Sample records for high-throughput screening experiments

  1. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  2. Lessons from high-throughput protein crystallization screening: 10 years of practical experience

    PubMed Central

    JR, Luft; EH, Snell; GT, DeTitta

    2011-01-01

    Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073

  3. Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  4. MIPHENO: Data normalization for high throughput metabolic analysis.

    EPA Science Inventory

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  5. Creation of a small high-throughput screening facility.

    PubMed

    Flak, Tod

    2009-01-01

    The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility.

  6. web cellHTS2: a web-application for the analysis of high-throughput screening data.

    PubMed

    Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael

    2010-04-12

    The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  7. X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization

    PubMed Central

    Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.

    2017-01-01

    Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762

  8. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  9. Quality control methodology for high-throughput protein-protein interaction screening.

    PubMed

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  10. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.A.; Cohen, A.E.

    2009-05-26

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less

  11. Optimizing multi-dimensional high throughput screening using zebrafish

    PubMed Central

    Truong, Lisa; Bugel, Sean M.; Chlebowski, Anna; Usenko, Crystal Y.; Simonich, Michael T.; Massey Simonich, Staci L.; Tanguay, Robert L.

    2016-01-01

    The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. PMID:27453428

  12. High throughput system for magnetic manipulation of cells, polymers, and biomaterials

    PubMed Central

    Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.

    2008-01-01

    In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357

  13. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.

    PubMed

    Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen

    2015-04-15

    High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  15. Optimizing multi-dimensional high throughput screening using zebrafish.

    PubMed

    Truong, Lisa; Bugel, Sean M; Chlebowski, Anna; Usenko, Crystal Y; Simonich, Michael T; Simonich, Staci L Massey; Tanguay, Robert L

    2016-10-01

    The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Application of ToxCast High-Throughput Screening and ...

    EPA Pesticide Factsheets

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  17. Microplate-Based Method for High-Throughput Screening (HTS) of Chromatographic Conditions Studies for Recombinant Protein Purification.

    PubMed

    Carvalho, Rimenys J; Cruz, Thayana A

    2018-01-01

    High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.

  18. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    PubMed

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  19. RODENT AND HUMAN NEUROPROGENITOR CELLS FOR HIGH-CONTENT SCREENS OF CHEMICAL EFFECTS ON PROLIFERATION AND APOPTOSIS

    EPA Science Inventory

    The objective of these experiments is to develop high-throughput screens for proliferation and apoptosis in order to compare rodent and human neuroprogenitor cell responses to potential developmental neurotoxicants. Effects of 4 chemicals on proliferation and apoptosis in mouse c...

  20. High Throughput Transcriptomics: From screening to pathways

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  1. Detection of COPB2 as a KRAS synthetic lethal partner through integration of functional genomics screens

    PubMed Central

    Christodoulou, Eleni G.; Yang, Hai; Lademann, Franziska; Pilarsky, Christian; Beyer, Andreas; Schroeder, Michael

    2017-01-01

    Mutated KRAS plays an important role in many cancers. Although targeting KRAS directly is difficult, indirect inactivation via synthetic lethal partners (SLPs) is promising. Yet to date, there are no SLPs from high-throughput RNAi screening, which are supported by multiple screens. Here, we address this problem by aggregating and ranking data over three independent high-throughput screens. We integrate rankings by minimizing the displacement and by considering established methods such as RIGER and RSA. Our meta analysis reveals COPB2 as a potential SLP of KRAS with good support from all three screens. COPB2 is a coatomer subunit and its knock down has already been linked to disabled autophagy and reduced tumor growth. We confirm COPB2 as SLP in knock down experiments on pancreas and colorectal cancer cell lines. Overall, consistent integration of high throughput data can generate candidate synthetic lethal partners, which individual screens do not uncover. Concretely, we reveal and confirm that COPB2 is a synthetic lethal partner of KRAS and hence a promising cancer target. Ligands inhibiting COPB2 may, therefore, be promising new cancer drugs. PMID:28415695

  2. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  3. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  4. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  5. Strategic and Operational Plan for Integrating Transcriptomics ...

    EPA Pesticide Factsheets

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  6. High-throughput screening (HTS) and modeling of the retinoid ...

    EPA Pesticide Factsheets

    Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system

  7. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  8. Automated analysis of siRNA screens of cells infected by hepatitis C and dengue viruses based on immunofluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    2008-03-01

    We present an image analysis approach as part of a high-throughput microscopy siRNA-based screening system using cell arrays for the identification of cellular genes involved in hepatitis C and dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in the neighborhood of segmented cell nuclei, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment and single images. In particular, we propose a novel approach for the localization of regions of transfected cells within cell array images, which combines model-based circle fitting and grid fitting. By this scheme we integrate information from single cell array images and knowledge from the complete cell arrays. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behaviour of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  9. Compound Transfer by Acoustic Droplet Ejection Promotes Quality and Efficiency in Ultra-High-Throughput Screening Campaigns.

    PubMed

    Dawes, Timothy D; Turincio, Rebecca; Jones, Steven W; Rodriguez, Richard A; Gadiagellan, Dhireshan; Thana, Peter; Clark, Kevin R; Gustafson, Amy E; Orren, Linda; Liimatta, Marya; Gross, Daniel P; Maurer, Till; Beresini, Maureen H

    2016-02-01

    Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed. © 2015 Society for Laboratory Automation and Screening.

  10. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  11. High-throughput, image-based screening of pooled genetic variant libraries

    PubMed Central

    Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2018-01-01

    Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401

  12. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    EPA Science Inventory

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  13. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    PubMed Central

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-01-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10−3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc– or V–porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials. PMID:26902156

  14. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.

    PubMed

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I; Lee, Hoonkyung

    2016-02-23

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  15. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, Chihye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-02-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10-3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  16. A multilayer microdevice for cell-based high-throughput drug screening

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Wang, Lei; Xu, Zheng; Li, Jingmin; Ding, Xiping; Wang, Qi; Chunyu, Li

    2012-06-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption.

  17. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Lagus, Todd P.; Edd, Jon F.

    2013-03-01

    Most cell biology experiments are performed in bulk cell suspensions where cell secretions become diluted and mixed in a contiguous sample. Confinement of single cells to small, picoliter-sized droplets within a continuous phase of oil provides chemical isolation of each cell, creating individual microreactors where rare cell qualities are highlighted and otherwise undetectable signals can be concentrated to measurable levels. Recent work in microfluidics has yielded methods for the encapsulation of cells in aqueous droplets and hydrogels at kilohertz rates, creating the potential for millions of parallel single-cell experiments. However, commercial applications of high-throughput microdroplet generation and downstream sensing and actuation methods are still emerging for cells. Using fluorescence-activated cell sorting (FACS) as a benchmark for commercially available high-throughput screening, this focused review discusses the fluid physics of droplet formation, methods for cell encapsulation in liquids and hydrogels, sensors and actuators and notable biological applications of high-throughput single-cell droplet microfluidics.

  18. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    EPA Science Inventory

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  19. Pipeline for illumination correction of images for high-throughput microscopy.

    PubMed

    Singh, S; Bray, M-A; Jones, T R; Carpenter, A E

    2014-12-01

    The presence of systematic noise in images in high-throughput microscopy experiments can significantly impact the accuracy of downstream results. Among the most common sources of systematic noise is non-homogeneous illumination across the image field. This often adds an unacceptable level of noise, obscures true quantitative differences and precludes biological experiments that rely on accurate fluorescence intensity measurements. In this paper, we seek to quantify the improvement in the quality of high-content screen readouts due to software-based illumination correction. We present a straightforward illumination correction pipeline that has been used by our group across many experiments. We test the pipeline on real-world high-throughput image sets and evaluate the performance of the pipeline at two levels: (a) Z'-factor to evaluate the effect of the image correction on a univariate readout, representative of a typical high-content screen, and (b) classification accuracy on phenotypic signatures derived from the images, representative of an experiment involving more complex data mining. We find that applying the proposed post-hoc correction method improves performance in both experiments, even when illumination correction has already been applied using software associated with the instrument. To facilitate the ready application and future development of illumination correction methods, we have made our complete test data sets as well as open-source image analysis pipelines publicly available. This software-based solution has the potential to improve outcomes for a wide-variety of image-based HTS experiments. © 2014 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  20. An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery

    PubMed Central

    Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing

    2010-01-01

    The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897

  1. High-throughput measurements of biochemical responses using the plate::vision multimode 96 minilens array reader.

    PubMed

    Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich

    2006-01-01

    The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.

  2. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    PubMed

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  3. Metabolomics Approach for Toxicity Screening of Volatile Substances

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However, the ch...

  4. A simple and sensitive high-throughput GFP screening in woody and herbaceous plants.

    PubMed

    Hily, Jean-Michel; Liu, Zongrang

    2009-03-01

    Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T(0) seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.

  5. Microfluidics for cell-based high throughput screening platforms - A review.

    PubMed

    Du, Guansheng; Fang, Qun; den Toonder, Jaap M J

    2016-01-15

    In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  7. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  8. Inhibition of Retinoblastoma Protein Inactivation

    DTIC Science & Technology

    2017-11-01

    SUBJECT TERMS cell cycle, Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY...screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor, cancer, cell-cycle inhibition, activation...modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography . 3.0 ACCOMPLISHMENTS Summary: We

  9. Droplet microfluidic technology for single-cell high-throughput screening.

    PubMed

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-08-25

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.

  10. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...

  11. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  12. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  13. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  14. Inhibition of Retinoblastoma Protein Inactivation

    DTIC Science & Technology

    2016-09-01

    Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY CLASSIFICATION OF: 17...developed a method to perform fragment based screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor...cancer, cell-cycle inhibition, activation, modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography

  15. Screening a library of household substances for inhibitors of phosphatases: An introduction to high-throughput screening.

    PubMed

    Taylor, Ann T S

    2005-01-01

    Library screening methods are commonly used in industry and research. This article describes an experiment that screens a library of household substances for properties that would make a good "drug," including enzyme inhibition, neutral pH, and nondenaturing to proteins, using wheat germ acid phosphatase as the target protein. An adaptation of the experiment appropriate for lower level biochemistry or outreach is also described. This work was supported by Wabash College through the Haines Fund for the Study of Biochemistry and the National Science Foundation through Grant DUE 0126242. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.

  16. Protocols and programs for high-throughput growth and aging phenotyping in yeast.

    PubMed

    Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L

    2015-01-01

    In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.

  17. Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.

    PubMed

    Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S

    2014-06-01

    Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.

  18. Adaptation to high throughput batch chromatography enhances multivariate screening.

    PubMed

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  20. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors within the ToxCast Phase I and II Chemical Libraries

    EPA Science Inventory

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limi...

  1. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    EPA Science Inventory

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  2. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects.

    PubMed

    Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.

  3. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.

    PubMed

    Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy

    2006-08-01

    Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.

  4. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR library

    PubMed Central

    Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng

    2017-01-01

    CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563

  5. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  6. Evaluation of Compatibility of ToxCast High-Throughput/High-Content Screening Assays with Engineered Nanomaterials

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  7. Uncertainty Quantification in High Throughput Screening: Applications to Models of Endocrine Disruption, Cytotoxicity, and Zebrafish Development (GRC Drug Safety)

    EPA Science Inventory

    Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of bioche...

  8. High-Throughput Screening and Quantitative Chemical Ranking for Sodium Iodide Symporter Inhibitors in ToxCast Phase 1 Chemical Library

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide...

  9. High-Throughput Screening and Quantitative Chemical Ranking for Sodium Iodide Symporter Inhibitors in ToxCast Phase 1 Chemical Library

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide sympo...

  10. High-throughput cultivation and screening platform for unicellular phototrophs.

    PubMed

    Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus

    2014-09-16

    High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.

  11. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  12. Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.

    PubMed

    Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi

    2008-09-19

    Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.

  13. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Waki, Atsuo; Okuyama, Hiroaki; Inoue, Masahiro; Itoh, Manabu; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Sogawa, Chizuru; Kiyono, Yasushi; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2015-05-01

    Anti-cancer drug development typically utilizes high-throughput screening with two-dimensional (2D) cell culture. However, 2D culture induces cellular characteristics different from tumors in vivo, resulting in inefficient drug development. Here, we report an innovative high-throughput screening system using nanoimprinting 3D culture to simulate in vivo conditions, thereby facilitating efficient drug development. We demonstrated that cell line-based nanoimprinting 3D screening can more efficiently select drugs that effectively inhibit cancer growth in vivo as compared to 2D culture. Metabolic responses after treatment were assessed using positron emission tomography (PET) probes, and revealed similar characteristics between the 3D spheroids and in vivo tumors. Further, we developed an advanced method to adopt cancer cells from patient tumor tissues for high-throughput drug screening with nanoimprinting 3D culture, which we termed Cancer tissue-Originated Uniformed Spheroid Assay (COUSA). This system identified drugs that were effective in xenografts of the original patient tumors. Nanoimprinting 3D spheroids showed low permeability and formation of hypoxic regions inside, similar to in vivo tumors. Collectively, the nanoimprinting 3D culture provides easy-handling high-throughput drug screening system, which allows for efficient drug development by mimicking the tumor environment. The COUSA system could be a useful platform for drug development with patient cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.

    EPA Science Inventory

    As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...

  15. Using Weighted Entropy to Rank Chemicals in Quantitative High Throughput Screening Experiments

    PubMed Central

    Shockley, Keith R.

    2014-01-01

    Quantitative high throughput screening (qHTS) experiments can simultaneously produce concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large chemical library is subjected to a primary screen in order to identify candidate hits for secondary screening, validation studies or prediction modeling. Different algorithms, usually based on the Hill equation logistic model, have been used to classify compounds as active or inactive (or inconclusive). However, observed concentration-response activity relationships may not adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-up studies given the large uncertainties that often accompany parameter estimates from nonlinear models. Weighted Shannon entropy can address these concerns by ranking compounds according to profile-specific statistics derived from estimates of the probability mass distribution of response at the tested concentration levels. This strategy can be used to rank all tested chemicals in the absence of a pre-specified model structure or the approach can complement existing activity call algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated here using data simulated from the Hill equation model. The procedure was then applied to a chemical genomics profiling data set interrogating compounds for androgen receptor agonist activity. PMID:24056003

  16. Development of a thyroperoxidase inhibition assay for high-throughput screening

    EPA Science Inventory

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluores...

  17. High-throughput screening, predictive modeling and computational embryology - Abstract

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  18. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  19. Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose-response data.

    PubMed

    Mpindi, John-Patrick; Swapnil, Potdar; Dmitrii, Bychkov; Jani, Saarela; Saeed, Khalid; Wennerberg, Krister; Aittokallio, Tero; Östling, Päivi; Kallioniemi, Olli

    2015-12-01

    Most data analysis tools for high-throughput screening (HTS) seek to uncover interesting hits for further analysis. They typically assume a low hit rate per plate. Hit rates can be dramatically higher in secondary screening, RNAi screening and in drug sensitivity testing using biologically active drugs. In particular, drug sensitivity testing on primary cells is often based on dose-response experiments, which pose a more stringent requirement for data quality and for intra- and inter-plate variation. Here, we compared common plate normalization and noise-reduction methods, including the B-score and the Loess a local polynomial fit method under high hit-rate scenarios of drug sensitivity testing. We generated simulated 384-well plate HTS datasets, each with 71 plates having a range of 20 (5%) to 160 (42%) hits per plate, with controls placed either at the edge of the plates or in a scattered configuration. We identified 20% (77/384) as the critical hit-rate after which the normalizations started to perform poorly. Results from real drug testing experiments supported this estimation. In particular, the B-score resulted in incorrect normalization of high hit-rate plates, leading to poor data quality, which could be attributed to its dependency on the median polish algorithm. We conclude that a combination of a scattered layout of controls per plate and normalization using a polynomial least squares fit method, such as Loess helps to reduce column, row and edge effects in HTS experiments with high hit-rates and is optimal for generating accurate dose-response curves. john.mpindi@helsinki.fi. Supplementary information: R code and Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  20. High Throughput, High Content Screening for Novel Pigmentation Regulators Using a Keratinocyte/Melanocyte Co-culture System

    PubMed Central

    Lee, Ju Hee; Chen, Hongxiang; Kolev, Vihren; Aull, Katherine H.; Jung, Inhee; Wang, Jun; Miyamoto, Shoko; Hosoi, Junichi; Mandinova, Anna; Fisher, David E.

    2014-01-01

    Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of MITF and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4,000 screened compounds including zoxazolamine, 3-methoxycatechol, and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors, and are worthy of further evaluation for potential translation to clinical use. PMID:24438532

  1. State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet

    EPA Pesticide Factsheets

    State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)

  2. Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

    EPA Science Inventory

    Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multip...

  3. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  4. AOPs and Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making

    EPA Science Inventory

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will b...

  5. tcpl: The ToxCast Pipeline for High-Throughput Screening Data

    EPA Science Inventory

    Motivation: The large and diverse high-throughput chemical screening efforts carried out by the US EPAToxCast program requires an efficient, transparent, and reproducible data pipeline.Summary: The tcpl R package and its associated MySQL database provide a generalized platform fo...

  6. High-throughput screening, predictive modeling and computational embryology

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  7. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  8. Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology.

    PubMed

    Duarte, José M; Barbier, Içvara; Schaerli, Yolanda

    2017-11-17

    Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.

  9. Assaying gene function by growth competition experiment.

    PubMed

    Merritt, Joshua; Edwards, Jeremy S

    2004-07-01

    High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.

  10. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    EPA Science Inventory

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  11. Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays

    EPA Science Inventory

    Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...

  12. A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs.

    PubMed

    Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo

    2008-01-23

    To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.

  13. Identifying Toxicity Pathways with ToxCast High-Throughput Screening and Applications to Predicting Developmental Toxicity

    EPA Science Inventory

    Results from rodent and non-rodent prenatal developmental toxicity tests for over 300 chemicals have been curated into the relational database ToxRefDB. These same chemicals have been run in concentration-response format through over 500 high-throughput screening assays assessin...

  14. SeqAPASS to evaluate conservation of high-throughput screening targets across non-mammalian species

    EPA Science Inventory

    Cell-based high-throughput screening (HTS) and computational technologies are being applied as tools for toxicity testing in the 21st century. The U.S. Environmental Protection Agency (EPA) embraced these technologies and created the ToxCast Program in 2007, which has served as a...

  15. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program

    EPA Science Inventory

    There are thousands of chemicals that are directly added to or come in contact with food, many of which have undergone little to no toxicological evaluation. The ToxCast high-throughput screening (HTS) program has evaluated over 1,800 chemicals in concentration-response across ~8...

  16. Application of Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for Interpretation of High-throughput Screening Assay for Thyroperoxidase Inhibition

    EPA Science Inventory

    In vitro based assays are used to identify potential endocrine disrupting chemicals. Thyroperoxidase (TPO), an enzyme essential for thyroid hormone (TH) synthesis, is a target site for disruption of the thyroid axis for which a high-throughput screening (HTPS) assay has recently ...

  17. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  18. Neural Progenitor Cells as Models for High-Throughput Screens of Developmental Neurotoxicity: State of the Science

    EPA Science Inventory

    In vitro, high-throughput approaches have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramificat...

  19. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening*

    EPA Science Inventory

    AbstractHigh-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may ...

  20. Integrated Model of Chemical Perturbations of a Biological PathwayUsing 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    EPA Science Inventory

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity pa...

  1. tcpl: the ToxCast pipeline for high-throughput screening data.

    PubMed

    Filer, Dayne L; Kothiya, Parth; Setzer, R Woodrow; Judson, Richard S; Martin, Matthew T

    2017-02-15

    Large high-throughput screening (HTS) efforts are widely used in drug development and chemical toxicity screening. Wide use and integration of these data can benefit from an efficient, transparent and reproducible data pipeline. Summary: The tcpl R package and its associated MySQL database provide a generalized platform for efficiently storing, normalizing and dose-response modeling of large high-throughput and high-content chemical screening data. The novel dose-response modeling algorithm has been tested against millions of diverse dose-response series, and robustly fits data with outliers and cytotoxicity-related signal loss. tcpl is freely available on the Comprehensive R Archive Network under the GPL-2 license. martin.matt@epa.gov. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  2. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    PubMed

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  3. A high throughput mechanical screening device for cartilage tissue engineering.

    PubMed

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  4. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models.

    PubMed

    Hop, Cornelis E C A; Cole, Mark J; Davidson, Ralph E; Duignan, David B; Federico, James; Janiszewski, John S; Jenkins, Kelly; Krueger, Suzanne; Lebowitz, Rebecca; Liston, Theodore E; Mitchell, Walter; Snyder, Mark; Steyn, Stefan J; Soglia, John R; Taylor, Christine; Troutman, Matt D; Umland, John; West, Michael; Whalen, Kevin M; Zelesky, Veronica; Zhao, Sabrina X

    2008-11-01

    Evaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data. All steps will be described in detail and the value of the data on drug discovery projects will be discussed as well. Finally, in vitro ADME screening can generate large quantities of data obtained under identical conditions to allow building of reliable in silico models.

  5. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    PubMed

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  6. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation

    PubMed Central

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G.; Garraway, Levi A.; Struhl, Kevin

    2015-01-01

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment. PMID:25902495

  7. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation.

    PubMed

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G; Garraway, Levi A; Struhl, Kevin

    2015-05-05

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment.

  8. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    PubMed

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  9. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis

    PubMed Central

    Bharat, Amrita; Blanchard, Jan E.; Brown, Eric D.

    2014-01-01

    The synthesis of ribosomes is an essential process, which is aided by a variety of transacting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Further, we describe the elimination of non-specific inhibitors that were detergent-sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counter-screens for non-specificity but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis. PMID:23606650

  10. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  11. High Throughput Determination of Critical Human Dosing Parameters (SOT)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...

  12. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  13. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  14. High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.

    PubMed

    Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.

  15. High-throughput screening by Nuclear Magnetic Resonance (HTS by NMR) for the identification of PPIs antagonists

    PubMed Central

    Wu, Bainan; Barile, Elisa; De, Surya K.; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications. PMID:25986689

  16. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less

  17. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.

    PubMed

    Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui

    2014-11-21

    Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.

  18. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  19. An industrial engineering approach to laboratory automation for high throughput screening

    PubMed Central

    Menke, Karl C.

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation. PMID:18924701

  20. Evaluation of High-throughput Genotoxicity Assays Used in Profiling the US EPA ToxCast Chemicals

    EPA Science Inventory

    Three high-throughput screening (HTS) genotoxicity assays-GreenScreen HC GADD45a-GFP (Gentronix Ltd.), CellCiphr p53 (Cellumen Inc.) and CellSensor p53RE-bla (Invitrogen Corp.)-were used to analyze the collection of 320 predominantly pesticide active compounds being tested in Pha...

  1. Collaborative Core Research Program for Chemical-Biological Warfare Defense

    DTIC Science & Technology

    2015-01-04

    Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD...Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD) Current pharmaceutical approaches involving drug discovery...structural analysis and docking program generally known as fragment based drug design (FBDD). The main advantage of using these approaches is that

  2. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    EPA Science Inventory

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  3. High-throughput screening and small animal models, where are we?

    PubMed Central

    Giacomotto, Jean; Ségalat, Laurent

    2010-01-01

    Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day. PMID:20423335

  4. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening

    NASA Astrophysics Data System (ADS)

    Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.

  5. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

    NASA Astrophysics Data System (ADS)

    Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.

    2013-06-01

    High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a "library" sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same "library" sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome Initiative. Thus, the challenge for combinatorial methodology will be the effective coupling of synthesis, characterization and theory, and the ability to rapidly manage large amounts of data in a variety of formats.

  6. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  7. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    PubMed

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  8. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis

    PubMed Central

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.

    2013-01-01

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484

  9. Identification of Novel "Inks" for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery.

    PubMed

    Louzao, Iria; Koch, Britta; Taresco, Vincenzo; Ruiz-Cantu, Laura; Irvine, Derek J; Roberts, Clive J; Tuck, Christopher; Alexander, Cameron; Hague, Richard; Wildman, Ricky; Alexander, Morgan R

    2018-02-28

    A robust methodology is presented to identify novel biomaterials suitable for three-dimensional (3D) printing. Currently, the application of additive manufacturing is limited by the availability of functional inks, especially in the area of biomaterials; this is the first time when this method is used to tackle this problem, allowing hundreds of formulations to be readily assessed. Several functional properties, including the release of an antidepressive drug (paroxetine), cytotoxicity, and printability, are screened for 253 new ink formulations in a high-throughput format as well as mechanical properties. The selected candidates with the desirable properties are successfully scaled up using 3D printing into a range of object architectures. A full drug release study and degradability and tensile modulus experiments are presented on a simple architecture to validating the suitability of this methodology to identify printable inks for 3D printing devices with bespoke properties.

  10. Accessible high-throughput virtual screening molecular docking software for students and educators.

    PubMed

    Jacob, Reed B; Andersen, Tim; McDougal, Owen M

    2012-05-01

    We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.

  11. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  12. Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations.

    PubMed

    Erickson, Heidi S

    2012-09-28

    The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.

  13. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?

    PubMed

    Taylor, Jessica; Woodcock, Simon

    2015-09-01

    For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery. © 2015 Society for Laboratory Automation and Screening.

  14. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    EPA Science Inventory

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  15. Improvement of High-throughput Genotype Analysis After Implementation of a Dual-curve Sybr Green I-based Quantification and Normalization Procedure

    USDA-ARS?s Scientific Manuscript database

    The ability to rapidly screen a large number of individuals is the key to any successful plant breeding program. One of the primary bottlenecks in high throughput screening is the preparation of DNA samples, particularly the quantification and normalization of samples for downstream processing. A ...

  16. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  17. Use of FRTL-5 Cell Line as a Complementary Assay for Chemicals Identified During High-Throughput Screening as Sodium/Iodide Symporter (NIS) Inhibitors

    EPA Science Inventory

    Confirmation of Test Chemicals Identified by a High-Throughput Screen (HTPS) as Sodium Iodide Symporter (NIS) Inhibitors in FRTL-5 Model S. Laws1, A. Buckalew1, J. Wang2, D. Hallinger1, A. Murr1, and T. Stoker1. 1Endocrin...

  18. Computational Toxicology as Implemented by the U.S. EPA: Providing High Throughput Decision Support Tools for Screening and Assessing Chemical Exposure, Hazard and Risk

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environ...

  19. Use of Threshold of Toxicological Concern (TTC) with High Throughput Exposure Predictions as a Risk-Based Screening Approach of Several Thousand Commodity Chemicals (SOT Poster)

    EPA Science Inventory

    Although progress has been made with HTS (high throughput screening) in profiling biological activity (e.g., EPA’s ToxCast™), challenges arise interpreting HTS results in the context of adversity & converting HTS assay concentrations to equivalent human doses for the broad domain...

  20. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  1. Using adverse outcome pathway analysis to guide development of high-throughput screening assays for thyroid-disruptors

    EPA Science Inventory

    Using Adverse Outcome Pathway Analysis to Guide Development of High-Throughput Screening Assays for Thyroid-Disruptors Katie B. Paul1,2, Joan M. Hedge2, Daniel M. Rotroff4, Kevin M. Crofton4, Michael W. Hornung3, Steven O. Simmons2 1Oak Ridge Institute for Science Education Post...

  2. A novel assay for monoacylglycerol hydrolysis suitable for high-throughput screening.

    PubMed

    Brengdahl, Johan; Fowler, Christopher J

    2006-12-01

    A simple assay for monoacylglycerol hydrolysis suitable for high-throughput screening is described. The assay uses [(3)H]2-oleoylglycerol as substrate, with the tritium label in the glycerol part of the molecule and the use of phenyl sepharose gel to separate the hydrolyzed product ([(3)H]glycerol) from substrate. Using cytosolic fractions derived from rat cerebella as a source of hydrolytic activity, the assay gives the appropriate pH profile and sensitivity to inhibition with compounds known to inhibit hydrolysis of this substrate. The assay could also be adapted to a 96-well plate format, using C6 cells as the source of hydrolytic activity. Thus the assay is simple and appropriate for high-throughput screening of inhibitors of monoacylglycerol hydrolysis.

  3. Multi-tiered Approach to Development of Increased Throughput Assay Models to Assess Endocrine-Disrupting Activity of Chemicals

    EPA Science Inventory

    Screening for endocrine-disrupting chemicals (EDCs) requires sensitive, scalable assays. Current high-throughput screening (HTPS) approaches for estrogenic and androgenic activity yield rapid results, but many are not sensitive to physiological hormone concentrations, suggesting ...

  4. Use of early passage fetal intestinal epithelial cells in semi-high-throughput screening assays: an approach to identify new innate immune system adjuvants.

    PubMed

    Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A

    2006-09-01

    Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.

  5. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.

    PubMed

    Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen

    2013-09-09

    Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.

  6. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection

    PubMed Central

    Choudhry, Priya

    2016-01-01

    Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays. PMID:26848849

  7. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    NASA Astrophysics Data System (ADS)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  8. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens

    PubMed Central

    Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC

    2008-01-01

    Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020

  9. High throughput and miniaturised systems for biodegradability assessments.

    PubMed

    Cregut, Mickael; Jouanneau, Sulivan; Brillet, François; Durand, Marie-José; Sweetlove, Cyril; Chenèble, Jean-Charles; L'Haridon, Jacques; Thouand, Gérald

    2014-01-01

    The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.

  10. Lead discovery for mammalian elongation of long chain fatty acids family 6 using a combination of high-throughput fluorescent-based assay and RapidFire mass spectrometry assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Mari; Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama; Sakurai, Masaaki

    A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed amore » RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive {sup 14}C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6. - Highlights: • A novel assay for elongation of very-long-chain fatty acids 6 (Elovl6) is proposed. • RapidFire mass spectrometry (RF-MS) assay is useful to select real screening hits. • RF-MS assay is proved to be beneficial because of its high-throughput and accuracy. • A combination of fluorescent and RF-MS assays is effective for Elovl6 inhibitors.« less

  11. Development and Implementation of a High Throughput Screen for the Human Sperm-Specific Isoform of Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDHS)

    PubMed Central

    Sexton, Jonathan Z; Danshina, Polina V; Lamson, David R; Hughes, Mark; House, Alan J; Yeh, Li-An; O’Brien, Deborah A; Williams, Kevin P

    2011-01-01

    Glycolytic isozymes that are restricted to the male germline are potential targets for the development of reversible, non-hormonal male contraceptives. GAPDHS, the sperm-specific isoform of glyceraldehyde-3-phosphate dehydrogenase, is an essential enzyme for glycolysis making it an attractive target for rational drug design. Toward this goal, we have optimized and validated a high-throughput spectrophotometric assay for GAPDHS in 384-well format. The assay was stable over time and tolerant to DMSO. Whole plate validation experiments yielded Z’ values >0.8 indicating a robust assay for HTS. Two compounds were identified and confirmed from a test screen of the Prestwick collection. This assay was used to screen a diverse chemical library and identified fourteen small molecules that modulated the activity of recombinant purified GAPDHS with confirmed IC50 values ranging from 1.8 to 42 µM. These compounds may provide useful scaffolds as molecular tools to probe the role of GAPDHS in sperm motility and long term to develop potent and selective GAPDHS inhibitors leading to novel contraceptive agents. PMID:21760877

  12. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    PubMed

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  13. High-Throughput RT-PCR for small-molecule screening assays

    PubMed Central

    Bittker, Joshua A.

    2012-01-01

    Quantitative measurement of the levels of mRNA expression using real-time reverse transcription polymerase chain reaction (RT-PCR) has long been used for analyzing expression differences in tissue or cell lines of interest. This method has been used somewhat less frequently to measure the changes in gene expression due to perturbagens such as small molecules or siRNA. The availability of new instrumentation for liquid handling and real-time PCR analysis as well as the commercial availability of start-to-finish kits for RT-PCR has enabled the use of this method for high-throughput small-molecule screening on a scale comparable to traditional high-throughput screening (HTS) assays. This protocol focuses on the special considerations necessary for using quantitative RT-PCR as a primary small-molecule screening assay, including the different methods available for mRNA isolation and analysis. PMID:23487248

  14. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  15. Enhancing high throughput toxicology - development of putative adverse outcome pathways linking US EPA ToxCast screening targets to relevant apical hazards.

    EPA Science Inventory

    High throughput toxicology programs, such as ToxCast and Tox21, have provided biological effects data for thousands of chemicals at multiple concentrations. Compared to traditional, whole-organism approaches, high throughput assays are rapid and cost-effective, yet they generall...

  16. Evaluation of High-Throughput Chemical Exposure Models via Analysis of Matched Environmental and Biological Media Measurements

    EPA Science Inventory

    The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer ...

  17. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  18. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.

    PubMed

    Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R

    2014-08-01

    Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.

  19. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.

    PubMed

    Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir

    2015-11-01

    Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. High-throughput in Vitro Data To Inform Prioritization of Ambient Water Monitoring and Testing for Endocrine Active Chemicals.

    PubMed

    Heiger-Bernays, Wendy J; Wegner, Susanna; Dix, David J

    2018-01-16

    The presence of industrial chemicals, consumer product chemicals, and pharmaceuticals is well documented in waters in the U.S. and globally. Most of these chemicals lack health-protective guidelines and many have been shown to have endocrine bioactivity. There is currently no systematic or national prioritization for monitoring waters for chemicals with endocrine disrupting activity. We propose ambient water bioactivity concentrations (AWBCs) generated from high throughput data as a health-based screen for endocrine bioactivity of chemicals in water. The U.S. EPA ToxCast program has screened over 1800 chemicals for estrogen receptor (ER) and androgen receptor (AR) pathway bioactivity. AWBCs are calculated for 110 ER and 212 AR bioactive chemicals using high throughput ToxCast data from in vitro screening assays and predictive pathway models, high-throughput toxicokinetic data, and data-driven assumptions about consumption of water. Chemical-specific AWBCs are compared with measured water concentrations in data sets from the greater Denver area, Minnesota lakes, and Oregon waters, demonstrating a framework for identifying endocrine bioactive chemicals. This approach can be used to screen potential cumulative endocrine activity in drinking water and to inform prioritization of future monitoring, chemical testing and pollution prevention efforts.

  1. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  2. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  3. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    PubMed

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  4. High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules.

    PubMed

    Çakir, Seda; Bauters, Erwin; Rivero, Guadalupe; Parasote, Tom; Paul, Johan; Du Prez, Filip E

    2017-07-10

    The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.

  5. Miniaturization of High-Throughput Epigenetic Methyltransferase Assays with Acoustic Liquid Handling.

    PubMed

    Edwards, Bonnie; Lesnick, John; Wang, Jing; Tang, Nga; Peters, Carl

    2016-02-01

    Epigenetics continues to emerge as an important target class for drug discovery and cancer research. As programs scale to evaluate many new targets related to epigenetic expression, new tools and techniques are required to enable efficient and reproducible high-throughput epigenetic screening. Assay miniaturization increases screening throughput and reduces operating costs. Echo liquid handlers can transfer compounds, samples, reagents, and beads in submicroliter volumes to high-density assay formats using only acoustic energy-no contact or tips required. This eliminates tip costs and reduces the risk of reagent carryover. In this study, we demonstrate the miniaturization of a methyltransferase assay using Echo liquid handlers and two different assay technologies: AlphaLISA from PerkinElmer and EPIgeneous HTRF from Cisbio. © 2015 Society for Laboratory Automation and Screening.

  6. Fluorescence-based high-throughput screening of dicer cleavage activity.

    PubMed

    Podolska, Katerina; Sedlak, David; Bartunek, Petr; Svoboda, Petr

    2014-03-01

    Production of small RNAs by ribonuclease III Dicer is a key step in microRNA and RNA interference pathways, which employ Dicer-produced small RNAs as sequence-specific silencing guides. Further studies and manipulations of microRNA and RNA interference pathways would benefit from identification of small-molecule modulators. Here, we report a study of a fluorescence-based in vitro Dicer cleavage assay, which was adapted for high-throughput screening. The kinetic assay can be performed under single-turnover conditions (35 nM substrate and 70 nM Dicer) in a small volume (5 µL), which makes it suitable for high-throughput screening in a 1536-well format. As a proof of principle, a small library of bioactive compounds was analyzed, demonstrating potential of the assay.

  7. Influence relevance voting: an accurate and interpretable virtual high throughput screening method.

    PubMed

    Swamidass, S Joshua; Azencott, Chloé-Agathe; Lin, Ting-Wan; Gramajo, Hugo; Tsai, Shiou-Chuan; Baldi, Pierre

    2009-04-01

    Given activity training data from high-throughput screening (HTS) experiments, virtual high-throughput screening (vHTS) methods aim to predict in silico the activity of untested chemicals. We present a novel method, the Influence Relevance Voter (IRV), specifically tailored for the vHTS task. The IRV is a low-parameter neural network which refines a k-nearest neighbor classifier by nonlinearly combining the influences of a chemical's neighbors in the training set. Influences are decomposed, also nonlinearly, into a relevance component and a vote component. The IRV is benchmarked using the data and rules of two large, open, competitions, and its performance compared to the performance of other participating methods, as well as of an in-house support vector machine (SVM) method. On these benchmark data sets, IRV achieves state-of-the-art results, comparable to the SVM in one case, and significantly better than the SVM in the other, retrieving three times as many actives in the top 1% of its prediction-sorted list. The IRV presents several other important advantages over SVMs and other methods: (1) the output predictions have a probabilistic semantic; (2) the underlying inferences are interpretable; (3) the training time is very short, on the order of minutes even for very large data sets; (4) the risk of overfitting is minimal, due to the small number of free parameters; and (5) additional information can easily be incorporated into the IRV architecture. Combined with its performance, these qualities make the IRV particularly well suited for vHTS.

  8. High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges.

    PubMed

    Wade, Mark

    2015-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects. © 2015 Society for Laboratory Automation and Screening.

  9. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.

    PubMed

    Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas

    2017-01-01

    Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.

  10. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    PubMed

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  11. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    PubMed Central

    Richter, Ingrid; Fidler, Andrew E.

    2014-01-01

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319

  12. Rapid 2,2'-bicinchoninic-based xylanase assay compatible with high throughput screening

    Treesearch

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    High-throughput screening requires simple assays that give reliable quantitative results. A microplate assay was developed for reducing sugar analysis that uses a 2,2'-bicinchoninic-based protein reagent. Endo-1,4-â-D-xylanase activity against oat spelt xylan was detected at activities of 0.002 to 0.011 IU ml−1. The assay is linear for sugar...

  13. High-Throughput Toxicity Testing: New Strategies for ...

    EPA Pesticide Factsheets

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it

  14. IRAS: High-Throughput Identification of Novel Alternative Splicing Regulators.

    PubMed

    Zheng, S

    2016-01-01

    Alternative splicing is a fundamental regulatory process of gene expression. Defects in alternative splicing can lead to various diseases, and modification of disease-causing splicing events presents great therapeutic promise. Splicing outcome is commonly affected by extracellular stimuli and signaling cascades that converge on RNA-binding splicing regulators. These trans-acting factors recognize cis-elements in pre-mRNA transcripts to affect spliceosome assembly and splice site choices. Identification of these splicing regulators and/or upstream modulators has been difficult and traditionally done by piecemeal. High-throughput screening strategies to find multiple regulators of exon splicing have great potential to accelerate the discovery process, but typically confront low sensitivity and low specificity of screening assays. Here we describe a unique screening strategy, IRAS (identifying regulators of alternative splicing), using a pair of dual-output minigene reporters to allow for sensitive detection of exon splicing changes. Each dual-output reporter produces green fluorescent protein (GFP) and red fluorescent protein (RFP) fluorescent signals to assay the two spliced isoforms exclusively. The two complementary minigene reporters alter GFP/RFP output ratios in the opposite direction in response to splicing change. Applying IRAS in cell-based high-throughput screens allows sensitive and specific identification of splicing regulators and modulators for any alternative exons of interest. In comparison to previous high-throughput screening methods, IRAS substantially enhances the specificity of the screening assay. This strategy significantly eliminates false positives without sacrificing sensitive identification of true regulators of splicing. © 2016 Elsevier Inc. All rights reserved.

  15. Accelerating Virtual High-Throughput Ligand Docking: current technology and case study on a petascale supercomputer.

    PubMed

    Ellingson, Sally R; Dakshanamurthy, Sivanesan; Brown, Milton; Smith, Jeremy C; Baudry, Jerome

    2014-04-25

    In this paper we give the current state of high-throughput virtual screening. We describe a case study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.

  16. A Network-Based Method to Assess the Statistical Significance of Mild Co-Regulation Effects

    PubMed Central

    Horvát, Emőke-Ágnes; Zhang, Jitao David; Uhlmann, Stefan; Sahin, Özgür; Zweig, Katharina Anna

    2013-01-01

    Recent development of high-throughput, multiplexing technology has initiated projects that systematically investigate interactions between two types of components in biological networks, for instance transcription factors and promoter sequences, or microRNAs (miRNAs) and mRNAs. In terms of network biology, such screening approaches primarily attempt to elucidate relations between biological components of two distinct types, which can be represented as edges between nodes in a bipartite graph. However, it is often desirable not only to determine regulatory relationships between nodes of different types, but also to understand the connection patterns of nodes of the same type. Especially interesting is the co-occurrence of two nodes of the same type, i.e., the number of their common neighbours, which current high-throughput screening analysis fails to address. The co-occurrence gives the number of circumstances under which both of the biological components are influenced in the same way. Here we present SICORE, a novel network-based method to detect pairs of nodes with a statistically significant co-occurrence. We first show the stability of the proposed method on artificial data sets: when randomly adding and deleting observations we obtain reliable results even with noise exceeding the expected level in large-scale experiments. Subsequently, we illustrate the viability of the method based on the analysis of a proteomic screening data set to reveal regulatory patterns of human microRNAs targeting proteins in the EGFR-driven cell cycle signalling system. Since statistically significant co-occurrence may indicate functional synergy and the mechanisms underlying canalization, and thus hold promise in drug target identification and therapeutic development, we provide a platform-independent implementation of SICORE with a graphical user interface as a novel tool in the arsenal of high-throughput screening analysis. PMID:24039936

  17. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.

    PubMed

    Weimar, M R; Cheung, J; Dey, D; McSweeney, C; Morrison, M; Kobayashi, Y; Whitman, W B; Carbone, V; Schofield, L R; Ronimus, R S; Cook, G M

    2017-08-01

    Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H 2 and CO 2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions. IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions. Copyright © 2017 American Society for Microbiology.

  18. Efficient Modeling and Active Learning Discovery of Biological Responses

    PubMed Central

    Naik, Armaghan W.; Kangas, Joshua D.; Langmead, Christopher J.; Murphy, Robert F.

    2013-01-01

    High throughput and high content screening involve determination of the effect of many compounds on a given target. As currently practiced, screening for each new target typically makes little use of information from screens of prior targets. Further, choices of compounds to advance to drug development are made without significant screening against off-target effects. The overall drug development process could be made more effective, as well as less expensive and time consuming, if potential effects of all compounds on all possible targets could be considered, yet the cost of such full experimentation would be prohibitive. In this paper, we describe a potential solution: probabilistic models that can be used to predict results for unmeasured combinations, and active learning algorithms for efficiently selecting which experiments to perform in order to build those models and determining when to stop. Using simulated and experimental data, we show that our approaches can produce powerful predictive models without exhaustive experimentation and can learn them much faster than by selecting experiments at random. PMID:24358322

  19. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles

    PubMed Central

    Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.

    2008-01-01

    We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366

  20. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.

    PubMed

    Shankar, Manoharan; Priyadharshini, Ramachandran; Gunasekaran, Paramasamy

    2009-08-01

    An image analysis-based method for high throughput screening of an alpha-amylase mutant library using chromogenic assays was developed. Assays were performed in microplates and high resolution images of the assay plates were read using the Virtual Microplate Reader (VMR) script to quantify the concentration of the chromogen. This method is fast and sensitive in quantifying 0.025-0.3 mg starch/ml as well as 0.05-0.75 mg glucose/ml. It was also an effective screening method for improved alpha-amylase activity with a coefficient of variance of 18%.

  1. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Rosenfeld, Liat; Tang, Sindy; Tang Lab Team

    2014-11-01

    Droplet microfluidics has enabled a wide range of high throughput screening applications. Compared with other technologies such as robotic screening technology, droplet microfluidics has 1000 times higher throughput, which makes the technology one of the most promising platforms for the ultrahigh throughput screening applications. Few studies have considered the throughput of the droplet interrogation process, however. In this research, we show that the probability of break-up increases with increasing flow rate, entrance angle to the constriction, and size of the drops. Since single drops do not break at the highest flow rate used in the system, break-ups occur primarily from the interactions between highly packed droplets close to each other. Moreover, the probabilistic nature of the break-up process arises from the stochastic variations in the packing configuration. Our results can be used to calculate the maximum throughput of the serial interrogation process. For 40 pL-drops, the highest throughput with less than 1% droplet break-up was measured to be approximately 7,000 drops per second. In addition, the results are useful for understanding the behavior of concentrated emulsions in applications such as mobility control in enhanced oil recovery.

  2. A catalog of putative adverse outcome pathways (AOPs) that ...

    EPA Pesticide Factsheets

    A number of putative AOPs for several distinct MIEs of thyroid disruption have been formulated for amphibian metamorphosis and fish swim bladder inflation. These have been entered into the AOP knowledgebase on the OECD WIKI. The EDSP has been actively advancing high-throughput screening for chemical activity toward estrogen, androgen and thyroid targets. However, it has been recently identified that coverage for thyroid-related targets is lagging behind estrogen and androgen assay coverage. As thyroid-related medium-high throughput assays are actively being developed for inclusion in the ToxCast chemical screening program, a parallel effort is underway to characterize putative adverse outcome pathways (AOPs) specific to these thyroid-related targets. This effort is intended to provide biological and ecological context that will enhance the utility of ToxCast high throughput screening data for hazard identification.

  3. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.

    PubMed

    Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki

    2016-01-01

    Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.

  4. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    PubMed

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.

  5. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.

    PubMed

    Barata, David; van Blitterswijk, Clemens; Habibovic, Pamela

    2016-04-01

    From the first microfluidic devices used for analysis of single metabolic by-products to highly complex multicompartmental co-culture organ-on-chip platforms, efforts of many multidisciplinary teams around the world have been invested in overcoming the limitations of conventional research methods in the biomedical field. Close spatial and temporal control over fluids and physical parameters, integration of sensors for direct read-out as well as the possibility to increase throughput of screening through parallelization, multiplexing and automation are some of the advantages of microfluidic over conventional, 2D tissue culture in vitro systems. Moreover, small volumes and relatively small cell numbers used in experimental set-ups involving microfluidics, can potentially decrease research cost. On the other hand, these small volumes and numbers of cells also mean that many of the conventional molecular biology or biochemistry assays cannot be directly applied to experiments that are performed in microfluidic platforms. Development of different types of assays and evidence that such assays are indeed a suitable alternative to conventional ones is a step that needs to be taken in order to have microfluidics-based platforms fully adopted in biomedical research. In this review, rather than providing a comprehensive overview of the literature on microfluidics, we aim to discuss developments in the field of microfluidics that can aid advancement of biomedical research, with emphasis on the field of biomaterials. Three important topics will be discussed, being: screening, in particular high-throughput and combinatorial screening; mimicking of natural microenvironment ranging from 3D hydrogel-based cellular niches to organ-on-chip devices; and production of biomaterials with closely controlled properties. While important technical aspects of various platforms will be discussed, the focus is mainly on their applications, including the state-of-the-art, future perspectives and challenges. Microfluidics, being a technology characterized by the engineered manipulation of fluids at the submillimeter scale, offers some interesting tools that can advance biomedical research and development. Screening platforms based on microfluidic technologies that allow high-throughput and combinatorial screening may lead to breakthrough discoveries not only in basic research but also relevant to clinical application. This is further strengthened by the fact that reliability of such screens may improve, since microfluidic systems allow close mimicking of physiological conditions. Finally, microfluidic systems are also very promising as micro factories of a new generation of natural or synthetic biomaterials and constructs, with finely controlled properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    PubMed Central

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  7. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.

    PubMed

    Daher, Ahmad; de Groot, John

    2018-01-01

    Tumor heterogeneity is a major factor in glioblastoma's poor response to therapy and seemingly inevitable recurrence. Only two glioblastoma drugs have received Food and Drug Administration approval since 1998, highlighting the urgent need for new therapies. Profiling "omics" analyses have helped characterize glioblastoma molecularly and have thus identified multiple molecular targets for precision medicine. These molecular targets have influenced clinical trial design; many "actionable" mutation-focused trials are underway, but because they have not yet led to therapeutic breakthroughs, new strategies for treating glioblastoma, especially those with a pharmacological functional component, remain in high demand. In that regard, high-throughput screening that allows for expedited preclinical drug testing and the use of GBM models that represent tumor heterogeneity more accurately than traditional cancer cell lines is necessary to maximize the successful translation of agents into the clinic. High-throughput screening has been successfully used in the testing, discovery, and validation of potential therapeutics in various cancer models, but it has not been extensively utilized in glioblastoma models. In this report, we describe the basic aspects of high-throughput screening and propose a modified high-throughput screening model in which ex vivo and in vivo drug testing is complemented by post-screening pharmacological, pan-omic analysis to expedite anti-glioma drugs' preclinical testing and develop predictive biomarker datasets that can aid in personalizing glioblastoma therapy and inform clinical trial design. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  9. High Throughput Differential Scanning Fluorimetry (DSF) Formulation Screening with Complementary Dyes to Assess Protein Unfolding and Aggregation in Presence of Surfactants.

    PubMed

    McClure, Sean M; Ahl, Patrick L; Blue, Jeffrey T

    2018-03-05

    The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO™ Orange) interact with surfactants, complicating DSF measurements. CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO™ Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®. Agreement is observed between SYPRO™ Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening. DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO™ Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions - including surfactants -with standard, plate based rT-PCR instrumentation.

  10. HTS-Net: An integrated regulome-interactome approach for establishing network regulation models in high-throughput screenings

    PubMed Central

    Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe

    2017-01-01

    High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986

  11. A high-throughput screening approach for the optoelectronic properties of conjugated polymers.

    PubMed

    Wilbraham, Liam; Berardo, Enrico; Turcani, Lukas; Jelfs, Kim E; Zwijnenburg, Martijn A

    2018-06-25

    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (TD-)DFT data computed for a representative diverse set of (co-)polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.

  12. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  13. Large-scale Topographical Screen for Investigation of Physical Neural-Guidance Cues

    NASA Astrophysics Data System (ADS)

    Li, Wei; Tang, Qing Yuan; Jadhav, Amol D.; Narang, Ankit; Qian, Wei Xian; Shi, Peng; Pang, Stella W.

    2015-03-01

    A combinatorial approach was used to present primary neurons with a large library of topographical features in the form of micropatterned substrate for high-throughput screening of physical neural-guidance cues that can effectively promote different aspects of neuronal development, including axon and dendritic outgrowth. Notably, the neuronal-guidance capability of specific features was automatically identified using a customized image processing software, thus significantly increasing the screening throughput with minimal subjective bias. Our results indicate that the anisotropic topographies promote axonal and in some cases dendritic extension relative to the isotropic topographies, while dendritic branching showed preference to plain substrates over the microscale features. The results from this work can be readily applied towards engineering novel biomaterials with precise surface topography that can serve as guidance conduits for neuro-regenerative applications. This novel topographical screening strategy combined with the automated processing capability can also be used for high-throughput screening of chemical or genetic regulatory factors in primary neurons.

  14. High Throughput Screening for Inhibitors of Mycobacterium tuberculosis H37Rv

    PubMed Central

    ANANTHAN, SUBRAMANIAM; FAALEOLEA, ELLEN R.; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; LAUGHON, BARBARA E.; MADDRY, JOSEPH A.; MEHTA, ALKA; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SHINDO, NICE; SHOWE, DUSTIN N.; SOSA, MELINDA I.; SULING, WILLIAM J.; WHITE, E. LUCILE

    2009-01-01

    SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein. PMID:19758845

  15. High-throughput screening for bioactive components from traditional Chinese medicine.

    PubMed

    Zhu, Yanhui; Zhang, Zhiyun; Zhang, Meng; Mais, Dale E; Wang, Ming-Wei

    2010-12-01

    Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.

  16. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  17. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening

    PubMed Central

    Vanzolini, Kenia Lourenço; Jiang, Zhengjin; Zhang, Xiaoqi; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalvez; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Moaddel, Ruin

    2013-01-01

    The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer’s disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand. PMID:24148457

  19. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, NM; Aukema, KG; Gralnick, JA

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high-throughput evaluation of bacterial and algal hydrophobic molecule production via Nile red fluorescence from lipids and esters was extended in this study to include hydrocarbons and ketones. This work demonstrated accurate, high-throughput detection of high-level bacterial long-chain ketone and hydrocarbon production by screening for increased fluorescence of the hydrophobic dye Nile red.« less

  20. High-throughput fabrication and screening improves gold nanoparticle chemiresistor sensor performance.

    PubMed

    Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard

    2015-02-09

    Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.

  1. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions.

    PubMed

    De Diego, Nuria; Fürst, Tomáš; Humplík, Jan F; Ugena, Lydia; Podlešáková, Kateřina; Spíchal, Lukáš

    2017-01-01

    High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using Arabidops is as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput Arabidopsis in vitro bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of Arabidopsis rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.

  2. Optimisation of insect cell growth in deep-well blocks: development of a high-throughput insect cell expression screen.

    PubMed

    Bahia, Daljit; Cheung, Robert; Buchs, Mirjam; Geisse, Sabine; Hunt, Ian

    2005-01-01

    This report describes a method to culture insects cells in 24 deep-well blocks for the routine small-scale optimisation of baculovirus-mediated protein expression experiments. Miniaturisation of this process provides the necessary reduction in terms of resource allocation, reagents, and labour to allow extensive and rapid optimisation of expression conditions, with the concomitant reduction in lead-time before commencement of large-scale bioreactor experiments. This therefore greatly simplifies the optimisation process and allows the use of liquid handling robotics in much of the initial optimisation stages of the process, thereby greatly increasing the throughput of the laboratory. We present several examples of the use of deep-well block expression studies in the optimisation of therapeutically relevant protein targets. We also discuss how the enhanced throughput offered by this approach can be adapted to robotic handling systems and the implications this has on the capacity to conduct multi-parallel protein expression studies.

  3. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  4. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  5. Effect-size measures as descriptors of assay quality in high-content screening: A brief review of some available methodologies

    USDA-ARS?s Scientific Manuscript database

    The field of high-content screening (HCS) typically uses measures of screen quality conceived for fairly straightforward high-throughput screening (HTS) scenarios. However, in contrast to HTS, image-based HCS systems rely on multidimensional readouts reporting biological responses associated with co...

  6. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus.

    PubMed

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W; Noah, James W

    2014-04-01

    Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.

  7. A BSL-4 High-Throughput Screen Identifies Sulfonamide Inhibitors of Nipah Virus

    PubMed Central

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E. Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.

    2014-01-01

    Abstract Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses. PMID:24735442

  8. High-Throughput Screening of Therapeutic Neural Stimulation Targets: Toward Principles of Preventing and Treating Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2009-09-01

    onset and averaged across all excited units tested (mean ± SE). 7 SUPPLEMENTAL EXPERIMENTAL PROCEDURES Virus design and production...to baseline level 355 ± 505 ms later. The level of post -light firing did not vary with repeated light exposure (p > 0.7, paired t- test comparing...High-Throughput Screening of Therapeutic Neural Stimulation Targets: Toward Principles of Preventing and Treating Post - Traumatic Stress Disorder

  9. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.

    PubMed

    Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato

    2017-02-01

    Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.

  10. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.

    PubMed

    Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F

    2015-04-01

    We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

  11. Development of a Rapid Fluorescence-Based High-Throughput Screening Assay to Identify Novel Kynurenine 3-Monooxygenase Inhibitor Scaffolds.

    PubMed

    Jacobs, K R; Guillemin, G J; Lovejoy, D B

    2018-02-01

    Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC 50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.

  12. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

    PubMed Central

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443

  13. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells.

    PubMed

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-10-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.

  14. From Classical to High Throughput Screening Methods for Feruloyl Esterases: A Review.

    PubMed

    Ramírez-Velasco, Lorena; Armendáriz-Ruiz, Mariana; Rodríguez-González, Jorge Alberto; Müller-Santos, Marcelo; Asaff-Torres, Ali; Mateos-Díaz, Juan Carlos

    2016-01-01

    Feruloyl esterases (FAEs) are a diverse group of hydrolases widely distributed in plants and microorganisms which catalyzes the cleavage and formation of ester bonds between plant cell wall polysaccharides and phenolic acids. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing highadded value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production, characterization and classification of FAEs, however only a few reports of suitable High Throughput Screening assays for this kind of enzymes have been reported. This review is focused on a concise but complete revision of classical to High Throughput Screening methods for FAEs, highlighting its advantages and disadvantages, and finally suggesting future perspectives for this important research field.

  15. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    PubMed

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  16. Development of a microbial high-throughput screening instrument based on elastic light scatter patterns

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul

    2012-04-01

    A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.

  17. Expedient Caution: Approximating Exposure and Dosimetry to Understand Chemical Risk (OSU EMT Research Day keynote presentation)

    EPA Science Inventory

    I describe research on high throughput exposure and toxicokinetics. These tools provide context for data generated by high throughput toxicity screening to allow risk-based prioritization of thousands of chemicals.

  18. High-Throughput Pharmacokinetics for Environmental Chemicals (SOT)

    EPA Science Inventory

    High throughput screening (HTS) promises to allow prioritization of thousands of environmental chemicals with little or no in vivo information. For bioactivity identified by HTS, toxicokinetic (TK) models are essential to predict exposure thresholds below which no significant bio...

  19. Diving deeper into Zebrafish development of social behavior: analyzing high resolution data.

    PubMed

    Buske, Christine; Gerlai, Robert

    2014-08-30

    Vertebrate model organisms have been utilized in high throughput screening but only with substantial cost and human capital investment. The zebrafish is a vertebrate model species that is a promising and cost effective candidate for efficient high throughput screening. Larval zebrafish have already been successfully employed in this regard (Lessman, 2011), but adult zebrafish also show great promise. High throughput screening requires the use of a large number of subjects and collection of substantial amount of data. Collection of data is only one of the demanding aspects of screening. However, in most screening approaches that involve behavioral data the main bottleneck that slows throughput is the time consuming aspect of analysis of the collected data. Some automated analytical tools do exist, but often they only work for one subject at a time, eliminating the possibility of fully utilizing zebrafish as a screening tool. This is a particularly important limitation for such complex phenotypes as social behavior. Testing multiple fish at a time can reveal complex social interactions but it may also allow the identification of outliers from a group of mutagenized or pharmacologically treated fish. Here, we describe a novel method using a custom software tool developed within our laboratory, which enables tracking multiple fish, in combination with a sophisticated analytical approach for summarizing and analyzing high resolution behavioral data. This paper focuses on the latter, the analytic tool, which we have developed using the R programming language and environment for statistical computing. We argue that combining sophisticated data collection methods with appropriate analytical tools will propel zebrafish into the future of neurobehavioral genetic research. Copyright © 2014. Published by Elsevier B.V.

  20. Optimization and high-throughput screening of antimicrobial peptides.

    PubMed

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  1. Development and Validation of a High Throughput Screen for Compounds with Antiviral Activity Against Encephalitic Alphaviruses

    DTIC Science & Technology

    2010-09-15

    viruses , including West Nile virus (WNV) 7 (PubChem AID: 1635), respiratory syncytial virus (PubChem AID: 2440...such as West Nile virus assay with a threshold value of 3.42%. D. Single Dose experiment with Arbo virus ...compounds. RESULT 1. Hit compounds nomination A. Arbo virus hits (1) SMR000372439 and SMR000058373 : Informatics analysis discovered

  2. Repurposing a Histamine Detection Platform for High-Throughput Screening of Histidine Decarboxylase.

    PubMed

    Juang, Yu-Chi; Fradera, Xavier; Han, Yongxin; Partridge, Anthony William

    2018-06-01

    Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z' score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure-activity relationships.

  3. A web-based platform for virtual screening.

    PubMed

    Watson, Paul; Verdonk, Marcel; Hartshorn, Michael J

    2003-09-01

    A fully integrated, web-based, virtual screening platform has been developed to allow rapid virtual screening of large numbers of compounds. ORACLE is used to store information at all stages of the process. The system includes a large database of historical compounds from high throughput screenings (HTS) chemical suppliers, ATLAS, containing over 3.1 million unique compounds with their associated physiochemical properties (ClogP, MW, etc.). The database can be screened using a web-based interface to produce compound subsets for virtual screening or virtual library (VL) enumeration. In order to carry out the latter task within ORACLE a reaction data cartridge has been developed. Virtual libraries can be enumerated rapidly using the web-based interface to the cartridge. The compound subsets can be seamlessly submitted for virtual screening experiments, and the results can be viewed via another web-based interface allowing ad hoc querying of the virtual screening data stored in ORACLE.

  4. Development of a Platform to Enable Fully Automated Cross-Titration Experiments.

    PubMed

    Cassaday, Jason; Finley, Michael; Squadroni, Brian; Jezequel-Sur, Sylvie; Rauch, Albert; Gajera, Bharti; Uebele, Victor; Hermes, Jeffrey; Zuck, Paul

    2017-04-01

    In the triage of hits from a high-throughput screening campaign or during the optimization of a lead compound, it is relatively routine to test compounds at multiple concentrations to determine potency and maximal effect. Additional follow-up experiments, such as agonist shift, can be quite valuable in ascertaining compound mechanism of action (MOA). However, these experiments require cross-titration of a test compound with the activating ligand of the receptor requiring 100-200 data points, severely limiting the number tested in MOA assays in a screening triage. We describe a process to enhance the throughput of such cross-titration experiments through the integration of Hewlett Packard's D300 digital dispenser onto one of our robotics platforms to enable on-the-fly cross-titration of compounds in a 1536-well plate format. The process handles all the compound management and data tracking, as well as the biological assay. The process relies heavily on in-house-built software and hardware, and uses our proprietary control software for the platform. Using this system, we were able to automate the cross-titration of compounds for both positive and negative allosteric modulators of two different G protein-coupled receptors (GPCRs) using two distinct assay detection formats, IP1 and Ca 2+ detection, on nearly 100 compounds for each target.

  5. Automation in biological crystallization.

    PubMed

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  6. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  7. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  8. A Comparison of the Performance and Application Differences Between Manual and Automated Patch-Clamp Techniques

    PubMed Central

    Yajuan, Xiao; Xin, Liang; Zhiyuan, Li

    2012-01-01

    The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269

  9. High Throughput Genotoxicity Profiling of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    A key aim of the ToxCast project is to investigate modern molecular and genetic high content and high throughput screening (HTS) assays, along with various computational tools to supplement and perhaps replace traditional assays for evaluating chemical toxicity. Genotoxicity is a...

  10. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti.

    PubMed

    Cai, Yingying; Xia, Miaomiao; Dong, Huina; Qian, Yuan; Zhang, Tongcun; Zhu, Beiwei; Wu, Jinchuan; Zhang, Dawei

    2018-05-11

    As a very important coenzyme in the cell metabolism, Vitamin B 12 (cobalamin, VB 12 ) has been widely used in food and medicine fields. The complete biosynthesis of VB 12 requires approximately 30 genes, but overexpression of these genes did not result in expected increase of VB 12 production. High-yield VB 12 -producing strains are usually obtained by mutagenesis treatments, thus developing an efficient screening approach is urgently needed. By the help of engineered strains with varied capacities of VB 12 production, a riboswitch library was constructed and screened, and the btuB element from Salmonella typhimurium was identified as the best regulatory device. A flow cytometry high-throughput screening system was developed based on the btuB riboswitch with high efficiency to identify positive mutants. Mutation of Sinorhizobium meliloti (S. meliloti) was optimized using the novel mutation technique of atmospheric and room temperature plasma (ARTP). Finally, the mutant S. meliloti MC5-2 was obtained and considered as a candidate for industrial applications. After 7 d's cultivation on a rotary shaker at 30 °C, the VB 12 titer of S. meliloti MC5-2 reached 156 ± 4.2 mg/L, which was 21.9% higher than that of the wild type strain S. meliloti 320 (128 ± 3.2 mg/L). The genome of S. meliloti MC5-2 was sequenced, and gene mutations were identified and analyzed. To our knowledge, it is the first time that a riboswitch element was used in S. meliloti. The flow cytometry high-throughput screening system was successfully developed and a high-yield VB 12 producing strain was obtained. The identified and analyzed gene mutations gave useful information for developing high-yield strains by metabolic engineering. Overall, this work provides a useful high-throughput screening method for developing high VB 12 -yield strains.

  11. Rational Methods for the Selection of Diverse Screening Compounds

    PubMed Central

    Huggins, David J.; Venkitaraman, Ashok R.; Spring, David R.

    2016-01-01

    Traditionally a pursuit of large pharmaceutical companies, high-throughput screening assays are becoming increasingly common within academic and government laboratories. This shift has been instrumental in enabling projects that have not been commercially viable, such as chemical probe discovery and screening against high risk targets. Once an assay has been prepared and validated, it must be fed with screening compounds. Crafting a successful collection of small molecules for screening poses a significant challenge. An optimized collection will minimize false positives whilst maximizing hit rates of compounds that are amenable to lead generation and optimization. Without due consideration of the relevant protein targets and the downstream screening assays, compound filtering and selection can fail to explore the great extent of chemical diversity and eschew valuable novelty. Herein, we discuss the different factors to be considered and methods that may be employed when assembling a structurally diverse compound screening collection. Rational methods for selecting diverse chemical libraries are essential for their effective use in high-throughput screens. PMID:21261294

  12. A Simple Method for High Throughput Chemical Screening in Caenorhabditis Elegans

    PubMed Central

    Lucanic, Mark; Garrett, Theo; Gill, Matthew S.; Lithgow, Gordon J.

    2018-01-01

    Caenorhabditis elegans is a useful organism for testing chemical effects on physiology. Whole organism small molecule screens offer significant advantages for identifying biologically active chemical structures that can modify complex phenotypes such as lifespan. Described here is a simple protocol for producing hundreds of 96-well culture plates with fairly consistent numbers of C. elegans in each well. Next, we specified how to use these cultures to screen thousands of chemicals for effects on the lifespan of the nematode C. elegans. This protocol makes use of temperature sensitive sterile strains, agar plate conditions, and simple animal handling to facilitate the rapid and high throughput production of synchronized animal cultures for screening. PMID:29630057

  13. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology.

    PubMed

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-07-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.

  14. Novel method for high-throughput colony PCR screening in nanoliter-reactors

    PubMed Central

    Walser, Marcel; Pellaux, Rene; Meyer, Andreas; Bechtold, Matthias; Vanderschuren, Herve; Reinhardt, Richard; Magyar, Joseph; Panke, Sven; Held, Martin

    2009-01-01

    We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluorescence analyses. nl-Reactors were kept in suspension during all high-throughput steps which allowed performing the protocol in a highly space-effective fashion and at negligible expenses of consumables and reagents. As a first application, 11 high-quality microsatellites for polymorphism studies in cassava were isolated and sequenced out of a library of 20 000 clones in 2 days. The technology is widely scalable and we envision that throughputs for nl-reactor based screenings can be increased up to 100 000 and more samples per day thereby efficiently complementing protocols based on established deep-sequencing technologies. PMID:19282448

  15. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia.

    PubMed

    Gerrard, Gareth; Valgañón, Mikel; Foong, Hui En; Kasperaviciute, Dalia; Iskander, Deena; Game, Laurence; Müller, Michael; Aitman, Timothy J; Roberts, Irene; de la Fuente, Josu; Foroni, Letizia; Karadimitris, Anastasios

    2013-08-01

    Diamond-Blackfan anaemia (DBA) is caused by inactivating mutations in ribosomal protein (RP) genes, with mutations in 13 of the 80 RP genes accounting for 50-60% of cases. The remaining 40-50% cases may harbour mutations in one of the remaining RP genes, but the very low frequencies render conventional genetic screening as challenging. We, therefore, applied custom enrichment technology combined with high-throughput sequencing to screen all 80 RP genes. Using this approach, we identified and validated inactivating mutations in 15/17 (88%) DBA patients. Target enrichment combined with high-throughput sequencing is a robust and improved methodology for the genetic diagnosis of DBA. © 2013 John Wiley & Sons Ltd.

  16. Novel KCNQ2 channel activators discovered using fluorescence-based and automated patch-clamp-based high-throughput screening techniques

    PubMed Central

    Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing

    2016-01-01

    Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738

  17. High Throughput Assays and Exposure Science (ISES annual meeting)

    EPA Science Inventory

    High throughput screening (HTS) data characterizing chemical-induced biological activity has been generated for thousands of environmentally-relevant chemicals by the US inter-agency Tox21 and the US EPA ToxCast programs. For a limited set of chemicals, bioactive concentrations r...

  18. High Throughput Exposure Estimation Using NHANES Data (SOT)

    EPA Science Inventory

    In the ExpoCast project, high throughput (HT) exposure models enable rapid screening of large numbers of chemicals for exposure potential. Evaluation of these models requires empirical exposure data and due to the paucity of human metabolism/exposure data such evaluations includ...

  19. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  20. Accounting For Uncertainty in The Application Of High Throughput Datasets

    EPA Science Inventory

    The use of high throughput screening (HTS) datasets will need to adequately account for uncertainties in the data generation process and propagate these uncertainties through to ultimate use. Uncertainty arises at multiple levels in the construction of predictors using in vitro ...

  1. 20180312 - Uncertainty and Variability in High-Throughput Toxicokinetics for Risk Prioritization (SOT)

    EPA Science Inventory

    Streamlined approaches that use in vitro experimental data to predict chemical toxicokinetics (TK) are increasingly being used to perform risk-based prioritization based upon dosimetric adjustment of high-throughput screening (HTS) data across thousands of chemicals. However, ass...

  2. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  3. Development and application of a fluorescent glucose uptake assay for the high-throughput screening of non-glycoside SGLT2 inhibitors.

    PubMed

    Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi

    2015-07-10

    Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

    PubMed Central

    Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S

    2015-01-01

    Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223

  5. Automated recycling of chemistry for virtual screening and library design.

    PubMed

    Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian

    2012-07-23

    An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.

  6. A kinase-focused compound collection: compilation and screening strategy.

    PubMed

    Sun, Dongyu; Chuaqui, Claudio; Deng, Zhan; Bowes, Scott; Chin, Donovan; Singh, Juswinder; Cullen, Patrick; Hankins, Gretchen; Lee, Wen-Cherng; Donnelly, Jason; Friedman, Jessica; Josiah, Serene

    2006-06-01

    Lead identification by high-throughput screening of large compound libraries has been supplemented with virtual screening and focused compound libraries. To complement existing approaches for lead identification at Biogen Idec, a kinase-focused compound collection was designed, developed and validated. Two strategies were adopted to populate the compound collection: a ligand shape-based virtual screening and a receptor-based approach (structural interaction fingerprint). Compounds selected with the two approaches were cherry-picked from an existing high-throughput screening compound library, ordered from suppliers and supplemented with specific medicinal compounds from internal programs. Promising hits and leads have been generated from the kinase-focused compound collection against multiple kinase targets. The principle of the collection design and screening strategy was validated and the use of the kinase-focused compound collection for lead identification has been added to existing strategies.

  7. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments.

    PubMed

    Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X Shirley

    2017-01-01

    The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioritize sgRNAs for CRISPR screen experiments. With official gene symbols or RefSeq IDs as the only mandatory input, CRISPR-FOCUS filters and prioritizes sgRNAs based on multiple criteria, including efficiency, specificity, sequence conservation, isoform structure, as well as genomic variations including Single Nucleotide Polymorphisms and cancer somatic mutations. CRISPR-FOCUS also provides pre-defined positive and negative control sgRNAs, as well as other necessary sequences in the construct (e.g., U6 promoters to drive sgRNA transcription and RNA scaffolds of the CRISPR/Cas9). These features allow users to synthesize oligonucleotides directly based on the output of CRISPR-FOCUS. Overall, CRISPR-FOCUS provides a rational and high-throughput approach for sgRNA library design that enables users to efficiently conduct a focused screen experiment targeting up to thousands of genes. (CRISPR-FOCUS is freely available at http://cistrome.org/crispr-focus/).

  8. Integration of an In Situ MALDI-Based High-Throughput Screening Process: A Case Study with Receptor Tyrosine Kinase c-MET.

    PubMed

    Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten

    2017-12-01

    Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.

  9. Polymer-Based Dense Fluidic Networks for High Throughput Screening with Ultrasensitive Fluorescence Detection

    PubMed Central

    Okagbare, Paul I.; Soper, Steven A.

    2011-01-01

    Microfluidics represents a viable platform for performing High Throughput Screening (HTS) due to its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1–10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40X microscope objective (numerical aperture = 0.75) created a FoV of 200 μm, providing the ability to interrogate ~25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device (EMCCD). The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, APE1, used as a model screening assay. PMID:20872611

  10. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.

    PubMed

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-09-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  11. Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications

    PubMed Central

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152

  12. Microfluidic cell chips for high-throughput drug screening

    PubMed Central

    Chi, Chun-Wei; Ahmed, AH Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-01-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell–drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  13. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection.

    PubMed

    Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus

    2016-04-01

    Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.

  14. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG.

    PubMed

    Xiao, Xiaodong; Douthwaite, Julie A; Chen, Yan; Kemp, Ben; Kidd, Sara; Percival-Alwyn, Jennifer; Smith, Alison; Goode, Kate; Swerdlow, Bonnie; Lowe, David; Wu, Herren; Dall'Acqua, William F; Chowdhury, Partha S

    Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.

  15. A simple cell-based high throughput screening (HTS) assay for inhibitors of Salmonella enterica RNA polymerase containing the general stress response regulator RpoS (σS).

    PubMed

    Campos-Gomez, Javier; Benitez, Jorge A

    2018-07-01

    RNA polymerase containing the stress response regulator σ S subunit (RpoS) plays a key role in bacterial survival in hostile environments in nature and during infection. Here we devise and validate a simple cell-based high throughput luminescence assay for this holoenzyme suitable for screening large chemical libraries in a robotic platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Identification and validation of vesicant therapeutic targets using a high, throughput siRNA screening approach

    DTIC Science & Technology

    2014-12-24

    toxlet.2011.04.007 Rogers JV, Choi YW, Kiser RC et al (2004) Microarray analysis of gene expression in murine skin exposed to sulfur mustard. J Bio...Chemotactic factors released in culture by intact developing and healing skin lesions produced in rabbits by the irritant sulfur mustard. Inflam- mation 21(2...Project ID Number CBM.CUTOC.04.10. RC 00114. ABSTRACT See reprint. 15. SUBJECT TERMS sulfur mustard, cutaneous injury, siRNA, high-throughput screening

  17. Fun with High Throughput Toxicokinetics (CalEPA webinar)

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21. These chemicals are tested in part because there are limited or no data on hazard, exposure, or toxicokinetics (TK). TK models aid in predicting tissue concentrations ...

  18. HTTK: R Package for High-Throughput Toxicokinetics

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concent...

  19. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    PubMed

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  20. Ionomics: The functional genomics of elements.

    PubMed

    Baxter, Ivan

    2010-03-01

    Ionomics is the study of elemental accumulation in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels, and modeling of physiological states. In this review, I will discuss some of the advantages and limitations of the ionomics approach as well as the important parameters to consider when designing ionomics experiments, and how to evaluate ionomics data.

  1. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.

    PubMed

    Liu, Min; Zhang, Chunsun; Liu, Feifei

    2015-09-03

    In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation

    PubMed Central

    Volpetti, Francesca; Garcia-Cordero, Jose; Maerkl, Sebastian J.

    2015-01-01

    We present a high-throughput microfluidic platform capable of quantitating up to 384 biomarkers in 4 distinct samples by immunoassay. The microfluidic device contains 384 unit cells, which can be individually programmed with pairs of capture and detection antibody. Samples are quantitated in each unit cell by four independent MITOMI detection areas, allowing four samples to be analyzed in parallel for a total of 1,536 assays per device. We show that the device can be pre-assembled and stored for weeks at elevated temperature and we performed proof-of-concept experiments simultaneously quantitating IL-6, IL-1β, TNF-α, PSA, and GFP. Finally, we show that the platform can be used to identify functional antibody combinations by screening 64 antibody combinations requiring up to 384 unique assays per device. PMID:25680117

  3. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  4. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    DOE PAGES

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; ...

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less

  5. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    NASA Astrophysics Data System (ADS)

    Rachinskiy, K.; Schultze, H.; Boy, M.; Büchs, J.

    2008-11-01

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature. The presented article gives a successful example for the application of multi-rate modeling, experimental design and parameter estimation within biochemical engineering. At the same time, it shows the limitations of the methods at the state of the art and addresses the current problems to the applied mathematics community.

  6. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.

    PubMed

    Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A

    2016-01-01

    In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.

  7. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology

    PubMed Central

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-01-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory. PMID:21806374

  8. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  9. Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans

    EPA Science Inventory

    ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...

  10. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when allocating resources to identify risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro have allowed the ToxCastTM program to identify...

  11. Incorporating Population Variability and Susceptible Subpopulations into Dosimetry for High-Throughput Toxicity Testing

    EPA Science Inventory

    Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assess...

  12. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening

    PubMed Central

    Li, Guoliang; Yuan, Hui; Zhang, Hongchao; Li, Yanjun; Xie, Xixian; Chen, Ning

    2017-01-01

    In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5′-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain. PMID:28472077

  13. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening.

    PubMed

    Fan, Xiaoguang; Wu, Heyun; Li, Guoliang; Yuan, Hui; Zhang, Hongchao; Li, Yanjun; Xie, Xixian; Chen, Ning

    2017-01-01

    In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5'-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain.

  14. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.

  15. An image analysis toolbox for high-throughput C. elegans assays

    PubMed Central

    Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.

    2012-01-01

    We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656

  16. High-throughput screening for combinatorial thin-film library of thermoelectric materials.

    PubMed

    Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi

    2008-01-01

    A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.

  17. High Throughput, Polymeric Aqueous Two-Phase Printing of Tumor Spheroids

    PubMed Central

    Atefi, Ehsan; Lemmo, Stephanie; Fyffe, Darcy; Luker, Gary D.; Tavana, Hossein

    2014-01-01

    This paper presents a new 3D culture microtechnology for high throughput production of tumor spheroids and validates its utility for screening anti-cancer drugs. We use two immiscible polymeric aqueous solutions and microprint a submicroliter drop of the “patterning” phase containing cells into a bath of the “immersion” phase. Selecting proper formulations of biphasic systems using a panel of biocompatible polymers results in the formation of a round drop that confines cells to facilitate spontaneous formation of a spheroid without any external stimuli. Adapting this approach to robotic tools enables straightforward generation and maintenance of spheroids of well-defined size in standard microwell plates and biochemical analysis of spheroids in situ, which is not possible with existing techniques for spheroid culture. To enable high throughput screening, we establish a phase diagram to identify minimum cell densities within specific volumes of the patterning drop to result in a single spheroid. Spheroids show normal growth over long-term incubation and dose-dependent decrease in cellular viability when treated with drug compounds, but present significant resistance compared to monolayer cultures. The unprecedented ease of implementing this microtechnology and its robust performance will benefit high throughput studies of drug screening against cancer cells with physiologically-relevant 3D tumor models. PMID:25411577

  18. The ToxCast Pathway Database for Identifying Toxicity Signatures and Potential Modes of Action from Chemical Screening Data

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), through its ToxCast program, is developing predictive toxicity approaches that will use in vitro high-throughput screening (HTS), high-content screening (HCS) and toxicogenomic data to predict in vivo toxicity phenotypes. There are ...

  19. Development of carbon plasma-coated multiwell plates for high-throughput mass spectrometric analysis of highly lipophilic fermentation products.

    PubMed

    Heinig, Uwe; Scholz, Susanne; Dahm, Pia; Grabowy, Udo; Jennewein, Stefan

    2010-08-01

    Classical approaches to strain improvement and metabolic engineering rely on rapid qualitative and quantitative analyses of the metabolites of interest. As an analytical tool, mass spectrometry (MS) has proven to be efficient and nearly universally applicable for timely screening of metabolites. Furthermore, gas chromatography (GC)/MS- and liquid chromatography (LC)/MS-based metabolite screens can often be adapted to high-throughput formats. We recently engineered a Saccharomyces cerevisiae strain to produce taxa-4(5),11(12)-diene, the first pathway-committing biosynthetic intermediate for the anticancer drug Taxol, through the heterologous and homologous expression of several genes related to isoprenoid biosynthesis. To date, GC/MS- and LC/MS-based high-throughput methods have been inherently difficult to adapt to the screening of isoprenoid-producing microbial strains due to the need for extensive sample preparation of these often highly lipophilic compounds. In the current work, we examined different approaches to the high-throughput analysis of taxa-4(5),11(12)-diene biosynthesizing yeast strains in a 96-deep-well format. Carbon plasma coating of standard 96-deep-well polypropylene plates allowed us to circumvent the inherent solvent instability of commonly used deep-well plates. In addition, efficient adsorption of the target isoprenoid product by the coated plates allowed rapid and simple qualitative and quantitative analyses of the individual cultures. Copyright 2010 Elsevier Inc. All rights reserved.

  20. High-throughput Screening Identification of Poliovirus RNA-dependent RNA Polymerase Inhibitors

    PubMed Central

    Campagnola, Grace; Gong, Peng; Peersen, Olve B.

    2011-01-01

    Viral RNA-dependent RNA polymerase (RdRP) enzymes are essential for the replication of positive-strand RNA viruses and established targets for the development of selective antiviral therapeutics. In this work we have carried out a high-throughput screen of 154,267 compounds to identify poliovirus polymerase inhibitors using a fluorescence based RNA elongation assay. Screening and subsequent validation experiments using kinetic methods and RNA product analysis resulted in the identification of seven inhibitors that affect the RNA binding, initiation, or elongation activity of the polymerase. X-ray crystallography data show clear density for five of the compounds in the active site of the poliovirus polymerase elongation complex. The inhibitors occupy the NTP binding site by stacking on the priming nucleotide and interacting with the templating base, yet competition studies show fairly weak IC50 values in the low μM range. A comparison with nucleotide bound structures suggests that weak binding is likely due to the lack of a triphosphate group on the inhibitors. Consequently, the inhibitors are primarily effective at blocking polymerase initiation and do not effectively compete with NTP binding during processive elongation. These findings are discussed in the context of the polymerase elongation complex structure and allosteric control of the viral RdRP catalytic cycle. PMID:21722674

  1. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  2. Rapid analysis and exploration of fluorescence microscopy images.

    PubMed

    Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason M; Steininger, Robert J; Wu, Lani F; Altschuler, Steven J

    2014-03-19

    Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.

  3. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data

    PubMed Central

    Auerbach, Scott; Filer, Dayne; Reif, David; Walker, Vickie; Holloway, Alison C.; Schlezinger, Jennifer; Srinivasan, Supriya; Svoboda, Daniel; Judson, Richard; Bucher, John R.; Thayer, Kristina A.

    2016-01-01

    Background: Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. Objectives: Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. Methods: We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. Discussion: The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. Conclusions: More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. Citation: Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: a screening approach using ToxCast™ high-throughput data. Environ Health Perspect 124:1141–1154; http://dx.doi.org/10.1289/ehp.1510456 PMID:26978842

  4. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data.

    PubMed

    Auerbach, Scott; Filer, Dayne; Reif, David; Walker, Vickie; Holloway, Alison C; Schlezinger, Jennifer; Srinivasan, Supriya; Svoboda, Daniel; Judson, Richard; Bucher, John R; Thayer, Kristina A

    2016-08-01

    Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: a screening approach using ToxCast™ high-throughput data. Environ Health Perspect 124:1141-1154; http://dx.doi.org/10.1289/ehp.1510456.

  5. Environmental surveillance and monitoring the next frontier for pathway-based high throughput screening

    EPA Science Inventory

    In response to a proposed vision and strategy for toxicity testing in the 21st century nascent high throughput toxicology (HTT) programs have tested thousands of chemicals in hundreds of pathway-based biological assays. Although, to date, use of HTT data for safety assessment of ...

  6. 20180311 - Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells (SOT)

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  7. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  8. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization (Annual Meeting of ISES)

    EPA Science Inventory

    The U.S. EPA must consider thousands of chemicals when allocating resources to assess risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro are being implemented in the ToxCastTM program to rapidly characteri...

  9. Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    EPA Science Inventory

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...

  10. High Throughput Assays for Exposure Science (NIEHS OHAT Staff Meeting presentation)

    EPA Science Inventory

    High throughput screening (HTS) data that characterize chemically induced biological activity have been generated for thousands of chemicals by the US interagency Tox21 and the US EPA ToxCast programs. In many cases there are no data available for comparing bioactivity from HTS w...

  11. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  12. Differentiating pathway-specific from nonspecific effects in high-throughput toxicity data: A foundation for prioritizing adverse outcome pathway development

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential ...

  13. “httk”: EPA’s Tool for High Throughput Toxicokinetics (CompTox CoP)

    EPA Science Inventory

    Thousands of chemicals have been pro?led by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concentr...

  14. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

    EPA Science Inventory

    In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...

  15. Using Alternative Approaches to Prioritize Testing for the Universe of Chemicals with Potential for Human Exposure (WC9)

    EPA Science Inventory

    One use of alternative methods is to target animal use at only those chemicals and tests that are absolutely necessary. We discuss prioritization of testing based on high-throughput screening assays (HTS), QSAR modeling, high-throughput toxicokinetics (HTTK), and exposure modelin...

  16. Harnessing High-Throughput Monitoring Methods to Strengthen 21st Century Risk-Based Evaluations (SETAC Presentation)

    EPA Science Inventory

    Over the past ten years, the US government has invested in high-throughput (HT) methods to screen chemicals for biological activity. Under the interagency Tox21 consortium and the US Environmental Protection Agency’s (EPA) ToxCast™ program, thousands of chemicals have...

  17. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines

    PubMed Central

    Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.

    2016-01-01

    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769

  18. Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file.

    PubMed

    Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Knight, Michelle; Loesel, Jens; Mathias, John; McLoughlin, David; Mills, James; Sharp, Robert E; Williams, Christine; Wood, Terence P

    2013-05-01

    The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.

  19. Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells.

    PubMed

    Efthymiou, Anastasia; Shaltouki, Atossa; Steiner, Joseph P; Jha, Balendu; Heman-Ackah, Sabrina M; Swistowski, Andrzej; Zeng, Xianmin; Rao, Mahendra S; Malik, Nasir

    2014-01-01

    Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in identifying novel compounds for the treatment of neurodegenerative diseases. We have developed an efficient protocol to culture pure populations of neurons, as confirmed by gene expression analysis, in the 96-well format necessary for screens. These differentiated neurons were subjected to viability assays to illustrate their potential in future high-throughput screens. We have also shown that organelles such as nuclei and mitochondria could be live-labeled and visualized through fluorescence, suggesting that we should be able to monitor subcellular phenotypic changes. Neurons derived from a green fluorescent protein-expressing reporter line of PSCs were live-imaged to assess markers of neuronal maturation such as neurite length and co-cultured with astrocytes to demonstrate further maturation. These studies confirm that PSC-derived neurons can be used effectively in viability and functional assays and pave the way for high-throughput screens on neurons derived from patients with neurodegenerative disorders.

  20. Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion.

    PubMed

    Kusters, Ilja; van Oijen, Antoine M; Driessen, Arnold J M

    2014-04-22

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.

  1. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.

    PubMed

    Browne, Patience; Judson, Richard S; Casey, Warren M; Kleinstreuer, Nicole C; Thomas, Russell S

    2015-07-21

    The U.S. Environmental Protection Agency (EPA) is considering high-throughput and computational methods to evaluate the endocrine bioactivity of environmental chemicals. Here we describe a multistep, performance-based validation of new methods and demonstrate that these new tools are sufficiently robust to be used in the Endocrine Disruptor Screening Program (EDSP). Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17β-estradiol). ToxCast ER model performance was evaluated for reference chemicals, as well as results of EDSP Tier 1 screening assays in current practice. The ToxCast ER model accuracy was 86% to 93% when compared to reference chemicals and predicted results of EDSP Tier 1 guideline and other uterotrophic studies with 84% to 100% accuracy. The performance of high-throughput assays and ToxCast ER model predictions demonstrates that these methods correctly identify active and inactive reference chemicals, provide a measure of relative ER bioactivity, and rapidly identify chemicals with potential endocrine bioactivities for additional screening and testing. EPA is accepting ToxCast ER model data for 1812 chemicals as alternatives for EDSP Tier 1 ER binding, ER transactivation, and uterotrophic assays.

  2. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.

    PubMed

    Soufan, Othman; Ba-Alawi, Wail; Magana-Mora, Arturo; Essack, Magbubah; Bajic, Vladimir B

    2018-06-14

    High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F 1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .

  3. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries

    PubMed Central

    Watt, Eric D.; Hornung, Michael W.; Hedge, Joan M.; Judson, Richard S.; Crofton, Kevin M.; Houck, Keith A.; Simmons, Steven O.

    2016-01-01

    High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. This effort represents the most extensive TPO inhibition screening campaign to date and illustrates a tiered screening approach that focuses resources, maximizes assay throughput, and reduces animal use. PMID:26884060

  4. High throughput screening of active pharmaceutical ingredients by UPLC.

    PubMed

    Al-Sayah, Mohammad A; Rizos, Panagiota; Antonucci, Vincent; Wu, Naijun

    2008-07-01

    Ultra performance LC (UPLC) was evaluated as an efficient screening approach to facilitate method development for drug candidates. Three stationary phases were screened: C-18, phenyl, and Shield RP 18 with column dimensions of 150 mm x 2.1 mm, 1.7 microm, which should theoretically generate 35,000 plates or 175% of the typical column plate count of a conventional 250 mm x 4.6 mm, 5 microm particle column. Thirteen different active pharmaceutical ingredients (APIs) were screened using this column set with a standardized mobile-phase gradient. The UPLC method selectivity results were compared to those obtained for these compounds via methods developed through laborious trial and error screening experiments using numerous conventional HPLC mobile and stationary phases. Peak capacity was compared for columns packed with 5 microm particles and columns packed with 1.7 microm particles. The impurities screened by UPLC were confirmed by LC/MS. The results demonstrate that simple, high efficiency UPLC gradients are a feasible and productive alternative to more conventional multiparametric chromatographic screening approaches for many compounds in the early stages of drug development.

  5. Two High Throughput Screen Assays for Measurement of TNF-α in THP-1 Cells

    PubMed Central

    Leister, Kristin P; Huang, Ruili; Goodwin, Bonnie L; Chen, Andrew; Austin, Christopher P; Xia, Menghang

    2011-01-01

    Tumor Necrosis Factor-α (TNF-α), a secreted cytokine, plays an important role in inflammatory diseases and immune disorders, and is a potential target for drug development. The traditional assays for detecting TNF-α, enzyme linked immunosorbent assay (ELISA) and radioimmunoassay, are not suitable for the large size compound screens. Both assays suffer from a complicated protocol, multiple plate wash steps and/or excessive radioactive waste. A simple and quick measurement of TNF-α production in a cell based assay is needed for high throughput screening to identify the lead compounds from the compound library. We have developed and optimized two homogeneous TNF-α assays using the HTRF (homogeneous time resolved fluorescence) and AlphaLISA assay formats. We have validated the HTRF based TNF-α assay in a 1536-well plate format by screening a library of 1280 pharmacologically active compounds. The active compounds identified from the screen were confirmed in the AlphaLISA TNF-α assay using a bead-based technology. These compounds were also confirmed in a traditional ELISA assay. From this study, several beta adrenergic agonists have been identified as TNF-α inhibitors. We also identified several novel inhibitors of TNF-α, such as BTO-1, CCG-2046, ellipticine, and PD 169316. The results demonstrated that both homogeneous TNF-α assays are robust and suitable for high throughput screening. PMID:21643507

  6. Ultra High Throughput Screening of Natural Product Extracts to Identify Pro-apoptotic Inhibitors of Bcl-2 Family Proteins

    PubMed Central

    Hassig, Christian A.; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W.; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J.; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E.; Brown, Susan G.; Baire, Beeraiah; Michel, Andrew R.; Hoye, Thomas R.; Francis, Subhashree; Georg, Gunda I.; Walters, Michael A.; Divlianska, Daniela B.; Roth, Gregory P.; Wright, Amy E.; Reed, John C.

    2015-01-01

    Anti-apoptotic Bcl-2 family proteins are validated cancer targets comprised of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). While several isoform-selective inhibitors have been developed using structure-based design or high throughput screening (HTS) of synthetic chemical libraries, no large scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six anti-apoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally-relevant PPIs. The screens were conducted in 1,536-well format and displayed satisfactory overall HTS statistics, with Z’-factor values ranging from 0.72 to 0.83, and a hit confirmation rate between 16-64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra high throughput screening using natural product sources and highlight some of the challenges associated with this approach. PMID:24870016

  7. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen

    PubMed Central

    Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin

    2014-01-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767

  8. Utility of High Throughput Screening Techniques to Predict Stability of Monoclonal Antibody Formulations During Early Stage Development.

    PubMed

    Goldberg, Deborah S; Lewus, Rachael A; Esfandiary, Reza; Farkas, David C; Mody, Neil; Day, Katrina J; Mallik, Priyanka; Tracka, Malgorzata B; Sealey, Smita K; Samra, Hardeep S

    2017-08-01

    Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development. The utility of using accelerated stability compared to HTS techniques (differential scanning light scattering and differential scanning fluorescence) for early formulation screening was evaluated along with the impact of excipients of various types on aggregation of monoclonal antibodies from multiple IgG subtypes. The excipient rank order using quantitative HTS measures was found to correlate with accelerated stability aggregation rate ranking for only 33% (by differential scanning fluorescence) to 42% (by differential scanning light scattering) of the antibodies tested, due to the high intrinsic stability and minimal impact of excipients on aggregation rates and HTS data. Also explored was a case study of employing a platform formulation instead of broader formulation screening for early formulation development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Human Papillomavirus Biology, Pathogenesis, and Potential for Drug Discovery: A Literature Review for HIV Nurse Clinical Scientists.

    PubMed

    Walhart, Tara

    2015-01-01

    Persistent oncogenic human papillomavirus (HPV) infection increases the probability that precancerous anal high-grade squamous intraepithelial lesions will progress to invasive anal cancer. Anal neoplasia associated with HPV disproportionately affects HIV-infected individuals, especially men who have sex with men. Prevention is limited to HPV vaccine recommendations, highlighting the need for new treatments. The purpose of this review is to provide HIV information to nurse clinical scientists about HPV-related cancer to highlight the connection between: (a) HPV biology and pathogenesis and (b) the development of drugs and novel therapeutic methods using high-throughput screening. PubMed and CINAHL were used to search the literature to determine HPV-related epidemiology, biology, and use of high-throughput screening for drug discovery. Several events in the HPV life cycle have the potential to be developed into biologic targets for drug discovery using the high-throughput screening technique, which has been successfully used to identify compounds to inhibit HPV infections. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  10. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry.

    PubMed

    Soulard, Patricia; McLaughlin, Meg; Stevens, Jessica; Connolly, Brendan; Coli, Rocco; Wang, Leyu; Moore, Jennifer; Kuo, Ming-Shang T; LaMarr, William A; Ozbal, Can C; Bhat, B Ganesh

    2008-10-03

    Several recent reports suggest that stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis, plays an important role in regulating lipid homeostasis and lipid oxidation in metabolically active tissues. As several manifestations of type 2 diabetes and related metabolic disorders are associated with alterations in intracellular lipid partitioning, pharmacological manipulation of SCD1 activity might be of benefit in the treatment of these disease states. In an effort to identify small molecule inhibitors of SCD1, we have developed a mass spectrometry based high-throughput screening (HTS) assay using deuterium labeled stearoyl-CoA substrate and induced rat liver microsomes. The methodology developed allows the use of a nonradioactive substrate which avoids interference by the endogenous SCD1 substrate and/or product that exist in the non-purified enzyme source. Throughput of the assay was up to twenty 384-well assay plates per day. The assay was linear with protein concentration and time, and was saturable for stearoyl-CoA substrate (K(m)=10.5 microM). The assay was highly reproducible with an average Z' value=0.6. Conjugated linoleic acid and sterculic acid, known inhibitors of SCD1, exhibited IC(50) values of 0.88 and 0.12 microM, respectively. High-throughput mass spectrometry screening of over 1.7 million compounds in compressed format demonstrated that the enzyme target is druggable. A total of 2515 hits were identified (0.1% hit rate), and 346 were confirmed active (>40% inhibition of total SCD activity at 20 microM--14% conformation rate). Of the confirmed hits 172 had IC(50) values of <10 microM, including 111 <1 microM and 48 <100 nM. A large number of potent drug-like (MW<450) hits representing six different chemical series were identified. The application of mass spectrometry to high-throughput screening permitted the development of a high-quality screening protocol for an otherwise intractable target, SCD1. Further medicinal chemistry and characterization of SCD inhibitors should lead to the development of reagents to treat metabolic disorders.

  11. Phoenito experiments: combining the strengths of commercial crystallization automation.

    PubMed

    Newman, Janet; Pham, Tam M; Peat, Thomas S

    2008-11-01

    The use of crystallization robots for initial screening in macromolecular crystallization is well established. This paper describes how four general optimization techniques, growth-rate modulation, fine screening, seeding and additive screening, have been adapted for automation in a medium-throughput crystallization service facility. The use of automation for more challenging optimization experiments is discussed, as is a novel way of using both the Mosquito and the Phoenix nano-dispensing robots during the setup of a single crystallization plate. This dual-dispenser technique plays to the strengths of both machines.

  12. Phoenito experiments: combining the strengths of commercial crystallization automation

    PubMed Central

    Newman, Janet; Pham, Tam M.; Peat, Thomas S.

    2008-01-01

    The use of crystallization robots for initial screening in macromolecular crystallization is well established. This paper describes how four general optimization techniques, growth-rate modulation, fine screening, seeding and additive screening, have been adapted for automation in a medium-throughput crystallization service facility. The use of automation for more challenging optimization experiments is discussed, as is a novel way of using both the Mosquito and the Phoenix nano-dispensing robots during the setup of a single crystallization plate. This dual-dispenser technique plays to the strengths of both machines. PMID:18997323

  13. Noise Reduction in High-Throughput Gene Perturbation Screens

    USDA-ARS?s Scientific Manuscript database

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...

  14. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  15. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells.

    PubMed

    Gong, Chenyuan; Ni, Zhongya; Yao, Chao; Zhu, Xiaowen; Ni, Lulu; Wang, Lixin; Zhu, Shiguo

    2015-01-01

    Recently, immunotherapy has shown a lot of promise in cancer treatment and different immune cell types are involved in this endeavor. Among different immune cell populations, NK cells are also an important component in unleashing the therapeutic activity of immune cells. Therefore, in order to enhance the tumoricidal activity of NK cells, identification of new small-molecule natural products is important. Despite the availability of different screening methods for identification of natural products, a simple, economic and high-throughput method is lacking. Hence, in this study, we have developed a high-throughput assay for screening and indentifying natural products that can enhance NK cell-mediated killing of cancer cells. We expanded human NK cell population from human peripheral blood mononuclear cells (PBMCs) by culturing these PBMCs with membrane-bound IL-21 and CD137L engineered K562 cells. Next, expanded NK cells were co-cultured with non-small cell lung cancer (NSCLC) cells with or without natural products and after 24 h of co-culturing, harvested supernatants were analyzed for IFN-γ secretions by ELISA method. We screened 502 natural products and identified that 28 candidates has the potential to induce IFN-γ secretion by NK cells to varying degrees. Among the 28 natural product candidates, we further confirmed and analyzed the potential of one molecule, andrographolide. It actually increased IFN-γ secretion by NK cells and enhanced NK cell-mediated killing of NSCLC cells. Our results demonstrated that this IFN-γ based high-throughput assay for screening of natural products for NK cell tumoricidal activity is a simple, economic and reliable method.

  16. Recent advances in quantitative high throughput and high content data analysis.

    PubMed

    Moutsatsos, Ioannis K; Parker, Christian N

    2016-01-01

    High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.

  17. Sensitive high-throughput screening for the detection of reducing sugars.

    PubMed

    Mellitzer, Andrea; Glieder, Anton; Weis, Roland; Reisinger, Christoph; Flicker, Karlheinz

    2012-01-01

    The exploitation of renewable resources for the production of biofuels relies on efficient processes for the enzymatic hydrolysis of lignocellulosic materials. The development of enzymes and strains for these processes requires reliable and fast activity-based screening assays. Additionally, these assays are also required to operate on the microscale and on the high-throughput level. Herein, we report the development of a highly sensitive reducing-sugar assay in a 96-well microplate screening format. The assay is based on the formation of osazones from reducing sugars and para-hydroxybenzoic acid hydrazide. By using this sensitive assay, the enzyme loads and conversion times during lignocellulose hydrolysis can be reduced, thus allowing higher throughput. The assay is about five times more sensitive than the widely applied dinitrosalicylic acid based assay and can reliably detect reducing sugars down to 10 μM. The assay-specific variation over one microplate was determined for three different lignocellulolytic enzymes and ranges from 2 to 8%. Furthermore, the assay was combined with a microscale cultivation procedure for the activity-based screening of Pichia pastoris strains expressing functional Thermomyces lanuginosus xylanase A, Trichoderma reesei β-mannanase, or T. reesei cellobiohydrolase 2. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    PubMed

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  19. Correction of Microplate Data from High-Throughput Screening.

    PubMed

    Wang, Yuhong; Huang, Ruili

    2016-01-01

    High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.

  20. Detecting and removing multiplicative spatial bias in high-throughput screening technologies.

    PubMed

    Caraus, Iurie; Mazoure, Bogdan; Nadon, Robert; Makarenkov, Vladimir

    2017-10-15

    Considerable attention has been paid recently to improve data quality in high-throughput screening (HTS) and high-content screening (HCS) technologies widely used in drug development and chemical toxicity research. However, several environmentally- and procedurally-induced spatial biases in experimental HTS and HCS screens decrease measurement accuracy, leading to increased numbers of false positives and false negatives in hit selection. Although effective bias correction methods and software have been developed over the past decades, almost all of these tools have been designed to reduce the effect of additive bias only. Here, we address the case of multiplicative spatial bias. We introduce three new statistical methods meant to reduce multiplicative spatial bias in screening technologies. We assess the performance of the methods with synthetic and real data affected by multiplicative spatial bias, including comparisons with current bias correction methods. We also describe a wider data correction protocol that integrates methods for removing both assay and plate-specific spatial biases, which can be either additive or multiplicative. The methods for removing multiplicative spatial bias and the data correction protocol are effective in detecting and cleaning experimental data generated by screening technologies. As our protocol is of a general nature, it can be used by researchers analyzing current or next-generation high-throughput screens. The AssayCorrector program, implemented in R, is available on CRAN. makarenkov.vladimir@uqam.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors.

    PubMed

    Myers, Stephanie M; Bawn, Ruth H; Bisset, Louise C; Blackburn, Timothy J; Cottyn, Betty; Molyneux, Lauren; Wong, Ai-Ching; Cano, Celine; Clegg, William; Harrington, Ross W; Leung, Hing; Rigoreau, Laurent; Vidot, Sandrine; Golding, Bernard T; Griffin, Roger J; Hammonds, Tim; Newell, David R; Hardcastle, Ian R

    2016-08-08

    The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.

  2. High content screening of ToxCast compounds using Vala Sciences’ complex cell culturing systems (SOT)

    EPA Science Inventory

    US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....

  3. DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.

    PubMed

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L

    2013-08-26

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.

  4. Life in the fast lane: high-throughput chemistry for lead generation and optimisation.

    PubMed

    Hunter, D

    2001-01-01

    The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process. Copyright 2002 Wiley-Liss, Inc.

  5. Computational methods for evaluation of cell-based data assessment--Bioconductor.

    PubMed

    Le Meur, Nolwenn

    2013-02-01

    Recent advances in miniaturization and automation of technologies have enabled cell-based assay high-throughput screening, bringing along new challenges in data analysis. Automation, standardization, reproducibility have become requirements for qualitative research. The Bioconductor community has worked in that direction proposing several R packages to handle high-throughput data including flow cytometry (FCM) experiment. Altogether, these packages cover the main steps of a FCM analysis workflow, that is, data management, quality assessment, normalization, outlier detection, automated gating, cluster labeling, and feature extraction. Additionally, the open-source philosophy of R and Bioconductor, which offers room for new development, continuously drives research and improvement of theses analysis methods, especially in the field of clustering and data mining. This review presents the principal FCM packages currently available in R and Bioconductor, their advantages and their limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Screening_mgmt: a Python module for managing screening data.

    PubMed

    Helfenstein, Andreas; Tammela, Päivi

    2015-02-01

    High-throughput screening is an established technique in drug discovery and, as such, has also found its way into academia. High-throughput screening generates a considerable amount of data, which is why specific software is used for its analysis and management. The commercially available software packages are often beyond the financial limits of small-scale academic laboratories and, furthermore, lack the flexibility to fulfill certain user-specific requirements. We have developed a Python module, screening_mgmt, which is a lightweight tool for flexible data retrieval, analysis, and storage for different screening assays in one central database. The module reads custom-made analysis scripts and plotting instructions, and it offers a graphical user interface to import, modify, and display the data in a uniform manner. During the test phase, we used this module for the management of 10,000 data points of various origins. It has provided a practical, user-friendly tool for sharing and exchanging information between researchers. © 2014 Society for Laboratory Automation and Screening.

  7. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates

    PubMed Central

    White, David T; Eroglu, Arife Unal; Wang, Guohua; Zhang, Liyun; Sengupta, Sumitra; Ding, Ding; Rajpurohit, Surendra K; Walker, Steven L; Ji, Hongkai; Qian, Jiang; Mumm, Jeff S

    2017-01-01

    The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed ‘ARQiv-HTS’. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives. PMID:27831568

  8. The High-Throughput Stochastic Human Exposure and Dose Simulation Model (SHEDS-HT) & The Chemical and Products Database (CPDat)

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation Model – High-Throughput (SHEDS-HT) is a U.S. Environmental Protection Agency research tool for predicting screening-level (low-tier) exposures to chemicals in consumer products. This course will present an overview of this m...

  9. Forecasting Exposure in Order to Use High Throughput Hazard Data in a Risk-based Context (WC9)

    EPA Science Inventory

    The ToxCast program and Tox21 consortium have evaluated over 8000 chemicals using in vitro high-throughput screening (HTS) to identify potential hazards. Complementary exposure science needed to assess risk, and the U.S. Environmental Protection Agency (EPA)’s ExpoCast initiative...

  10. Differentiating pathway-specific from non-specific effects in high-throughput toxicity data: A foundation for prioritizing adverse outcome pathway development

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with pote...

  11. Differentiating pathway-based toxicity from non-specific effects in high throughput data: A foundation for prioritizing targets for AOP development.

    EPA Science Inventory

    The Environmental Protection Agency has implemented a high throughput screening program, ToxCast, to quickly evaluate large numbers of chemicals for their effects on hundreds of different biological targets. To understand how these measurements relate to adverse effects in an or...

  12. High Throughput PBTK: Evaluating EPA’s Open-Source Data and Tools for Dosimetry and Exposure Reconstruction

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics (TK). While HTS generates in vitro bioactivity d...

  13. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  14. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    EPA Science Inventory

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  15. A Biologically Informed Framework for the Analysis of the PPAR Signaling Pathway using a Bayesian Network

    EPA Science Inventory

    The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...

  16. ToxCast Assay Network (TCAN) Viewer: A Visualization Tool for High-throughput Assay Chemical Data (SOT)

    EPA Science Inventory

    USEPA’s ToxCast program has generated high-throughput bioactivity screening (HTS) data on thousands of chemicals. The ToxCast program has described and annotated the HTS assay battery with respect to assay design and target information (e.g., gene target). Recent stakeholder and ...

  17. High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans

    PubMed Central

    Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.

    2015-01-01

    Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643

  18. Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO

    PubMed Central

    Oh, Kwang Seok; Woo, Seong Ihl

    2011-01-01

    A chemiluminescence-based analyzer of NOx gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NOx analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al2O3 substrate was tested for the efficiency of NOx removal using a home-built 64-channel parallel and sequential tubular reactor. The NOx concentrations measured by the NOx analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al2O3. Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NOx analyzer allowed to select Pt-Ce(X) (X=1–3) and Pt–Fe(2) as the optimal catalysts for NOx removal: 73% NOx conversion was achieved with the Pt–Fe(2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO. PMID:27877438

  19. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    PubMed

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  20. Mass spectrometry-driven drug discovery for development of herbal medicine.

    PubMed

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

  1. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms.

    PubMed

    Ingham, Colin J; Sprenkels, Ad; Bomer, Johan; Molenaar, Douwe; van den Berg, Albert; van Hylckama Vlieg, Johan E T; de Vos, Willem M

    2007-11-13

    A miniaturized, disposable microbial culture chip has been fabricated by microengineering a highly porous ceramic sheet with up to one million growth compartments. This versatile culture format, with discrete compartments as small as 7 x 7 mum, allowed the growth of segregated microbial samples at an unprecedented density. The chip has been used for four complementary applications in microbiology. (i) As a fast viable counting system that showed a dynamic range of over 10,000, a low degree of bias, and a high culturing efficiency. (ii) In high-throughput screening, with the recovery of 1 fluorescent microcolony in 10,000. (iii) In screening for an enzyme-based, nondominant phenotype by the targeted recovery of Escherichia coli transformed with the plasmid pUC18, based on expression of the lacZ reporter gene without antibiotic-resistance selection. The ease of rapid, successive changes in the environment of the organisms on the chip, needed for detection of beta-galactosidase activity, highlights an advantageous feature that was also used to screen a metagenomic library for the same activity. (iv) In high-throughput screening of >200,000 isolates from Rhine water based on metabolism of a fluorogenic organophosphate compound, resulting in the recovery of 22 microcolonies with the desired phenotype. These isolates were predicted, on the basis of rRNA sequence, to include six new species. These four applications suggest that the potential for such simple, readily manufactured chips to impact microbial culture is extensive and may facilitate the full automation and multiplexing of microbial culturing, screening, counting, and selection.

  2. Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity

    EPA Science Inventory

    Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...

  3. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells.

    PubMed

    Hartwell, Kimberly A; Miller, Peter G; Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2013-12-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.

  4. An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation.

    PubMed

    Casalino, Laura; Magnani, Dario; De Falco, Sandro; Filosa, Stefania; Minchiotti, Gabriella; Patriarca, Eduardo J; De Cesare, Dario

    2012-03-01

    The use of Embryonic Stem Cells (ESCs) holds considerable promise both for drug discovery programs and the treatment of degenerative disorders in regenerative medicine approaches. Nevertheless, the successful use of ESCs is still limited by the lack of efficient control of ESC self-renewal and differentiation capabilities. In this context, the possibility to modulate ESC biological properties and to obtain homogenous populations of correctly specified cells will help developing physiologically relevant screens, designed for the identification of stem cell modulators. Here, we developed a high throughput screening-suitable ESC neural differentiation assay by exploiting the Cell(maker) robotic platform and demonstrated that neural progenies can be generated from ESCs in complete automation, with high standards of accuracy and reliability. Moreover, we performed a pilot screening providing proof of concept that this assay allows the identification of regulators of ESC neural differentiation in full automation.

  5. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

    PubMed Central

    Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2014-01-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone-marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on-target, via inhibition of HMGCoA reductase. These results illustrate the power of merging physiologically-relevant models with high-throughput screening. PMID:24161946

  6. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    PubMed

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.

  7. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    PubMed

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  8. Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools.

    PubMed

    Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob

    2013-03-10

    In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity.

    PubMed

    Colton, Craig K; Kong, Qiongman; Lai, Liching; Zhu, Michael X; Seyb, Kathleen I; Cuny, Gregory D; Xian, Jun; Glicksman, Marcie A; Lin, Chien-Liang Glenn

    2010-07-01

    Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity.

  10. An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.

    PubMed

    Zhai, Yufeng; Chen, Kaisheng; Zhong, Yang; Zhou, Bin; Ainscow, Edward; Wu, Ying-Ta; Zhou, Yingyao

    2016-09-01

    The correction or removal of signal errors in high-throughput screening (HTS) data is critical to the identification of high-quality lead candidates. Although a number of strategies have been previously developed to correct systematic errors and to remove screening artifacts, they are not universally effective and still require fair amount of human intervention. We introduce a fully automated quality control (QC) pipeline that can correct generic interplate systematic errors and remove intraplate random artifacts. The new pipeline was first applied to ~100 large-scale historical HTS assays; in silico analysis showed auto-QC led to a noticeably stronger structure-activity relationship. The method was further tested in several independent HTS runs, where QC results were sampled for experimental validation. Significantly increased hit confirmation rates were obtained after the QC steps, confirming that the proposed method was effective in enriching true-positive hits. An implementation of the algorithm is available to the screening community. © 2016 Society for Laboratory Automation and Screening.

  11. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.

    PubMed

    Krska, Shane W; DiRocco, Daniel A; Dreher, Spencer D; Shevlin, Michael

    2017-12-19

    The structural complexity of pharmaceuticals presents a significant challenge to modern catalysis. Many published methods that work well on simple substrates often fail when attempts are made to apply them to complex drug intermediates. The use of high-throughput experimentation (HTE) techniques offers a means to overcome this fundamental challenge by facilitating the rational exploration of large arrays of catalysts and reaction conditions in a time- and material-efficient manner. Initial forays into the use of HTE in our laboratories for solving chemistry problems centered around screening of chiral precious-metal catalysts for homogeneous asymmetric hydrogenation. The success of these early efforts in developing efficient catalytic steps for late-stage development programs motivated the desire to increase the scope of this approach to encompass other high-value catalytic chemistries. Doing so, however, required significant advances in reactor and workflow design and automation to enable the effective assembly and agitation of arrays of heterogeneous reaction mixtures and retention of volatile solvents under a wide range of temperatures. Associated innovations in high-throughput analytical chemistry techniques greatly increased the efficiency and reliability of these methods. These evolved HTE techniques have been utilized extensively to develop highly innovative catalysis solutions to the most challenging problems in large-scale pharmaceutical synthesis. Starting with Pd- and Cu-catalyzed cross-coupling chemistry, subsequent efforts expanded to other valuable modern synthetic transformations such as chiral phase-transfer catalysis, photoredox catalysis, and C-H functionalization. As our experience and confidence in HTE techniques matured, we envisioned their application beyond problems in process chemistry to address the needs of medicinal chemists. Here the problem of reaction generality is felt most acutely, and HTE approaches should prove broadly enabling. However, the quantities of both time and starting materials available for chemistry troubleshooting in this space generally are severely limited. Adapting to these needs led us to invest in smaller predefined arrays of transformation-specific screening "kits" and push the boundaries of miniaturization in chemistry screening, culminating in the development of "nanoscale" reaction screening carried out in 1536-well plates. Grappling with the problem of generality also inspired the exploration of cheminformatics-driven HTE approaches such as the Chemistry Informer Libraries. These next-generation HTE methods promise to empower chemists to run orders of magnitude more experiments and enable "big data" informatics approaches to reaction design and troubleshooting. With these advances, HTE is poised to revolutionize how chemists across both industry and academia discover new synthetic methods, develop them into tools of broad utility, and apply them to problems of practical significance.

  12. Evolving the EPA Endocrine Disruptor Screening Program: The case for and against using high-throughput screening assays in EDSP Tier 1

    EPA Science Inventory

    Testing has begun as part of the EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 battery of 11 in vitro and in vivo tests. A recognized issue with the EDSP is that the current Tier 1 screening battery is highly resource intensive in terms of cost, time and animal usage fo...

  13. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches

    PubMed Central

    Ekland, Eric H.; Schneider, Jessica; Fidock, David A.

    2011-01-01

    Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for “delayed death” compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC50 in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.—Ekland, E. H., Schneider, J., Fidock, D. A. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. PMID:21746861

  14. Characterization of ToxCast Phase II compounds disruption of spontaneous network activity in cortical networks grown on multi-well microelectrode array (mwMEA) plates.

    EPA Science Inventory

    The development of multi-well microelectrode array (mwMEA) systems has increased in vitro screening throughput making them an effective method to screen and prioritize large sets of compounds for potential neurotoxicity. In the present experiments, a multiplexed approach was used...

  15. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    PubMed

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  16. Active machine learning-driven experimentation to determine compound effects on protein patterns.

    PubMed

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-02-03

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance.

  17. Quantitative High-Throughput Screen Identifies Inhibitors of the Schistosoma mansoni Redox Cascade

    PubMed Central

    Simeonov, Anton; Jadhav, Ajit; Sayed, Ahmed A.; Wang, Yuhong; Nelson, Michael E.; Thomas, Craig J.; Inglese, James; Williams, David L.; Austin, Christopher P.

    2008-01-01

    Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 µL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC50s ranging from micromolar to the assay response limit (∼25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases. PMID:18235848

  18. Pathway Profiling and Tissue Modeling Using ToxCast HTS Data

    EPA Science Inventory

    High-throughput screening (HTS) and high-content screening (HCS) assays are providing data-rich studies to probe and profile the direct cellular effects of thousands of chemical compounds in commerce or potentially entering the environment. In vitro profiling may compare unknown ...

  19. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens.

    PubMed

    Morgens, David W; Wainberg, Michael; Boyle, Evan A; Ursu, Oana; Araya, Carlos L; Tsui, C Kimberly; Haney, Michael S; Hess, Gaelen T; Han, Kyuho; Jeng, Edwin E; Li, Amy; Snyder, Michael P; Greenleaf, William J; Kundaje, Anshul; Bassik, Michael C

    2017-05-05

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.

  20. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens

    PubMed Central

    Morgens, David W.; Wainberg, Michael; Boyle, Evan A.; Ursu, Oana; Araya, Carlos L.; Tsui, C. Kimberly; Haney, Michael S.; Hess, Gaelen T.; Han, Kyuho; Jeng, Edwin E.; Li, Amy; Snyder, Michael P.; Greenleaf, William J.; Kundaje, Anshul; Bassik, Michael C.

    2017-01-01

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens. PMID:28474669

  1. Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening.

    PubMed

    Yang, Bin; Lamb, Michelle L; Zhang, Tao; Hennessy, Edward J; Grewal, Gurmit; Sha, Li; Zambrowski, Mark; Block, Michael H; Dowling, James E; Su, Nancy; Wu, Jiaquan; Deegan, Tracy; Mikule, Keith; Wang, Wenxian; Kaspera, Rüdiger; Chuaqui, Claudio; Chen, Huawei

    2014-12-11

    KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.

  2. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    PubMed Central

    Pinzon, Neissa M.; Aukema, Kelly G.; Gralnick, Jeffrey A.; Wackett, Lawrence P.

    2011-01-01

    ABSTRACT A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. PMID:21712420

  3. Real Time Detection of Protein Trafficking with High Throughput Flow Cytometry (HTFC) and Fluorogen Activating Protein (FAP) Base Biosensor

    PubMed Central

    Wu, Yang; Tapia, Phillip H.; Jarvik, Jonathan; Waggoner, Alan S.; Sklar, Larry A.

    2014-01-01

    We combined fluorogen activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform allows drug discovery for trafficking receptors, such as G-protein coupled receptors, receptor tyrosine kinases and ion channels, that were previously not suitable for high throughput screening by flow cytometry.. The system has been validated using the β2-adrenergic receptor (β2AR) system and extended to other GPCRs. When a chemical library containing ~1,200 off-patent drugs was screened against cells expressing FAP tagged β2AR, all known β2AR active ligands in the library were successfully identified, together with a few compounds that were later confirmed to regulate receptor internalization in a non-traditional manner. The unexpected discovery of new ligands by this approach indicates the potential of using this protocol for GPCR de-orphanization. In addition, screens of multiplexed targets promise improved efficiency with minor protocol modification. PMID:24510772

  4. Essential attributes identified in the design of a Laboratory Information Management System for a high throughput siRNA screening laboratory.

    PubMed

    Grandjean, Geoffrey; Graham, Ryan; Bartholomeusz, Geoffrey

    2011-11-01

    In recent years high throughput screening operations have become a critical application in functional and translational research. Although a seemingly unmanageable amount of data is generated by these high-throughput, large-scale techniques, through careful planning, an effective Laboratory Information Management System (LIMS) can be developed and implemented in order to streamline all phases of a workflow. Just as important as data mining and analysis procedures at the end of complex processes is the tracking of individual steps of applications that generate such data. Ultimately, the use of a customized LIMS will enable users to extract meaningful results from large datasets while trusting the robustness of their assays. To illustrate the design of a custom LIMS, this practical example is provided to highlight the important aspects of the design of a LIMS to effectively modulate all aspects of an siRNA screening service. This system incorporates inventory management, control of workflow, data handling and interaction with investigators, statisticians and administrators. All these modules are regulated in a synchronous manner within the LIMS. © 2011 Bentham Science Publishers

  5. A thioacidolysis method tailored for higher‐throughput quantitative analysis of lignin monomers

    PubMed Central

    Foster, Cliff; Happs, Renee M.; Doeppke, Crissa; Meunier, Kristoffer; Gehan, Jackson; Yue, Fengxia; Lu, Fachuang; Davis, Mark F.

    2016-01-01

    Abstract Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β‐O‐4 linkages. Current thioacidolysis methods are low‐throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non‐chlorinated organic solvent and is tailored for higher‐throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1–2 mg of biomass per assay and has been quantified using fast‐GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, including standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day‐to‐day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. The method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses. PMID:27534715

  6. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.

    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, includingmore » standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. As a result, the method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.« less

  7. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers

    DOE PAGES

    Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.; ...

    2016-09-14

    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, includingmore » standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. As a result, the method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.« less

  8. A Robotic Platform for Quantitative High-Throughput Screening

    PubMed Central

    Michael, Sam; Auld, Douglas; Klumpp, Carleen; Jadhav, Ajit; Zheng, Wei; Thorne, Natasha; Austin, Christopher P.; Inglese, James

    2008-01-01

    Abstract High-throughput screening (HTS) is increasingly being adopted in academic institutions, where the decoupling of screening and drug development has led to unique challenges, as well as novel uses of instrumentation, assay formulations, and software tools. Advances in technology have made automated unattended screening in the 1,536-well plate format broadly accessible and have further facilitated the exploration of new technologies and approaches to screening. A case in point is our recently developed quantitative HTS (qHTS) paradigm, which tests each library compound at multiple concentrations to construct concentration-response curves (CRCs) generating a comprehensive data set for each assay. The practical implementation of qHTS for cell-based and biochemical assays across libraries of > 100,000 compounds (e.g., between 700,000 and 2,000,000 sample wells tested) requires maximal efficiency and miniaturization and the ability to easily accommodate many different assay formats and screening protocols. Here, we describe the design and utilization of a fully integrated and automated screening system for qHTS at the National Institutes of Health's Chemical Genomics Center. We report system productivity, reliability, and flexibility, as well as modifications made to increase throughput, add additional capabilities, and address limitations. The combination of this system and qHTS has led to the generation of over 6 million CRCs from > 120 assays in the last 3 years and is a technology that can be widely implemented to increase efficiency of screening and lead generation. PMID:19035846

  9. Gas pressure assisted microliquid-liquid extraction coupled online to direct infusion mass spectrometry: a new automated screening platform for bioanalysis.

    PubMed

    Raterink, Robert-Jan; Witkam, Yoeri; Vreeken, Rob J; Ramautar, Rawi; Hankemeier, Thomas

    2014-10-21

    In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.

  10. A high-throughput screen for single gene activities: isolation of apoptosis inducers.

    PubMed

    Albayrak, Timur; Grimm, Stefan

    2003-05-16

    We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.

  11. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    PubMed

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A high throughput screen for biomining cellulase activity from metagenomic libraries.

    PubMed

    Mewis, Keith; Taupp, Marcus; Hallam, Steven J

    2011-02-01

    Cellulose, the most abundant source of organic carbon on the planet, has wide-ranging industrial applications with increasing emphasis on biofuel production (1). Chemical methods to modify or degrade cellulose typically require strong acids and high temperatures. As such, enzymatic methods have become prominent in the bioconversion process. While the identification of active cellulases from bacterial and fungal isolates has been somewhat effective, the vast majority of microbes in nature resist laboratory cultivation. Environmental genomic, also known as metagenomic, screening approaches have great promise in bridging the cultivation gap in the search for novel bioconversion enzymes. Metagenomic screening approaches have successfully recovered novel cellulases from environments as varied as soils (2), buffalo rumen (3) and the termite hind-gut (4) using carboxymethylcellulose (CMC) agar plates stained with congo red dye (based on the method of Teather and Wood (5)). However, the CMC method is limited in throughput, is not quantitative and manifests a low signal to noise ratio (6). Other methods have been reported (7,8) but each use an agar plate-based assay, which is undesirable for high-throughput screening of large insert genomic libraries. Here we present a solution-based screen for cellulase activity using a chromogenic dinitrophenol (DNP)-cellobioside substrate (9). Our library was cloned into the pCC1 copy control fosmid to increase assay sensitivity through copy number induction (10). The method uses one-pot chemistry in 384-well microplates with the final readout provided as an absorbance measurement. This readout is quantitative, sensitive and automated with a throughput of up to 100X 384-well plates per day using a liquid handler and plate reader with attached stacking system.

  13. Screening of HIV-1 Protease Using a Combination of an Ultra-High-Throughput Fluorescent-Based Assay and RapidFire Mass Spectrometry.

    PubMed

    Meng, Juncai; Lai, Ming-Tain; Munshi, Vandna; Grobler, Jay; McCauley, John; Zuck, Paul; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Adam, Gregory C

    2015-06-01

    HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors. © 2015 Society for Laboratory Automation and Screening.

  14. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways, OpenTox USA 2015 Poster

    EPA Science Inventory

    Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...

  15. Use of Threshold of Toxicological Concern (TTC) with High Throughput Exposure Predictions as a Risk-Based Screening Approach to Prioritize More Than Seven Thousand Chemicals (ASCCT)

    EPA Science Inventory

    Here, we present results of an approach for risk-based prioritization using the Threshold of Toxicological Concern (TTC) combined with high-throughput exposure (HTE) modelling. We started with 7968 chemicals with calculated population median oral daily intakes characterized by an...

  16. Application of 2,4-Dinitrophenylhydrazine (DNPH) in High-Throughput Screening for Microorganism Mutants Accumulating 9α-Hydroxyandrost-4-ene-3,17-dione (9α-OH-AD)

    PubMed Central

    Liu, Yang; Cao, Fei; Xiong, Hui; Shen, Yanbing; Wang, Min

    2016-01-01

    To develop a quick method for the preliminarily screening of mutant strains that can accumulate 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD), a high-throughput screening method was presented by applying the principle that 2,4-dinitrophenylhydrazine (DNPH) can react with ketones to produce precipitation. The optimal color assay conditions were the substrate androst-4-ene-3,17-dione (AD) concentration at 2.0 g/L, the ratio of AD to DNPH solution at 1:4, and the sulfuric acid and ethanol solution percentages in DNPH solution at 2% and 35%, respectively. This method was used to preliminarily screen the mutants of Rhodococcus rhodochrous DSM43269, from which the three ones obtained could produce more 9α-OH-AD. This DNPH color assay method not only broadens screening methods and increases screening efficiency in microbial mutation breeding but also establishes a good foundation for obtaining strains for industrial application. PMID:27706217

  17. Application of 2,4-Dinitrophenylhydrazine (DNPH) in High-Throughput Screening for Microorganism Mutants Accumulating 9α-Hydroxyandrost-4-ene-3,17-dione (9α-OH-AD).

    PubMed

    Liu, Yang; Cao, Fei; Xiong, Hui; Shen, Yanbing; Wang, Min

    2016-01-01

    To develop a quick method for the preliminarily screening of mutant strains that can accumulate 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD), a high-throughput screening method was presented by applying the principle that 2,4-dinitrophenylhydrazine (DNPH) can react with ketones to produce precipitation. The optimal color assay conditions were the substrate androst-4-ene-3,17-dione (AD) concentration at 2.0 g/L, the ratio of AD to DNPH solution at 1:4, and the sulfuric acid and ethanol solution percentages in DNPH solution at 2% and 35%, respectively. This method was used to preliminarily screen the mutants of Rhodococcus rhodochrous DSM43269, from which the three ones obtained could produce more 9α-OH-AD. This DNPH color assay method not only broadens screening methods and increases screening efficiency in microbial mutation breeding but also establishes a good foundation for obtaining strains for industrial application.

  18. Imaging flow cytometry for the screening of compounds that disrupt the Plasmodium falciparum digestive vacuole.

    PubMed

    Chia, Wan Ni; Lee, Yan Quan; Tan, Kevin Shyong-Wei

    2017-01-01

    Malaria, despite being one of the world's oldest infectious diseases, remains difficult to eradicate because the parasite is rapidly developing resistance to frontline chemotherapies. Previous studies have shown that the parasite exhibits features resembling programmed cell death upon treatment with drugs that disrupt its digestive vacuole (DV), providing a phenotypic readout that can be detected using the imaging flow cytometer. Large compound collections can thus be screened to identify drugs that are able to disrupt the DV of the malaria parasite using this high-content high-throughput screening platform. As a proof-of-concept, 4440 compounds were screened using this platform in 4months and 254 hits (5.7% hit rate) were obtained. Additionally, 25 compounds (0.6% top hit rate) were observed to retain potent DV disruption activity that was comparable to the canonical DV disruptive drug chloroquine when tested at a ten-fold lower concentration from the original screen. This pilot study demonstrates the robustness and high-throughput capability of the imaging flow cytometer and we report herein the methodology of this screening assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. IspE Inhibitors Identified by a Combination of In Silico and In Vitro High-Throughput Screening

    PubMed Central

    Tidten-Luksch, Naomi; Grimaldi, Raffaella; Torrie, Leah S.; Frearson, Julie A.; Hunter, William N.; Brenk, Ruth

    2012-01-01

    CDP-ME kinase (IspE) contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP) pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens. PMID:22563402

  20. Combinatorial and high-throughput screening of materials libraries: review of state of the art.

    PubMed

    Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert

    2011-11-14

    Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.

  1. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  2. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  3. Identifying Candidate Chemical-Disease Linkages ...

    EPA Pesticide Factsheets

    Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment. Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment.

  4. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  5. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.

    PubMed

    Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun

    2015-11-24

    Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.

  6. Automated image-based phenotypic analysis in zebrafish embryos

    PubMed Central

    Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.

    2009-01-01

    Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725

  7. High-Throughput Screening of Na(V)1.7 Modulators Using a Giga-Seal Automated Patch Clamp Instrument.

    PubMed

    Chambers, Chris; Witton, Ian; Adams, Cathryn; Marrington, Luke; Kammonen, Juha

    2016-03-01

    Voltage-gated sodium (Na(V)) channels have an essential role in the initiation and propagation of action potentials in excitable cells, such as neurons. Of these channels, Na(V)1.7 has been indicated as a key channel for pain sensation. While extensive efforts have gone into discovering novel Na(V)1.7 modulating compounds for the treatment of pain, none has reached the market yet. In the last two years, new compound screening technologies have been introduced, which may speed up the discovery of such compounds. The Sophion Qube(®) is a next-generation 384-well giga-seal automated patch clamp (APC) screening instrument, capable of testing thousands of compounds per day. By combining high-throughput screening and follow-up compound testing on the same APC platform, it should be possible to accelerate the hit-to-lead stage of ion channel drug discovery and help identify the most interesting compounds faster. Following a period of instrument beta-testing, a Na(V)1.7 high-throughput screen was run with two Pfizer plate-based compound subsets. In total, data were generated for 158,000 compounds at a median success rate of 83%, which can be considered high in APC screening. In parallel, IC50 assay validation and protocol optimization was completed with a set of reference compounds to understand how the IC50 potencies generated on the Qube correlate with data generated on the more established Sophion QPatch(®) APC platform. In summary, the results presented here demonstrate that the Qube provides a comparable but much faster approach to study Na(V)1.7 in a robust and reliable APC assay for compound screening.

  8. High-Throughput Screening Platform for the Discovery of New Immunomodulator Molecules from Natural Product Extract Libraries.

    PubMed

    Pérez Del Palacio, José; Díaz, Caridad; de la Cruz, Mercedes; Annang, Frederick; Martín, Jesús; Pérez-Victoria, Ignacio; González-Menéndez, Víctor; de Pedro, Nuria; Tormo, José R; Algieri, Francesca; Rodriguez-Nogales, Alba; Rodríguez-Cabezas, M Elena; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; Gálvez, Julio

    2016-07-01

    It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators. © 2016 Society for Laboratory Automation and Screening.

  9. A Fusion Protein of the p53 Transaction Domain and the p53-Binding Domain of the Oncoprotein MdmX as an Efficient System for High-Throughput Screening of MdmX Inhibitors.

    PubMed

    Chen, Rong; Zhou, Jingjing; Qin, Lingyun; Chen, Yao; Huang, Yongqi; Liu, Huili; Su, Zhengding

    2017-06-27

    In nearly half of cancers, the anticancer activity of p53 protein is often impaired by the overexpressed oncoprotein Mdm2 and its homologue, MdmX, demanding efficient therapeutics to disrupt the aberrant p53-MdmX/Mdm2 interactions to restore the p53 activity. While many potent Mdm2-specific inhibitors have already undergone clinical investigations, searching for MdmX-specific inhibitors has become very attractive, requiring a more efficient screening strategy for evaluating potential scaffolds or leads. In this work, considering that the intrinsic fluorescence residue Trp23 in the p53 transaction domain (p53p) plays an important role in determining the p53-MdmX/Mdm2 interactions, we constructed a fusion protein to utilize this intrinsic fluorescence signal to monitor high-throughput screening of a compound library. The fusion protein was composed of the p53p followed by the N-terminal domain of MdmX (N-MdmX) through a flexible amino acid linker, while the whole fusion protein contained a sole intrinsic fluorescence probe. The fusion protein was then evaluated using fluorescence spectroscopy against model compounds. Our results revealed that the variation of the fluorescence signal was highly correlated with the concentration of the ligand within 65 μM. The fusion protein was further evaluated with respect to its feasibility for use in high-throughput screening using a model compound library, including controls. We found that the imidazo-indole scaffold was a bona fide scaffold for template-based design of MdmX inhibitors. Thus, the p53p-N-MdmX fusion protein we designed provides a convenient and efficient tool for high-throughput screening of new MdmX inhibitors. The strategy described in this work should be applicable for other protein targets to accelerate drug discovery.

  10. High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography.

    PubMed

    Hu, Junqiang; Gondarenko, Alexander A; Dang, Alex P; Bashour, Keenan T; O'Connor, Roddy S; Lee, Sunwoo; Liapis, Anastasia; Ghassemi, Saba; Milone, Michael C; Sheetz, Michael P; Dustin, Michael L; Kam, Lance C; Hone, James C

    2016-04-13

    We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 μm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 μm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.

  11. Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images

    PubMed Central

    Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.

    2010-01-01

    High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043

  12. In Vitro Toxicity Screening Technique for Volatile Substances ...

    EPA Pesticide Factsheets

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the challenge is that many of these chemicals are volatile and not amenable to HTS robotic liquid handling applications. We assembled an in vitro cell culture apparatus capable of screening volatile chemicals for toxicity with potential for miniaturization for high throughput. BEAS-2B lung cells were grown in an enclosed culture apparatus under air-liquid interface (ALI) conditions, and exposed to an array of xenobiotics in 5% CO2. Use of ALI conditions allows direct contact of cells with a gas xenobiotic, as well as release of endogenous gaseous molecules without interference by medium on the apical surface. To identify potential xenobiotic-induced perturbations in cell homeostasis, we monitored for alterations of endogenously-produced gaseous molecules in air directly above the cells, termed “headspace”. Alterations in specific endogenously-produced gaseous molecules (e.g., signaling molecules nitric oxide (NO) and carbon monoxide (CO) in headspace is indicative of xenobiotic-induced perturbations of specific cellular processes. Additionally, endogenously produced volatile organic compounds (VOCs) may be monitored in a nonspecific, discovery manner to determine whether cell processes are

  13. High-throughput tandem mass spectrometry multiplex analysis for newborn urinary screening of creatine synthesis and transport disorders, Triple H syndrome and OTC deficiency.

    PubMed

    Auray-Blais, Christiane; Maranda, Bruno; Lavoie, Pamela

    2014-09-25

    Creatine synthesis and transport disorders, Triple H syndrome and ornithine transcarbamylase deficiency are treatable inborn errors of metabolism. Early screening of patients was found to be beneficial. Mass spectrometry analysis of specific urinary biomarkers might lead to early detection and treatment in the neonatal period. We developed a high-throughput mass spectrometry methodology applicable to newborn screening using dried urine on filter paper for these aforementioned diseases. A high-throughput methodology was devised for the simultaneous analysis of creatine, guanidineacetic acid, orotic acid, uracil, creatinine and respective internal standards, using both positive and negative electrospray ionization modes, depending on the compound. The precision and accuracy varied by <15%. Stability during storage at different temperatures was confirmed for three weeks. The limits of detection and quantification for each biomarker varied from 0.3 to 6.3 μmol/l and from 1.0 to 20.9 μmol/l, respectively. Analyses of urine specimens from affected patients revealed abnormal results. Targeted biomarkers in urine were detected in the first weeks of life. This rapid, simple and robust liquid chromatography/tandem mass spectrometry methodology is an efficient tool applicable to urine screening for inherited disorders by biochemical laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of a high-throughput screening system for identification of novel reagents regulating DNA damage in human dermal fibroblasts.

    PubMed

    Bae, Seunghee; An, In-Sook; An, Sungkwan

    2015-09-01

    Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.

  15. RAS - Screens & Assays - Drug Discovery

    Cancer.gov

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  16. High-throughput on-chip in vivo neural regeneration studies using femtosecond laser nano-surgery and microfluidics

    NASA Astrophysics Data System (ADS)

    Rohde, Christopher B.; Zeng, Fei; Gilleland, Cody; Samara, Chrysanthi; Yanik, Mehmet F.

    2009-02-01

    In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of species-specific genetic techniques, along with the transparency of the worm and its ability to grow in minute volumes make C. elegans an extremely powerful model organism. We present a suite of technologies for complex high-throughput whole-animal genetic and drug screens. We demonstrate a high-speed microfluidic sorter that can isolate and immobilize C. elegans in a well-defined geometry, an integrated chip containing individually addressable screening chambers for incubation and exposure of individual animals to biochemical compounds, and a device for delivery of compound libraries in standard multiwell plates to microfluidic devices. The immobilization stability obtained by these devices is comparable to that of chemical anesthesia and the immobilization process does not affect lifespan, progeny production, or other aspects of animal health. The high-stability enables the use of a variety of key optical techniques. We use this to demonstrate femtosecond-laser nanosurgery and three-dimensional multiphoton microscopy. Used alone or in various combinations these devices facilitate a variety of high-throughput assays using whole animals, including mutagenesis and RNAi and drug screens at subcellular resolution, as well as high-throughput high-precision manipulations such as femtosecond-laser nanosurgery for large-scale in vivo neural degeneration and regeneration studies.

  17. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    PubMed

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  18. Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library.

    PubMed

    Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L; Merrick, B Alex; Teng, Christina T; Tice, Raymond R

    2015-10-01

    Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library

    PubMed Central

    Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R.; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L.; Merrick, B. Alex; Teng, Christina T.; Tice, Raymond R.

    2015-01-01

    Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. PMID:26141389

  20. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes.

    PubMed

    Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi

    2018-07-30

    Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Introducing Bayesian thinking to high-throughput screening for false-negative rate estimation.

    PubMed

    Wei, Xin; Gao, Lin; Zhang, Xiaolei; Qian, Hong; Rowan, Karen; Mark, David; Peng, Zhengwei; Huang, Kuo-Sen

    2013-10-01

    High-throughput screening (HTS) has been widely used to identify active compounds (hits) that bind to biological targets. Because of cost concerns, the comprehensive screening of millions of compounds is typically conducted without replication. Real hits that fail to exhibit measurable activity in the primary screen due to random experimental errors will be lost as false-negatives. Conceivably, the projected false-negative rate is a parameter that reflects screening quality. Furthermore, it can be used to guide the selection of optimal numbers of compounds for hit confirmation. Therefore, a method that predicts false-negative rates from the primary screening data is extremely valuable. In this article, we describe the implementation of a pilot screen on a representative fraction (1%) of the screening library in order to obtain information about assay variability as well as a preliminary hit activity distribution profile. Using this training data set, we then developed an algorithm based on Bayesian logic and Monte Carlo simulation to estimate the number of true active compounds and potential missed hits from the full library screen. We have applied this strategy to five screening projects. The results demonstrate that this method produces useful predictions on the numbers of false negatives.

  2. Developing science gateways for drug discovery in a grid environment.

    PubMed

    Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra

    2016-01-01

    Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.

  3. Developing a gene biomarker at the tipping point of adaptive and adverse responses in human bronchial epithelial cells

    EPA Science Inventory

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk...

  4. Accounting Artifacts in High-Throughput Toxicity Assays.

    PubMed

    Hsieh, Jui-Hua

    2016-01-01

    Compound activity identification is the primary goal in high-throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound auto-fluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration (EC50), additional activity parameters (e.g., point-of-departure, POD) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 glucocorticoid receptor (GR) β-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counter-screen assays for identifying artifacts as examples. The steps can be applied to other lower-throughput assays with concentration-response data.

  5. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    PubMed

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  6. Discovery of a novel general anesthetic chemotype using high-throughput screening.

    PubMed

    McKinstry-Wu, Andrew R; Bu, Weiming; Rai, Ganesha; Lea, Wendy A; Weiser, Brian P; Liang, David F; Simeonov, Anton; Jadhav, Ajit; Maloney, David J; Eckenhoff, Roderic G

    2015-02-01

    The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.

  7. Virtual medicinal chemistry: in silico pre-docking functional group transformation for discovery of novel inhibitors of botulinum toxin serotype A light chain.

    PubMed

    O'Malley, Sean; Sareth, Sina; Jiao, Guan-Sheng; Kim, Seongjin; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; Margosiak, Stephen A; Johnson, Alan T

    2013-05-01

    A novel method for applying high-throughput docking to challenging metalloenzyme targets is described. The method utilizes information-based virtual transformation of library carboxylates to hydroxamic acids prior to docking, followed by compound acquisition, one-pot (two steps) chemical synthesis and in vitro screening. In two experiments targeting the botulinum neurotoxin serotype A metalloprotease light chain, hit rates of 32% and 18% were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.

    PubMed

    Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen

    2015-10-01

    Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.

  10. High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony

    NASA Astrophysics Data System (ADS)

    Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong

    2018-01-01

    The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.

  11. From drug to protein: using yeast genetics for high-throughput target discovery.

    PubMed

    Armour, Christopher D; Lum, Pek Yee

    2005-02-01

    The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.

  12. Comprehensive Mechanistic Analysis of Hits from High-Throughput and Docking Screens against β-Lactamase

    PubMed Central

    Babaoglu, Kerim; Simeonov, Anton; Irwin, John J.; Nelson, Michael E.; Feng, Brian; Thomas, Craig J.; Cancian, Laura; Costi, M. Paola; Maltby, David A.; Jadhav, Ajit; Inglese, James; Austin, Christopher P.; Shoichet, Brian K.

    2009-01-01

    High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate “hit lists”; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against β-lactamase using quantitative HTS (qHTS). Of the 1274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting β-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 µM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens. PMID:18333608

  13. 20180312 - Evaluating the applicability of read-across tools and high throughput screening data for food relevant chemicals (SOT)

    EPA Science Inventory

    Alternative toxicity assessment methods to characterize the hazards of chemical substances have been proposed to reduce animal testing and screen thousands of chemicals in an efficient manner. Resources to accomplish these goals include utilizing large in vitro chemical screening...

  14. The U.S. EPA's ToxCast Chemical Screening Program and Predictive Modeling of Toxicity

    EPA Science Inventory

    The ToxCast program was developed by the U.S. EPA's National Center for Computational Toxicology to provide cost-effective high-throughput screening for the potential toxicity of thousands of chemicals. Phase I screened 309 compounds in over 500 assays to evaluate concentration-...

  15. A High-Throughput Screening Assay to Detect Thyroperoxidase Inhibitors (Teratology Society)

    EPA Science Inventory

    In support of the Endocrine Disruption Screening Program (EDSP21), the US EPA ToxCast program is developing assays to enable screening for chemicals that may disrupt thyroid hormone synthesis. Thyroperoxidase (TPO) is critical for TH synthesis and is a known target of thyroid-dis...

  16. High-Content, High-Throughput Screening for the Identification of Cytotoxic Compounds Based on Cell Morphology and Cell Proliferation Markers

    PubMed Central

    Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.

    2014-01-01

    Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478

  17. A High-Throughput TNP-ATP Displacement Assay for Screening Inhibitors of ATP-Binding in Bacterial Histidine Kinases

    PubMed Central

    Guarnieri, Michael T.; Blagg, Brian S. J.

    2011-01-01

    Abstract Bacterial histidine kinases (HK) are members of the GHKL superfamily, which share a unique adenosine triphosphate (ATP)-binding Bergerat fold. Our previous studies have shown that Gyrase, Hsp90, MutL (GHL) inhibitors bind to the ATP-binding pocket of HK and may provide lead compounds for the design of novel antibiotics targeting these kinases. In this article, we developed a competition assay using the fluorescent ATP analog, 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate. The method can be used for high-throughput screening of compound libraries targeting HKs or other ATP-binding proteins. We utilized the assay to screen a library of GHL inhibitors targeting the bacterial HK PhoQ, and discuss the applications of the 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate competition assay beyond GHKL inhibitor screening. PMID:21050069

  18. A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin

    PubMed Central

    Shabbir, Shagufta H.; Regan, Clinton J.; Anslyn, Eric V.

    2009-01-01

    A general approach to high-throughput screening of enantiomeric excess (ee) and concentration was developed by using indicator displacement assays (IDAs), and the protocol was then applied to the vicinal diol hydrobenzoin. The method involves the sequential utilization of what we define herein as screening, training, and analysis plates. Several enantioselective boronic acid-based receptors were screened by using 96-well plates, both for their ability to discriminate the enantiomers of hydrobenzoin and to find their optimal pairing with indicators resulting in the largest optical responses. The best receptor/indicator combination was then used to train an artificial neural network to determine concentration and ee. To prove the practicality of the developed protocol, analysis plates were created containing true unknown samples of hydrobenzoin generated by established Sharpless asymmetric dihydroxylation reactions, and the best ligand was correctly identified. PMID:19332790

  19. Molecular recognition and self-assembly special feature: A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin.

    PubMed

    Shabbir, Shagufta H; Regan, Clinton J; Anslyn, Eric V

    2009-06-30

    A general approach to high-throughput screening of enantiomeric excess (ee) and concentration was developed by using indicator displacement assays (IDAs), and the protocol was then applied to the vicinal diol hydrobenzoin. The method involves the sequential utilization of what we define herein as screening, training, and analysis plates. Several enantioselective boronic acid-based receptors were screened by using 96-well plates, both for their ability to discriminate the enantiomers of hydrobenzoin and to find their optimal pairing with indicators resulting in the largest optical responses. The best receptor/indicator combination was then used to train an artificial neural network to determine concentration and ee. To prove the practicality of the developed protocol, analysis plates were created containing true unknown samples of hydrobenzoin generated by established Sharpless asymmetric dihydroxylation reactions, and the best ligand was correctly identified.

  20. DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling

    PubMed Central

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T.; McDougal, Owen M.; Andersen, Timothy L.

    2013-01-01

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly Graphical User Interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to: (1) conduct high throughput Inverse Virtual Screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying a receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories, and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELLER programs, and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education. PMID:23808933

  1. Novel strategy for protein exploration: high-throughput screening assisted with fuzzy neural network.

    PubMed

    Kato, Ryuji; Nakano, Hideo; Konishi, Hiroyuki; Kato, Katsuya; Koga, Yuchi; Yamane, Tsuneo; Kobayashi, Takeshi; Honda, Hiroyuki

    2005-08-19

    To engineer proteins with desirable characteristics from a naturally occurring protein, high-throughput screening (HTS) combined with directed evolutional approach is the essential technology. However, most HTS techniques are simple positive screenings. The information obtained from the positive candidates is used only as results but rarely as clues for understanding the structural rules, which may explain the protein activity. In here, we have attempted to establish a novel strategy for exploring functional proteins associated with computational analysis. As a model case, we explored lipases with inverted enantioselectivity for a substrate p-nitrophenyl 3-phenylbutyrate from the wild-type lipase of Burkhorderia cepacia KWI-56, which is originally selective for (S)-configuration of the substrate. Data from our previous work on (R)-enantioselective lipase screening were applied to fuzzy neural network (FNN), bioinformatic algorithm, to extract guidelines for screening and engineering processes to be followed. FNN has an advantageous feature of extracting hidden rules that lie between sequences of variants and their enzyme activity to gain high prediction accuracy. Without any prior knowledge, FNN predicted a rule indicating that "size at position L167," among four positions (L17, F119, L167, and L266) in the substrate binding core region, is the most influential factor for obtaining lipase with inverted (R)-enantioselectivity. Based on the guidelines obtained, newly engineered novel variants, which were not found in the actual screening, were experimentally proven to gain high (R)-enantioselectivity by engineering the size at position L167. We also designed and assayed two novel variants, namely FIGV (L17F, F119I, L167G, and L266V) and FFGI (L17F, L167G, and L266I), which were compatible with the guideline obtained from FNN analysis, and confirmed that these designed lipases could acquire high inverted enantioselectivity. The results have shown that with the aid of bioinformatic analysis, high-throughput screening can expand its potential for exploring vast combinatorial sequence spaces of proteins.

  2. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  3. Comparison of PC12 and Cerebellar Granule Cell Cultures for Evaluating Neurite Outgrowth Using High Content Screening

    EPA Science Inventory

    Development of high-throughput assays for chemical screening and hazard identification is a pressing priority worldwide. One approach uses in vitro, cell-based assays which recapitulate biological events observed in vivo. Neurite outgrowth is one such critical cellular process un...

  4. COMPARISON OF NEUROSCREEN-1 AND CEREBELLAR GRANULE CELL CULTURES FOR EVALUATING NEURITE OUTGROWTH USING THE ARRAYSCAN HIGH CONTENT ANALYSIS SYSTEM

    EPA Science Inventory

    A major challenge facing the Environmental Protection Agency is the development of high-throughput screening assays amendable to resource-efficient developmental neurotoxicity for chemical screening and toxicity prioritization. One approach uses in vitro, cell-based assays which...

  5. Effect of solar loading on greenhouse containers used in transpiration efficiency screening

    USDA-ARS?s Scientific Manuscript database

    Earlier we described a simple high throughput method of screening sorghum for transpiration efficiency (TE). Subsequently it was observed that while results were consistent between lines exhibiting high and low TE, ranking between lines with similar TE was variable. We hypothesized that variable mic...

  6. Microelectroporation device for genomic screening

    DOEpatents

    Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.

    2014-09-09

    We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.

  7. Tiered High-Throughput Screening Approach to Identify ...

    EPA Pesticide Factsheets

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the US EPA ToxCast screening assay portfolio. To fill one critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast Phase I and II chemical libraries, comprised of 1,074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single concentration screen were retested in concentration-response. Due to high false positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed two additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using

  8. The interdependence between screening methods and screening libraries.

    PubMed

    Shelat, Anang A; Guy, R Kiplin

    2007-06-01

    The most common methods for discovery of chemical compounds capable of manipulating biological function involves some form of screening. The success of such screens is highly dependent on the chemical materials - commonly referred to as libraries - that are assayed. Classic methods for the design of screening libraries have depended on knowledge of target structure and relevant pharmacophores for target focus, and on simple count-based measures to assess other properties. The recent proliferation of two novel screening paradigms, structure-based screening and high-content screening, prompts a profound rethink about the ideal composition of small-molecule screening libraries. We suggest that currently utilized libraries are not optimal for addressing new targets by high-throughput screening, or complex phenotypes by high-content screening.

  9. Complementing in vitro hazard assessment with exposure and pharmacokinetics considerations for chemical prioritization

    EPA Science Inventory

    Traditional toxicity testing involves a large investment in resources, often using low-throughput in vivo animal studies for limited numbers of chemicals. An alternative strategy is the emergence of high-throughput (HT) in vitro assays as a rapid, cost-efficient means to screen t...

  10. Bimodal imprint chips for peptide screening: integration of high-throughput sequencing by MS and affinity analyses by surface plasmon resonance imaging.

    PubMed

    Wang, Weizhi; Li, Menglin; Wei, Zewen; Wang, Zihua; Bu, Xiangli; Lai, Wenjia; Yang, Shu; Gong, He; Zheng, Hui; Wang, Yuqiao; Liu, Ying; Li, Qin; Fang, Qiaojun; Hu, Zhiyuan

    2014-04-15

    Peptide probes and drugs have widespread applications in disease diagnostics and therapy. The demand for peptides ligands with high affinity and high specificity toward various targets has surged in the biomedical field in recent years. The traditional peptide screening procedure involves selection, sequencing, and characterization steps, and each step is manual and tedious. Herein, we developed a bimodal imprint microarray system to embrace the whole peptide screening process. Silver-sputtered silicon chip fabricated with microwell array can trap and pattern the candidate peptide beads in a one-well-one-bead manner. Peptides on beads were photocleaved in situ. A portion of the peptide in each well was transferred to a gold-coated chip to print the peptide array for high-throughput affinity analyses by surface plasmon resonance imaging (SPRi), and the peptide left in the silver-sputtered chip was ready for in situ single bead sequencing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the bimodal imprint chip system, affinity peptides toward AHA were efficiently screened out from the 7 × 10(4) peptide library. The method provides a solution for high efficiency peptide screening.

  11. Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings.

    PubMed

    Wu, Zhijin; Liu, Dongmei; Sui, Yunxia

    2008-02-01

    The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.

  12. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    PubMed

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  13. Use of a Fluorometric Imaging Plate Reader in high-throughput screening

    NASA Astrophysics Data System (ADS)

    Groebe, Duncan R.; Gopalakrishnan, Sujatha; Hahn, Holly; Warrior, Usha; Traphagen, Linda; Burns, David J.

    1999-04-01

    High-throughput screening (HTS) efforts at Abbott Laboratories have been greatly facilitated by the use of a Fluorometric Imaging Plate Reader. The FLIPR consists of an incubated cabinet with integrated 96-channel pipettor and fluorometer. An argon laser is used to excite fluorophores in a 96-well microtiter plate and the emitted fluorometer. An argon laser is used to excite fluorophores in a 96-well microtiter plate and the emitted fluorescence is imaged by a cooled CCD camera. The image data is downloaded from the camera and processed to average the signal form each well of the microtiter pate for each time point. The data is presented in real time on the computer screen, facilitating interpretation and trouble-shooting. In addition to fluorescence, the camera can also detect luminescence form firefly luciferase.

  14. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    PubMed

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  15. Rapid screening of illicit additives in weight loss dietary supplements with desorption corona beam ionisation (DCBI) mass spectrometry.

    PubMed

    Wang, H; Wu, Y; Zhao, Y; Sun, W; Ding, L; Guo, B; Chen, B

    2012-08-01

    Desorption corona beam ionisation (DCBI), the relatively novel ambient mass spectrometry (MS) technique, was utilised to screen for illicit additives in weight-loss food. The five usually abused chemicals - fenfluramine, N-di-desmethyl sibutramine, N-mono-desmethyl sibutramine, sibutramine and phenolphthalein - were detected with the proposed DCBI-MS method. Fast single-sample and high-throughput analysis was demonstrated. Semi-quantification was accomplished based on peak areas in the ion chromatograms. Four illicit additives were identified and semi-quantified in commercial samples. As there was no tedious sample pre-treatment compared with conventional HPLC methods, high-throughput analysis was achieved with DCBI. The results proved that DCBI-MS is a powerful tool for the rapid screening of illicit additives in weight-loss dietary supplements.

  16. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

    PubMed Central

    Pandey, Udai Bhan

    2011-01-01

    The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126

  17. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  18. A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening and Publication Standards

    PubMed Central

    Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.

    2013-01-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach. PMID:23229562

  19. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.

    PubMed

    Zhou, Yuexin; Zhu, Shiyou; Cai, Changzu; Yuan, Pengfei; Li, Chunmei; Huang, Yanyi; Wei, Wensheng

    2014-05-22

    Targeted genome editing technologies are powerful tools for studying biology and disease, and have a broad range of research applications. In contrast to the rapid development of toolkits to manipulate individual genes, large-scale screening methods based on the complete loss of gene expression are only now beginning to be developed. Here we report the development of a focused CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) lentiviral library in human cells and a method of gene identification based on functional screening and high-throughput sequencing analysis. Using knockout library screens, we successfully identified the host genes essential for the intoxication of cells by anthrax and diphtheria toxins, which were confirmed by functional validation. The broad application of this powerful genetic screening strategy will not only facilitate the rapid identification of genes important for bacterial toxicity but will also enable the discovery of genes that participate in other biological processes.

  20. Identification of Small Molecule Inhibitors of Clostridium perfringens ε-Toxin Cytotoxicity Using a Cell-Based High-Throughput Screen.

    PubMed

    Lewis, Michelle; Weaver, Charles David; McClain, Mark S

    2010-07-01

    The Clostridium perfringens epsilon toxin, a select agent, is responsible for a severe, often fatal enterotoxemia characterized by edema in the heart, lungs, kidney, and brain. The toxin is believed to be an oligomeric pore-forming toxin. Currently, there is no effective therapy for countering the cytotoxic activity of the toxin in exposed individuals. Using a robust cell-based high-throughput screening (HTS) assay, we screened a 151,616-compound library for the ability to inhibit ε-toxin-induced cytotoxicity. Survival of MDCK cells exposed to the toxin was assessed by addition of resazurin to detect metabolic activity in surviving cells. The hit rate for this screen was 0.6%. Following a secondary screen of each hit in triplicate and assays to eliminate false positives, we focused on three structurally-distinct compounds: an N-cycloalkylbenzamide, a furo[2,3-b]quinoline, and a 6H-anthra[1,9-cd]isoxazol. None of the three compounds appeared to inhibit toxin binding to cells or the ability of the toxin to form oligomeric complexes. Additional assays demonstrated that two of the inhibitory compounds inhibited ε-toxin-induced permeabilization of MDCK cells to propidium iodide. Furthermore, the two compounds exhibited inhibitory effects on cells pre-treated with toxin. Structural analogs of one of the inhibitors identified through the high-throughput screen were analyzed and provided initial structure-activity data. These compounds should serve as the basis for further structure-activity refinement that may lead to the development of effective anti-ε-toxin therapeutics.

  1. Identification of Small Molecule Inhibitors of Clostridium perfringens ε-Toxin Cytotoxicity Using a Cell-Based High-Throughput Screen

    PubMed Central

    Lewis, Michelle; Weaver, Charles David; McClain, Mark S.

    2010-01-01

    The Clostridium perfringens epsilon toxin, a select agent, is responsible for a severe, often fatal enterotoxemia characterized by edema in the heart, lungs, kidney, and brain. The toxin is believed to be an oligomeric pore-forming toxin. Currently, there is no effective therapy for countering the cytotoxic activity of the toxin in exposed individuals. Using a robust cell-based high-throughput screening (HTS) assay, we screened a 151,616-compound library for the ability to inhibit ε-toxin-induced cytotoxicity. Survival of MDCK cells exposed to the toxin was assessed by addition of resazurin to detect metabolic activity in surviving cells. The hit rate for this screen was 0.6%. Following a secondary screen of each hit in triplicate and assays to eliminate false positives, we focused on three structurally-distinct compounds: an N-cycloalkylbenzamide, a furo[2,3-b]quinoline, and a 6H-anthra[1,9-cd]isoxazol. None of the three compounds appeared to inhibit toxin binding to cells or the ability of the toxin to form oligomeric complexes. Additional assays demonstrated that two of the inhibitory compounds inhibited ε-toxin-induced permeabilization of MDCK cells to propidium iodide. Furthermore, the two compounds exhibited inhibitory effects on cells pre-treated with toxin. Structural analogs of one of the inhibitors identified through the high-throughput screen were analyzed and provided initial structure-activity data. These compounds should serve as the basis for further structure-activity refinement that may lead to the development of effective anti-ε-toxin therapeutics. PMID:20721308

  2. Identification of Translational Activators of Glial Glutamate Transporter EAAT2 through Cell-Based High-Throughput Screening: An Approach to Prevent Excitotoxicity

    PubMed Central

    COLTON, CRAIG K.; KONG, QIONGMAN; LAI, LICHING; ZHU, MICHAEL X.; SEYB, KATHLEEN I.; CUNY, GREGORY D.; XIAN, JUN; GLICKSMAN, MARCIE A.; LIN, CHIEN-LIANG GLENN

    2010-01-01

    Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity. PMID:20508255

  3. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts.

    PubMed

    Weidenhof, B; Reiser, M; Stöwe, K; Maier, W F; Kim, M; Azurdia, J; Gulari, E; Seker, E; Barks, A; Laine, R M

    2009-07-08

    We describe here the use of liquid-feed flame spray pyrolysis (LF-FSP) to produce high surface area, nonporous, mixed-metal oxide nanopowders that were subsequently subjected to high-throughput screening to assess a set of materials for deNO(x) catalysis and hydrocarbon combustion. We were able to easily screen some 40 LF-FSP produced materials. LF-FSP produces nanopowders that very often consist of kinetic rather than thermodynamic phases. Such materials are difficult to access or are completely inaccessible via traditional catalyst preparation methods. Indeed, our studies identified a set of Ce(1-x)Zr(x)O(2) and Al(2)O(3)-Ce(1-x)Zr(x)O(2) nanopowders that offer surprisingly good activities for both NO(x) reduction and propane/propene oxidation both in high-throughput screening and in continuous flow catalytic studies. All of these catalysts offer activities comparable to traditional Pt/Al(2)O(3) catalysts but without Pt. Thus, although Pt-free, they are quite active for several extremely important emission control reactions, especially considering that these are only first generation materials. Indeed, efforts to dope the active catalysts with Pt actually led to lower catalytic activities. Thus the potential exists to completely change the materials used in emission control devices, especially for high-temperature reactions as these materials have already been exposed to 1500 degrees C; however, much research must be done before this potential is verified.

  4. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

    PubMed

    Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A

    2017-06-01

    The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.

  5. Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array

    NASA Astrophysics Data System (ADS)

    Lim, Jiseok; Vrignon, Jérémy; Gruner, Philipp; Karamitros, Christos S.; Konrad, Manfred; Baret, Jean-Christophe

    2013-11-01

    We demonstrate the use of a hybrid microfluidic-micro-optical system for the screening of enzymatic activity at the single cell level. Escherichia coli β-galactosidase activity is revealed by a fluorogenic assay in 100 pl droplets. Individual droplets containing cells are screened by measuring their fluorescence signal using a high-speed camera. The measurement is parallelized over 100 channels equipped with microlenses and analyzed by image processing. A reinjection rate of 1 ml of emulsion per minute was reached corresponding to more than 105 droplets per second, an analytical throughput larger than those obtained using flow cytometry.

  6. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  7. Quantitative high throughput screening identifies inhibitors of anthrax-induced cell death

    PubMed Central

    Zhu, Ping Jun; Hobson, Peyton; Southall, Noel; Qiu, Cunping; Thomas, Craig J.; Lu, Jiamo; Inglese, James; Zheng, Wei; Leppla, Stephen H.; Bugge, Thomas H.; Austin, Christopher P.; Liu, Shihui

    2009-01-01

    Here, we report the results of a quantitative high-throughput screen (qHTS) measuring the endocytosis and translocation of a β-lactamase-fused-lethal factor and the identification of small molecules capable of obstructing the process of anthrax toxin internalization. Several small molecules protect RAW264.7 macrophages and CHO cells from anthrax lethal toxin and protected cells from an LF-Pseudomonas exotoxin fusion protein and diphtheria toxin. Further efforts demonstrated that these compounds impaired the PA heptamer pre-pore to pore conversion in cells expressing the CMG2 receptor, but not the related TEM8 receptor, indicating that these compounds likely interfere with toxin internalization. PMID:19540764

  8. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  9. Convenient, Sensitive and High-Throughput Method for Screening Botanic Origin

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Jiang, Chao; Liu, Libing; Yu, Shulin; Cui, Zhanhu; Chen, Min; Lin, Shufang; Wang, Shu; Huang, Luqi

    2014-06-01

    In this work, a rapid (within 4-5 h), sensitive and visible new method for assessing botanic origin is developed by combining loop-mediated isothermal amplification with cationic conjugated polymers. The two Chinese medicinal materials (Jin-Yin-Hua and Shan-Yin-Hua) with similar morphology and chemical composition were clearly distinguished by gene SNP genotyping assays. The identification of plant species in Patented Chinese drugs containing Lonicera buds is successfully performed using this detection system. The method is also robust enough to be used in high-throughput screening. This new method is very helpful to identify herbal materials, and is beneficial for detecting safety and quality of botanic products.

  10. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  11. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells

    PubMed Central

    Mathews Griner, Lesley A.; Guha, Rajarshi; Shinn, Paul; Young, Ryan M.; Keller, Jonathan M.; Liu, Dongbo; Goldlust, Ian S.; Yasgar, Adam; McKnight, Crystal; Boxer, Matthew B.; Duveau, Damien Y.; Jiang, Jian-Kang; Michael, Sam; Mierzwa, Tim; Huang, Wenwei; Walsh, Martin J.; Mott, Bryan T.; Patel, Paresma; Leister, William; Maloney, David J.; Leclair, Christopher A.; Rai, Ganesha; Jadhav, Ajit; Peyser, Brian D.; Austin, Christopher P.; Martin, Scott E.; Simeonov, Anton; Ferrer, Marc; Staudt, Louis M.; Thomas, Craig J.

    2014-01-01

    The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL. PMID:24469833

  12. High-throughput screening of PLGA thin films utilizing hydrophobic fluorescent dyes for hydrophobic drug compounds.

    PubMed

    Steele, Terry W J; Huang, Charlotte L; Kumar, Saranya; Widjaja, Effendi; Chiang Boey, Freddy Yin; Loo, Joachim S C; Venkatraman, Subbu S

    2011-10-01

    Hydrophobic, antirestenotic drugs such as paclitaxel (PCTX) and rapamycin are often incorporated into thin film coatings for local delivery using implantable medical devices and polymers such as drug-eluting stents and balloons. Selecting the optimum coating formulation through screening the release profile of these drugs in thin films is time consuming and labor intensive. We describe here a high-throughput assay utilizing three model hydrophobic fluorescent compounds: fluorescein diacetate (FDAc), coumarin-6, and rhodamine 6G that were incorporated into poly(d,l-lactide-co-glycolide) (PLGA) and PLGA-polyethylene glycol films. Raman microscopy determined the hydrophobic fluorescent dye distribution within the PLGA thin films in comparison with that of PCTX. Their subsequent release was screened in a high-throughput assay and directly compared with HPLC quantification of PCTX release. It was observed that PCTX controlled-release kinetics could be mimicked by a hydrophobic dye that had similar octanol-water partition coefficient values and homogeneous dissolution in a PLGA matrix as the drug. In particular, FDAc was found to be the optimal hydrophobic dye at modeling the burst release as well as the total amount of PCTX released over a period of 30 days. Copyright © 2011 Wiley-Liss, Inc.

  13. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    PubMed

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem.

    PubMed

    Han, Lianyi; Wang, Yanli; Bryant, Stephen H

    2008-09-25

    Recent advances in high-throughput screening (HTS) techniques and readily available compound libraries generated using combinatorial chemistry or derived from natural products enable the testing of millions of compounds in a matter of days. Due to the amount of information produced by HTS assays, it is a very challenging task to mine the HTS data for potential interest in drug development research. Computational approaches for the analysis of HTS results face great challenges due to the large quantity of information and significant amounts of erroneous data produced. In this study, Decision Trees (DT) based models were developed to discriminate compound bioactivities by using their chemical structure fingerprints provided in the PubChem system http://pubchem.ncbi.nlm.nih.gov. The DT models were examined for filtering biological activity data contained in four assays deposited in the PubChem Bioassay Database including assays tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models are 57.2 approximately 80.5%, 97.3 approximately 99.0%, 0.4 approximately 0.5 respectively. A further evaluation was also performed for DT models built for two independent bioassays, where inhibitors for the same HIV RNase target were screened using different compound libraries, this experiment yields enrichment factor of 4.4 and 9.7. Our results suggest that the designed DT models can be used as a virtual screening technique as well as a complement to traditional approaches for hits selection.

  15. High-throughput Screening Identifies Aclacinomycin as a Radiosensitizer of EGFR-Mutant Non-Small Cell Lung Cancer1

    PubMed Central

    Bennett, Daniel C; Charest, Jonathan; Sebolt, Katrina; Lehrman, Mark; Rehemtulla, Alnawaz; Contessa, Joseph N

    2013-01-01

    The endoplasmic reticulum (ER) provides a specialized environment for the folding and modification of trans-membrane proteins, including receptor tyrosine kinases (RTKs), which are vital for the growth and survival of malignancies. To identify compounds which disrupt the function of the ER and thus could potentially impair cancer cell survival signaling, we adapted a set of glycosylation-sensitive luciferase reporters for the development and optimization of a cell-based high-throughput screen (HTS). Secondary screens for false-positive luciferase activation and tertiary lectin-based and biochemical analyses were also devised for compound triage. Through a pilot screen of 2802 compounds from the National Cancer Institute (NCI) chemical libraries, we identified aclacinomycin (Acm) as a compound that preferentially affects ER function. We report that Acm reduces plasma membrane expression of glycoproteins including epidermal growth factor receptor (EGFR) and Met but does not inhibit N-linked glycosylation or generalized protein translation. Fluorescence microscopy co-localization experiments were also performed and demonstrated Acm accumulation in the ER in further support of the overall HTS design. The consequences of Acm treatment on cell survival were analyzed through clonogenic survival analysis. Consistent with the reduction of EGFR levels, pretreatment with Acm sensitizes the EGFR-mutant non-small cell lung cancer (NSCLC) cell lines HCC827 and HCC2935 to ionizing radiation and did not affect the sensitivity of the RTK-independent and KRAS-mutant A549 NSCLC cell line. Thus, Acm and similar compounds targeting the ER may represent a novel approach for radiosensitizing tumor cells dependent on RTK function. PMID:23730419

  16. The multidimensional perturbation value: a single metric to measure similarity and activity of treatments in high-throughput multidimensional screens.

    PubMed

    Hutz, Janna E; Nelson, Thomas; Wu, Hua; McAllister, Gregory; Moutsatsos, Ioannis; Jaeger, Savina A; Bandyopadhyay, Somnath; Nigsch, Florian; Cornett, Ben; Jenkins, Jeremy L; Selinger, Douglas W

    2013-04-01

    Screens using high-throughput, information-rich technologies such as microarrays, high-content screening (HCS), and next-generation sequencing (NGS) have become increasingly widespread. Compared with single-readout assays, these methods produce a more comprehensive picture of the effects of screened treatments. However, interpreting such multidimensional readouts is challenging. Univariate statistics such as t-tests and Z-factors cannot easily be applied to multidimensional profiles, leaving no obvious way to answer common screening questions such as "Is treatment X active in this assay?" and "Is treatment X different from (or equivalent to) treatment Y?" We have developed a simple, straightforward metric, the multidimensional perturbation value (mp-value), which can be used to answer these questions. Here, we demonstrate application of the mp-value to three data sets: a multiplexed gene expression screen of compounds and genomic reagents, a microarray-based gene expression screen of compounds, and an HCS compound screen. In all data sets, active treatments were successfully identified using the mp-value, and simulations and follow-up analyses supported the mp-value's statistical and biological validity. We believe the mp-value represents a promising way to simplify the analysis of multidimensional data while taking full advantage of its richness.

  17. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  18. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  19. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  20. A Linear Relationship between Crystal Size and Fragment Binding Time Observed Crystallographically: Implications for Fragment Library Screening Using Acoustic Droplet Ejection

    PubMed Central

    Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-01-01

    High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size. PMID:24988328

  1. A linear relationship between crystal size and fragment binding time observed crystallographically: implications for fragment library screening using acoustic droplet ejection.

    PubMed

    Cole, Krystal; Roessler, Christian G; Mulé, Elizabeth A; Benson-Xu, Emma J; Mullen, Jeffrey D; Le, Benjamin A; Tieman, Alanna M; Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2014-01-01

    High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.

  2. High throughput screening (HTS) for phototoxicity hazard using the in vitro 3T3 neutral red uptake assay.

    PubMed

    Jones, P A; King, A V

    2003-01-01

    Testing for phototoxic hazard is usually carried out for product ingredients intended for use on skin, which may be exposed to sunlight. Unilever currently uses the validated in vitro 3T3 Neutral Red Uptake phototoxicity test (NRU PT). This protocol involves 2-3 experiments, each taking 3 days to perform. One person can test up to seven test materials plus positive control at any one time, requiring approximately 0.5 g test material. Higher throughput is required where libraries of potential actives are being generated and screening for potential phototoxicants is required. A proposed HTS protocol would use the NRU PT, but only one concentration (10 microg/ml) in a single experiment. The validity of the HTS protocol was investigated by a retrospective examination of data from 86 materials previously tested. Phototoxic hazard predictions made using the conventional NRU PT were compared with those obtained if only data at 10 microg/ml were considered. A majority of 73 materials (84.9%) gave agreement in predictions between the two protocols; for 13 materials (15.1%) the assessments did not agree. There were no false positives; however, there were some false negatives, i.e., predicted as phototoxic from the conventional assay, but non-phototoxic at 10 microg/ml. As this protocol is intended for screening purposes only it is considered that this would be acceptable at this stage in material selection. One person could screen 128 test materials in 3 days, requiring <1 mg test material, giving a substantial increase in productivity. Any material selected for further development and inclusion in a formulation may require further confirmatory testing, e.g. using a human skin model assay for phototoxicity.

  3. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    PubMed Central

    2010-01-01

    Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787

  4. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    PubMed

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  5. Cell-based medicinal chemistry optimization of high-throughput screening (HTS) hits for orally active antimalarials. Part 1: challenges in potency and absorption, distribution, metabolism, excretion/pharmacokinetics (ADME/PK).

    PubMed

    Chatterjee, Arnab K

    2013-10-24

    Malaria represents a significant health issue, and novel and effective drugs are needed to address parasite resistance that has emerged to the current drug arsenal. Antimalarial drug discovery has historically benefited from a whole-cell (phenotypic) screening approach to identify lead molecules. This approach has been utilized by several groups to optimize weakly active antimalarial pharmacophores, such as the quinolone scaffold, to yield potent and highly efficacious compounds that are now poised to enter clinical trials. More recently, GNF/Novartis, GSK, and others have employed the same approach in high-throughput screening (HTS) of large compound libraries to find novel scaffolds that have also been optimized to clinical candidates by GNF/Novartis. This perspective outlines some of the inherent challenges in cell-based medicinal chemistry optimization, including optimization of oral exposure and hERG activity.

  6. Mitigation of NADPH Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation*

    PubMed Central

    Zielonka, Jacek; Zielonka, Monika; VerPlank, Lynn; Cheng, Gang; Hardy, Micael; Ouari, Olivier; Ayhan, Mehmet Menaf; Podsiadły, Radosław; Sikora, Adam; Lambeth, J. David; Kalyanaraman, Balaraman

    2016-01-01

    Using high throughput screening-compatible assays for superoxide and hydrogen peroxide, we identified potential inhibitors of the NADPH oxidase (Nox2) isoform from a small library of bioactive compounds. By using multiple probes (hydroethidine, hydropropidine, Amplex Red, and coumarin boronate) with well defined redox chemistry that form highly diagnostic marker products upon reaction with superoxide (O2˙̄), hydrogen peroxide (H2O2), and peroxynitrite (ONOO−), the number of false positives was greatly decreased. Selected hits for Nox2 were further screened for their ability to inhibit ONOO− formation in activated macrophages. A new diagnostic marker product for ONOO− is reported. We conclude that the newly developed high throughput screening/reactive oxygen species assays could also be used to identify potential inhibitors of ONOO− formed from Nox2-derived O2˙̄ and nitric oxide synthase-derived nitric oxide. PMID:26839313

  7. Sense and sensibility: the use of cell death biomarker assays in high-throughput anticancer drug screening and monitoring treatment responses.

    PubMed

    Shoshan, Maria C; Havelka, Associate Professor Principal Investigator Aleksandra Mandic; Neumann, Frank; Linder, Stig

    2006-11-01

    Cell-based screening allows identification of biologically active compounds, for example, potential anticancer drugs. In this review, various screening assays are discussed in terms of what they measure and how this affects interpretation and relevance. High-throughput (HT) assays of viability based on the reduction of exogenous substrates do not always reflect viability or cell number levels. Membrane integrity assays can be used for HT quantification of cell death, but are non-specific as to the death mode. Several HT assays monitor end point apoptosis. Screening libraries at a single concentration (micromolar) can prevent detection of potent apoptosis inducers, as high concentrations may induce mainly necrosis. Using monolayer cultures limits the significance of cell-based screening as the properties of monolayer cells differ from tumours in vivo. Spheroid cultures are more physiological, but are impractical for screening by conventional methods. The authors have developed an assay quantifying accumulation of a caspase-cleaved protein specific for epithelial cells. It provides an integrated measure of apoptosis in two- and three-dimensional cultures and can be used as a blood biomarker assay for tumour apoptosis in vivo.

  8. Pyrosequencing-based validation of a simple cell-suspension polymerase chain reaction assay for Campylobacter with application of high-processivity polymerase and novel internal amplification controls for rapid and specific detection.

    PubMed

    Oakley, Brian B; Line, J Eric; Berrang, Mark E; Johnson, Jessica M; Buhr, R Jeff; Cox, Nelson A; Hiett, Kelli L; Seal, Bruce S

    2012-02-01

    Although Campylobacter is an important food-borne human pathogen, there remains a lack of molecular diagnostic assays that are simple to use, cost-effective, and provide rapid results in research, clinical, or regulatory laboratories. Of the numerous Campylobacter assays that do exist, to our knowledge none has been empirically tested for specificity using high-throughput sequencing. Here we demonstrate the power of next-generation sequencing to determine the specificity of a widely cited Campylobacter-specific polymerase chain reaction (PCR) assay and describe a rapid method for direct cell suspension PCR to quickly and easily screen samples for Campylobacter. We present a specific protocol which eliminates the need for time-consuming and expensive genomic DNA extractions and, using a high-processivity polymerase, demonstrate conclusive screening of samples in <1 h. Pyrosequencing results show the assay to be extremely (>99%) sensitive, and spike-back experiments demonstrated a detection threshold of <10(2) CFU mL(-1). Additionally, we present 2 newly designed broad-range bacterial primer sets targeting the 23S rRNA gene that have wide applicability as internal amplification controls. Empirical testing of putative taxon-specific assays using high-throughput sequencing is an important validation step that is now financially feasible for research, regulatory, or clinical applications. Published by Elsevier Inc.

  9. Survey of ecotoxicologically-relevant reproductive endpoint coverage within the ECOTOX database across ToxCast ER agonists (ASCCT)

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening thousands of chemicals for their potential to affect the endocrine systems of humans and wildlife. In vitro high throughput screening (HTS) assays have been proposed as a way to prioritize...

  10. A multi-analyte profile of serum proteins to screen for toxicological effects of anticholinesterase insecticides in the rat

    EPA Science Inventory

    The development of high throughput biochemical screens could be useful to assess the broad spectrum of physiological effects of environmental toxicants. To explore the prospect of using a screen in an in vivo exposure scenario, we applied a commercially available multianalyte pro...

  11. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    NASA Astrophysics Data System (ADS)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  12. Novel screening techniques for ion channel targeting drugs

    PubMed Central

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  13. Novel screening techniques for ion channel targeting drugs.

    PubMed

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.

  14. High-content screening of small compounds on human embryonic stem cells.

    PubMed

    Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W

    2010-08-01

    Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.

  15. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors

    PubMed Central

    Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2016-01-01

    In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765

  16. Application of extrinsic fluorescence spectroscopy for the high throughput formulation screening of aluminum-adjuvanted vaccines.

    PubMed

    Ausar, Salvador F; Chan, Judy; Hoque, Warda; James, Olive; Jayasundara, Kavisha; Harper, Kevin

    2011-02-01

    High throughput screening (HTS) of excipients for proteins in solution can be achieved by several analytical techniques. The screening of stabilizers for proteins adsorbed onto adjuvants, however, may be difficult due to the limited amount of techniques that can measure stability of adsorbed protein in high throughput mode. Here, we demonstrate that extrinsic fluorescence spectroscopy can be successfully applied to study the physical stability of adsorbed antigens at low concentrations in 96-well plates, using a real-time polymerase chain reaction (RT-PCR) instrument. HTS was performed on three adjuvanted pneumococcal proteins as model antigens in the presence of a standard library of stabilizers. Aluminum hydroxide appeared to decrease the stability of all three proteins at relatively high and low pH values, showing a bell-shaped curve as the pH was increased from 5 to 9 with a maximum stability at near neutral pH. Nonspecific stabilizers such as mono- and disaccharides could increase the conformational stability of the antigens. In addition, those excipients that increased the melting temperature of adsorbed antigens could improve antigenicity and chemical stability. To the best of our knowledge, this is the first report describing an HTS technology amenable for low concentration of antigens adsorbed onto aluminum-containing adjuvants. Copyright © 2010 Wiley-Liss, Inc.

  17. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    PubMed

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cheminformatic Analysis of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    The ToxCast project is employing high throughput screening (HTS) technologies, along with chemical descriptors and computational models, to develop approaches for screening and prioritizing environmental chemicals for further toxicity testing. ToxCast Phase I generated HTS data f...

  19. Response to “Accurate Risk-Based Chemical Screening Relies on Robust Exposure Estimates”

    EPA Science Inventory

    This is a correspondence (letter to the editor) with reference to comments by Rudel and Perovich on the article "Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment". Article Reference: SI # 238882

  20. Screening for Chemical Effects on Neuronal Proliferation and Neurite Outgrowth Using High-Content/High-Throughput Microscopy

    EPA Science Inventory

    The need to develop novel screening methods for developmental neurotoxicity in order to alleviate the demands of cost, time, and animals required for in vivo toxicity studies is well recognized. Accordingly, the U.S. EPA launched the ToxCast research program in 2007 to develop c...

  1. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen.

    PubMed

    Chiaravalli, Jeanne; Glickman, J Fraser

    2017-08-01

    We have developed a new high-content cytotoxicity assay using live cells, called "ImageTOX." We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.

  2. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  3. An Automated High-throughput Array Microscope for Cancer Cell Mechanics

    NASA Astrophysics Data System (ADS)

    Cribb, Jeremy A.; Osborne, Lukas D.; Beicker, Kellie; Psioda, Matthew; Chen, Jian; O'Brien, E. Timothy; Taylor, Russell M., II; Vicci, Leandra; Hsiao, Joe Ping-Lin; Shao, Chong; Falvo, Michael; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Superfine, Richard

    2016-06-01

    Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image cultured cells and membrane-bound microbeads in twelve independently-focusing channels simultaneously, visiting all wells in eight steps. We use the AHTM and passive bead rheology techniques to determine the relative compliance of human pancreatic ductal epithelial (HPDE) cells, h-TERT transformed HPDE cells (HPNE), and four gain-of-function constructs related to EMT. The AHTM found HPNE, H-ras, Myr-AKT, and Bcl2 transfected cells more compliant relative to controls, consistent with parallel tests using atomic force microscopy and invasion assays, proving the AHTM capable of screening for changes in mechanical phenotype.

  4. High-throughput technology for novel SO2 oxidation catalysts

    PubMed Central

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. PMID:27877427

  5. Evaluating the Value of Augmenting In Vitro Hazard Assessment with Exposure and Pharmacokinetics Considerations for Chemical Prioritization

    EPA Science Inventory

    Over time, toxicity-testing paradigms have progressed from low-throughput in vivo animal studies for limited numbers of chemicals to high-throughput (HT) in vitro screening assays for thousands of chemicals. Such HT in vitro methods, along with HT in silico predictions of popula...

  6. Discovery of a Novel General Anesthetic Chemotype Using High-throughput Screening

    PubMed Central

    McKinstry-Wu, Andrew R.; Bu, Weiming; Rai, Ganesha; Lea, Wendy A.; Weiser, Brian P.; Liang, David F.; Simeonov, Anton; Jadhav, Ajit; Maloney, David J.; Eckenhoff, Roderic G.

    2014-01-01

    Background The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Methods Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene (1-AMA) and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-AMA-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A-receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. Results From an initial chemical library of over 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-AMA binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based upon a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. Conclusions We demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype. PMID:25603205

  7. Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.

    PubMed

    Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Loesel, Jens; McLoughlin, David; Mills, James; Peakman, Marie-Claire; Sharp, Robert E; Williams, Christine; Zhu, Hongyao

    2016-11-01

    High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.

  8. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells.

    PubMed

    Zhang, Huijie; Oellers, Tobias; Feng, Wenqian; Abdulazim, Tarik; Saw, En Ning; Ludwig, Alfred; Levkin, Pavel A; Plumeré, Nicolas

    2017-06-06

    Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.

  9. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    PubMed Central

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  10. Evaluation of Impermeant, DNA-Binding Dye Fluorescence as a Real-Time Readout of Eukaryotic Cell Toxicity in a High Throughput Screening Format

    PubMed Central

    Chiaraviglio, Lucius

    2014-01-01

    Abstract Interpretation of high throughput screening (HTS) data in cell-based assays may be confounded by cytotoxic properties of screening compounds. Therefore, assessing cell toxicity in real time during the HTS process itself would be highly advantageous. Here, we investigate the potential of putatively impermeant, fluorescent, DNA-binding dyes to give cell toxicity readout during HTS. Amongst 19 DNA-binding dyes examined, three classes were identified that were (1) permeant, (2) cytotoxic, or (3) neither permeant nor cytotoxic during 3-day incubation with a macrophage cell line. In the last class, four dyes (SYTOX Green, CellTox Green, GelGreen, and EvaGreen) gave highly robust cytotoxicity data in 384-well screening plates. As proof of principle, successful combination with a luminescence-based assay in HTS format was demonstrated. Here, both intracellular growth of Legionella pneumophila (luminescence) and host cell viability (SYTOX Green exclusion) were assayed in the same screening well. Incorporation of membrane-impermeant, DNA-binding, fluorescent dyes in HTS assays should prove useful by allowing evaluation of cytotoxicity in real time, eliminating reagent addition steps and effort associated with endpoint cell viability analysis, and reducing the need for follow-up cytotoxicity screening. PMID:24831788

  11. High-throughput screening for thermoelectric sulphides by using crystal structure features as descriptors

    NASA Astrophysics Data System (ADS)

    Zhang, Ruizhi; Du, Baoli; Chen, Kan; Reece, Mike; Materials Research Insititute Team

    With the increasing computational power and reliable databases, high-throughput screening is playing a more and more important role in the search of new thermoelectric materials. Rather than the well established density functional theory (DFT) calculation based methods, we propose an alternative approach to screen for new TE materials: using crystal structural features as 'descriptors'. We show that a non-distorted transition metal sulphide polyhedral network can be a good descriptor for high power factor according to crystal filed theory. By using Cu/S containing compounds as an example, 1600+ Cu/S containing entries in the Inorganic Crystal Structure Database (ICSD) were screened, and of those 84 phases are identified as promising thermoelectric materials. The screening results are validated by both electronic structure calculations and experimental results from the literature. We also fabricated some new compounds to test our screening results. Another advantage of using crystal structure features as descriptors is that we can easily establish structural relationships between the identified phases. Based on this, two material design approaches are discussed: 1) High-pressure synthesis of metastable phase; 2) In-situ 2-phase composites with coherent interface. This work was supported by a Marie Curie International Incoming Fellowship of the European Community Human Potential Program.

  12. High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    PubMed Central

    Han, Xiao; Guo, Jinhai; Deng, Weiwei; Zhang, Chenying; Du, Peige; Shi, Taiping; Ma, Dalong

    2008-01-01

    Background Estrogen receptor α (ERα) is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE) with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. Results From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131) as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE). In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene. Conclusion We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells. PMID:18847501

  13. High-Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification.

    PubMed

    Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia

    2016-07-01

    High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. Application of chemical arrays in screening elastase inhibitors.

    PubMed

    Gao, Feng; Du, Guan-Hua

    2006-06-01

    Protein chip technology provides a new and useful tool for high-throughput screening of drugs because of its high performance and low sample consumption. In order to screen elastase inhibitors on a large scale, we designed a composite microarray integrating enzyme chip containing chemical arrays on glass slides to screen for enzymatic inhibitors. The composite microarray includes an active proteinase film, screened chemical arrays distributed on the film, and substrate microarrays to demonstrate change of color. The detection principle is that elastase hydrolyzes synthetic colorless substrates and turns them into yellow products. Because yellow is difficult to detect, bromochlorophenol blue (BPB) was added into substrate solutions to facilitate the detection process. After the enzyme had catalyzed reactions for 2 h, effects of samples on enzymatic activity could be determined by detecting color change of the spots. When chemical samples inhibited enzymatic activity, substrates were blue instead of yellow products. If the enzyme retained its activity, the yellow color of the products combined with blue of BPB to make the spots green. Chromogenic differences demonstrated whether chemicals inhibited enzymatic activity or not. In this assay, 11,680 compounds were screened, and two valuable chemical hits were identified, which demonstrates that this assay is effective, sensitive and applicable for high-throughput screening (HTS).

  15. Chiral Amine Synthesis Using ω-Transaminases: An Amine Donor that Displaces Equilibria and Enables High-Throughput Screening**

    PubMed Central

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-01-01

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. PMID:25138082

  16. Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective.

    PubMed

    Karawajczyk, Anna; Giordanetto, Fabrizio; Benningshof, Jorg; Hamza, Daniel; Kalliokoski, Tuomo; Pouwer, Kees; Morgentin, Remy; Nelson, Adam; Müller, Gerhard; Piechot, Alexander; Tzalis, Dimitrios

    2015-11-01

    High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection. The European Lead Factory (ELF) project is addressing this challenge by leveraging the diverse experience and know-how of academic groups and small and medium enterprises (SMEs) engaged in synthetic and/or medicinal chemistry. Here, we describe the novelty, diversity, structural complexity, physicochemical characteristics and overall attractiveness of this first batch of ELF compounds for HTS purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Active machine learning-driven experimentation to determine compound effects on protein patterns

    PubMed Central

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  18. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants.

    PubMed

    Tsotsou, Georgia Eleni; Cass, Anthony Edward George; Gilardi, Gianfranco

    2002-01-01

    A rapid method for identifying compounds that are potential substrates for the drug metabolising enzyme cytochrome P450 is described. The strategy is based on the detection of a degradation product of NAD(P)H oxidation during substrate turnover by the enzyme expressed in Escherichia coli cells spontaneously lysed under the experimental conditions. The performance of the method has been tested on two known substrates of the wild-type cytochrome P450 BM3, arachidonic (AA) and lauric (LA) acids, and two substrates with environmental significance, the anionic surfactant sodium dodecyl sulfate (SDS), and the solvent 1,1,2,2-tetrachloroethane (TCE). The minimal background signal given from cells expressing cytochrome P450 BM3 in the absence of added substrate is only 3% of the signal in the presence of saturating substrate. Control experiments have proven that this method is specifically detecting NADPH oxidation by catalytic turnover of P450 BM3. The assay has been adapted to a microtitre plate format and used to screen a series of furazan derivatives as potential substrates. Three derivatives were identified as substrates. The method gave a significant different signal for two isomeric furazan derivatives. All results found on the cell lysate were verified and confirmed with the purified enzyme. This strategy opens the way to automated high throughput screening of NAD(P)H-linked enzymatic activity of molecules of pharmacological and biotechnological interest and libraries of random mutants of NAD(P)H-dependent biocatalysts.

  19. *Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    EPA Science Inventory

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens fol...

  20. SCREENING CHEMICALS FOR ESTROGEN RECEPTOR BIOACTIVITY USING A COMPUTATIONAL MODEL

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is considering the use high-throughput and computational methods for regulatory applications in the Endocrine Disruptor Screening Program (EDSP). To use these new tools for regulatory decision making, computational methods must be a...

Top