model organism databases, taking full advantage of the abundance of available high quality curated data.

  5. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    PubMed Central

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  6. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions

    PubMed Central

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-01-01

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200

  7. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions.

    PubMed

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-09-25

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.

  8. The Arabidopsis Information Resource: Making and Mining the ‘Gold Standard’ Annotated Reference Plant Genome

    PubMed Central

    Berardini, Tanya Z.; Reiser, Leonore; Li, Donghui; Mezheritsky, Yarik; Muller, Robert; Strait, Emily; Huala, Eva

    2015-01-01

    The Arabidopsis Information Resource (TAIR) is a continuously updated, online database of genetic and molecular biology data for the model plant Arabidopsis thaliana that provides a global research community with centralized access to data for over 30,000 Arabidopsis genes. TAIR’s biocurators systematically extract, organize, and interconnect experimental data from the literature along with computational predictions, community submissions, and high throughput datasets to present a high quality and comprehensive picture of Arabidopsis gene function. TAIR provides tools for data visualization and analysis, and enables ordering of seed and DNA stocks, protein chips and other experimental resources. TAIR actively engages with its users who contribute expertise and data that augments the work of the curatorial staff. TAIR’s focus in an extensive and evolving ecosystem of online resources for plant biology is on the critically important role of extracting experimentally-based research findings from the literature and making that information computationally accessible. In response to the loss of government grant funding, the TAIR team founded a nonprofit entity, Phoenix Bioinformatics, with the aim of developing sustainable funding models for biological databases, using TAIR as a test case. Phoenix has successfully transitioned TAIR to subscription-based funding while still keeping its data relatively open and accessible. PMID:26201819

  9. Integrative network alignment reveals large regions of global network similarity in yeast and human.

    PubMed

    Kuchaiev, Oleksii; Przulj, Natasa

    2011-05-15

    High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.

  10. Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification.

    PubMed

    Etebari, K; Asgari, S

    2016-12-01

    The diamondback moth, Plutella xylostella, is the most devastating pest of brassica crops worldwide. Although 128 mature microRNAs (miRNAs) have been annotated from this species in miRBase, there is a need to extend and correct the current P. xylostella miRNA repertoire as a result of its recently improved genome assembly and more available small RNA sequence data. We used our new ultra-deep sequence data and bioinformatics to re-annotate the P. xylostella genome for high confidence miRNAs with the correct 5p and 3p arm features. Furthermore, all the P. xylostella annotated genes were also screened to identify potential miRNA binding sites using three target-predicting algorithms. In total, 203 mature miRNAs were annotated, including 33 novel miRNAs. We identified 7691 highly confident binding sites for 160 pxy-miRNAs. The data provided here will facilitate future studies involving functional analyses of P. xylostella miRNAs as a platform to introduce novel approaches for sustainable management of this destructive pest. © 2016 The Royal Entomological Society.

  11. Enhanced functionalities for annotating and indexing clinical text with the NCBO Annotator.

    PubMed

    Tchechmedjiev, Andon; Abdaoui, Amine; Emonet, Vincent; Melzi, Soumia; Jonnagaddala, Jitendra; Jonquet, Clement

    2018-06-01

    Second use of clinical data commonly involves annotating biomedical text with terminologies and ontologies. The National Center for Biomedical Ontology Annotator is a frequently used annotation service, originally designed for biomedical data, but not very suitable for clinical text annotation. In order to add new functionalities to the NCBO Annotator without hosting or modifying the original Web service, we have designed a proxy architecture that enables seamless extensions by pre-processing of the input text and parameters, and post processing of the annotations. We have then implemented enhanced functionalities for annotating and indexing free text such as: scoring, detection of context (negation, experiencer, temporality), new output formats and coarse-grained concept recognition (with UMLS Semantic Groups). In this paper, we present the NCBO Annotator+, a Web service which incorporates these new functionalities as well as a small set of evaluation results for concept recognition and clinical context detection on two standard evaluation tasks (Clef eHealth 2017, SemEval 2014). The Annotator+ has been successfully integrated into the SIFR BioPortal platform-an implementation of NCBO BioPortal for French biomedical terminologies and ontologies-to annotate English text. A Web user interface is available for testing and ontology selection (http://bioportal.lirmm.fr/ncbo_annotatorplus); however the Annotator+ is meant to be used through the Web service application programming interface (http://services.bioportal.lirmm.fr/ncbo_annotatorplus). The code is openly available, and we also provide a Docker packaging to enable easy local deployment to process sensitive (e.g. clinical) data in-house (https://github.com/sifrproject). andon.tchechmedjiev@lirmm.fr. Supplementary data are available at Bioinformatics online.

  12. Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS).

    PubMed

    Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C

    2014-06-01

    The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available. © 2014 Society for Laboratory Automation and Screening.

  13. dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts

    PubMed Central

    Vincent, Jonathan; Dai, Zhanwu; Ravel, Catherine; Choulet, Frédéric; Mouzeyar, Said; Bouzidi, M. Fouad; Agier, Marie; Martre, Pierre

    2013-01-01

    The functional annotation of genes based on sequence homology with genes from model species genomes is time-consuming because it is necessary to mine several unrelated databases. The aim of the present work was to develop a functional annotation database for common wheat Triticum aestivum (L.). The database, named dbWFA, is based on the reference NCBI UniGene set, an expressed gene catalogue built by expressed sequence tag clustering, and on full-length coding sequences retrieved from the TriFLDB database. Information from good-quality heterogeneous sources, including annotations for model plant species Arabidopsis thaliana (L.) Heynh. and Oryza sativa L., was gathered and linked to T. aestivum sequences through BLAST-based homology searches. Even though the complexity of the transcriptome cannot yet be fully appreciated, we developed a tool to easily and promptly obtain information from multiple functional annotation systems (Gene Ontology, MapMan bin codes, MIPS Functional Categories, PlantCyc pathway reactions and TAIR gene families). The use of dbWFA is illustrated here with several query examples. We were able to assign a putative function to 45% of the UniGenes and 81% of the full-length coding sequences from TriFLDB. Moreover, comparison of the annotation of the whole T. aestivum UniGene set along with curated annotations of the two model species assessed the accuracy of the annotation provided by dbWFA. To further illustrate the use of dbWFA, genes specifically expressed during the early cell division or late storage polymer accumulation phases of T. aestivum grain development were identified using a clustering analysis and then annotated using dbWFA. The annotation of these two sets of genes was consistent with previous analyses of T. aestivum grain transcriptomes and proteomes. Database URL: urgi.versailles.inra.fr/dbWFA/ PMID:23660284

  14. Unified Sequence-Based Association Tests Allowing for Multiple Functional Annotations and Meta-analysis of Noncoding Variation in Metabochip Data.

    PubMed

    He, Zihuai; Xu, Bin; Lee, Seunggeun; Ionita-Laza, Iuliana

    2017-09-07

    Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants in SLC22A3 and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-throughput In Vitro Data, High-throughput Exposure Modeling, and Physiologically-Based Pharmacokinetic/Pharmacodynamic Modeling

    EPA Science Inventory

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can...

  16. High-Throughput Sequencing and De Novo Assembly of the Isatis indigotica Transcriptome

    PubMed Central

    Tang, Xiaoqing; Xiao, Yunhua; Lv, Tingting; Wang, Fangquan; Zhu, QianHao; Zheng, Tianqing; Yang, Jie

    2014-01-01

    Background Isatis indigotica, the source of the traditional Chinese medicine Radix isatidis (Ban-Lan-Gen), is an extremely important economical crop in China. To facilitate biological, biochemical and molecular research on the medicinal chemicals in I. indigotica, here we report the first I. indigotica transcriptome generated by RNA sequencing (RNA-seq). Results RNA-seq library was created using RNA extracted from a mixed sample including leaf and root. A total of 33,238 unigenes were assembled from more than 28 million of high quality short reads. The quality of the assembly was experimentally examined by cDNA sequencing of seven randomly selected unigenes. Based on blast search 28,184 unigenes had a hit in at least one of the protein and nucleotide databases used in this study, and 8 unigenes were found to be associated with biosynthesis of indole and its derivatives. According to Gene Ontology classification, 22,365 unigenes were categorized into 48 functional groups. Furthermore, Clusters of Orthologous Group and Swiss-Port annotation were assigned for 7,707 and 18,679 unigenes, respectively. Analysis of repeat motifs identified 6,400 simple sequence repeat markers in 4,509 unigenes. Conclusion Our data provide a comprehensive sequence resource for molecular study of I. indigotica. Our results will facilitate studies on the functions of genes involved in the indole alkaloid biosynthesis pathway and on metabolism of nitrogen and indole alkaloids in I. indigotica and its related species. PMID:25259890

  17. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.

    PubMed

    Thakur, Shalabh; Guttman, David S

    2016-06-30

    Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .

  18. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less

  19. Assessing HTS Performance Using BioAssay Ontology: Screening and Analysis of a Bacterial Phospho-N-Acetylmuramoyl-Pentapeptide Translocase Campaign

    PubMed Central

    Moberg, Andreas; Hansson, Eva; Boyd, Helen

    2014-01-01

    Abstract With the public availability of biochemical assays and screening data constantly increasing, new applications for data mining and method analysis are evolving in parallel. One example is BioAssay Ontology (BAO) for systematic classification of assays based on screening setup and metadata annotations. In this article we report a high-throughput screening (HTS) against phospho-N-acetylmuramoyl-pentapeptide translocase (MraY), an attractive antibacterial drug target involved in peptidoglycan synthesis. The screen resulted in novel chemistry identification using a fluorescence resonance energy transfer assay. To address a subset of the false positive hits, a frequent hitter analysis was performed using an approach in which MraY hits were compared with hits from similar assays, previously used for HTS. The MraY assay was annotated according to BAO and three internal reference assays, using a similar assay design and detection technology, were identified. Analyzing the assays retrospectively, it was clear that both MraY and the three reference assays all showed a high false positive rate in the primary HTS assays. In the case of MraY, false positives were efficiently identified by applying a method to correct for compound interference at the hit-confirmation stage. Frequent hitter analysis based on the three reference assays with similar assay method identified additional false actives in the primary MraY assay as frequent hitters. This article demonstrates how assays annotated using BAO terms can be used to identify closely related reference assays, and that analysis based on these assays clearly can provide useful data to influence assay design, technology, and screening strategy. PMID:25415593

  20. CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics.

    PubMed

    Gai, Xiaowu; Perin, Juan C; Murphy, Kevin; O'Hara, Ryan; D'arcy, Monica; Wenocur, Adam; Xie, Hongbo M; Rappaport, Eric F; Shaikh, Tamim H; White, Peter S

    2010-02-04

    Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated projects. Available on the web at: http://sourceforge.net/projects/cnv.

Top