Sample records for higher anticancer activity

  1. Enhanced anti-cancer activities of a gold(III) pyrrolidinedithiocarbamato complex incorporated in a biodegradable metal-organic framework.

    PubMed

    Sun, Raymond Wai-Yin; Zhang, Ming; Li, Dan; Li, Mian; Wong, Alice Sze-Tsai

    2016-10-01

    An anti-cancer active gold(III) pyrrolidinedithiocarbamato complex [(PDTC)Au III Cl 2 ] (1) has been synthesized and characterized by means of X-ray crystallography. Compared to the pyrrolidinedithiocarbamate ligand itself, this gold(III) complex displays an up to 33-fold higher anti-cancer potency towards a panel of cancer cell lines including the cisplatin-resistant ovarian carcinoma cell line (A2780cis). As demonstrated by a set of Transwell® assay-based cytotoxicity experiments, incorporating this gold(III) complex in a zinc-based biodegradable metal-organic framework (MOF) displays a significant enhancement in anti-cancer activity towards A2780cis than the gold(III) complex alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Synergistic anticancer effect of the extracts from Polyalthia evecta caused apoptosis in human hepatoma (HepG2) cells

    PubMed Central

    Machana, Sasipawan; Weerapreeyakul, Natthida; Barusrux, Sahapat; Thumanu, Kanjana; Tanthanuch, Waraporn

    2012-01-01

    Objective To evaluate the anticancer activity of the extract fraction of Polyalthia evecta (P. evecta) (Pierre) Finet & Gagnep and the synergistic anticancer effect of the extracts from P. evecta by using the ATR/FT-IR spectroscopy. Methods The 50% ethanol-water crude leaf extract of P. evecta (EW-L) was prepared and was further fractionated to isolate various fractions. The anticancer activity was investigated from cytotoxicity against HepG2 using a neutral red assay and apoptosis induction by evaluation of nuclei morphological changes after DAPI staining. Synergistic anticancer effects of the extracts from P. evecta were performed using the ATR/FT-IR spectroscopy. Results The result showed that the EW-L showed higher cytotoxicity and apoptosis induction in HepG2 cells than its fractionated extracts. The hexane extract exhibited higher cytotoxicity and apoptosis induction than the water extracts, but less than the EW-L. The combined water and hexane extracts apparently increased cytotoxicity and apoptosis induction. The %apoptotic cells induced by the extract mixture were increased about 2-fold compared to the single hexane extract. Conclusions The polar extract fraction is necessary for the anticancer activity of the non-polar extract fraction. The ATR/FT-IR spectra illustrates the physical interaction among the constituents in the extract mixture and reveals the presence of polyphenolic constituents in the EW-L, which might play a role for the synergistic anticancer effect. PMID:23569977

  3. The Influence of Different Oregano Species on the Antioxidant Activity Determined Using HPLC Postcolumn DPPH Method and Anticancer Activity of Carvacrol and Rosmarinic Acid

    PubMed Central

    Kubiliene, Asta; Marksa, Mindaugas; Petrikaite, Vilma; Vitkevičius, Konradas; Baranauskas, Algirdas

    2017-01-01

    The aim of this study was to evaluate concentration-dependent antioxidant and anticancer activities of CA and RA in ethanol extracts of three different Oregano species (Origanum onites L., Origanum vulgare L., and Origanum vulgare ssp. hirtum). The study revealed the highest RA antioxidant activity in O. vulgare ssp. hirtum (9550 ± 95 mmol/g) and the lowest in O. vulgare L. (2605 ± 52 mmol/g) (p < 0.05). The highest CA amount was present in O. onites L., which was 1.8 and 4.7 times higher (p < 0.05) than in O. vulgare ssp. hirtum and O. vulgare L., respectively. The anticancer activity was evaluated on human glioblastoma (U87) and triple-negative breast cancer (MDA-MB231) cell lines in vitro. RA anticancer activity was negligible. CA and the extracts were about 1.5–2 times more active against MDA-MB231 cell line (p < 0.05) compared to U87 cell line. The anticancer activities of three tested extracts were similar against U87 cell line (p > 0.05) but they had different activities against MDA-MB231 cell line. PMID:29181386

  4. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams.

    PubMed

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-06-06

    In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.

  5. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams

    PubMed Central

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-01-01

    Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328

  6. The Impact of Skin Problems on the Quality of Life in Patients Treated with Anticancer Agents: A Cross-Sectional Study.

    PubMed

    Lee, Jaewon; Lim, Jin; Park, Jong Seo; Kim, Miso; Kim, Tae-Yong; Kim, Tae Min; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Mun, Je-Ho; Cho, Kwang Hyun; Jo, Seong Jin

    2017-12-14

    Patients treated with anticancer agents often experience a variety of treatment-related skin problems, which can impair their quality of life. In this cross-sectional study, Dermatology Life Quality Index (DLQI) and clinical information were evaluated in patients under active anticancer treatment using a questionnaire survey and their medical records review. Of 375 evaluated subjects with anticancer therapy, 136 (36.27%) and 114 (30.40%) were treated for breast cancer and colorectal cancer, respectively. We found that women, breast cancer, targeted agent use, and longer duration of anticancer therapy were associated with higher dermatology-specific QoL distraction. In addition, itching, dry skin, easy bruising, pigmentation, papulopustules on face, periungual inflammation, nail changes, palmoplantar lesions were associated with significantly higher DLQI scores. Periungual inflammation and palmoplantar lesions scored the highest DLQI. We believe our findings can be helpful to clinicians in counseling and managing the patients undergoing anticancer therapy.

  7. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    PubMed Central

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-01-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007

  8. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    NASA Astrophysics Data System (ADS)

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-08-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape.

  9. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles

    PubMed Central

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  10. Fucoidan cytotoxicity against human breast cancer T47D cell line increases with higher level of sulfate ester group

    NASA Astrophysics Data System (ADS)

    Saepudin, Endang; Alfita Qosthalani, Fildzah; Sinurat, Ellya

    2018-01-01

    The anticancer activity of different sulfate ester group content in different molecular weight was examined. The anticancer activity was achieved in vitro on human breast cancer T47D cell line. Fucoidan with lower molecular weight (5.79 kDa) tends to have lower sulfate ester group content (8.69%) and resulted in higher IC50 value (184.22 μg/mL). While fucoidan with higher molecular weight (785.12 kDa) tends to have higher sulfate level (18.63%) and achieved lower IC50 value (75.69 μg/mL). The result showed that in order to maintain fucoidan cytotoxic activity against human breast cancer T47D cell line, the sulfate content should be remain high. Keywords: fucoidan, sulfate ester group, human breast cancer

  11. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  12. Cancer Chemoprevention Effects of Ginger and its Active Constituents: Potential for New Drug Discovery.

    PubMed

    Wang, Chong-Zhi; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.

  13. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  14. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate.

    PubMed

    O'Connor, Stephen; Szwej, Emilia; Nikodinovic-Runic, Jasmina; O'Connor, Aisling; Byrne, Annette T; Devocelle, Marc; O'Donovan, Norma; Gallagher, William M; Babu, Ramesh; Kenny, Shane T; Zinn, Manfred; Zulian, Qun Ren; O'Connor, Kevin E

    2013-04-01

    The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  16. Thiolated pectin-doxorubicin conjugates: Synthesis, characterization and anticancer activity studies.

    PubMed

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Manchun, Somkamol; Dass, Crispin R; Sriamornsak, Pornsak

    2017-10-15

    In this paper, pectin was cross-linked by a coupling reaction with either thioglycolic acid or cystamine dihydrochloride to form thiolated pectins. The thiolated pectins were then coupled with doxorubicin (DOX) derivative to obtain thiolated pectin-DOX conjugates by two different methods, disulfide bond formation and disulfide bond exchange. The disulfide bond exchange method provided a simple, fast, and efficient approach for synthesis of thiolated pectin-DOX conjugates, compared to the disulfide bond formation. Characteristics, physicochemical properties, and morphology of thiolated pectins and thiolated pectin-DOX conjugates were determined. DOX content in thiolated pectin-DOX conjugates using low methoxy pectin was found to be higher than that using high methoxy pectin. The in vitro anticancer activity of thiolated pectin-DOX conjugates was significantly higher than that of free DOX, in mouse colon carcinoma and human bone osteosarcoma cells, but insignificantly different from that of free DOX, in human prostate cancer cells. Due to their promising anticancer activity in mouse colon carcinoma cells, the thiolated pectin-DOX conjugates might be suitable for building drug platform for colorectal cancer-targeted delivery of DOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pharmacokinetic studies and anticancer activity of curcumin-loaded nanostructured lipid carriers.

    PubMed

    Wang, Fengling; Chen, Jin; Dai, Wenting; He, Zhengmin; Zhai, Dandan; Chen, Weidong

    2017-09-01

    In order to investigate the potential of nanostructured lipid carriers for efficient and targeted delivery of curcumin, the pharmacokinetic parameters of curcumin-loaded nanostructured lipid carriers (Cur-NLC) were evaluated in rats after a single intraperitoneal dose of Cur-NLC. In addition, the anticancer activity of Cur-NLC against human lung adenocarcinoma A549 cells was verified by a cellular uptake study, and a cytotoxicity and apoptosis assay. Bioavailability of Cur-NLC was better than that of native curcumin (p > 0.01), as seen from the area under the plasma concentration-time curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and total plasma clearance (CLz/F). Cur-NLC has a more obvious lung-targeting property in comparison with native curcumin. Cur-NLC showed higher anticancer activity in vitro against A549 cells than native curcumin (IC50 value of 5.66 vs. 9.81 mg L-1, respectively). Meanwhile, Cur-NLC treated A549 cells showed a higher apoptosis rate compared to that of native curcumin. These results indicate that NLC is a promising system for the delivery of curcumin in the treatment of lung adenocarcinoma.

  18. Quinazoline clubbed 1,3,5-triazine derivatives as VEGFR2 kinase inhibitors: design, synthesis, docking, in vitro cytotoxicity and in ovo antiangiogenic activity.

    PubMed

    Pathak, Prateek; Shukla, Parjanya Kumar; Kumar, Vikas; Kumar, Ankit; Verma, Amita

    2018-04-16

    A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.

  19. Prediction of anticancer activity of diterpenes isolated from the paraiban flora through a PLS model and molecular surfaces.

    PubMed

    Scotti, Luciana; Scotti, Marcus T; Ishiki, Hamilton; Junior, Francisco J B M; dos, Santos Paula F; Tavares, Josean F; da Silva, Marcelo S

    2014-05-01

    The aim of this work was to predict the anticancer potential of 3 atisane, and 3 trachylobane diterpene compounds extracted from the roots of Xylopia langsdorffiana. The prediction of anticancer activity as expressed against PC-3 tumor cells was made using a PLS model built with 26 diterpenes in the training set. Significant statistical measures were obtained. The six investigated diterpenes were applied to the model and their activities against PC-3 cells were calculated. All the diterpenes were active, with atisane diterpenes showing the higher pICso values. In human prostate carcinoma PC-3 cells, the apoptosis mechanism is related to an inhibition of IKK/NF-KB. Antioxidant potential implies a greater electronic molecular atmosphere (increased donor electron capacity), which can reduce radical reactivity, and facilitate post donation charge accommodation. Molecular surfaces indicated a much greater electronic cloud over atisane diterpenes.

  20. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents.

    PubMed

    Hafez, Hend N; El-Gazzar, Abdel-Rhman B A; Al-Hussain, Sami A

    2016-05-15

    A series of [4-amino-3-(4-chlorophenyl)-1H-pyrazol-5-yl](3,5-dimethyl-1H-pyrazol-1-yl)-methanone and 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one have been synthesized from ethyl 4-amino-3-(4-chlorophenyl)-pyrazol-5-carboxylate. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)CNMR, Mass spectra and Elemental analysis. The compounds were evaluated for their in vitro antimicrobial and anticancer activity. Among the synthesized compounds, compounds 7a,b and 15 exhibited higher anticancer activity than the doxorubicin as reference drug. Most of the newly synthesized compounds have good to excellent antimicrobial activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Anticancer Activity of Chloroform Extract and Sub-fractions of Nepeta deflersiana on Human Breast and Lung Cancer Cells: An In vitro Cytotoxicity Assessment.

    PubMed

    Al-Oqail, Mai M; Al-Sheddi, Ebtesam S; Siddiqui, Maqsood A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2015-10-01

    Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 μg/ml of sub-fractions of ND for 24 h. Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive as compared to the MCF-7 cells. Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NRU: Neutral red uptake; DMEM: Dulbecco's modified eagle medium; FBS: Fetal bovine serum; PBS: Phosphate buffer saline; DMSO: Dimethyl sulfoxide.

  2. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    PubMed Central

    2011-01-01

    Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492

  3. Development and evaluation of adsorption sheet (HD safe sheet-U) using active carbon for the purpose of the preventing the contamination diffusion of urinary excreted anticancer drug.

    PubMed

    Sato, Junya; Ohkubo, Haruka; Sasaki, Yuki; Yokoi, Makoto; Hotta, Yasunori; Kudo, Kenzo

    2017-01-01

    Certain amount of anticancer drugs is excreted in the urine of patients receiving anticancer drugs, and urinary scattering including anticancer drugs at excretion has become a route of anticancer drug contamination. Therefore, we developed an active carbon sheet (HD safe sheet-U) that prevented diffusion by adsorbing anticancer drugs including that excreted in urine. The present study conducted a performance evaluation of this sheet. The adsorption performance of active carbon to anticancer drug in the urine was evaluated by determining concentration changes in the active carbon suspension (5 mg/mL) of 14 kinds of anticancer drugs (cyclophosphamide, ifosfamide, carboplatin, cisplatin, methotrexate, 5-fluorouracil, cytarabine, gemcitabine, doxorubicin, epirubicin, paclitaxel, docetaxel, etoposide, and irinotecan) diluted with artificial urine. Adhesion of the anticancer drug dropping on the sheet to a slipper sole was evaluated because urine including anticancer drugs is scattered on the floor, which can spread by adhering to shoe soles of patients and healthcare workers. The performance of the active carbon sheet was compared with two other types of medical adsorption sheets used as control sheets. Anticancer drugs diluted with artificial urine (1 mL) were dropped on the active carbon sheet and the two control sheets. The sheets were trod with slippers made by polyvinyl chloride. The adhered anticancer drug was wiped off and its quantity was determined. A remarkable decrease in anticancer drug concentrations, except for cisplatin, was detected by mixture of active carbon in the artificial urine (0-79.6%). The quantity of anticancer drug adhesion to slipper soles from the active carbon sheet was significantly lower compared with that observed for the two control sheets for eight kinds of anticancer drugs (cyclophosphamide, ifosfamide, carboplatin, methotrexate, cytarabine, gemcitabine, doxorubicin, and docetaxel). There was no adhesion in cyclophosphamide and docetaxel. Furthermore, the quantities of adhesion in cytarabine, gemcitabine, doxorubicin, paclitaxel, and irinotecan were lower than determination limit. Active carbon might be effective in adsorbing urinary anticancer drugs. The active carbon sheet adsorbed urinary excreted anticancer drugs, and use of such sheets might prevent diffusion of contamination due to urinary excreted anticancer drugs.

  4. Inhibitory Activity of Iron Chelators ATA and DFO on MCF-7 Breast Cancer Cells and Phosphatases PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska-Ponikowska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2017-09-01

    Rapidly-dividing cancer cells have higher requirement for iron compared to non-transformed cells, making iron chelating a potential anticancer strategy. In the present study we compared the anticancer activity of uncommon iron chelator aurintricarboxylic acid (ATA) with the known deferoxamine (DFO). We investigated the impact of ATA and DFO on the viability and proliferation of MCF-7 cancer cells. Moreover we performed enzymatic activity assays and computational analysis of the ATA and DFO effects on pro-oncogenic phosphatases PTP1B and SHP2. ATA and DFO decrease the viability and proliferation of breast cancer cells, but only ATA considerably reduces the activity of PTP1B and SHP2 phosphatases. Our studies indicated that ATA strongly inactivates and binds in the PTP1B and SHP2 active site, interacting with arginine residue essential for enzyme activity. We confirmed that iron chelating can be considered as a potential strategy for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Synthesis and preliminary biological evaluation of novel taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Shan, Yuanyuan; Li, Na; Ma, Wei; He, Langchong

    2010-07-01

    Antiangiogenic therapy might represent a new promising anticancer therapeutic strategy. Taspine can significantly inhibit cell proliferation of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor-165, which is crucial for angiogenesis. In this study, a series of novel taspine derivatives were synthesized and screened for in vitro anticancer and antiangiogenesis activities. The majority of the derivatives demonstrated a moderate degree of cytotoxicity against human cancer cell lines. One of them (14) exhibited much better antiproliferative activity against CACO-2 (IC(50)=52.5microM) and ECV304 (IC(50)=2.67microM) cells than taspine did. Some of them were also effective in antiproliferative assays against HUVECs. The in silico estimate of solubility of title compounds were higher than that of taspine. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  6. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2013-06-01

    The essential oil from Cedrelopsis grevei leaves, an aromatic and medicinal plant from Madagascar, is widely used in folk medicine. Essential oil was characterized by GC-MS and quantified by GC-FID. Sixty-four components were identified. The major constituents were: (E)-β-farnesene (27.61%), δ-cadinene (14.48%), α-copaene (7.65%) and β-elemene (6.96%). The essential oil contained a complex mixture consisting mainly sesquiterpene hydrocarbons (83.42%) and generally sesquiterpenes (98.91%). The essential oil was tested cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum), antiinflammatory and antioxidant (ABTS and DPPH assays) activities. C. grevei essential oil was active against MCF-7 cell lines (IC50=21.5 mg/L), against P. falciparum, (IC50=17.5mg/L) and antiinflammatory (IC50=21.33 mg/L). The essential oil exhibited poor antioxidant activity against DPPH (IC50>1000 mg/L) and ABTS (IC50=110 mg/L) assays. A bibliographical review was carried out of all essential oils identified and tested with respect to antiplasmodial, anticancer and antiinflammatory activities. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial, anticancer and antiinflammatory). According to the obtained correlations, 1,4-cadinadiene (R(2)=0.61) presented a higher relationship with antimalarial activity. However, only (Z)-β-farnesene (R(2)=0.73) showed a significant correlation for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy.

    PubMed

    Fan, Lulu; Zhang, Bingchen; Xu, Aixiao; Shen, Zhichun; Guo, Yan; Zhao, Ruirui; Yao, Huilu; Shao, Jing-Wei

    2018-06-04

    Ursolic acid (UA) is a food-plant-derived natural product which has good anticancer activities and low toxicity. However, the poor water solubility of UA limits its application in clinic. To address this issue, we developed a carrier-free nanodrug by self-assembly of UA. Here, we showed that UA nanoparticles (NPs) have a near-spherical shape with a diameter of ∼150 nm. UA NPs exhibited higher antiproliferative activity; significantly caused apoptosis; decreased the expression of COX-2/VEGFR2/VEGFA; and increased the immunostimulatory activity of TNF-α, IL-6, and IFN-β and decreased the activity of STAT-3 in A549 cells in vitro. Furthermore, UA NPs could inhibit tumor growth and have the ability of liver protection in vivo. More importantly, UA NPs could significantly improve the activation of CD4+ T-cells, which indicated that UA NPs have the potential for immunotherapy. Overall, a carrier-free UA nanodrug may be a promising drug to further enhance their anticancer efficacy and immune function.

  8. Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.

    PubMed

    Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho

    2017-02-28

    The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

  9. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  10. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  11. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recent Progress of Marine Polypeptides as Anticancer Agents

    PubMed

    Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J

    2018-04-29

    Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Nanovesicular carrier-based formulation for skin cancer targeting: evaluation of cytotoxicity, intracellular uptake, and preclinical anticancer activity.

    PubMed

    Jain, Subheet Kumar; Puri, Richa; Mahajan, Mohit; Yadav, Subodh; Pathak, C M; Ganesh, N

    2015-04-01

    Skin cancer has turned into global epidemic leading to higher incidences among cancer stricken population. The aim of the present investigation is to evaluate the anticancer potential and intracellular uptake of a novel nanovesicular formulation of 5-FU. Detailed intracellular uptake study in conjunction with estimation of intracellular reactive oxygen species was done using skin melanoma cell lines (A375) along with cytotoxicity studies. To further obtain the mechanistic insights into inhibition of tumor cell proliferation, cell-cycle arrest studies were conducted. The preclinical anticancer activity was carried out employing in vivo DMBA-croton oil-induced skin cancer model in mice. Significant reduction in the number of papillomas was observed in skin cancer-bearing mice on treatment with nanovesicular formulation (51.4 ± 3.2%) in comparison with marketed formulation (21.3 ± 2.1%) of 5-FU. Tumor volume was found to be reduced to 46.3 ± 3.5% with prepared formulation, whereas the marketed formulation-treated group showed the reduction of 18.6 ± 1.8% in comparison with the control (untreated) group. The results of present study demonstrated that nanovesicular formulation of 5-FU possessed the enhanced anticancer activity which could be attributed to better intracellular uptake, cellular retention, and sustained release of drug.

  14. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    PubMed

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  15. Vitamin C-driven epirubicin loading into liposomes.

    PubMed

    Lipka, Dominik; Gubernator, Jerzy; Filipczak, Nina; Barnert, Sabine; Süss, Regine; Legut, Mateusz; Kozubek, Arkadiusz

    2013-01-01

    The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose.

  16. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line.

    PubMed

    Singh, Pooja; Singh, Mahendra; Kanoujia, Jovita; Arya, Malti; Saraf, Shailendra K; Saraf, Shubhini A

    2016-10-01

    The objective of the present work was to formulate a novel stable delivery system which would not only overcome the solubility issue of silymarin, but also help to increase the therapeutic value by better permeation, anticancer action and reduced toxicity. This was envisaged through the recent developments in nanotechnology, combined with the activity of the phytoconstituent silymarin. A 2(3) full factorial design based on three independent variables was used for process optimization of nanostructured lipid carriers (NLC). Developed formulations were evaluated on the basis of particle size, morphology, in vitro drug release, photostability and cell line studies. Optimized silymarin-NLC was incorporated into carbopol gel and further assessed for rheological parameters. Stable behaviour in presence of light was proven by photostability testing of formulation. Permeability parameters were significantly higher in NLC as compared to marketed phytosome formulation. The NLC based gel described in this study showed faster onset, and prolonged activity up to 24 h and better action against edema as compared to marketed formulation. In case of anticancer activity of silymarin-NLC against SK-MEL 2 cell lines, silymarin-NLC proved to possess anticancer activity in a dose-dependent manner (10-80 μM) and induced apoptosis at 80 μM in SK-MEL 2 cancer cells. This work documents for the first time that silymarin can be formulated into nanostructured lipoidal carrier system for enhanced permeation, greater stability as well as anticancer activity for skin.

  17. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    PubMed

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  18. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity.

    PubMed

    Jayakumar, Sundarraj; Patwardhan, Raghavendra S; Pal, Debojyoti; Singh, Babita; Sharma, Deepak; Kutala, Vijay Kumar; Sandur, Santosh Kumar

    2017-12-01

    Mitocurcumin is a derivative of curcumin, which has been shown to selectively enter mitochondria. Here we describe the anti-tumor efficacy of mitocurcumin in lung cancer cells and its mechanism of action. Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin as demonstrated by clonogenic assay, flow cytometry and high throughput screening assay. Treatment of lung cancer cells with mitocurcumin significantly decreased the frequency of cancer stem cells. Mitocurcumin increased the mitochondrial reactive oxygen species (ROS), decreased the mitochondrial glutathione levels and induced strand breaks in the mitochondrial DNA. As a result, we observed increased BAX to BCL-2 ratio, cytochrome C release into the cytosol, loss of mitochondrial membrane potential and increased caspase-3 activity suggesting that mitocurcumin activates the intrinsic apoptotic pathway. Docking studies using mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity. In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system. The anti-cancer activity of mitocurcumin measured in terms of apoptotic cell death and the decrease in cancer stem cell frequency was accentuated by TrxR2 overexpression. This was due to modulation of TrxR2 activity to NADPH oxidase like activity by mitocurcumin, resulting in higher ROS accumulation and cell death. Thus, our findings reveal mitocurcumin as a potent anticancer agent with better efficacy than curcumin. This study also demonstrates the role of TrxR2 and mitochondrial DNA damage in mitocurcumin mediated killing of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy.

    PubMed

    Yoo, Wooyoung; Yoo, Donghyuck; Hong, Eunmi; Jung, Eunkyeong; Go, Yebin; Singh, S V Berwin; Khang, Gilson; Lee, Dongwon

    2018-01-10

    Drug delivery systems have been extensively developed to enhance the therapeutic efficacy of drugs by altering their pharmacokinetics and biodistribution. However, the use of high quantities of drug delivery systems can cause toxicity due to their poor metabolism and elimination. In this study, we developed polysaccharide-based drug delivery systems which exert potent therapeutic effects and could display synergistic therapeutic effects with drug payloads, leading to dose reduction. Cinnamaldehyde, a major component of cinnamon is known to induce anticancer activity by generating ROS (reactive oxygen species). We developed cinnamaldehyde-conjugated maltodextrin (CMD) as a polymeric prodrug of cinnamaldehyde and a drug carrier. Cinnamaldehyde was conjugated to the hydroxyl groups of maltodextrin via acid-cleavable acetal linkages, allowing facile formulation of nanoparticles and drug encapsulation. CMD nanoparticles induced acid-triggered ROS generation to induce apoptotic cell death. Camptothecin (CPT) was used as a model drug to investigate the potential of CMD nanoparticles as a drug carrier and also evaluate the synergistic anticancer effects with CMD nanoparticles. CPT-loaded CMD nanoparticles exhibited significantly higher anticancer activity than empty CMD nanoparticles and CPT alone in the study of mouse xenograft models, demonstrating the synergistic therapeutic effects of CMD with CPT. Taken together, we believe that CMD nanoparticles hold tremendous potential as a polymeric prodrug of cinnamaldehyde and a drug carrier in anticancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa M.; El Sayed, Ibrahim E. T.; Ayad, Mohamed I.; Hathout, Heba M. R.

    2017-10-01

    The synthesis of new Shiff base ligands denoted L1, HL2 and HL3 starting from the appropriate aminoneocryptolepine and salicaldehyde were described. The chelation abilities of L1, HL2 and HL3 ligands towards Co(II), Ni(II), Cu(II) and Pd(II) salts have been studied. A series of square planar complexes containing Cu(II) salts, PdCl2 and octahedral chelates containing NiCl2, CoCl2 salts (2 and 7) have been isolated. Also, the pentacoordinated Co(II) complex [Co(L1)2Cl]·Cl.0.5H2O·1.25EtOH (1) has been prepared. The mode of bonding and geometrical structure of complexes has been confirmed by elemental analyses and different spectroscopic methods together with thermal, magnetic moment studies, molecular modeling and X-ray diffraction. Furthermore, the synthesized ligands, in comparison to some of their metal complexes were screened for their anticancer activity against colorectal adenocarcinoma (HT-29) cells. The results showed that Co(II) complexes (1 and 7) exhibited higher anticancer activity when compared to the corresponding ligands.

  1. Neutral Porphyrin Derivative Exerts Anticancer Activity by Targeting Cellular Topoisomerase I (Top1) and Promotes Apoptotic Cell Death without Stabilizing Top1-DNA Cleavage Complexes

    PubMed Central

    2017-01-01

    Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109

  2. [Review in the studies on tannins activity of cancer prevention and anticancer].

    PubMed

    Li, Haixia; Wang, Zhao; Liu, Yanze

    2003-06-01

    This paper reviewed the biological activities of tannins in cancer prevention and anticancer, and mainly discussed related mechanisms. The results suggest that tannins, whether total tannins or pure tannin compound, have remarkable activity in cancer prevention and anticancer. It has wealthy foreground for developing new cancer prevention agents and/or new anticancer drugs screening among tannin compounds.

  3. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells

    USDA-ARS?s Scientific Manuscript database

    Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity ...

  4. Antioxidant, anticancer and anticholinesterase activities of flower, fruit and seed extracts of Hypericum amblysepalum HOCHST.

    PubMed

    Keskin, Cumali

    2015-01-01

    Cancer is an unnatural type of tissue growth in which the cells exhibit unrestrained division, leading to a progressive increase in the number of dividing cells. It is now the second largest cause of death in the world. The present study concerned antioxidant, anticancer and anticholinesterase activities and protocatechuic, catechin, caffeic acid, syringic acid, p-coumaric acid and o-coumaric concentrations in methanol extracts of flowers, fruits and seeds of Hypericum amblysepalum. Antioxidant properties including free radical scavenging activity and reducing power, and amounts of total phenolic compounds were evaluated using different tests. Protocatechuic, catechin, caffeic acid, syringic acid, p-coumaric acid and o-coumaric concentrations in extracts were determined by HPLC. Cytotoxic effects were determined using the MTT test with human cervix cancer (HeLa) and rat kidney epithelium cell (NRK-52E) lines. Acetyl and butyrylcholinesterase inhibitory activities were measured by by Ellman method. Total phenolic content of H. amblysepalum seeds was found to be higher than in fruit and flower extracts. DPPH free radical scavenging activity of the obtained extracts gave satisfactory results versus butylated hydroxyanisole and butylated hydroxytoluene as controls. Reducing power activity was linearly proportional to the studied concentration range: 10-500 μg/ mL LC50 values for H. amblysepalum seeds were 11.7 and 2.86 respectively for HeLa and NRK-52E cell lines. Butyryl-cholinesterase inhibitory activity was 76.9±0.41 for seed extract and higher than with other extracts. The present results suggested that H. amblysepalum could be a potential candidate anti-cancer drug for the treatment of human cervical cancer, and good source of natural antioxidants.

  5. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  6. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway.

    PubMed

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei; Wan, Jingyuan; Luo, Fuling; Li, Hongyuan; Ren, Guosheng

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial-mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  8. Vitamin C-driven epirubicin loading into liposomes

    PubMed Central

    Lipka, Dominik; Gubernator, Jerzy; Filipczak, Nina; Barnert, Sabine; Süss, Regine; Legut, Mateusz; Kozubek, Arkadiusz

    2013-01-01

    The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose. PMID:24101870

  9. Hair Growth Promoting and Anticancer Effects of p21-activated kinase 1 (PAK1) Inhibitors Isolated from Different Parts of Alpinia zerumbet.

    PubMed

    Taira, Nozomi; Nguyen, Binh Cao Quan; Tawata, Shinkichi

    2017-01-14

    PAK1 (p21-activated kinase 1) is an emerging target for the treatment of hair loss (alopecia) and cancer; therefore, the search for PAK1 blockers to treat these PAK1-dependent disorders has received much attention. In this study, we evaluated the anti-alopecia and anticancer effects of PAK1 inhibitors isolated from Alpinia zerumbet (alpinia) in cell culture. The bioactive compounds isolated from alpinia were found to markedly promote hair cell growth. Kaempferol-3- O -β-d-glucuronide (KOG) and labdadiene, two of the isolated compounds, increased the proliferation of human follicle dermal papilla cells by approximately 117%-180% and 132%-226%, respectively, at 10-100 μM. MTD (2,5-bis(1 E ,3 E ,5 E )-6-methoxyhexa-1,3,5-trien-1-yl)-2,5-dihydrofuran) and TMOQ (( E )-2,2,3,3-tetramethyl-8-methylene-7-(oct-6-en-1-yl)octahydro-1 H -quinolizine) showed growth-promoting activity around 164% and 139% at 10 μM, respectively. The hair cell proliferation induced by these compounds was significantly higher than that of minoxidil, a commercially available treatment for hair loss. Furthermore, the isolated compounds from alpinia exhibited anticancer activity against A549 lung cancer cells with IC 50 in the range of 67-99 μM. Regarding the mechanism underlying their action, we hypothesized that the anti-alopecia and anticancer activities of these compounds could be attributed to the inhibition of the oncogenic/aging kinase PAK1.

  10. Comparison of NSAIDs activity in COX-2 expressing and non-expressing 2D and 3D pancreatic cancer cell cultures

    PubMed Central

    Čeponytė, Ugnė; Paškevičiūtė, Miglė; Petrikaitė, Vilma

    2018-01-01

    Purpose In this study, we evaluated the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) in BxPC-3 and MIA PaCa-2 pancreatic cancer cell cultures. Methods To test the effect of compounds on the viability of cells, the MTT assay was used. The activity of NSAIDs in 3D cell cultures was evaluated by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. To evaluate the effect on the colony-forming ability of cancer cells, the clonogenic assay was used. Results Five out of seven tested NSAIDs reduced the viability of BxPC-3 and MIA PaCa-2 cancer cells. Fenamates were more active against cyclooxygenase-2 expressing BxPC-3 than cyclooxygenase-2 non-expressing MIA PaCa-2 cell line. Fenamates and coxibs exerted higher activity in monolayer cultured cells, whereas salicylates were more active in 3D cultures. Fenamates and coxibs induced dose-dependent apoptosis and necrosis. NSAIDs also inhibited the colony-forming ability of cancer cells. Meclofenamic acid, niflumic acid, and parecoxib possessed higher activity on BxPC-3, and celecoxib possessed higher activity on MIA PaCa-2 cell colony formation. Conclusion Our results show that fenamates, coxibs, and salicylates possess anticancer activity on human pancreatic cancer BxPC-3 and MIA PaCa-2 cell cultures. PMID:29942156

  11. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea.

    PubMed

    Hou, Jing; Cui, Heng-Lin

    2018-03-01

    Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about the biological effects of carotenoids from halophilic archaea. In this study, the carotenoids produced by seven halophilic archaeal strains Halogeometricum rufum, Halogeometricum limi, Haladaptatus litoreus, Haloplanus vescus, Halopelagius inordinatus, Halogranum rubrum, and Haloferax volcanii were identified by ultraviolet/visible spectroscopy, thin-layer chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The C 50 carotenoids bacterioruberin and its derivatives monoanhydrobacterioruberin and bisanhydrobacterioruberin were found to be the predominant carotenoids. The antioxidant capacities of the carotenoids from these strains were significantly higher than β-carotene as determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. The antihemolytic activities of these carotenoid extracts against H 2 O 2 -induced hemolysis in mouse erythrocytes were 3.9-6.3 times higher than β-carotene. A dose-dependent in vitro antiproliferative activity against HepG2 cells was observed for the extract from Hgm. limi, while that from Hpn. vescus exhibited a relatively high activity in a dose-independent manner. These results suggested that halophilic archaea could be considered as an alternative source of natural carotenoids with high antioxidant, antihemolytic, and anticancer activity.

  12. Therapeutic applications of curcumin for patients with pancreatic cancer

    PubMed Central

    Kanai, Masashi

    2014-01-01

    A number of preclinical studies have demonstrated anticancer effects for curcumin in various types of tumors, including pancreatic cancer. Curcumin has anticancer effects both alone and in combination with other anticancer drugs (e.g., gemcitabine, 5-fluorouracil, and oxaliplatin), and it has been shown to modulate a variety of molecular targets in preclinical models, with more than 30 molecular targets identified to date. Of these various molecules, NF-κB is thought to be one of the primary targets of curcumin activity. Based on these promising preclinical results, several research groups, including our own, have progressed to testing the anticancer effects of curcumin in clinical trials; however, the poor bioavailability of this agent has been the major challenge for its clinical application. Despite the ingestion of gram-level doses of curcumin, plasma curcumin levels remain at low (ng/mL) levels in patients, which is insufficient to yield the anticancer benefits of curcumin. This problem has been solved by the development of highly bioavailable forms of curcumin (THERACURMIN®), and higher plasma curcumin levels can now be achieved without increased toxicity in patients with pancreatic cancer. In this article, we review possible therapeutic applications of curcumin in patients with pancreatic cancer. PMID:25071333

  13. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    PubMed

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    PubMed

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    PubMed

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  16. Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.

    PubMed

    Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej

    2004-01-01

    Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.

  17. Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells.

    PubMed

    Cheng, Wan-Li; Huang, Chien-Yu; Tai, Cheng-Jeng; Chang, Yu-Jia; Hung, Chin-Sheng

    2018-02-01

    Androgen deprivation therapy remains the principal treatment for patients with advanced prostate cancer, though, most patients will eventually develop hormone-refractory prostate cancer (HRPC). Androgen ablation mediated maspin-induction has been identified in cancer patients. However, the role of maspin on the anticancer activity of curcumin derived from turmeric (Curcuma longa) in HRPC cells has not been elucidated. The anticancer action of curcumin in hormone-independent prostate cancer cells (DU145, and PC-3) was determined by measures of cell survival rate. The cause of maspin silencing on the anti-tumor abilities of curcumin in PC-3 cells was evaluated by measures of cell survival rate, cell-cycle distribution, and apoptosis signaling analysis. Our present study showed that PC-3 cells (with higher maspin expression) were more sensitive than DU145 cells to curcumin treatment (with lower maspin expression). RNA interference-mediated maspin silencing reduced curcumin sensitivity of PC-3 cells, as evidenced by reduced apoptotic cell death. After exposure to curcumin, maspin-knockdown cells showed lower expression levels of pro-apoptotic proteins, Bad and Bax, as compared with control cells. Maspin can enhance the sensitivity of HRPC cells to curcumin treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.

  19. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3.

    PubMed

    Antoci, Vasilichia; Mantu, Dorina; Cozma, Danut Gabriel; Usru, Cornelia; Mangalagiu, Ionel I

    2014-01-01

    Antitumour chemotherapy is nowadays a very active field of research, DNA targeting drugs being the most widely used group in therapy. The design, synthesis and anticancer activity of a new class of anticancer derivatives with pyrrolo-1,2-diazine and benzoquinone skeleton is presented. The synthesis is direct and efficient, involving an alkylation followed by a [3+2] dipolar cycloaddition. The penta- and tetra-cyclic pyrrolo-1,2-diazine were evaluated for their in vitro anticancer activity against an NCI 60 human tumour cell line panel. The pentacyclic-1,2-diazine exhibit a significant anticancer activity against Non-Small Cell Lung Cancer NCI-H460, Leukemia MOLT-4, Leukemia CCRF-CEM and Breast Cancer MCF7. We hypothesize that these molecules will exert their anticancer activity through multiple mechanisms of action: intercalating the DNA, inhibiting the topoisomerase enzymes and, destroying the DNA strands via electron transfer mechanism. However, the intercalation with the DNA seems to prevail in competition with the others mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Copper-tolfenamic acid: evaluation of stability and anti-cancer activity.

    PubMed

    Hurtado, Myrna; Sankpal, Umesh T; Chhabra, Jaya; Brown, Deondra T; Maram, Rajasekhar; Patel, Rafid; Gurung, Raj K; Simecka, Jerry; Holder, Alvin A; Basha, Riyaz

    2018-05-15

    The non-steroidal anti-inflammatory drug, Tolfenamic acid (TA) acts as an anti-cancer agent in several adult and pediatric cancer models. Copper (Cu) is an important element with multiple biological functions and has gained interest in medical applications. Recently, [Cu(TA) 2 (bpy)] (Cu-TA) has been synthesized in order to enhance therapeutic activity. In this study, we synthesized Cu-TA using an established method, characterized it by UV visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR), and tested its anti-cancer activity using twelve cell lines representing various cancers, such as Ewing sarcoma, glioblastoma, medulloblastoma, neuroblastoma, pancreatic and prostate. The anti-proliferative activity of Cu-TA was determined at 48 h post-treatment and compared with the parental compound, TA. The IC 50 values were calculated using GraphPad Prism software. The biological stability of Cu-TA was evaluated using twelve-month-old powder and six-month-old stock solution. Cardiomyocytes (H9C2) were used to test the cytotoxicity in non-malignant cells. Cu-TA showed higher anti-proliferative activity, and the IC 50 values were 30 to 80% lower when compared with TA. H9C2 cells were non-responsive to Cu-TA, suggesting that it is selective towards malignant cells. Comparison of the twelve-month-old powder and six-month-old stock solution using the Panc1 cell line showed similar IC 50 values (<5% variation), confirming the stability of Cu-TA either in powder or solution form. These findings demonstrate the potential of Cu-TA as an effective anti-cancer agent. Further studies to delineate the detailed mechanism of action of Cu-TA for specific cancer model are underway.

  2. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity

    PubMed Central

    Rayan, Anwar; Raiyn, Jamal

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab. PMID:29121120

  3. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    PubMed

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  4. Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells

    PubMed Central

    Chen, Cheng-Cheung; Hsieh, Dar-Shih; Huang, Kao-Jean; Chan, Yi-Lin; Hong, Po-Da; Yeh, Ming-Kung; Wu, Chang-Jer

    2014-01-01

    (–)-Epigallocatechin-3-gallate (EGCG), the major bioactive constituent in green tea, has been reported to effectively inhibit the formation and development of tumors. To maximize the effectiveness of EGCG, we attached it to nanogold particles (EGCG-pNG) in various ratios to examine in vitro cytotoxicity and in vivo anti-cancer activity. EGCG-pNG showed improved anti-cancer efficacy in B16F10 murine melanoma cells; the cytotoxic effect in the melanoma cells treated with EGCG-pNG was 4.91 times higher than those treated with EGCG. The enhancement is achieved through mitochondrial pathway-mediated apoptosis as determined by annexin V assay, JC-10 staining, and caspase-3, -8, -9 activity assay. Moreover, EGCG-pNG was 1.66 times more potent than EGCG for inhibition of tumor growth in a murine melanoma model. In the hemolysis assay, the pNG surface conjugated with EGCG is most likely the key factor that contributes to the decreased release of hemoglobin from human red blood cells. PMID:24855338

  5. Efficacy, Safety and Anticancer Activity of Protein Nanoparticle-Based Delivery of Doxorubicin through Intravenous Administration in Rats

    PubMed Central

    Golla, Kishore; Cherukuvada, Bhaskar; Ahmed, Farhan; Kondapi, Anand K.

    2012-01-01

    Background and Aims Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC). The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity. Methods Doxorubicin loaded apotransferrin (Apodoxonano) and lactoferrin nanoparticles (Lactodoxonano) were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA) in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers. Results In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g). Both nanoformulations showed higher localization compared to doxorubicin (Doxo) when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g) were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g), suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation. Conclusion Drug delivery through nanoformulations not only minimizes the cardiotoxicity of doxorubicin but also enhances the efficacy and bioavailability of the drug in a target-specific manner. PMID:23284832

  6. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies.

    PubMed

    Pingaew, Ratchanok; Prachayasittikul, Veda; Worachartcheewan, Apilak; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2015-10-20

    A novel series of 1,4-naphthoquinones (33-44) tethered by open and closed chain sulfonamide moieties were designed, synthesized and evaluated for their cytotoxic and antimalarial activities. All quinone-sulfonamide derivatives displayed a broad spectrum of cytotoxic activities against all of the tested cancer cell lines including HuCCA-1, HepG2, A549 and MOLT-3. Most quinones (33-36 and 38-43) exerted higher anticancer activity against HepG2 cell than that of the etoposide. The open chain analogs 36 and 42 were shown to be the most potent compounds. Notably, the restricted sulfonamide analog 38 with 6,7-dimethoxy groups exhibited the most potent antimalarial activity (IC₅₀ = 2.8 μM). Quantitative structure-activity relationships (QSAR) study was performed to reveal important chemical features governing the biological activities. Five constructed QSAR models provided acceptable predictive performance (Rcv 0.5647-0.9317 and RMSEcv 0.1231-0.2825). Four additional sets of structurally modified compounds were generated in silico (34a-34d, 36a-36k, 40a-40d and 42a-42k) in which their activities were predicted using the constructed QSAR models. A comprehensive discussion of the structure-activity relationships was made and a set of promising compounds (i.e., 33, 36, 38, 42, 36d, 36f, 42e, 42g and 42f) was suggested for further development as anticancer and antimalarial agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  8. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-05

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  9. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  10. Hydroxyethylated graphene oxide as potential carriers for methotrexate delivery

    NASA Astrophysics Data System (ADS)

    Du, Libo; Suo, Siqingaowa; Luo, Dan; Jia, Hongying; Sha, Yinlin; Liu, Yang

    2013-06-01

    In this study, we presented a simple approach to prepare hydroxyethylated graphene oxide (HE-GO) with high water solubility and physiological stability. The successful synthesis of HE-GO was confirmed by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The loading of anticancer drug methotrexate (MTX) onto this nanocarrier (MTX/HE-GO) was investigated. The results of in vitro drug release experiment showed that the rate of MTX release from MTX/HE-GO was pH dependent. Moreover, cell viability assay demonstrated that HE-GO loaded with MTX exhibits higher anticancer activity against human lung adenocarcinoma epithelial cell line than non-vehicle MTX.

  11. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2011-09-29

    Helichrysum gymnocephalum essential oil (EO) was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%), bicyclosesquiphellandrene (5.6%), γ-curcumene (5.6%), α-amorphene (5.1%) and bicyclogermacrene (5%) were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant) and antioxidant (ABTS and DPPH assays) activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC(50) of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC(50) = 25 ± 1 mg/L). However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC(50) value > 1,000 mg/L) and ABTS (IC(50) value = 1,487.67 ± 47.70 mg/L) assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer). β-Selinene (R² = 0.76), α-terpinolene (R² = 0.88) and aromadendrene (R² = 0.90) presented a higher relationship with the anti-cancer activity. However, only calamenene (R² = 0.70) showed a significant correlation for the antiplasmodial activity.

  12. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  13. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark.

    PubMed

    Eo, Hyun Ji; Park, Jae Ho; Park, Gwang Hun; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2014-06-25

    Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity.

  14. Aquation Is a Crucial Activation Step for Anticancer Action of Ruthenium(II) Polypyridyl Complexes to Trigger Cancer Cell Apoptosis.

    PubMed

    Li, Meng; Lai, Lanhai; Zhao, Zhennan; Chen, Tianfeng

    2016-01-01

    Aquation has been proposed as crucial chemical action step for ruthenium (Ru) complexes, but its effects on the action mechanisms remain elusive. Herein, we have demonstrated the aquation process of a potent Ru polypyridyl complex (RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , bmbp=2,6-bis(6-methylbenzimidazol-2-yl) pyridine, phen=phenanthroline) with a chloride ligand, and revealed that aquation of RuBmp effectively enhanced its hydrophilicity and cellular uptake, thus significantly increasing its anticancer efficacy. The aquation products (H-RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , [Ru(II) (bmbp)(phen)(H2 O)]ClO4 , bmbp) exhibited a much higher apoptosis-inducing ability than the intact complex, with involvement of caspase activation, mitochondria dysfunction, and interaction with cell membrane death receptors. H-RuBmp demonstrated a higher interaction potency with the cell membrane and induced higher levels of ROS overproduction in cancer cells to regulate the AKT, MAPK, and p53 signaling pathways. Taken together, this study could provide useful information for fine-tuning the rational design of next-generation metal medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The syntheses and characterizations of vanadium complexes with 1,2-dihydroxyanthraquinone and the structure-effect relationship in their in vitro anticancer activities.

    PubMed

    Du, Shizhen; Feng, Jun; Lu, Xiaoming; Wang, Guo

    2013-07-14

    [V(V)O2(O2C14H6O2)(C5N2H12)](C5N2H13)(CH3OH) (1) and {Na[V(V)O(O2C14H6O2)2][(CH3)2NCHO]}n (2) have been synthesized by the reaction of V2O5 and NaVO3 with aromatic 1,2-diol (1,2-dihydroxyanthraquinone), and their molecular and crystal structures have been determined by X-ray diffraction. MTT assay tests of the V(V)O2L(A)L(B) and V(V)OL2 complexes against cancer cells have revealed that, when L is catechol, VOL2 showed broad-spectrum, high anticancer activities which were proportional to their concentration; however when L is naphthol or alizarin, VOL2 displayed little effect towards the cancer cells; moreover, complex 1 in the coordination model of V(V)O2L(A)L(B) showed specifically higher inhibition (88.65%) against HCT-8 than the clinical anticancer drug Fu-5 (69.97%). The results revealed that both the V(V) and the ligands cannot influence the inhibition against cancer cells individually. The mechanism of the broad-spectrum anticancer activities of VOL2 when L is catechol ligand might originate from the redox activities of V(V)/V(IV) which regulate the concentration of ROS (reactive oxygen species). N-Methylpiperazine formed as a by-product in complex 1 was confirmed by (1)H NMR and its formation mechanism catalyzed by V2O5 has been deduced.

  16. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    PubMed Central

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  17. A High Capacity Polymeric Micelle of Paclitaxel: Implication of High Dose Drug Therapy to Safety and In Vivo Anti-Cancer Activity

    PubMed Central

    He, Zhijian; Wan, Xiaomeng; Schulz, Anita; Bludau, Herdis; Dobrovolskaia, Marina A.; Stern, Stephan T.; Montgomery, Stephanie A.; Yuan, Hong; Li, Zibo; Alakhova, Daria; Sokolsky, Marina; Darr, David B.; Perou, Charles M.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2016-01-01

    The poor solubility of paclitaxel (PTX), the commercially most successful anticancer drug, has long been hampering the development of suitable formulations. Here, we present translational evaluation of a nanoformulation of PTX, which is characterized by a facile preparation, extraordinary high drug loading of 50 % wt. and PTX solubility of up to 45 g/L, excellent shelf stability and controllable, sub-100 nm size. We observe favorable in vitro and in vivo safety profiles and a higher maximum tolerated dose compared to clinically approved formulations. Pharmacokinetic analysis reveals that the higher dose administered leads to a higher exposure of the tumor to PTX. As a result, we observed improved therapeutic outcome in orthotopic tumor models including particularly faithful and aggressive “T11” mouse claudin-low breast cancer orthotopic, syngeneic transplants. The promising preclinical data on the presented PTX nanoformulation showcase the need to investigate new excipients and is a robust basis to translate into clinical trials. PMID:27315213

  18. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines.

    PubMed

    Burra, Srinivas; Voora, Vani; Rao, Ch Prasad; Vijay Kumar, P; Kancha, Rama Krishna; David Krupadanam, G L

    2017-09-15

    Forskolin C 1 -isoxazole derivatives (3,5-regioisomers) (11a-e, 14, 15a-h and 15, 16a-g) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC 50 ≤1µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC 50 of 0.5µM. Copyright © 2017. Published by Elsevier Ltd.

  19. Synthesis of isatin thiosemicarbazones derivatives: in vitro anti-cancer, DNA binding and cleavage activities.

    PubMed

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B; Abdul Majid, A M S

    2014-05-05

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun

    2017-12-01

    The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure-activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.

  1. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy.

    PubMed

    Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun

    2012-02-01

    The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers.

  2. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  3. 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate and its 4-formyl analog-Ultrasound assisted synthesis and in-vitro anticancer evaluation against human tumor cell lines.

    PubMed

    Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D

    2017-03-01

    The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.

  4. Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.

    PubMed

    Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan

    2007-12-01

    Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.

  5. Marine Microalgae with Anti-Cancer Properties.

    PubMed

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  6. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum

    PubMed Central

    Chen, Yun; Li, Qian; Wu, Qingsheng

    2014-01-01

    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. PMID:25061294

  7. In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines

    NASA Astrophysics Data System (ADS)

    Shenoy, Vikram S.; Gude, Rajiv P.; Murthy, Rayasa S. Ramachandra

    2013-05-01

    The present study is aimed to investigate the formulation and in vitro anticancer activities of solid lipid nanoparticles (SLNs) of 5-fluorouracil (5-FU) prepared using glyceryl monostearate (GMS) and cetyl palmitate (CP) by hot homogenization method. The lipids were selected based on the partition coefficient of 5-FU in lipids. The lipid nanoparticles were optimized for process and formulation parameters. The optimized nanoparticles were characterized for their zeta potential, morphology, release kinetics, and anticancer activity. Higher entrapments were achieved using a combination of emulsifiers. The zeta potential of the optimized CP and GMS SLN formulation were -8.26 and -9.35 mV, respectively. Both the optimized formulations were spherical. The in vitro release studies of SLNs of both the lipid carriers followed Peppas-Korsenmeyer equation when carried out at pH 3.5 and 7.4. The chemosensitivity assay carried out in B16F10 cell lines revealed that CP SLNs had better cytotoxicity than 5-FU solution and GMS SLNs at 48 h of incubation. Subtoxic concentration of 5-FU-loaded CP SLNs (0.12 μg/mL) possessed comparable antimigrational activity, colony inhibition activity, and cytopathic as that of 5-FU solution effects. The results indicated that encapsulating 5-FU in CP would be a promising delivery system for delivering 5-FU.

  8. In vitro anticancer activity, toxicity and structure-activity relationships of phyllostictine A, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen

    2011-07-01

    The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA asmore » part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.« less

  9. Hydroquinone Exhibits In Vitro and In Vivo Anti-Cancer Activity in Cancer Cells and Mice.

    PubMed

    Byeon, Se Eun; Yi, Young-Su; Lee, Jongsung; Yang, Woo Seok; Kim, Ji Hye; Kim, Jooyoung; Hong, Suntaek; Kim, Jong-Hoon; Cho, Jae Youl

    2018-03-19

    Hydroquinone (HQ, 1,4-benzenediol) is a hydroxylated benzene metabolite with various biological activities, including anti-oxidative, neuroprotective, immunomodulatory, and anti-inflammatory functions. However, the anti-cancer activity of HQ is not well understood. In this study, the in vitro and in vivo anti-cancer activity of HQ was investigated in various cancer cells and tumor-bearing mouse models. HQ significantly induced the death of A431, SYF, B16F10, and MDA-MB-231 cells and also showed a synergistic effect on A431 cell death with other anti-cancer agents, such as adenosine-2',3'-dialdehyde and buthionine sulfoximine. In addition, HQ suppressed angiogenesis in fertilized chicken embryos. Moreover, HQ prevented lung metastasis of melanoma cells in mice in a dose-dependent manner without toxicity and adverse effects. HQ (10 mg/kg) also suppressed the generation of colon and reduced the thickness of colon tissues in azoxymethane/dextran sodium sulfate-injected mice. This study strongly suggests that HQ possesses in vitro and in vivo anti-cancer activity and provides evidence that HQ could be developed as an effective and safe anti-cancer drug.

  10. Y-shaped biotin-conjugated poly (ethylene glycol)-poly (epsilon-caprolactone) copolymer for the targeted delivery of curcumin.

    PubMed

    Zhu, Wenxia; Song, Zhimei; Wei, Peng; Meng, Ning; Teng, Fangfang; Yang, Fengying; Liu, Na; Feng, Runliang

    2015-04-01

    In order to improve curcumin's low water-solubility and selective delivery to cancer, we reported ligand-mediated micelles based on a Y-shaped biotin-poly (ethylene glycol)-poly (epsilon-caprolactone)2 (biotin-PEG-PCL2) copolymer. Its structure was characterized by (1)H NMR. The blank and drug-loaded micelles obtained by way of thin-film hydration were characterized by dynamic light scattering, X-ray diffraction, infrared spectroscopy and hemolytic test. Curcumin was loaded into micelles with a high encapsulating efficiency (93.83%). Curcumin's water-solubility was enhanced 170,400 times higher than free curcumin. Biotin-PEG-PCL2 micelles showed slower drug release in vitro than H2N-PEG-PCL2 micelles. In vitro cellular uptake and cytotoxicity tests showed that higher dosage of curcumin might overcome the effect of slow release on cytotoxicities because of its higher uptake induced by biotin, resulting in higher anticancer activities against MDA-MB-436 cells. In brief, Y-shaped biotin-PEG-PCL2 is a promising delivery carrier for anticancer drug. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  12. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines.

    PubMed

    Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul

    2017-10-15

    Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis, anti-proliferative activity, SAR study, and preliminary in vivo toxicity study of substituted N,N'-bis(arylmethyl)benzimidazolium salts against a panel of non-small cell lung cancer cell lines.

    PubMed

    Shelton, Kerri L; DeBord, Michael A; Wagers, Patrick O; Southerland, Marie R; Williams, Travis M; Robishaw, Nikki K; Shriver, Leah P; Tessier, Claire A; Panzner, Matthew J; Youngs, Wiley J

    2017-01-01

    A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N 1 (N 3 )) and highly lipophilic substituents at the carbon atoms (C 2 and C 5 (C 6 )) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine.

    PubMed

    Arias, José L; Reddy, L Harivardhan; Couvreur, Patrick

    2009-09-01

    Gemcitabine hydrochloride is an anticancer nucleoside analogue indicated in clinic for the treatment of various solid tumors. Although this drug has been demonstrated to display anticancer activity against a wide variety of tumors, it is needed to be administered at high doses to elicit the required therapeutic response, simultaneously leading to severe adverse effects. We hypothesized that the efficient delivery of gemcitabine to tumors using a biodegradable carrier system could reduce the dose required to elicit sufficient therapeutic response. Thus, we have developed a nanoparticle formulation of gemcitabine suitable for parenteral administration based on the biodegradable polymer poly(octylcyanoacrylate) (POCA). The nanoparticles were synthesized by anionic polymerization of the corresponding monomer. Two drug loading methods were analyzed: the first one based on gemcitabine surface adsorption onto the preformed nanoparticles, and the second method being gemcitabine addition before the polymerization process leading to drug entrapment in the polymeric network. A detailed investigation of the capabilities of the polymer particles to load this drug is described. Gemcitabine entrapment into the polymer matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption procedure. The main factors determining the gemcitabine incorporation to the polymer network were the nanoparticles preparation procedure, the monomer concentration, the surfactant concentration, the pH, and the drug concentration. The release kinetic of gemcitabine was found to be controlled by the pH and the type of drug incorporation. The cytotoxicity studies performed on L1210 tumor cells revealed a similar anticancer activity of the gemcitabine-loaded POCA (GPOCA) nanoparticle as free gemcitabine. Following intravenous administration into the mice bearing L1210 wt subcutaneous tumor, the GPOCA nanoparticles displayed significantly greater anticancer activity compared to free gemcitabine; this has been additionally confirmed by histology and immunohistochemistry studies, suggesting the potential of GPOCA for the efficient treatment of cancer.

  15. A Novel Method to Improve the Anticancer Activity of Natural-Based Hydroxyapatite against the Liver Cancer Cell Line HepG2 Using Mesoporous Magnesia as a Micro-Carrier.

    PubMed

    2017-11-24

    Micro-carriers are the best known vehicles to transport different kinds of drugs to achieve high impact. In this study, mesoporous magnesium oxide has been harnessed as a micro-carrier to encapsulate the anticancer candidate drug natural-based cubic hydroxyapatite (HAP). HAP@MgO composites with different HAP loading (0-60 wt %), were prepared by a hydrothermal treatment method using triethanol amine as a template. The characterization of the prepared composites were achieved by using XRD, Raman spectroscopy, FTIR and SEM. Characterization data confirm the formation of sphere-like structures of MgO containing HAP particles. It was observed that the size of the spheres increased with HAP loading up to 40 wt %, then collapsed. Furthermore, the anticancer property of the prepared composites was evaluated against the HepG2 liver cancer cell line. The HAP@MgO composites exhibited higher activity than neat MgO or HAP. The 20 wt % of HAP was the optimum loading to control cell proliferation by inducing apoptosis. Apoptosis was determined by typical apoptotic bodies produced by the cell membrane.

  16. Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles.

    PubMed

    Yassin, Abdelrahman M; El-Deeb, Nehal M; Metwaly, Ahmed M; El Fawal, Gomaa F; Radwan, Mohamed M; Hafez, Elsayed E

    2017-08-01

    The aim of this investigation is to examine the anticancer activities of Balanites aegyptiaca fruit extract with its biogenic silver nanoparticles (AgNPs) against colon and liver cancer cells. B. aegyptiaca aqueous extract was fractionated according to polarity and by biosynthesized AgNP. The cytotoxicity of the extract, semi-purified fractions, and the AgNPs was examined on noncancerous cell lines. The safer fraction was subjected to ultra-performance liquid chromatography-MS to identify the major active constituents. The anticancer activities of the nontoxic doses of all the used treatments were tested against HepG2 and CaCo2 cells. The nontoxic dose of the B. aegyptiaca (0.63 mg/ml) extract showed high anti-proliferative activities against HepG2 and CaCo2 with a percentage of 81 and 77%, respectively. The butanol fraction was safer than the other two fractions with 46.3 and 90.35% anti-proliferative activity against Caco2 and HepG2 cells, respectively. The nontoxic dose of AgNPs (0.63 mg/ml) inhibits both HepG2 and Caco2 cells with a percentage of 84.5 and 83.4%, respectively. In addition, AgNPs regulate the expression of certain genes with folding higher than that of crude extract. Saponin-coated AgNPs showed great abilities to select the most anticancer ingredient(s) from the B. aegyptiaca extract with a more safety pattern than the polarity gradient fractionation.

  17. Anti-cancer, pharmacokinetic and biodistribution studies of cremophor el free alternative paclitaxel formulation.

    PubMed

    Jain, Subheet K; Utreja, Puneet; Tiwary, Ashok K; Mahajan, Mohit; Kumar, Nikhil; Roy, Partha

    2014-01-01

    The aim of the present investigation is to determine the in vivo potential of previously developed and optimized Cremophor EL free paclitaxel (CF-PTX) formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate. CF-PTX was found to have drug loading of 6 mg/ml similar to Cremophor EL based marketed paclitaxel formulation. In the present study, intracellular uptake, repeated dose 28 days sub-acute toxicity, anti-cancer activity, biodistribution and pharmacokinetic studies were conducted to determine in vivo performance of CF-PTX formulation in comparison to marketed paclitaxel formulation. Intracellular uptake of CF-PTX was studied using A549 cells by fluorescence activated cell sorting assay (FACS) and fluorescence microscopy. In vivo anti-cancer activity of CF-PTX was evaluated using Ehrlich ascites carcinoma (EAC) model in mice followed by biodistribution and pharmacokinetic studies. FACS investigation showed that fluorescence marker acridine orange (AO) solution showed only 19.8±1.1% intracellular uptake where as significantly higher uptake was observed in the case of AO loaded CF-PTX formulation (85.4±2.3%). The percentage reduction in tumor volume for CF-PTX (72.5±2.3%) in EAC bearing mice was found to be significantly (p<0.05) higher than marketed formulation (58.6±2.8%) on 14th day of treatment. Pharmacokinetic and biodistribution studies showed sustained plasma concentration of paclitaxel depicted by higher mean residence time (MRT; 18.2±1.8 h) and elimination half life (12.8±0.6 h) with CF-PTX formulation as compared to marketed formulation which showed 4.4±0.2 h MRT and 3.6±0.4 h half life. The results of the present study demonstrated better in vivo performance of CF-PTX and this formulation appears to be a promising carrier for sustained and targeted delivery of paclitaxel.

  18. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation

    PubMed Central

    Asaduzzaman Khan, Md.; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang

    2017-01-01

    Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics. PMID:28881699

  19. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation.

    PubMed

    Asaduzzaman Khan, Md; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang

    2017-08-01

    Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics.

  20. Thymoquinone-based nanotechnology for cancer therapy: promises and challenges.

    PubMed

    Ballout, Farah; Habli, Zeina; Rahal, Omar Nasser; Fatfat, Maamoun; Gali-Muhtasib, Hala

    2018-05-01

    Thymoquinone (TQ), the active ingredient of black seed, is a promising anticancer molecule that inhibits cancer cell growth and progression in vitro and in vivo. Despite the promising anticancer activities of TQ, its translation to the clinic is limited by its poor bioavailability and hydrophobicity. As such, we and others encapsulated TQ in nanoparticles to improve its delivery and limit undesirable cytotoxicity. These TQ-nanoparticle formulations showed improved anticancer and anti-inflammatory activities when compared with free TQ. Here, we provide an overview of the various TQ-nanoparticle formulations, highlight their superior efficacy and discuss up-to-date solutions to further enhance TQ bioavailability and anticancer activity, thus improving potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells).

    PubMed

    Meena, Ramovatar; Kumar, Sumit; Kumar, Raj; Gaharwar, Usha Singh; Rajamani, Paulraj

    2017-10-01

    Triple-negative breast cancers (TNBC) are aggressive cancers, which do not control by hormonal therapy or therapies that target HER-2 receptors. Curcumin (Cur) has shown cytotoxic effects in multiple cancer cell lines. However, its medical uses remain limited due to low aqueous solubility and poor bioavailability. Therefore, present study was aimed to fabricate the small positive charge curcumin nanoparticles (CN) by nanoprecipitation methods using PLGA and CTAB, and to evaluate its anticancer efficacy and underlying the mechanism in triple negative breast cancer cell lines (MDA-MB-231 cells). In in-vitro drug release assay, Cur was released from CN by flicking diffusion and anomalous transport process. CN showed a higher cellular incorporation than free Cur resulted in higher cytotoxicity. Checking the anticancer activity at the molecular level, Cur has shown to induce the reactive oxygen species production that subsequently causes the DNA damage and resulting in p38-MAPK activation. The p38-MAPK induce the expression of p16 /INKK4a , p21 /waf1/cip1 and p53 resulting in a reduction in the level of CDK2, CDK4, cyclin D1 and cyclin E and subsequently cell cycle arrest at G1/S and G2/M phase. It also reduces the expression of DNA repair gene, i.e. BRCA1, BRCA2, Rad51, Rad50, Mre11 and NBS1 resulting in apoptosis induction due to persistent DNA damage. This study presents an effective delivery of curcumin in TNBC cancer cells and it could open the new frontiers in clinical cancer chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities.

    PubMed

    Al-Shareef, Hossa F; Elhady, Heba A; Aboellil, Amany H; Hussein, Essam M

    2016-01-01

    Indolinone and spiro-indoline derivatives have been employed in the preparation of different important therapeutic compounds required for treatment of anticonvulsants, antibacterial, Antitubercular, and anticancer activities. Schiff bases have been found to possess various pharmacological activities such as antitubercular, plant growth inhibiting, insecticsidal, central nerve system depressant, antibacterial, anticancer, anti-inflammatory, and antimicrobial. Mannich bases have a variety of biological activities such as antibacterial and antifungal activities. In this study, a green, rapid and efficient protocol for the synthesis of a new series of Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitrile derivatives using ammonium chloride as a very inexpensive and readily available reagent. The prepared compounds were assessed in vitro for their antimicrobial activity. Also, the cytotoxic activity of the prepared compounds was assessed in vitro against human cells line MCF7 breast cancer. Good activity was distinguished for Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles, with some members recorded higher antimicrobial and anti-breast cancer activities.Graphical abstractNovel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles.

  3. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.

  4. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.

  5. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint.

  6. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity.

    PubMed

    Sahu, Bhanu P; Hazarika, Hemanga; Bharadwaj, Rituraj; Loying, Pojul; Baishya, Rinku; Dash, Suvakanta; Das, Malay K

    2016-08-01

    A curcumin-docetaxel co-loaded nanosuspension with increased anti-breast cancer activity was developed. Curcumin is a potential anticancer agent with p-glycoprotein (p-gp) inhibiting activity may be co-administered with docetaxel as a nanosuspension to enhance its anticancer effect by increasing the oral bioavailability and decreasing drug efflux. Nanosuspensions of curcumin and docetaxel were prepared by precipitation-homozenisation technique and evaluated for particle size, polydispersity, zeta potential and drug release. The in vitro MTT assay was conducted using MCF-7 for anti-breast cancer activity. The in vivo biodistribution by radiolabeling and tumor inhibition study was conducted in mice. Homogenous nanosuspensions of 80 ± 20 nm were obtained with increased solubility. The drugs as nanosuspensions showed higher cytotoxicity on MCF-7 cell line compared to their suspensions due to the increased in vitro cellular uptake. Due to this increased solubility, sensitization of tumor cells and inhibition of p-gp the in-vivo results showed greater tumor inhibition rate of up to 70% in MCF-7 treated mice. Histopathological results showed higher apoptotic activity and reduced level of angiogenesis. The in vitro and in vivo study of the nanosuspensions has shown that Co-administration of Curcumin as a p-gp inhibitor with docetaxel may have the potential to increase the anti-breast cancer efficacy of both drugs.

  7. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  8. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  9. One Ion to Rule Them All: Combined Antibacterial, Osteoinductive and Anticancer Properties of Selenite-Incorporated Hydroxyapatite

    PubMed Central

    Uskoković, Vuk; Iyer, Maheshwar Adiraj; Wu, Victoria M.

    2017-01-01

    Although hydroxyapatite (HAp) has been doped with dozens of different ions, the quest for an ion imparting a combination of properties conducive to bone healing is still ongoing. Because of its protean potency and the similarity in size and shape to the phosphate tetrahedron, selenite ion presents a natural ionic substitute in HAp. The incorporation of selenite into synthetic HAp using two different methods – co-precipitation and ion-exchange sorption - was studied for its effect on crystal properties and on a triad of biological responses: antibacterial, anticancer and osteoinductive. Co-precipitation yielded HAp with higher selenite contents than sorption and the stoichiometry of HAp richest in selenite was represented as Ca9.75(PO4)5.75(SeO3)0.25(OH)1.75. Crystallinity of HAp decreased in direct proportion with the amount of selenite incorporated. Because of their lower selenite content, HAp powders prepared by ion-exchange exhibited a consistently higher crystallinity compared to the co-precipitated ones. Annealing partially recovered the crystallinity, yet the difference in crystallinity between powders prepared by co-precipitation and by ion-exchange remained, suggesting that the amorphization is mainly due to structural incorporation of selenite, not its effect on the crystal growth kinetics. The addition of selenite changed the morphology of HAp nanoparticles from acicular to rounded and affected the crystal lattice parameters in different ways depending on whether the powders were annealed or not. As for the annealed powders, the incorporation of selenite contracted the lattice in both a and c crystallographic directions. In the agar diffusion assay, the effectiveness of HAp was more dependent on the presence or absence of selenite in it than on its concentration and was highest against E. coli and S. aureus, moderately high against S. enteritidis and ineffective against P. aeruginosa. In liquid inoculation tests, on the other hand, the antibacterial activity of HAp was directly proportional to the amount of selenite contained in it. The viability of K7M2 osteosarcoma cells decreased in direct proportion with the amount of selenite in HAp and was significantly different from the untreated control and from pure HAp at contents equal to or higher than 1.9 wt.%. In contrast, no reduction was observed in the viability of primary fibroblasts treated with HAp incorporating different amounts of selenite ions, suggesting their potentially selective anticancer activity: lethal for the cancer cells and harmless for the healthy cells. Finally, mRNA expression of bone gamma-carboxyglutamate protein (BGLAP3) was higher in differentiated MC3T3-E1 osteoblastic cells treated with selenite-incorporated HAp particles than in cells treated with pure HAp. The osteoinductive effect was due to an overall higher metabolic activity of cells treated with the particles and not due to increased proliferation. In such a way, a triad of antibacterial, osteoinductive and anticancer activities was attributed to selenite-incorporated HAp. PMID:28944060

  10. Polyether ionophores-promising bioactive molecules for cancer therapy.

    PubMed

    Huczyński, Adam

    2012-12-01

    The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  12. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    PubMed Central

    Dinarvand, R; Sepehri, N; Manoochehri, S; Rouhani, H; Atyabi, F

    2011-01-01

    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects. PMID:21720501

  13. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Sawant, V. J.; Bamane, S. R.; Shejwal, R. V.; Patil, S. B.

    2016-11-01

    The functionalization and surface engineering of CoFe2O4 and ZnFe2O4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV-vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids.

  14. Laser assisted anticancer activity of benzimidazole based metal organic nanoparticles.

    PubMed

    Praveen, P A; Ramesh Babu, R; Balaji, P; Murugadas, A; Akbarsha, M A

    2018-03-01

    Recent studies showed that the photothermal therapy can be effectively used for the targeted cancerous cells destruction. Hence, in the present study, benzimidazole based metal organic complex nanoparticles, dichloro cobalt(II) bis-benzimidazole (Co-BMZ) and dichloro copper(II) bis-benzimidazole (Cu-BMZ), were synthesized by reprecipitation method and their anti-cancer activity by means of photothermal effect has been studied. Transmission electron microscopy analysis shows that the particle size of Cu-BMZ is ∼100 nm and Co-BMZ is in the range between 100 and 400 nm. Zeta potential analysis ensures the stability of the synthesized nanoparticles. It is found that the nonlinear absorption of the nanoparticles increases with increase in laser power intensity. Phototoxicity of human lung cancer (A549) and the normal mouse embryonic fibroblast (NIH-3T3) cells was studied using a 650 nm laser. Even though both the cell lines were affected by laser irradiation, A549 cells show higher cell destruction and lower IC 50 values than the normal cells. Docking studies were used to analyse the interaction site and the results showed that the Cu-BMZ molecules have higher dock score than the Co-BMZ molecules. The obtained results indicate that Cu-BMZ samples have lesser particle size, higher nonlinear absorption and higher interaction energy than the Co-BMZ samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Lari, Hadi; Morsali, Ali; Heravi, Mohammad Momen

    2018-05-01

    Using density functional theory (DFT), noncovalent interactions and four mechanisms of covalent functionalization of melphalan anticancer drug onto γ-Fe2O3 nanoparticles have been studied. Quantum molecular descriptors of noncovalent configurations were investigated. It was specified that binding of melphalan onto γ-Fe2O3 nanoparticles is thermodynamically suitable. Hardness and the gap of energy between LUMO and HOMO of melphalan are higher than the noncovalent configurations, showing the reactivity of drug increases in the presence of γ-Fe2O3 nanoparticles. Melphalan can bond to γ-Fe2O3 nanoparticles through NH2 (k1 mechanism), OH (k2 mechanism), C=O (k3 mechanism) and Cl (k4 mechanism) groups. The activation energies, the activation enthalpies and the activation Gibbs free energies of these reactions were calculated. Thermodynamic data indicate that k3 mechanism is exothermic and spontaneous and can take place at room temperature. These results could be generalized to other similar drugs.

  16. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    PubMed

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. © The Author(s) 2015.

  17. Tocotrienols target PI3K/Akt signaling in anti-breast cancer therapy.

    PubMed

    Sylvester, Paul W; Ayoub, Nehad M

    2013-09-01

    The PI3K/Akt signaling pathway mediates mitogen-dependent growth and survival in various types of cancer cells, and inhibition of this pathway results in tumor cell growth arrest and apoptosis. Tocotrienols are natural forms of vitamin E that displays potent anticancer activity at treatment doses that had little or no effect on normal cell viability. Mechanistic studies revealed that the anticancer effects of γ-tocotrienol were associated with a suppression in PI3K/Akt signaling. Additional studies showed that cytotoxic LD50 doses of γ-tocotrienol were 3-5-fold higher than growth inhibitory IC50 treatment doses, suggesting that cytotoxic and antiproliferative effects of γ-tocotrienol might be mediated through different mechanisms. However, γ-tocotrienol-induced caspase activation and apoptosis in mammary tumor cells was also found to be associated with suppression in intracellular PI3K/Akt signaling and subsequent down-regulation of FLIP, an endogenous inhibitor of caspase processing and activation. Since breast cancer cells are significantly more sensitive to the inhibitory effects of γ-tocotrienol on PI3K/Akt signaling than normal cells, these findings suggest that γ-tocotrienol may provide significant health benefits in reducing the risk of breast cancer in women. Studies have also shown that combined treatment of γ-tocotrienol with other chemotherapeutic agents can result in a synergistic anticancer response. Combination therapy was most effective when the anticancer mechanism of action of γ-tocotrienol is complimentary to that of the other drug and can provide significant health benefits in the prevention and/or treatment of breast cancer, while at the same time avoiding tumor resistance or toxic effects that is commonly associated with high dose monotherapy.

  18. Contribution of reactive oxygen species to the anticancer activity of aminoalkanol derivatives of xanthone.

    PubMed

    Sypniewski, Daniel; Szkaradek, Natalia; Loch, Tomasz; Waszkielewicz, Anna M; Gunia-Krzyżak, Agnieszka; Matczyńska, Daria; Sołtysik, Dagna; Marona, Henryk; Bednarek, Ilona

    2018-06-01

    Reactive oxygen species (ROS) are critically involved in the action of anticancer agents. In this study, we investigated the role of ROS in the anticancer mechanism of new aminoalkanol derivatives of xanthone. Most xanthones used in the study displayed significant pro-oxidant effects similar to those of gambogic acid, one of the most active anticancer xanthones. The pro-oxidant activity of our xanthones was shown both directly (by determination of ROS induction, effects on the levels of intracellular antioxidants, and expression of antioxidant enzymes) and indirectly by demonstrating that the overexpression of manganese superoxide dismutase decreases ROS-mediated cell senescence. We also observed that mitochondrial dysfunction and cellular apoptosis enhancement correlated with xanthone-induced oxidative stress. Finally, we showed that the use of the antioxidant N-acetyl-L-cysteine partly reversed these effects of aminoalkanol xanthones. Our results demonstrated that novel aminoalkanol xanthones mediated their anticancer activity primarily through ROS elevation and enhanced oxidative stress, which led to mitochondrial cell death stimulation; this mechanism was similar to the activity of gambogic acid.

  19. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation.

    PubMed

    Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said

    2015-01-01

    A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 μg /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results.

  20. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  1. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  2. Synthesis, characterisation, and in vitro anticancer activity of curcumin analogues bearing pyrazole/pyrimidine ring targeting EGFR tyrosine kinase.

    PubMed

    Ahsan, Mohamed Jawed; Khalilullah, Habibullah; Yasmin, Sabina; Jadav, Surender Singh; Govindasamy, Jeyabalan

    2013-01-01

    In search of potential therapeutics for cancer, we described herein the synthesis, characterization, and in vitro anticancer activity of a novel series of curcumin analogues. The anticancer effects were evaluated on a panel of 60 cell lines, according to the National Cancer Institute (NCI) screening protocol. There were 10 tested compounds among 14 synthesized compounds, which showed potent anticancer activity in both one-dose and 5-dose assays. The most active compound of the series was 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-yl(phenyl)methanone which showed mean growth percent of -28.71 in one-dose assay and GI₅₀ values between 0.0079 and 1.86 µM in 5-dose assay.

  3. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongzhong; Huang, Jing; Yang, Bing

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed thatmore » inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.« less

  4. Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis.

    PubMed

    Elbaz, Nancy M; Khalil, Islam A; Abd-Rabou, Ahmed A; El-Sherbiny, Ibrahim M

    2016-11-01

    This study reports a promising approach to enhance the oral delivery of propolis, improve its aqueous solubility and bioavailability, and allow its controlled release as well as enhancing its anticancer activity. Propolis was standardized then its solubility was improved via formulation into optimized solid dispersion (SD) matrices, and its release was controlled through incorporation into nanoparticles (NPs) of optimized composition followed by further inclusion into chitosan (Cs) microparticles. The anticancer activity of the newly developed propolis-loaded nano-in-microparticles (NIMs) was evaluated against human liver cancer (HepG2) and human colorectal cancer (HCT 116) cells. The prepared SDs, NPs and NIMs were characterized using SEM, TEM, DLS, FTIR, DSC and UV-vis spectrophotometry. The therapeutic efficiency of formulated propolis was bio-assessed via cytotoxicity measurements, mitochondrial dysfunction, apoptosis-induced cell death and cell cycle arrest. The results demonstrated a considerable enhancement in propolis solubility with a controlled release profile in different GIT environments. In-vitro cytotoxicity studies showed that the propolis-loaded NIMs induce more cytotoxic effect on HepG2 cells than HCT-116 cells and mediated three-fold higher therapeutic efficiency than free propolis. The apoptosis assay indicated that the propolis-loaded NIMs induce apoptosis of HepG2 cells and significantly decrease their number in the proliferative G0/G1, S and G2/M phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Anticancer activities of bovine and human lactoferricin-derived peptides.

    PubMed

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  6. Anticancer activity and anti-inflammatory studies of 5-aryl-1,4-benzodiazepine derivatives.

    PubMed

    Sandra, Cortez-Maya; Eduardo, Cortes Cortes; Simon, Hernandez-Ortega; Teresa, Ramirez Apan; Antonio, Nieto Camacho; Lijanova, Irina V; Marcos, Martinez-Garcia

    2012-07-01

    A series of 5-aryl-1,4-benzodiazepines with chloro- or fluoro-substituents in the second ring have been synthesized and their anti-inflammatory, myeloperoxidase and anticancer properties studied. The synthesized compounds showed potential anti-inflammatory and anticancer activities, which were enhanced in the presence of a chloro-substituent in the second ring of the 5-aryl-1,4- benzodiazepine.

  7. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.

    PubMed

    Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho

    2015-10-30

    Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.

  8. Anticancer substances of mushroom origin.

    PubMed

    Ivanova, T S; Krupodorova, T A; Barshteyn, V Y; Artamonova, A B; Shlyakhovenko, V A

    2014-06-01

    The present status of investigations about the anticancer activity which is inherent to medicinal mushrooms, as well as their biomedical potential and future prospects are discussed. Mushroom products and extracts possess promising immunomodulating and anticancer effects, so the main biologically active substances of mushrooms responsible for immunomodulation and direct cytoto-xicity toward cancer cell lines (including rarely mentioned groups of anticancer mushroom proteins), and the mechanisms of their antitumor action were analyzed. The existing to date clinical trials of mushroom substances are mentioned. Mushroom anticancer extracts, obtained by the different solvents, are outlined. Modern approaches of cancer treatment with implication of mushroom products, including DNA vaccinotherapy with mushroom immunomodulatory adjuvants, creation of prodrugs with mushroom lectins that can recognize glycoconjugates on the cancer cell surface, development of nanovectors etc. are discussed. The future prospects of mushroom anticancer substances application, including chemical modification of polysaccharides and terpenoids, gene engineering of proteins, and implementation of vaccines are reviewed.

  9. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties.

    PubMed

    Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M

    2012-07-02

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  10. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    PubMed

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  11. Leinamycin E1 acting as an anticancer prodrug activated by reactive oxygen species.

    PubMed

    Huang, Sheng-Xiong; Yun, Bong-Sik; Ma, Ming; Basu, Hirak S; Church, Dawn R; Ingenhorst, Gudrun; Huang, Yong; Yang, Dong; Lohman, Jeremy R; Tang, Gong-Li; Ju, Jianhua; Liu, Tao; Wilding, George; Shen, Ben

    2015-07-07

    Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140, featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. Upon reductive activation in the presence of cellular thiols, LNM exerts its antitumor activity by an episulfonium ion-mediated DNA alkylation. Previously, we have cloned the lnm gene cluster from S. atroolivaceus S-140 and characterized the biosynthetic machinery responsible for the 18-membered lactam backbone and the alkyl branch at C3 of LNM. We now report the isolation and characterization of leinamycin E1 (LNM E1) from S. atroolivacues SB3033, a ΔlnmE mutant strain of S. atroolivaceus S-140. Complementary to the reductive activation of LNM by cellular thiols, LNM E1 can be oxidatively activated by cellular reactive oxygen species (ROS) to generate a similar episulfonium ion intermediate, thereby alkylating DNA and leading to eventual cell death. The feasibility of exploiting LNM E1 as an anticancer prodrug activated by ROS was demonstrated in two prostate cancer cell lines, LNCaP and DU-145. Because many cancer cells are under higher cellular oxidative stress with increased levels of ROS than normal cells, these findings support the idea of exploiting ROS as a means to target cancer cells and highlight LNM E1 as a novel lead for the development of anticancer prodrugs activated by ROS. The structure of LNM E1 also reveals critical new insights into LNM biosynthesis, setting the stage to investigate sulfur incorporation, as well as the tailoring steps that convert the nascent hybrid peptide-polyketide biosynthetic intermediate into LNM.

  12. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar

    2018-02-01

    A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.

  13. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects.

    PubMed

    Fedorov, Sergey N; Ermakova, Svetlana P; Zvyagintseva, Tatyana N; Stonik, Valentin A

    2013-12-02

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed.

  14. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    PubMed

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Tricaproin Isolated From Simarouba glauca Inhibits the Growth of Human Colorectal Carcinoma Cell Lines by Targeting Class-1 Histone Deacetylases

    PubMed Central

    Jose, Asha; Chaitanya, Motamari V. N. L.; Kannan, Elango; Madhunapantula, SubbaRao V.

    2018-01-01

    While anticancer properties of Simarouba glauca (SG, commonly known as Paradise tree) are well documented in ancient literature, the underlying mechanisms leading to cancer cell death begin to emerge very recently. The leaves of SG have been used as potential source of anticancer agents in traditional medicine. Recently attempts have been made to isolate anticancer agents from the leaves of SG using solvent extraction, which identified quassinoids as the molecules with tumoricidal activity. However, it is not known whether the anti-cancer potential of SG leaves is just because of quassinoids alone or any other phytochemicals also contribute for the potency of SG leaf extracts. Therefore, SG leaves were first extracted with hexane, chloroform, ethyl acetate, 70% ethanol, water and anti-cancer potential (for inhibiting colorectal cancer (CRC) cells HCT-116 and HCT-15 proliferation) determined using Sulforhodamine-B (SRB) assay. The chloroform fraction with maximal anticancer activity was further fractionated by activity-guided isolation procedure and structure of the most potent compound determined using spectral analysis. Analysis of the structural characterization data showed the presence of tricaproin (TCN). TCN inhibited CRC cells growth in a time- and dose dependent manner but not the normal cell line BEAS-2B. Mechanistically, TCN reduced oncogenic Class-I Histone deacetylases (HDACs) activity, followed by inducing apoptosis in cells. In conclusion, the anti-cancer potential of SG is in part due to the presence of TCN in the leaves. PMID:29593526

  16. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    PubMed

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  17. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions

    PubMed Central

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-01-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells. PMID:28503089

  18. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    PubMed

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Anticancer activity of seaweeds.

    PubMed

    Gutiérrez-Rodríguez, Anllely G; Juárez-Portilla, Claudia; Olivares-Bañuelos, Tatiana; Zepeda, Rossana C

    2018-02-01

    Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    PubMed

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Cytotoxic, Antiproliferative and Apoptotic Effects of Perillyl Alcohol and Its Biotransformation Metabolite on A549 and HepG2 Cancer Cell Lines.

    PubMed

    Oturanel, Ceren E; Kıran, İsmail; Özşen, Özge; Çiftçi, Gülşen A; Atlı, Özlem

    2017-01-01

    A monoterpene, perillyl alcohol, has attracted attention in medicinal chemistry since it exhibited chemo-preventive and therapeutic properties against a variety of cancers. In the present work, it was aimed to obtain derivatives of perillyl alcohol through microbial biotransformation and investigate their anticancer activities against A549 and HepG2 cancer cell lines. Biotransformation studies were carried out in a α-medium for 7 days at 25oC. XTT assay was performed to investigate the anticancer activities of perillyl alcohol and its biotransformation metabolite, dehydroperillic acid, against A549 and HepG2 cell lines and their selectivity using healthy cell line, NIH/3T3. Cell proliferation ELISA, BRDU (colorimetric) assay was used for measurement of proliferation in replicative cells in which DNA synthesis occurs. Flow cytometric analyses were also carried out for measuring apoptotic cell percentages, caspase 3 activation and mitochondrial membrane potential. Biotransformation of perillyl alcohol with Fusarium culmorum yielded dehydroperillic acid in a yield of 20.4 %. In in vitro anticancer studies, perillyl alcohol was found to exert cytotoxicity against HepG2 cell line with an IC50 value of 409.2 μg/mL. However, this effect was not found to be selective because of its higher IC50 (250 μg/mL) value against NIH/3T3 cell line. On the other hand, dehydroperillic acid was found to be effective and also selective against A549 cell line with an IC50 value of 125 μg/mL and a selectivity index (SI) value of 400. Apoptosis inducing effects of dehydroperillic acid was better in A549 cell line. Dehydroperillic acid may be a good candidate for therapy of lung adenocarcinoma and may show this anticancer activity by inducing apoptosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    NASA Astrophysics Data System (ADS)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  3. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity.

    PubMed

    Mantu, Dorina; Antoci, Vasilichia; Moldoveanu, Costel; Zbancioc, Gheorghita; Mangalagiu, Ionel I

    2016-01-01

    The design, synthesis, structure, and in vitro anticancer and antimycobacterial activity of new hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives are described. The strategy adopted for synthesis is straight and efficient, involving a three-step setup procedure: N-acylation, N-alkylation, and quaternization of nitrogen heterocycle. The solubility in microbiological medium and anticancer and antimycobacterial activity of a selection of new synthesized compounds were evaluated. The hybrid derivatives have an excellent solubility in microbiological medium, which make them promising from the pharmacological properties point of view. One of the hybrid compounds, 9 (with a benzimidazole and 8-aminoquinoline skeleton), exhibits a very good and selective antitumor activity against Renal Cancer A498 and Breast Cancer MDA-MB-468. Moreover, the anticancer assay suggests that the hybrid Imz (Bimz)/2-AP (8-AQ) compounds present a specific affinity to Renal Cancer A498. Concerning the antimycobacterial activity, only the hybrid compound, 9, has a significant activity. SAR correlations have been performed.

  4. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.

    PubMed

    Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong

    2016-02-06

    A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.

  5. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-08

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  7. Functionalization of peptide nucleolipid bioconjugates and their structure anti-cancer activity relationship studies.

    PubMed

    Rana, Niki; Cultrara, Christopher; Phillips, Mariana; Sabatino, David

    2017-09-01

    In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK) 2 -AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK) 2 -AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK) 2 -AK. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. (-)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer.

    PubMed

    Sriwiriyajan, Somchai; Sukpondma, Yaowapa; Srisawat, Theera; Madla, Siribhorn; Graidist, Potchanapond

    2017-08-01

    Several studies have reported that active compounds isolated from Piper nigrum possess anticancer properties. However, there are no data on anticancer activity of (-)-kusunokinin and piperlonguminine. The purposes of this study were to isolate active compounds from P. nigrum and identify the molecular mechanisms underlying growth and apoptosis pathway in breast cancer cells. Two bioactive compounds, (-)-kusunokinin and piperlonguminine, were isolated from P. nigrum. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry and Western blot analysis. We found that the active compounds, which effect cancer cell lines were (-)-kusunokinin and piperlonguminine. These compounds have potent cytotoxic effects on breast cancer cells (MCF-7 and MDA-MB-468) and colorectal cells (SW-620). (-)-Kusunokinin demonstrated a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.18 and 1.62μg/mL, respectively. Piperlonguminine had a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.63 and 2.19μg/mL, respectively. Both compounds demonstrated lower cytotoxicity against normal breast cell lines with IC 50 values higher than 11μg/mL. Cell cycle and apoptotic analysis using flow cytometry, showed that the (-)-kusunokinin and piperlonguminine induced cell undergoing apoptosis and drove cells towards the G2/M phase. Moreover, both compounds decreased topoisomerase II and bcl-2. The increasing of p53 levels further increased p21, bax, cytochrome c, caspase-8, -7 and -3 activities, except caspase-9. These results suggest that the (-)-kusunokinin and piperlonguminine have been shown to have potent anticancer activities through extrinsic pathway and G2/M phase arrest. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells

    PubMed Central

    Song, Yeon Hui; Kim, Chan; Kim, Jungsoo; Seo, Sol-Ji; Jeong, Young-Il; Kang, Dae Hwan

    2017-01-01

    Purpose The aim of this study was to fabricate a vorinostat (Zolinza™)-eluting nanofiber membrane-coated gastrointestinal (GI) stent and to study its antitumor activity against cholangiocarcinoma (CCA) cells in vitro and in vivo. Methods Vorinostat and poly(DL-lactide-co-glycolide) dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. Results A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1⋅3⋅4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Conclusion Vorinostat-eluting nanofiber membranes showed significant antitumor activity against CCA cells in vitro and in vivo. We suggest the vorinostat nanofiber-coated stent may be a promising candidate for CCA treatment. PMID:29089762

  10. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    PubMed

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  11. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  12. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery.

    PubMed

    El-Far, Ali H; Badria, Faried A; Shaheen, Hazem M

    2016-01-01

    Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.

  13. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon

    2011-07-01

    It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.

  14. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  15. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    PubMed

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  16. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk.

    PubMed

    Ayyash, Mutamed; Al-Nuaimi, Amna K; Al-Mahadin, Suheir; Liu, Shao-Quan

    2018-01-15

    This study aimed to investigate in vitro the health-promoting benefits (anticancer activity, α-amylase and α-glucosidase inhibition, angiotensin-converting-enzyme (ACE)-inhibition, antioxidant and proteolytic activity) of camel milk fermented with indigenous probiotic strains of Lactobacillus spp., compared with fermented bovine milk. The three camel milk probiotic strains Lb. reuteri-KX881777, Lb. plantarum-KX881772, Lb. plantarum-KX881779 and a control strain Lb. plantarum DSM2468 were employed to ferment camel and bovine milks separately. The proteolytic and antioxidant activity of water soluble extracts (WSEs) from all fermented camel milks were higher than those of fermented bovine milk. α-Amylase inhibition of WSEs were >34% in both milk types fermented with all strains during storage periods, except the WSE of camel milk fermented by Lp.K772. The highest ACE-inhibition of the WSE from camel milk fermented by Lr.K777 was >80%. The proliferations of Caco-2, MCF-7 and HELA cells were more inhibited when treated with the WSE of fermented camel milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    PubMed Central

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  19. Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity.

    PubMed

    Manickam, Manoj; Boggu, Pulla Reddy; Cho, Jungsuk; Nam, Yeo Jin; Lee, Seung Jin; Jung, Sang-Hun

    2018-06-15

    To establish the structure-activity relationship of 5-hydroxy-1,4-naphthoquinones toward anticancer activity, a series of its derivatives were prepared and tested for the activity (IC 50 in µM) against three cell lines; colo205 (colon adenocarcinoma), T47D (breast ductal carcinoma) and K562 (chronic myelogenous leukemia). Among them 2 (IC 50 : 2.3; 2.0; 1.4 µM), 6 (IC 50 : 1.9; 2.2; 1.3 µM), 9 (IC 50 : 0.7; 1.7; 0.9 µM) and 10 (IC 50 :1.7; 1.0; 1.2 µM) showed moderate to excellent activity. Our perception toward the DNA substitution of alkoxy groups at the C2 position of these naphthoquinones for the anticancer activity led us to investigate their reactivity of substitution toward dimethylamine as a nucleophile. The ease of the substitution of alkoxy groups at the C2 position with dimethylamine is strongly accelerated by hydroxyl group at C5 position and is well correlated with the found anticancer activity results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery.

    PubMed

    Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok Kumar; Kesharwani, Prashant; Gupta, Lokesh; Iyer, Arun K; Gupta, Umesh

    2016-01-01

    Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents.

  1. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex.

    PubMed

    Mezencev, Roman

    2015-01-01

    Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.

  2. Poloxamer 188 and propylene glycol-based rectal suppository enhances anticancer effect of 5-fluorouracil in mice.

    PubMed

    Paek, Seung-Hwan; Xuan, Jing-Ji; Choi, Han-Gon; Park, Byung Chul; Lee, Yoon-Seok; Jeong, Tae-Cheon; Jin, Chun Hua; Oh, Yu-Kyoung; Kim, Jung-Ae

    2006-05-01

    The tumoricidal and apoptosis-inducing activities of 5-fluorouracil (5-FU) have been demonstrated in experimental and clinical investigations. Clinically, the 5-FU suppository form has been widely adopted for its advantages of less systemic toxicity, higher local tissue concentrations, and reduced first-pass effect. In this study, we investigated the feasibility of rectal administration of 5-FU suppository based on poloxamer 188 (P188) and propylene glycol (PG) and its anticancer effect on the murine experimental cancer models. The rectal suppository was made with 70% P188 and 30% PG, which was a solid phase at room temperature and instantly melted at physiological temperature. The treatment with the 5-FU suppository was more effective than the oral route in decreasing the volume of rectal cancer in mice. In addition, the survival rate of the mice with rectal cancer was higher in the group treated with the 5-FU suppository than in the group treated with 5-FU orally. Furthermore, in mice skin cancers induced by inoculation of murine CT-26 colon carcinoma cells, the anticancer effect of 5-FU was significantly enhanced by the rectal administration of the suppository than by oral treatment. Taken together, the results suggest that a poloxamer gel system with 5-FU/P188/PG is an effective rectal dosage form for the treatment of both rectal and non-rectal cancers.

  3. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1

    PubMed Central

    Hu, An; Huang, Jing-Juan; Li, Rui-Lin; Lu, Zhao-Yang; Duan, Jun-Li; Xu, Wei-Hua; Chen, Xiao-Ping; Fan, Jing-Ping

    2015-01-01

    SIRT1 is one of seven mammalian homologs of Sir2 that catalyzes NAD+-dependent protein deacetylation. The aim of the present study is to explore the effect of SIRT1 small molecule activator on the anticancer activity and the underlying mechanism. We examined the anticancer activity of a novel oral agent, curcumin, which is the principal active ingredient of the traditional Chinese herb Curcuma Longa. Treatment of FaDu and Cal27 cells with curcumin inhibited growth and induced apoptosis. Mechanistic studies showed that anticancer activity of curcumin is associated with decrease in migration of HNSCC and associated angiogenesis through activating of intrinsic apoptotic pathway (caspase-9) and extrinsic apoptotic pathway (caspase-8). Our data demonstrating that anticancer activity of curcumin is linked to the activation of the ATM/CHK2 pathway and the inhibition of nuclear factor-κB. Finally, increasing SIRT1 through small molecule activator curcumin has shown beneficial effects in xenograft mouse model, indicating that SIRT1 may represent an attractive therapeutic target. Our studies provide the preclinical rationale for novel therapeutics targeting SIRT1 in HNSCC. PMID:26299580

  4. Relationship between structure and antiproliferative activity of polymethoxyflavones towards HL60 cells.

    PubMed

    Kawaii, Satoru; Ikuina, Tomoyasu; Hikima, Takeshi; Tokiwano, Tetsuo; Yoshizawa, Yuko

    2012-12-01

    As part of our continuing investigation of polymethoxyflavone (PMF) derivatives as potential anticancer substances, a series of PMF derivatives was synthesized. The synthesized compounds were evaluated for cytotoxicity against the promyelocytic leukemic HL60 cell line, and structure-activity relationship correlations were investigated along with previously isolated PMFs from the peel of king orange (Citrus nobilis). 7,3'-Dimethoxyflavone demonstrated the most potent activity among the synthetic PMFs. Consideration of correlation between the methoxylation pattern and antiproliferative activity revealed the importance of the 3'-methoxyl group and the higher degree of methoxylation on the A-ring moiety of PMFs.

  5. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  6. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  7. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine.

    PubMed

    Mohan, Lakshmi; Raghav, Darpan; Ashraf, Shabeeba M; Sebastian, Jomon; Rathinasamy, Krishnan

    2018-06-05

    Indirubin, a bis-indole alkaloid used in traditional Chinese medicine has shown remarkable anticancer activity against chronic myelocytic leukemia. The present work was aimed to decipher the underlying molecular mechanisms responsible for its anticancer attributes. Our findings suggest that indirubin inhibited the proliferation of HeLa cells with an IC 50 of 40 μM and induced a mitotic block. At concentrations higher than its IC 50 , indirubin exerted a moderate depolymerizing effect on the interphase microtubular network and spindle microtubules in HeLa cells. Studies with goat brain tubulin indicated that indirubin bound to tubulin at a single site with a dissociation constant of 26 ± 3 μM and inhibited the in vitro polymerization of tubulin into microtubules in the presence of glutamate as well as microtubule-associated proteins. Molecular docking analysis and molecular dynamics simulation studies indicate that indirubin stably binds to tubulin at the interface of the α-β tubulin heterodimer. Further, indirubin stabilized the binding of colchicine on tubulin and promoted the cysteine residue modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating towards alteration of tubulin conformation upon binding. In addition, we found that indirubin synergistically enhanced the anti-mitotic and anti-proliferative activity of vinblastine, a known microtubule-targeted agent. Collectively our studies indicate that perturbation of microtubule polymerization dynamics could be one of the possible mechanisms behind the anti-cancer activities of indirubin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Peptides with Dual Antimicrobial and Anticancer Activities

    NASA Astrophysics Data System (ADS)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  9. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.

    PubMed

    Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei

    2017-01-01

    Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Study of anticancer and antibacterial activities of Foeniculum vulgare, Justicia adhatoda and Urtica dioica as natural curatives.

    PubMed

    Batool, R; Salahuddin, H; Mahmood, T; Ismail, M

    2017-09-30

    High-throughput technologies, such as synthetic biology and genomics have paved new paths for discovery and utility of medicinally beneficial plants. Bioactive molecules isolated from different plants have significantly higher biological activities. The present study was done to analyze antibacterial potential of some medicinal plants against multi drug resistant (MDR) pathogens and anticancer effect against MCF-7 cell line. Methanolic and ethanolic extracts were tested for their antibacterial activity by disc diffusion method against six MDR bacterial strains and for cytotoxicity evaluation by MTT assay. Ethanolic extracts of the three tested plants exhibited growth inhibitory effect against Klebsiella pneumonia, Serratia marcescens and Methicillin-resistant S. aureus. Pseudomonas aeruginosa was more resistant to all extracts as its growth was least inhibited by the extracts of all tested plants. Ethanol extract of Foeniculum vulgare exhibited significant inhibition of cancer cells proliferation. Methanol extract of Justicia adhatoda also showed considerable inhibition of cancer cells. Future studies must converge on detailed investigation of modes of action of extracts of tested plants.

  11. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer.

    PubMed

    Dandawate, Prasad R; Vyas, Alok; Ahmad, Aamir; Banerjee, Sanjeev; Deshpande, Jyoti; Swamy, K Venkateswara; Jamadar, Abeda; Dumhe-Klaire, Anne Catherine; Padhye, Subhash; Sarkar, Fazlul H

    2012-07-01

    Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. CDF-β-cyclodextrin was found to lower IC(50) value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.

  12. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-06-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  13. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition.

    PubMed

    Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu

    2015-01-01

    Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Laetrile/Amygdalin (PDQ®)—Health Professional Version

    Cancer.gov

    Laetrile (Amygdalin) has shown little anticancer activity in animal studies and no anticancer activity in human clinical trials. Laetrile is not approved for use in the United States. Get detailed information about use of Laetrile for cancer in this summary for clinicians.

  15. Laetrile/Amygdalin (PDQ®)—Patient Version

    Cancer.gov

    Laetrile (Amygdalin) has shown little anticancer activity in animal studies and no anticancer activity in human clinical trials. Laetrile is not approved for use in the United States. Learn more about the use of Laetrile for cancer in this expert-reviewed summary.

  16. Studies on anticancer activities of lactoferrin and lactoferricin.

    PubMed

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  17. Molecular designing and in silico evaluation of darunavir derivatives as anticancer agents

    PubMed Central

    Mahto, Manoj kumar; Yellapu, Nanda Kumar; Kilaru, Ravendra Babu; Chamarthi, Naga Raju; Bhaskar, Matcha

    2014-01-01

    Darunavir is a synthetic nonpeptidic protease inhibitor which has been tested for anticancer properties. To deduce and enhance the anticancer activity of the Darunavir, we have modified its reactive moiety in an effective way. We designed 9 analogues in ChemBioOffice 2010 and minimized using the LigPrep tool of Schrödinger 2011. These analogues can obstruct the activity of other signalling pathways which are implicated in many tumors. Results of the QikProp showed that all the analogues lied in the specified range of all the pharmacokinetic (ADMET) properties required to become the successful drug. Docking study was performed to test its anticancer activity against the biomarkers of the five main types of cancers i.e. bone, brain, breast, colon and skin cancer. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that these nine Darunavir analogues are active against all cancer biomarkers and have the features to prove themselves as anticancer drugs, further to be synthesized and tested against the cell lines. PMID:24966524

  18. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan.

    PubMed

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  19. TIPdb: A Database of Anticancer, Antiplatelet, and Antituberculosis Phytochemicals from Indigenous Plants in Taiwan

    PubMed Central

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs. PMID:23766708

  20. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl-dextran-MMA graft copolymer and paclitaxel used as an artificial enzyme.

    PubMed

    Onishi, Yasuhiko; Eshita, Yuki; Ji, Rui-Cheng; Onishi, Masayasu; Kobayashi, Takashi; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji

    2014-01-01

    The anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl-dextran-methacrylic acid methylester copolymer (DDMC)/paclitaxel (PTX), obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50-300 nm in size. This complex is considered to be useful as a drug delivery system (DDS) for anticancer compounds since it formed a stable polymeric micelle in water. The resistance of B16F10 melanoma cells to PTX was shown clearly through a maximum survival curve. Conversely, the DDMC/PTX complex showed a superior anticancer efficacy and cell killing rate, as determined through a Michaelis-Menten-type equation, which may promote an allosteric supramolecular reaction to tubulin, in the same manner as an enzymatic reaction. The DDMC/PTX complex showed significantly higher anticancer activity compared to PTX alone in mouse skin in vivo. The median survival times of the saline, PTX, DDMC/PTX4 (particle size 50 nm), and DDMC/PTX5 (particle size 290 nm) groups were 120 h (treatment (T)/control (C), 1.0), 176 h (T/C, 1.46), 328 h (T/C, 2.73), and 280 h (T/C, 2.33), respectively. The supramolecular DDMC/PTX complex showed twice the effectiveness of PTX alone (p < 0.036). Above all, the DDMC/PTX complex is not degraded in cells and acts as an intact supramolecular assembly, which adds a new species to the range of DDS.

  1. Pre-harvest methyl jasmonate treatment enhances cauliflower chemoprotective attributes without a loss in postharvest quality.

    PubMed

    Ku, Kang Mo; Choi, Jeong-Hee; Kushad, Mosbah M; Jeffery, Elizabeth H; Juvik, John A

    2013-06-01

    Methyl jasmonate (MeJA) treatment can significantly increase glucosinolate (GS) concentrations in Brassica vegetables and potentially enhance anticancer bioactivity. Although MeJA treatment may promote ethylene biosynthesis, which can be detrimental to postharvest quality, there are no previous reports of its effect on cauliflower postharvest quality. To address this, cauliflower curds in field plots were sprayed with either 0.1 % Triton X-100 (control) or 500 μM MeJA solutions four days prior to harvest, then stored at 4 °C. Tissue subsamples were collected after 0, 10, 20, and 30 days of postharvest storage and assayed for visual color change, ethylene production, GS concentrations, and extract quinone reductase inductive activity. MeJA treatment increased curd GS concentrations of glucoraphanin, glucobrassicin, and neoglucobrassicin by 1.5, 2.4, and 4.6-fold over controls, respectively. MeJA treated cauliflower showed significantly higher quinone reductase activity, a biomarker for anticancer bioactivity, without reducing visual color and postharvest quality for 10 days at 4 °C storage.

  2. Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjun; Lee, Yonghyun; Kang, Sukmo; Choi, Minsuk; Lee, Soyoung; Kim, Sunghyun; Gujrati, Vipul; Kim, Jinjoo; Jon, Sangyong

    2016-12-01

    Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.

  3. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity.

    PubMed

    Finimundy, T C; Gambato, G; Fontana, R; Camassola, M; Salvador, M; Moura, S; Hess, J; Henriques, J A P; Dillon, A J P; Roesch-Ely, M

    2013-01-01

    Mushroom extracts are increasingly sold as dietary supplements because of several of their properties, including the enhancement of immune function and antitumor activity. We hypothesized that soluble polar substances present in mushroom extracts may show antioxidant and anticancer properties. This report shows that Brazilian aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exert inhibitory activity against the proliferation of the human tumor cell lines laryngeal carcinoma (Hep-2) and cervical adenocarcinoma (HeLa). Cell viability was determined after using 3 different temperatures (4°C, 22°C, and 50°C) for mushroom extraction. Biochemical assays carried out in parallel indicated higher amounts of polyphenols in the L edodes extracts at all extraction temperatures investigated. The scavenging ability of the 2,2-diphenyl-1-picrylhydrazyl radical showed higher activity for L edodes extracts. Superoxide dismutase-like activity showed no statistically significant difference among the groups for the 2 tested extracts, and catalase-like activity was increased with the L edodes extracts at 4°C. The results for the cytotoxic activity from P sajor-caju extracts at 22°C revealed the half maximal inhibitory concentration values of 0.64% ± 0.02% for Hep-2 and 0.25% ± 0.02% for HeLa. A higher cytotoxic activity was found for the L edodes extract at 22°C, with half maximal inhibitory concentration values of 0.78% ± 0.02% for Hep-2 and 0.57% ± 0.01% for HeLa. Substantial morphological modifications in cells were confirmed by Giemsa staining after treatment with either extract, suggesting inhibition of proliferation and induction of apoptosis with increasing extract concentrations. These results indicate that the aqueous extracts of Brazilian L edodes and P sajor-caju mushrooms are potential sources of antioxidant and anticancer compounds. However, further investigations are needed to exploit their valuable therapeutic uses and to elucidate their modes of action. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review.

    PubMed

    Wasser, Solomon P

    2017-01-01

    More than 130 medicinal functions are thought to be produced by medicinal mushrooms (MMs) and fungi, including antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, antihypercholesterolemic, antiviral, antibacterial, antiparasitic, antifungal, detoxification, hepatoprotective, antidiabetic, and other effects. Many, if not all, higher Basidiomycetes mushrooms contain biologically active compounds in fruit bodies, cultured mycelia, and cultured broth. Special attention has been paid to mushroom polysaccharides. Numerous bioactive polysaccharides or polysaccharide-protein complexes from MMs seem to enhance innate and cell-mediated immune responses, and they exhibit antitumor activities in animals and humans. While the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of key host immune responses by these mushroom compounds seems to be central. Most important for modern medicine are polysaccharides and low-molecular weight secondary metabolites with antitumor and immunostimulating properties. More than 600 studies have been conducted worldwide, and numerous human clinical trials on MMs have been published. Several of the mushroom compounds have proceeded through phase I, II, and III clinical studies and are used extensively and successfully in Asia to treat various cancers and other diseases. The aim of this review is to provide an overview of and analyze the literature on clinical trials using MMs with human anticancer, oncoimmunological, and immunomodulatory activities. High-quality, long-term, randomized, double-blind, placebo-controlled clinical studies of MMs, including well-sized population studies are definitely needed in order to yield statistical power showing their efficacy and safety. Clinical trials must obtain sufficient data on the efficacy and safety of MM-derived drugs and preparations. Discussion of results based on clinical studies of the anticancer, oncoimmunological, and immunomodulating activity of MMs are highlighted. Epidemiological studies with MMs are also discussed.

  5. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  6. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    PubMed

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Medicinal plants combating against cancer--a green anticancer approach.

    PubMed

    Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur

    2014-01-01

    Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

  8. Phycocyanin: A Potential Drug for Cancer Treatment

    PubMed Central

    Jiang, Liangqian; Wang, Yujuan; Yin, Qifeng; Liu, Guoxiang; Liu, Huihui; Huang, Yajing; Li, Bing

    2017-01-01

    Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug. PMID:29151925

  9. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  10. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    PubMed

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  11. Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines.

    PubMed

    Manikandan, R; Beulaja, M; Arulvasu, C; Sellamuthu, S; Dinesh, D; Prabhu, D; Babu, G; Vaseeharan, B; Prabhu, N M

    2012-02-01

    The most practical approach to reduce morbidity and mortality of cancer is to delay the process of carcinogenesis by usage of anticancer agents. This necessitates that safer compounds are to be critically examined for anticancer activity especially, those derived from natural sources. A spice commonly found in India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa and the major active component is a phytochemical termed curcumin. Green tea is one of the most popular beverages used worldwide, produced from the leaves of evergreen plant Camellia sinensis and the major active ingredients are polyphenolic compounds known as catechins. In this study, synergistic anticancer activity of curcumin and catechin was evaluated in human colon adenocarcinoma HCT 15, HCT 116, and human larynx carcinoma Hep G-2 cell lines. Although, both curcumin or catechin inhibited the growth of above cell lines, interestingly, in combination of both these compounds highest level of growth control was observed. The anticancer activity shown is due to cytotoxicity, nuclear fragmentation as well as condensation, and DNA fragmentation associated with the appearance of apoptosis. These results suggest that curcumin and catechin in combination can inhibit the proliferation of HCT 15, HCT 116, as well as Hep G-2 cells efficiently through induction of apoptosis. Copyright © 2011 Wiley Periodicals, Inc.

  12. Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs.

    PubMed

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2010-06-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies.

  13. Lesson Learned from Nature for the Development of Novel Anti-Cancer Agents: Implication of Isoflavone, Curcumin, and their Synthetic Analogs

    PubMed Central

    Sarkar, Fazlul H.; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2011-01-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies. PMID:20345353

  14. Differential Effects of Tautomycetin and Its Derivatives on Protein Phosphatase Inhibition, Immunosuppressive Function and Antitumor Activity

    PubMed Central

    Niu, Mingshan; Sun, Yan; Liu, Bo

    2012-01-01

    In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured in vivo phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its in vivo PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions. PMID:22563261

  15. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  16. Anticancer Activity of Bacterial Proteins and Peptides.

    PubMed

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  17. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  18. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  19. AlgiMatrix™ Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies

    PubMed Central

    Godugu, Chandraiah; Patel, Apurva R.; Desai, Utkarsh; Andey, Terrick; Sams, Alexandria; Singh, Mandip

    2013-01-01

    Background Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. Methods Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin) and nanoparticle (NLC) were done using spheroids. Results IC50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin) in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro. Conclusion The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations. PMID:23349734

  20. Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133.

    PubMed

    Perreault, Martin; Maltais, René; Dutour, Raphaël; Poirier, Donald

    2016-11-01

    RM-133 is a key representative of a new family of aminosteroids reported as potent anticancer agents. Although RM-133 produced interesting results in 4 mouse xenograft cancer models when injected subcutaneously, it needs to be improved to increase its in vivo potency. Thus, to obtain an analog of RM-133 with a better drug potential, a structure-activity relationship study was conducted by synthesizing eleven RM-133-related compounds and addressing their antiproliferative activity on 3 human cancer cells (HL-60, OVCAR-3 and PANC-1) and 3 human normal cell lines (primary ovary, pancreas and renal proximal tubule) as well as their metabolic stability in human liver microsomes. When the 2β-tertiary amine of RM-133 was transformed into a salt or moved to position 3β, the anticancer activity was lost. Modifying the orientation of the side chain of RM-133 increased anticancer activity and selectivity, but led to a drastic loss of stability. The protection of the 3α-hydroxyl of RM-133 by the formation of an ester or a carbamate stabilized the molecule against the phase I metabolic enzymes without affecting its anticancer activity. In comparison to RM-133, the 3-dimethylcarbamate derivative 3 is more selective for cancer cells over normal cells and is much more stable in liver microsomes. Those results support the use of a pro-drug strategy targeting the 3α-hydroxyl of RM-133 as an approach to improve its drug properties. The work presented will enable the development of an optimized anticancer drug of the aminosteroid family that is suitable for a future phase I clinical trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    PubMed Central

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  2. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549

    PubMed Central

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-01-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin. PMID:28928819

  3. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.

    PubMed

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-09-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.

  4. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.

    PubMed

    Shimada, Nami; Takasawa, Ryoko; Tanuma, Sei-Ichi

    2018-01-15

    Many cancer cells undergo metabolic reprogramming known as the Warburg effect, which is characterized by a greater dependence on glycolysis for ATP generation, even under normoxic conditions. Glyoxalase I (GLO I) is a rate-limiting enzyme involved in the detoxification of cytotoxic methylglyoxal formed in glycolysis and which is known to be highly expressed in many cancer cells. Thus, specific inhibitors of GLO I are expected to be effective anticancer drugs. We previously discovered a novel GLO I inhibitor named TLSC702. Although the strong inhibitory activity of TLSC702 was observed in the in vitro enzyme assay, higher concentrations were required to induce apoptosis at the cellular level. One of the proposed reasons for this difference is that cancer cells alter the energy metabolism leading them to become more dependent on mitochondrial respiration than glycolysis (Metabolic shift) to avoid apoptosis induction. Thus, we assumed that combination of TLSC702 with shikonin-a specific inhibitor of pyruvate kinase M2 (PKM2) that acts as a driver of TCA cycle by supplying pyruvate and which is known to be specifically expressed in cancer cells-would have anticancer effects. We herein show the anticancer effects of combination treatment with TLSC702 and shikonin, and a possible anticancer mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    PubMed

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  6. Molecular evolution of Theta-class glutathione transferase for enhanced activity with the anticancer drug 1,3-bis-(2-chloroethyl)-1-nitrosourea and other alkylating agents.

    PubMed

    Larsson, Anna-Karin; Shokeer, Abeer; Mannervik, Bengt

    2010-05-01

    Glutathione transferase (GST) displaying enhanced activity with the cytostatic drug 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) and structurally related alkylating agents was obtained by molecular evolution. Mutant libraries created by recursive recombination of cDNA coding for human and rodent Theta-class GSTs were heterologously expressed in Escherichia coli and screened with the surrogate substrate 4-nitrophenethyl bromide (NPB) for enhanced alkyltransferase activity. A mutant with a 70-fold increased catalytic efficiency with NPB, compared to human GST T1-1, was isolated. The efficiency in degrading BCNU had improved 170-fold, significantly more than with the model substrate NPB. The enhanced catalytic activity of the mutant GST was also 2-fold higher with BCNU than wild-type mouse GST T1-1, which is 80-fold more efficient than wild-type human GST T1-1. We propose that GSTs catalyzing inactivation of anticancer drugs may find clinical use in protecting sensitive normal tissues to toxic side-effects in treated patients, and as selectable markers in gene therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

    PubMed

    Cai, Yuee; Zhang, Jinming; Chen, Nelson G; Shi, Zhi; Qiu, Jiange; He, Chengwei; Chen, Meiwan

    2017-07-01

    Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents. © 2016 Wiley Periodicals, Inc.

  8. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  9. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  10. Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd

    PubMed Central

    Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran

    2015-01-01

    Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is similar to that of the crystallized protein for VEGFR1 and R2. Conclusions: Piceatannol is a secondary metabolite of S. interrupta that has anticancer activity. Moreover, piceatannol has been isolated for the first time from S. interrupta. PMID:26605022

  11. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis

    PubMed Central

    Kao, Chi H.J.; Bishop, Karen S.; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M.; Marlow, Gareth J.; Ferguson, Lynnette R.

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis. PMID:27006591

  12. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  13. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    PubMed

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  14. Bioactive compounds of fourth generation gamma-irradiated Typhoniumflagelliforme Lodd. mutants based on gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sianipar, N. F.; Purnamaningsih, R.; Rosaria

    2016-08-01

    Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

  15. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.

    PubMed

    Kinoshita, Ryo; Ishima, Yu; Chuang, Victor T G; Nakamura, Hideaki; Fang, Jun; Watanabe, Hiroshi; Shimizu, Taro; Okuhira, Keiichiro; Ishida, Tatsuhiro; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2017-09-01

    In the latest trend of anticancer chemotherapy research, there were many macromolecular anticancer drugs developed based on enhanced permeability and retention (EPR) effect, such as albumin bound paclitaxel nanoparticle (nab- PTX, also called Abraxane ® ). However, cancers with low vascular permeability posed a challenge for these EPR based therapeutic systems. Augmenting the intrinsic EPR effect with an intrinsic vascular modulator such as nitric oxide (NO) could be a promising strategy. S-nitrosated human serum albumin dimer (SNO-HSA Dimer) shown promising activity previously was evaluated for the synergistic effect when used as a pretreatment agent in nab-PTX therapy against various tumor models. In the high vascular permeability C26 murine colon cancer subcutaneous inoculation model, SNO-HSA Dimer enhanced tumor selectivity of nab-PTX, and attenuated myelosuppression. SNO-HSA Dimer also augmented the tumor growth inhibition of nab-PTX in low vascular permeability B16 murine melanoma subcutaneous inoculation model. Furthermore, nab-PTX therapy combined with SNO-HSA Dimer showed higher antitumor activity and improved survival rate of SUIT2 human pancreatic cancer orthotopic model. In conclusion, SNO-HSA Dimer could enhance the therapeutic effect of nab-PTX even in low vascular permeability or intractable pancreatic cancers. The possible underlying mechanisms of action of SNO-HSA Dimer were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina.

    PubMed

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-11-09

    Recently, considerable attention has been focused on exploring the potential antioxidant properties of plant extracts or isolated products of plant origin. Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and it continues to be used to treat inflammation, eye pain, headache, and dizziness. However, reports on the antioxidant activities of P. vulgaris var. lilacina are limited, particularly concerning the relationship between its phenolic content and antioxidant capacity. In this study, we investigated the antioxidant and anticancer activities of an ethanol extract from P. vulgaris var. lilacina and its fractions. Dried powder of P. vulgaris var. lilacina was extracted with ethanol, and the extract was fractionated to produce the hexane fraction, butanol fraction, chloroform fraction and residual water fraction. The phenolic content was assayed using the Folin-Ciocalteu colorimetric method. Subsequently, the antioxidant activities of the ethanol extract and its fractions were analyzed employing various antioxidant assay methods including DPPH, FRAP, ABTS, SOD activity and production of reactive oxygen species. Additionally, the extract and fractions were assayed for their ability to exert cytotoxic activities on various cancer cells using the MTT assay. We also investigated the expression of genes associated with apoptotic cell death by RT-PCR. The total phenolic contents of the ethanol extract and water fraction of P. vulgaris var. lilacina were 303.66 and 322.80 mg GAE/g dry weight (or fractions), respectively. The results showed that the ethanol extract and the water fraction of P. vulgaris var. lilacina had higher antioxidant content than other solvent fractions, similar to their total phenolic content. Anticancer activity was also tested using the HepG2, HT29, A549, MKN45 and HeLa cancer cell lines. The results clearly demonstrated that the P. vulgaris var. lilacina ethanol extract induced significant cytotoxic effects on the various cancer cell lines, and these effects were stronger than those induced by the P. vulgaris var. lilacina solvent fractions. We also investigated the expression of genes associated with apoptotic cell death. We confirmed that the P. vulgaris var. lilacina ethanol extract and water fraction significantly increased the expression of p53, Bax and Fas. These results suggest that the ethanol extract from P. vulgaris var. lilacina and its fractions could be applied as natural sources of antioxidants and anticancer activities in food and in the pharmaceutical industry.

  17. Synthesis and Biological Screening of Pyrano[3,2-c]quinoline Analogues as Anti-inflammatory and Anticancer Agents.

    PubMed

    Upadhyay, Kuldip D; Dodia, Narsinh M; Khunt, Rupesh C; Chaniara, Ravi S; Shah, Anamik K

    2018-03-08

    A series of pyrano[3,2- c ]quinoline based structural analogues was synthesized using one-pot multicomponent condensation between 2,4-dihydroxy-1-methylquinoline, malononitrile, and diverse un(substituted) aromatic aldehydes. The synthesized compounds were evaluated for their anti-inflammatory and cytotoxicity activity. Initially, all the compounds were evaluated for the percent inhibition of cytokine release, and cytotoxicity activity and 50% inhibitory concentrations (IC 50 ) were also determined. Based on the primary results, it was further studied for their ability to inhibit TNF-α production in the human peripheral blood mononuclear cells (hPBMC) assay. The screening results revealed that compound 4c , 4f , 4i , and 4j were found most active candidates of the series against both anti-inflammatory and anticancer activity. The structure-activity relationship is discussed and suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2- c ]quinolone structural motif seems to be an important position for both TNF-α and IL-6 inhibition and anticancer activity as well. However, structural diversity with electron withdrawing, electron donating, sterically hindered, and heteroaryl substitution sincerely affected both the inflammation and anticancer activities.

  18. Polymeric anticancer drugs with pH-controlled activation.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2004-04-23

    Use of macromolecular water-soluble carriers of anti-cancer drugs represents a promising approach to cancer therapy. Release of drugs from the carrier system is a prerequisite for therapeutic activity of most macromolecular anti-cancer conjugates. Incorporation of acid-sensitive spacers between the drug and carrier enables release of an active drug from the carrier in a tumor tissue, either in slightly acidic extracellular fluids or, after endocytosis, in endosomes or lysosomes of cancer cells. This paper reviews advances in development and study of properties of various acid-sensitive macromolecular drug delivery systems, starting from simple polymer-drug conjugates to ending with site-specific antibody-targeted polymer-drug conjugates.

  19. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    PubMed

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  20. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    PubMed

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  1. Antioxidant and antiproliferative activity of blue corn and tortilla from native maize.

    PubMed

    Herrera-Sotero, Mónica Y; Cruz-Hernández, Carlos D; Trujillo-Carretero, Carolina; Rodríguez-Dorantes, Mauricio; García-Galindo, Hugo S; Chávez-Servia, José L; Oliart-Ros, Rosa M; Guzmán-Gerónimo, Rosa I

    2017-10-30

    Blue corn is a cereal rich in phenolic compounds used to make blue tortillas. Tortillas are an important part of the Mexican diet. Blue corn and tortilla represent an important source of the natural antioxidants anthocyanins. However, studies on their biological activity on cancer cell lines are limited. The goal of this study was to evaluate the antioxidant and antiproliferative activity of blue corn and tortilla on different cancer cell lines. Total polyphenol content, monomeric anthocyanins, and antioxidant activity by the DPPH and TBARS methods of blue corn and tortilla were determined. The anthocyanin profile of tortilla was obtained by means of HPLC-ESI-MS. The antiproliferative activity of blue corn and tortilla extract on HepG2, H-460, Hela, MCF-7 and PC-3 was evaluated by the MTT assay. Blue corn had higher content of total polyphenols and monomeric anthocyanins as well as lower percentage of polymeric color than tortilla; however, both showed similar antioxidant activity by DPPH. In addition, although a higher degradation of anthocyanins was observed on tortilla extract, both extracts inhibited lipid peroxidation (IC50) at a similar concentration. The anthocyanin profile showed 28 compounds which are primarily derived from cyanidin, including acylated anthocyanins and proanthocyanidins. Blue corn and tortilla extracts showed antiproliferative effects against HepG2, H-460, MCF-7 and PC-3 cells at 1000 μg/mL, however Hela cells were more sensitive at this concentration. This is the first report to demonstrate anticancer properties in vitro of tortilla derived from blue corn, suggesting that this product has beneficial health effects. In addition, blue corn could be a potential source of nutraceuticals with anticancer activity.

  2. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM.

  3. Synthesis and Anti-cancer Activity of Novel Thiazolidinone Analogs of 6-Aminoflavone.

    PubMed

    Moorkoth, Sudheer

    2015-01-01

    Novel heterocyclic analogs were synthesized by combining a flavone nucleus and thiazolidinone ring in an effort to potentiate the existing anti-cancer activity of flavone. The syntheses of 6-aminoflavone, 6-amino-3-methoxyflavone, 6-amino-3-methoxy-3',4'-dimethxyflavone and their corresponding thiazolidinone analogs were performed. Fifteen novel analogs were synthesized and evaluated for their anti-cancer activity using cell-based assay techniques and in vivo testing. As expected, the analogs improved cytotoxicity and were shown to increase the life span of cancer-bearing mice. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays in HeLa, MDA-MB-435, and Vero cell lines. In vivo evaluation of anti-cancer activity performed in albino mice bearing Dalton's ascites carcinoma showed that the new analogs enhanced life span and prevented increases in body weight owing to tumor volumes. Moreover, cell-cycle analysis and Hoechst staining analysis proved the apoptotic potential of these analogs. Preliminary pharmacokinetic evaluation was carried out on the synthesized compounds to determine the lipophilicity and pKa. Lipophilicity was determined using high-performance liquid chromatography and the results showed a direct correlation between the observed anti-cancer activity and log P value, while pKa values indicated the ionizing range which is a prediction tool for solubility and permeability.

  4. Cyclic Peptide-Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes.

    PubMed

    Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien

    2018-01-08

    Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.

  5. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts.

    PubMed

    Rizzo, L Y; Longato, G B; Ruiz, A Lt G; Tinti, S V; Possenti, A; Vendramini-Costa, D B; Sartoratto, A; Figueira, G M; Silva, F L N; Eberlin, M N; Souza, T A C B; Murakami, M T; Rizzo, E; Foglio, M A; Kiessling, F; Lammers, T; Carvalho, J E

    2014-01-01

    Anticancer drug research based on natural compounds enabled the discovery of many drugs currently used in cancer therapy. Here, we report the in vitro, in vivo and in silico anticancer and estrogen-like activity of Psidium guajava L. (guava) extracts and enriched mixture containing the meroterpenes guajadial, psidial A and psiguadial A and B. All samples were evaluated in vitro for anticancer activity against nine human cancer lines: K562 (leukemia), MCF7 (breast), NCI/ADR-RES (resistant ovarian cancer), NCI-H460 (lung), UACC-62 (melanoma), PC-3 (prostate), HT-29 (colon), OVCAR-3 (ovarian) and 786-0 (kidney). Psidium guajava's active compounds displayed similar physicochemical properties to estradiol and tamoxifen, as in silico molecular docking studies demonstrated that they fit into the estrogen receptors (ERs). The meroterpene-enriched fraction was also evaluated in vivo in a Solid Ehrlich murine breast adenocarcinoma model, and showed to be highly effective in inhibiting tumor growth, also demonstrating uterus increase in comparison to negative controls. The ability of guajadial, psidial A and psiguadials A and B to reduce tumor growth and stimulate uterus proliferation, as well as their in silico docking similarity to tamoxifen, suggest that these compounds may act as Selective Estrogen Receptors Modulators (SERMs), therefore holding significant potential for anticancer therapy.

  6. Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the South China Sea.

    PubMed

    Tao, Li-yang; Zhang, Jian-ye; Liang, Yong-ju; Chen, Li-ming; Zhen, Li-sheng; Wang, Fang; Mi, Yan-jun; She, Zhi-gang; To, Kenneth Kin Wah; Lin, Yong-cheng; Fu, Li-wu

    2010-04-01

    Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.

  7. Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents.

    PubMed

    Al-Dosari, Mohammed Salem; Ghorab, Mostafa Mohamed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed

    2013-01-01

    Based on the reported anticancer activity of quinolines, a new series of 7-chloroquinoline derivatives bearing the biologically active benzenesulfonamide moiety 2-17 and 19-25 were synthesized starting with 4,7-dichloroquinolne 1. Compound 17 was the most active compound with IC(50) value 64.41, 75.05 and 30.71 µM compared with Doxorubicin as reference drug with IC(50) values 82.53, 88.32 and 73.72 µM on breast cancer cells, skin cancer cells and neuroblastoma, respectively. All the synthesized compounds were evaluated for their in vitro anticancer activity on breast cancer cells, skin cancer cells and neuroblastoma cells. Most of the synthesized compounds showed moderate activity. In order to suggest the mechanism of action for their cytotoxic activity, molecular docking for all synthesized compounds was done on the active site of phosphoinositide kinase (PI3K) and good results were obtained.

  8. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. Copyright © 2013. Published by Elsevier B.V.

  9. Theoretical research into anticancer activity of diterpenes isolated from the paraiban flora.

    PubMed

    Ishiki, Hamilton; Junior, Francisco J B Mendonça; Santos, Paula F; Tavares, Josean F; Tavares, Josean F; Silva, Marcelo S; Scotti, Marcus T

    2014-07-01

    Many studies of the scientific literature discuss the anticancer activity of diterpenes inhibiting the Akt/IKK/NF-kappaB pro-survival signaling cascade, mainly by the activation of serine/threonine phosphatase PP2A. The aim of this work was to evaluate and compare the anticancer potential of three atisane, three kaurane and three trachylobane diterpenes extracted from the roots of Xylopia langsdorffiana. Thus, we investigated the reactivity (H-L(GAP) parameter), HOMO atmosphere favorable to neutralize the radical reactivity, and the docking of compounds with PP2A. With all approaches, this theoretical study showed that atisane diterpenes have favorable characteristics for antitumor activity, like electron donating ability and greater hydrophilic interactions with the enzyme, by inhibition of Akt/IKK/NF-kappaB, and activation of PP2A.

  10. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα

    PubMed Central

    Alam, Sarfaraz; Khan, Feroz

    2014-01-01

    Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR) model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84%) referred by regression coefficient (r2=0.84) and a high activity prediction accuracy (82%). Five molecular descriptors – dielectric energy, group count (hydroxyl), LogP (the logarithm of the partition coefficient between n-octanol and water), shape index basic (order 3), and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA) topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets. PMID:24516330

  11. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation.

    PubMed

    Anthwal, Amit; Thakur, Bandana K; Rawat, M S M; Rawat, D S; Tyagi, Amit K; Aggarwal, Bharat B

    2014-01-01

    In a search of new compounds active against cancer, synthesis of a series of C-5 curcumin analogues was carried out. The new compounds demonstrated good cytotoxicity against chronic myeloid leukemia (KBM5) and colon cancer (HCT116) cell lines. Further, these compounds were found to have better potential to inhibit TNF-α-induced NF-κB activation in comparison to curcumin, which show their potential to act as anti-inflammatory agents. Some compounds were found to show higher cytotoxicity against cancer cell lines in comparison to curcumin used as standard.

  12. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    NASA Astrophysics Data System (ADS)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  13. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells

    PubMed Central

    Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin

    2016-01-01

    In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer. PMID:27537897

  14. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells.

    PubMed

    Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin

    2016-08-16

    In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer.

  15. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. In vitro cytotoxic screening of selected Saudi medicinal plants.

    PubMed

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  17. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer

    PubMed Central

    Gai, Wen-Tao; Yu, Da-Peng; Wang, Xin-Sheng; Wang, Pei-Tao

    2016-01-01

    Ursolic acid is a type of pentacyclic triterpene compound with multiple pharmacological activities including cancer resistance, protection from liver injury, antisepsis, anti-inflammation and antiviral activity. The present study aimed to investigate the anticancer effect of ursolic acid. Ursolic acid activates cell apoptosis and its pro-apoptotic mechanism remains to be fully elucidated. Cell Counting kit-8 assays, flow cytometric analysis and analysis of caspase-3 and caspase-9 activity were used to estimate the anticancer effect of ursolic acid on DU145 prostate cancer cells. The protein expression of cytochrome c, rho-associated protein kinase (ROCK), phosphatase and tensin homolog (PTEN) and cofilin-1 were examined using western blot analysis. In the present study, ursolic acid significantly suppressed cell growth and induced apoptosis, as well as increasing caspase-3 and caspase-9 activities of DU145 cells. Furthermore, cytoplasmic and mitochondrial cytochrome c protein expression was significantly activated and suppressed, respectively, by ursolic acid. Ursolic acid significantly suppressed the ROCK/PTEN signaling pathway and inhibited cofilin-1 protein expression in DU145 cells. The results of the present study indicate that the anticancer effect of ursolic acid activates cell apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. PMID:27698874

  18. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  19. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  20. Screening and evaluation of antiparasitic and in vitro anticancer activities of Panamanian endophytic fungi.

    PubMed

    Martínez-Luis, Sergio; Cherigo, Lilia; Higginbotham, Sarah; Arnold, Elizabeth; Spadafora, Carmenza; Ibañez, Alicia; Gerwick, William H; Cubilla-Rios, Luis

    2011-06-01

    Many compounds produced by fungi have relevant pharmaceutical applications. The purpose of this study was to collect and isolate endophytic fungi from different regions of Panama and then to test their potential therapeutic activities against Leishmania donovani, Plasmodium falciparum, and Trypanosoma cruzi as well as their anticancer activities in MCF-7 cells. Of the 25 fungal isolates obtained, ten of them had good anti-parasitic potential, showing selective activity against L. donovani; four had significant anti-malarial activity; and three inhibited the growth of T. cruzi. Anticancer activity was demonstrated in four isolates. Of the active isolates, Edenia sp. strain F0755, Xylaria sp. strain F1220, Aspergillus sp. strain F1544, Mycoleptodiscus sp. strain F0194, Phomopsis sp. strain F1566, Pycnoporus sp. strain F0305, and Diaporthe sp. strain F1647 showed the most promise based on their selective bioactivity and lack of toxicity in the assays.

  1. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    PubMed

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  2. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells.

    PubMed

    Kim, Seong-Hoon; Ryu, Hye Guk; Lee, Juhyun; Shin, Joon; Harikishore, Amaravadhi; Jung, Hoe-Yune; Jung, Hoe-Youn; Kim, Ye Seul; Lyu, Ha-Na; Oh, Eunji; Baek, Nam-In; Choi, Kwan-Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2015-09-28

    Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.

  3. [Dexrazoxane (ICRF-187)--a cardioprotectant and modulator of action of some anticancer drugs].

    PubMed

    Kik, Krzysztof; Szmigiero, Leszek

    2006-01-01

    The nthracycline antibiotics are among the most widely used and effective anticancer drugs. The therapeutic efficacy of this class of drugs is limited by cumulative cardiac toxicity. Dexrazoxane is the only clinically approved cardioprotective agent used in anthracycline-containing anticancer therapy. Its cardioprotective action allows the use of a much higher cumulative dose of anthracyclines and improvement in the effectiveness of treatment. Anthracyclines form complexes with iron ions, which are very active in the production of reactive oxygen species responsible for the lipid peroxidation of mitochondrial and endoplasmatic reticulum membranes. This process seems to be the major cause of anthracycline-induced cardiotoxicity. Dexrazoxane exerts its protective effects by rapid and complete binding of ferric and ferrous ions, even by displacing the metal ions from complexes with anthracyclines. Besides its cardioprotective effect, dexrazoxane also exhibits anticancer properties. Like other derivatives of bisdioxopiperazine, dexrazoxane is a catalytic inhibitor of eukaryotic DNA topoisomerase II, the key enzyme controlling DNA topology and contributing to the replication and transcription processes. Dexrazoxane is able to lock topoisomerase II at the stage of the enzyme reaction cycle where the enzyme forms a closed clamp around the DNA. This phenomenon seems to be the main reason for the generation of DNA double-strand breaks by dexrazoxane as well as its cytotoxicity against quickly proliferating cancer cells. Other effects of its topoisomerase II catalytic inhibition is the induction of cell differentiation and apoptosis. Dexrazoxane may be used not only as a cardioprotective agent, but also as a modulator of action of some anticancer drugs by enhancing their selectivity or by delaying the development of multidrug resistance.

  4. The anticancer effects of Resina Draconis extract on cholangiocarcinoma.

    PubMed

    Wen, Feng; Zhao, Xiangxuan; Zhao, Yun; Lu, Zaiming; Guo, Qiyong

    2016-11-01

    Cholangiocarcinoma (CCA) is a relatively rare, heterogeneous malignant tumor with poor clinical outcomes. Because of high insensitivity to chemotherapy and radiotherapy, there are no effective treatment options. Efforts to identify and develop new agents for prevention and treatment of this deadly disease are urgent. Here, we assessed the apoptotic cytotoxicity of Resina Draconis extract (RDE) using in vitro and in vivo assays and identified the mechanisms underlying antitumor effects of RDE. RDE was obtained via vacuum distillation of Resina Draconis with 75 % ethanol. The ethanol extract could inhibit CCA cell proliferation and trigger apoptotic cell death in both QBC939 and HCCC9810 cell lines in a time- and concentration-dependent manner. RDE treatment resulted in intracellular caspase-8 and poly (ADP-ribose) polymerase protease activation. RDE significantly downregulated antiapoptotic protein survivin expression and upregulated proapoptotic protein Bak expression. RDE also inhibited CCA tumor growth in vivo. We observed that human CCA tissues had much higher survivin expression than did paired adjacent normal tissue. Taken together, the current data suggested that RDE has anticancer effects on CCA, and that RDE could function as a novel anticancer agent to benefit patients with CCA.

  5. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation

    PubMed Central

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies. PMID:29743861

  6. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine

    PubMed Central

    Liu, Minghua; Zhao, Ge; Cao, Shousong; Zhang, Yangyang; Li, Xiaofang; Lin, Xiukun

    2017-01-01

    Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed. PMID:28119606

  7. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4

    PubMed Central

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-01-01

    Objective To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions The study revealed that the maximum amount of pigment could be produced to treat cancer. PMID:23905024

  8. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4.

    PubMed

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-08-01

    To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7 cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. The study revealed that the maximum amount of pigment could be produced to treat cancer.

  9. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    PubMed

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Anticancer Principles from Medicinal Piper (胡椒 Hú Jiāo) Plants

    PubMed Central

    Wang, Yue-Hu; Morris-Natschke, Susan L.; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-01-01

    The ethnomedical uses of Piper (胡椒 Hú Jiāo) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928

  11. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  12. Novel Gold(I) Thiolate Derivatives Synergistic with 5-Fluorouracil as Potential Selective Anticancer Agents in Colon Cancer.

    PubMed

    Atrián-Blasco, Elena; Gascón, Sonia; Rodrı Guez-Yoldi, Ma Jesus; Laguna, Mariano; Cerrada, Elena

    2017-07-17

    New gold(I) thiolate complexes have been synthesized and characterized, and their physicochemical properties and anticancer activity have been tested. The coordination of PTA derivatives provides optimal hydrophilicity/lipophilicity properties to the complexes, which present high solution stability. Moreover, the complexes show a high anticancer activity against Caco-2 cells, comparable to that of auranofin, and a very low cytotoxic activity against enterocyte-like differentiated cells. Their activity has been shown to produce cell death by apoptosis and arrest of the cell cycle because of interaction with the reductase enzymes and consequent reactive oxygen species production. Some of these new complexes are also able to decrease the necessary dose of 5-fluorouracil, a drug used for the treatment of colon cancer, by a synergistic mechanism.

  13. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines.

    PubMed

    Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla

    2010-06-01

    A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.

  14. Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models

    PubMed Central

    Denslow, Agnieszka; Świtalska, Marta; Jarosz, Joanna; Papiernik, Diana; Porshneva, Kseniia; Nowak, Marcin

    2017-01-01

    Clopidogrel, a thienopyridine derivative with antiplatelet activity, is widely prescribed for patients with cardiovascular diseases. In addition to antiplatelet activity, antiplatelet agents possess anticancer and antimetastatic properties. Contrary to this, results of some studies have suggested that the use of clopidogrel and other thienopyridines accelerates the progression of breast, colorectal, and prostate cancer. Therefore, in this study, we aimed to evaluate the efficacy of clopidogrel and various anticancer agents as a combined treatment using mouse models of breast, colorectal, and prostate cancer. Metastatic dissemination, selected parameters of platelet morphology and biochemistry, as well as angiogenesis were assessed. In addition, body weight, blood morphology, and biochemistry were evaluated to test toxicity of the studied compounds. According to the results, clopidogrel increased antitumor and/or antimetastatic activity of chemotherapeutics such as 5-fluorouracil, cyclophosphamide, and mitoxantrone, whereas it decreased the anticancer activity of doxorubicin, cisplatin, and tamoxifen. The mechanisms of such divergent activities may be based on the modulation of tumor vasculature via factors, such as transforming growth factor β1 released from platelets. Moreover, clopidogrel increased the toxicity of docetaxel and protected against mitoxantrone-induced toxicity, which may be due to the modulation of hepatic enzymes and protection of the vasculature, respectively. These results demonstrate that antiplatelet agents can be useful but also dangerous in anticancer treatment and therefore use of thienopyridines in patients undergoing chemotherapy should be carefully evaluated. PMID:29206871

  15. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica.

    PubMed

    Barapatre, Anand; Meena, Avtar Singh; Mekala, Sowmya; Das, Amitava; Jha, Harit

    2016-05-01

    Lignin is one of the most important phytomacromolecule with diverse therapeutic properties such as anticancer, antimicrobial, anti-inflammatory and immune-stimulatory. The present study was carried out to evaluate the in vitro antioxidant, free radical scavenging and anti-proliferative/cytotoxic activities of eleven different lignin fractions, extracted from the wood of Acacia nilotica by pressurized solvent extraction (PSE) and successive solvent extraction (SSE) methods. Results indicate that the PSE fractions have high polyphenolic content and reducing power. However, the antioxidant efficiency examined by DPPH and ABTS radical scavenging assay was higher in SSE fractions. All lignin fractions revealed a significant ability to scavenge nitric oxide, hydroxyl and superoxide radicals. The extracted lignin fractions display high ferric ion reducing capacity and also possess excellent antioxidant potential in the hydrophobic (linoleic acid) system. Fractions extracted by polar solvent has the highest iron (Fe(2+)) chelating activity as compared to other factions, indicating their effect on the redox cycling of iron. Four lignin fractions depicted higher cytotoxic potential (IC50: 2-15 μg/mL) towards breast cancer cell line (MCF-7) but were ineffective (IC50: ≥ 100 μg/mL) against normal primary human hepatic stellate cells (HHSteCs). These findings suggest that the lignin extracts of A. nilotica wood has a remarkable potential to prevent disease caused by the overproduction of radicals and also seem to be a promising candidate as natural antioxidant and anti-cancer agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier.

    PubMed

    Nair, K Lekha; Thulasidasan, Arun Kumar T; Deepa, G; Anto, Ruby John; Kumar, G S Vinod

    2012-04-04

    Curcumin, a yellow pigment present in turmeric, possess potential anti-proliferative and anti-inflammatory activities but poor aqueous solubility limits its applications. In this study we report a novel comparative study of the formulation and characterization of curcumin nanoparticles (nanocurcumin) using two poly (lactide-co-glycolide) (PLGA) combinations, 50:50 and 75:25 having different lactide to glycolide ratios. Nanocurcumin 50:50 showed smaller size with higher encapsulation efficiency. Thermal evaluation suggested the presence of curcumin in molecular dispersion form which supported its sustained release up to a week where nanocurcumin 50:50 showed faster release. Cellular uptake studies in human epithelial cervical cancer cells (HeLa) exhibited enhanced intracellular fluorescence with nanocurcumin when compared to free curcumin, when both given in purely aqueous media. Antiproliferative studies using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Annexin V/propidium iodide staining, poly (ADP-ribose) polymerase (PARP) cleavage and downregulation of clonogenic potential of HeLa cells proved the better antitumor activity of nanocurcumin 50:50 administered in aqueous media. Superior efficacy of nanocurcumin 50:50 in comparison to free curcumin was further demonstrated by electrophoretic mobility shift assay and immunocytochemical analysis. In conclusion, the enhanced aqueous solubility and higher anticancer efficacy of nanocurcumin administered in aqueous media clearly demonstrates its potential against cancer chemotherapy, with dependence on the combination of PLGA. Copyright © 2012. Published by Elsevier B.V.

  17. Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo.

    PubMed

    Jung, Hong-Ryul; Kang, Hyun Mi; Ryu, Jea-Woon; Kim, Dae-Soo; Noh, Kyung Hee; Kim, Eun-Su; Lee, Ho-Joon; Chung, Kyung-Sook; Cho, Hyun-Soo; Kim, Nam-Soon; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2017-09-05

    We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial-mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.

  18. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  19. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.

    PubMed

    Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun

    2018-06-15

    In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery.

    PubMed

    Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf

    2016-06-06

    Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy.

  2. Anticancer drugs from marine flora: an overview.

    PubMed

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  3. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol

    PubMed Central

    Chan, Hon Fai; Lin, Zhixiu; Wang, Yitao

    2018-01-01

    Brusatol (Bru) exhibits promising anticancer effects, with both proliferation inhibition and chemoresistance amelioration activity. However, the poor solubility and insufficient intracellular delivery of Bru greatly restrict its application. Herein, to simultaneously utilize the advantages of Pluronics as drug carriers and tumor microenvironment-responsive drug release profiles, a flexible amphiphilic copolymer with a polymer skeleton, that is, Pluronic® F68 grafting with linoleic acid moieties by redox-reducible disulfide bonds (F68-SS-LA), was synthesized. After characterization by 1H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, the redox-sensitive F68-SS-LA micelles were self-assembled in a much lower critical micelle concentration than that of the unmodified F68 copolymer. Bru was loaded in micelles (Bru/SS-M) with high loading efficiency, narrow size distribution, and excellent storage stability. The redox-sensitive Bru/SS-M exhibited rapid particle dissociation and drug release in response to a redox environment. Based on the enhanced cellular internalization, Bru/SS-M achieved higher cytotoxicity in both Bel-7402 and MCF-7 cells compared with free Bru and nonreducible micelles. The improved anticancer effect was attributed to the remarkably decreased mitochondrial membrane potential and increased reactive oxygen species level as well as apoptotic rate. These results demonstrated that F68-SS-LA micelles possess great potential as an efficient delivery vehicle for Bru to promote its anticancer efficiency via an oxidation pathway. PMID:29491708

  4. Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels.

    PubMed

    Poorgholy, Nahid; Massoumi, Bakhshali; Ghorbani, Marjan; Jaymand, Mehdi; Hamishehkar, Hamed

    2018-08-01

    This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe 3 O 4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.

  5. Synthesis and antitumoral activity of novel 3-(2-substituted-1,3,4-oxadiazol-5-yl) and 3-(5-substituted-1,2,4-triazol-3-yl) beta-carboline derivatives.

    PubMed

    Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena

    2008-11-15

    Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.

  6. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine.

    PubMed

    Silverman, Jeffrey A; Deitcher, Steven R

    2013-03-01

    Vincristine (VCR) is a mainstay of treatment of hematologic malignancies and solid tumors due to its well-defined mechanism of action, demonstrated anticancer activity and its ability to be combined with other agents. VCR is an M-phase cell cycle-specific anticancer drug with activity that is concentration and exposure duration dependent. The pharmacokinetic profile of standard VCR is described by a bi-exponential elimination pattern with a very fast initial distribution half-life followed by a longer elimination half-life. VCR also has a large volume of distribution, suggesting diffuse distribution and tissue binding. These properties may limit optimal drug exposure and delivery to target tissues as well as clinical utility as a single agent or as an effective component of multi-agent regimens. Vincristine sulfate liposome injection (VSLI), Marqibo(®), is a sphingomyelin and cholesterol-based nanoparticle formulation of VCR that was designed to overcome the dosing and pharmacokinetic limitations of standard VCR. VSLI was developed to increase the circulation time, optimize delivery to target tissues and facilitate dose intensification without increasing toxicity. In xenograft studies in mice, VSLI had a higher maximum tolerated dose, superior antitumor activity and delivered higher amounts of active drug to target tissues compared to standard VCR. VSLI recently received accelerated FDA approval for use in adults with advanced, relapsed and refractory Philadelphia chromosome-negative ALL and is in development for untreated adult ALL, pediatric ALL and untreated aggressive NHL. Here, we summarize the nonclinical data for VSLI that support its continued clinical development and recent approval for use in adult ALL.

  7. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol.

  8. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  9. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities

    PubMed Central

    Al-Zahrani, Ateeq Ahmed

    2018-01-01

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd PMID:29774137

  10. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities.

    PubMed

    Al-Zahrani, Ateeq Ahmed

    2018-01-30

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd.

  11. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil.

    PubMed

    Mericli, Filiz; Becer, Eda; Kabadayı, Hilal; Hanoglu, Azmi; Yigit Hanoglu, Duygu; Ozkum Yavuz, Dudu; Ozek, Temel; Vatansever, Seda

    2017-12-01

    Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. Almond oil from Northern Cyprus was obtained by supercritical CO 2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.

  12. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity

    NASA Astrophysics Data System (ADS)

    Yugandhar, Pulicherla; Vasavi, Thirumalanadhuni; Uma Maheswari Devi, Palempalli; Savithramma, Nataru

    2017-10-01

    In recent times, nanoparticles are attributed to green nanotechnology methods to know the synergistic biological activities. To accomplish this phenomenon, present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) by using Syzygium alternifolium stem bark, characterized those NPs using expository tools and to elucidate high prioritized antimicrobial and anticancer activities. Synthesized particles exhibited a color change pattern upon synthesis and affirmed its respective broad peak at 285 nm which was analyzed through UV-vis spectroscopy. FT-IR study confirmed that phenols and primary amines were mainly involved in capping and stabilization of nanoparticles. DLS and Zeta potential studies revealed narrow size of particles with greater stability. XRD studies revealed the crystallographic nature of particles with 17.2 nm average size. Microscopic analysis by using TEM revealed that particle size range from 5-13 nm and most of them were spherical in shape, non-agglomerated and poly-dispersed in condition. Antimicrobial studies of particles showed highest inhibitory activity against E. coli and T. harzianum among bacterial and fungal strains, respectively. The scope of this study is extended by examining anticancer activity of CuO NPs. This study exhibited potential anticancer activity towards MDA-MB-231 human breast cancer lines. Overall, these examinations relate that the S. alternifolium is described as efficient well-being plant and probabilistically for the design and synthesis of nanoparticles for human health. This study paves a way to better understand antimicrobial and anticancer therapeutic drug potentials of nanoparticles to design and analysis of pharmaceuticals by in vivo and in vitro approaches.

  13. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma.

    PubMed

    Rajasekar, Seetharaman; Park, Da Jung; Park, Cheol; Park, Sejin; Park, Young Hoon; Kim, Sun Tae; Choi, Yung Hyun; Choi, Young Whan

    2012-11-21

    Lithospermum erythrorhizon has long been used in traditional Asian medicine for the treatment of diseases including skin cancer. In this study, hexane extract from the roots of Lithospermum erythrorhizon (LEH) was chemically characterized and its anticancer activity was tested against the most aggressive form of skin cancer. The in vitro anticancer studies viz. cell growth, cell cycle and apoptosis, and the expression of tumor regulating proteins were analyzed against B16F10 melanoma cells. In addition, C57BL/6 mice models were used to evaluate the in vivo anticancer potential of LEH. Mice were intraperitoneally injected with LEH at doses of 0.1 and 10mg/kg every 3 days. The tumor inhibition ratio was determined after 21 days of treatment and the histopathological analyses of the tumor tissues were compared. Further, LEH was purified and its active compounds were structurally elucidated and identified by NMR spectra and quantified by HPLC analyses. LEH effectively inhibits the growth of melanoma cells with an IC(50) of 2.73μg/ml. Cell cycle analysis revealed that LEH increased the percentage of cells in sub-G1 phase by dose dependent manner. LEH exhibited down regulation of anti-apoptotic Bcl-2 family proteins and up regulation of apoptotic Bax protein expression. Importantly, LEH induced cleavage of poly (ADP-ribose) polymerase (PARP) and activated the caspase cascade (caspase 3) with this cleavage mediating the apoptosis of B16F10 cells. LEH treatment at a dose of 10mg/kg for 21 days in experimental mice implanted with tumors resulted in significant reduction of the tumor growth (43%) and weight (36%). Histopathology analysis of LEH treated tumor tissues showed evidence of increased necrotic cells in a concentration dependent manner. Meanwhile, five naphthoquinone compounds [Shikonin (1); Deoxyshikonin (2); β-Hydroxyisovalerylshikonin (3); Acetylshikonin (4) and Isobutyrylshikonin (5)] were purified from LEH and responsible for its anticancer activity. LEH induced apoptosis in B16F10 cells by activation of caspase 3 and inducing sub-G1 cell cycle arrest. LEH exhibited both in vitro and in vivo anticancer activity. Shikonin derivatives in the LEH are responsible for the anticancer activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Effectiveness of activated carbon masks in preventing anticancer drug inhalation.

    PubMed

    Sato, Junya; Kogure, Atushi; Kudo, Kenzo

    2016-01-01

    The exposure of healthcare workers to anticancer drugs such as cyclophosphamide (CPA) is a serious health concern. Anticancer drug pollution may spread outside biological safety cabinets even when a closed system is used. The inhalation of vaporized anticancer drugs is thought to be the primary route of exposure. Therefore, it is important that healthcare workers wear masks to prevent inhalation of anticancer drugs. However, the permeability of medical masks to vaporized anticancer drugs has not been examined. Furthermore, the performance differences between masks including activated carbon with chemical adsorptivity and non-activated carbon masks are uncertain. We investigated activated carbon mask permeability to vaporized CPA, and assessed whether inhibition of vaporized CPA permeability was attributable to the masks' adsorption abilities. A CPA solution (4 mg) was vaporized in a chamber and passed through three types of masks: Pleated-type cotton mask (PCM), pleated-type activated carbon mask (PAM), and stereoscopic-type activated carbon mask (SAM); the flow rate was 1.0 L/min for 1 h. The air was then recovered in 50 % ethanol. CPA quantities in the solution were determined by liquid chromatography time-of-flight mass spectrometry. To determine CPA adsorption by the mask, 5 cm 2 of each mask was immersed in 10 mL of CPA solution (50-2500 μg/mL) for 1 h. CPA concentrations were measured by high-performance liquid chromatography with ultraviolet detection. For the control (no mask), 3.735 ± 0.543 μg of CPA was recovered from the aerated solution. Significantly lower quantities were recovered from PCM (0.538 ± 0.098 μg) and PAM (0.236 ± 0.193 μg) ( p  < 0.001 and p  < 0.001 vs control, respectively). CPA quantities recovered from all of SAM samples were below the quantification limit. When a piece of the SAM was immersed in the CPA solution, a marked decrease to less than 3.1 % of the initial CPA concentration was observed. The SAM exhibited good adsorption ability, and this characteristic may contribute to avoiding inhalation exposure to vaporized CPA. These results suggest that wearing activated carbon masks may prevent anticancer drug inhalation by healthcare workers.

  15. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches.

    PubMed

    Mallick, Md Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-10-01

    Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. This work investigated anticancer activity of bioactive fraction of BM. The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC 50 41.0-60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. The in vitro , in vivo , analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening. Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells.

  16. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches

    PubMed Central

    Mallick, Md. Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-01-01

    Background: Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. Objectives: This work investigated anticancer activity of bioactive fraction of BM. Materials and Methods: The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC50 41.0–60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Results: Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. Conclusion: The in vitro, in vivo, analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. SUMMARY A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening. Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells. PMID:29142420

  17. Combination of Osthole and Cisplatin Against Rhabdomyosarcoma TE671 Cells Yielded Additive Pharmacologic Interaction by Means of Isobolographic Analysis.

    PubMed

    Jarząb, Agata; Łuszczki, Jarogniew; Guz, Małgorzata; Skalicka-Woźniak, Krystyna; Hałasa, Marta; Smok-Kalwat, Jolanta; Polberg, Krzysztof; Stepulak, Andrzej

    2018-01-01

    Osthole is a simple coumarin that has been found to have anticancer, anti-inflammatory, antiviral, anticoagulant, anticonvulsant and antiallergic activities. The aim of this study was to analyze the combined anti-proliferative effect of cisplatin (CDDP) and osthole on a rhabdomyosarcoma cell line, and assess the pharmacology of drug-drug interaction between these drugs using isobolographic analysis. The anticancer actions of osthole in combination with CDDP were evaluated using the tetrazolium dye-based MTT cell proliferation assay. Osthole and CDDP applied together augmented their anti-cancer activities and yielded an additive type of pharmacologic interaction by means of isobolographic analysis. Combined therapy using osthole and cisplatin could be suggested as a potential chemotherapy regimen against rhabdomyosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    PubMed

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  19. Isolation of anticancer drug TAXOL from Pestalotiopsis breviseta with apoptosis and B-Cell lymphoma protein docking studies.

    PubMed

    Kathiravan, G; Sureban, Sripathi M; Sree, Harsha N; Bhuvaneshwari, V; Kramony, Evelin

    2012-12-01

    Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. TAXOL PRODUCTION WAS CONFIRMED BY THE FOLLOWING METHODS: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of -13.0061 (KJ/Mol) with four hydrogen bonds.

  20. Isolation of anticancer drug TAXOL from Pestalotiopsis breviseta with apoptosis and B-Cell lymphoma protein docking studies

    PubMed Central

    Kathiravan, G.; Sureban, Sripathi M.; Sree, Harsha N.; Bhuvaneshwari, V.; Kramony, Evelin

    2012-01-01

    Background: Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Materials and Methods: Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. Results: TAXOL production was confirmed by the following methods: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. Conclusion: The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of −13.0061 (KJ/Mol) with four hydrogen bonds. PMID:24808664

  1. Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk.

    PubMed

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Jia; Wang, Yanwei; Xing, Lisha

    2014-01-30

    An enzymolysis-ultrasonic assisted extraction (EUAE) procedure of corn silk polysaccharides (CSPS) was established and the physicochemical properties, antioxidant and anticancer activities of CSPS were studied. Orthogonal test and response surface methodology were applied to optimize the extraction parameters. The optimum enzymolysis and ultrasonic conditions were cellulase content of 7.5% for 150 min at 55 °C and liquid-solid ratio of 31.8 for 34.2 min at 66.3 °C, respectively. Under these conditions, the yield of CSPS increased from 4.56% to 7.10%. CSPS obtained by hot water and EUAE were composed of rhamnose, arabinose, xylose, mannose, galactose and glucose with molecular ratios of 4.17:17.33:5.59:18.65:19.11:35.14 and 8.83:15.77:7.92:12.39:11.15:43.94, respectively. Their molecular weight distributions were 10.52 × 10(4) and 6.88 × 10(4)Da, respectively. CSPS obtained by EUAE showed morphological and conformation changes and higher antioxidant and anticancer activities compared with CSPS extracted by hot water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  3. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tandem-multimeric F3-gelonin fusion toxins for enhanced anti-cancer activity for prostate cancer treatment.

    PubMed

    Shin, Meong Cheol; Min, Kyoung Ah; Cheong, Heesun; Moon, Cheol; Huang, Yongzhuo; He, Huining; Yang, Victor C

    2017-05-30

    Despite significant progress in prostate cancer treatment, yet, it remains the leading diagnosed cancer and is responsible for high incidence of cancer related deaths in the U.S. Because of the insufficient efficacy of small molecule anti-cancer drugs, significant interest has been drawn to more potent macromolecular agents such as gelonin, a plant-derived ribosome inactivating protein (RIP) that efficiently inhibits protein translation. However, in spite of the great potency to kill tumor cells, gelonin lacks ability to internalize tumor cells and furthermore, cannot distinguish between tumor and normal cells. To address this challenge, we genetically engineered gelonin fusion proteins with varied numbers of F3 peptide possessing homing ability to various cancer cells and angiogenic blood vessels. The E. coli produced F3-gelonin fusion proteins possessed equipotent activity to inhibit protein translation in cell-free protein translation systems to unmodified gelonin; however, they displayed higher cell uptake that led to significantly augmented cytotoxicity. Compared with gelonin fusion with one F3 peptide (F3-Gel), tandem-multimeric F3-gelonins showed even greater cell internalization and tumor cell killing ability. Moreover, when tested against LNCaP s.c. xenograft tumor bearing mice, more significant tumor growth inhibition was observed from the mice treated with tandem-multimeric F3-gelonins. Overall, this research demonstrated the potential of utilizing tandem multimeric F3-modified gelonin as highly effective anticancer agents to overcome the limitations of current chemotherapeutic drugs. Copyright © 2017. Published by Elsevier B.V.

  5. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; He, Jun-Fang; Wang, Nan; Zhou, Hao; Yang, Pei-Long; Zhang, Tong-Cun

    2018-03-01

    Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.

  6. Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database.

    PubMed

    Manosroi, Jiradej; Sainakham, Mathukorn; Manosroi, Worapaka; Manosroi, Aranya

    2012-05-07

    ETHONOPHARMACOLOGICAL RELEVANCES: Traditional medicines have long been used by the Thai people. Several medicinal recipes prepared from a mixture of plants are often used by traditional medicinal practitioners for the treatment of many diseases including cancer. The recipes collected from the Thai medicinal text books were recorded in MANOSROI II database. Anticancer recipes were searched and selected by a computer program using the recipe indication keywords including Ma-reng and San which means cancer in Thai, from the database for anticancer activity investigation. To investigate anti-cancer activities of the Thai medicinal plant recipes selected from the "MANOSROI II" database. Anti-proliferative and apoptotic activities of extracts from 121 recipes selected from 56,137 recipes in the Thai medicinal plant recipe "MANOSROI II" database were investigated in two cancer cell lines including human mouth epidermal carcinoma (KB) and human colon adenocarcinoma (HT-29) cell lines using sulforhodamine B (SRB) assay and acridine orange (AO) and ethidium bromide (EB) staining technique, respectively. In the SRB assay, recipes NE028 and, S003 gave the highest anti-proliferation activity on KB and HT29 with the IC(50) values of 2.48±0.24 and 6.92±0.49μg/ml, respectively. In the AO/EB staining assay, recipes S016 and NE028 exhibited the highest apoptotic induction in KB and HT-29 cell lines, respectively. This study has demonstrated that the three Thai medicinal plant recipes selected from "MANOSROI II" database (NE028, S003 and S016) gave active anti-cancer activities according to the NCI classification which can be further developed for anti-cancer treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines.

    PubMed

    Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal

    2016-09-01

    The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Extract from the Zooxanthellate Jellyfish Cotylorhiza tuberculata Modulates Gap Junction Intercellular Communication in Human Cell Cultures

    PubMed Central

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-01-01

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954

  9. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures.

    PubMed

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-05-22

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.

  10. Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer Cells.

    PubMed

    Chatterjee, Kaushiki; AlSharif, Dina; Mazza, Christina; Syar, Palwasha; Al Sharif, Mohamed; Fata, Jimmie E

    2018-02-21

    Cervical cancer is one of the most common cancers in women living in developing countries. Due to a lack of affordable effective therapy, research into alternative anticancer compounds with low toxicity such as dietary polyphenols has continued. Our aim is to determine whether two structurally similar plant polyphenols, resveratrol and pterostilbene, exhibit anticancer and anti-HPV (Human papillomavirus) activity against cervical cancer cells. To determine anticancer activity, extensive in vitro analyses were performed. Anti-HPV activity, through measuring E6 protein levels, subsequent downstream p53 effects, and caspase-3 activation, were studied to understand a possible mechanism of action. Both polyphenols are effective agents in targeting cervical cancer cells, having low IC50 values in the µM range. They decrease clonogenic survival, reduce cell migration, arrest cells at the S-phase, and reduce the number of mitotic cells. These findings were significant, with pterostilbene often being more effective than resveratrol. Resveratrol and to a greater extent pterostilbene downregulates the HPV oncoprotein E6, induces caspase-3 activation, and upregulates p53 protein levels. Results point to a mechanism that may involve the downregulation of the HPV E6 oncoprotein, activation of apoptotic pathways, and re-establishment of functional p53 protein, with pterostilbene showing greater efficacy than resveratrol.

  11. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    PubMed Central

    Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907

  12. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  13. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.

    PubMed

    Aggarwal, Bharat B; Yuan, Wei; Li, Shiyou; Gupta, Subash C

    2013-09-01

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    PubMed

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids

    PubMed Central

    Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad

    2013-01-01

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293

  16. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  17. NPCARE: database of natural products and fractional extracts for cancer regulation.

    PubMed

    Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo

    2017-01-01

    Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.

  18. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  19. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-19

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  20. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  1. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  2. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  3. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    PubMed Central

    Nabekura, Tomohiro

    2010-01-01

    Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized. PMID:22069634

  4. The role of arsenic in the hydrolysis and DNA metalation processes in an arsenous acid-platinum(ii) anticancer complex.

    PubMed

    Marino, T; Parise, A; Russo, N

    2017-01-04

    Platinum(ii)-based molecules are the most commonly used anticancer drugs in the chemotherapeutic treatment of tumours but possess serious side effects and some cancer types exhibit resistance with respect to these compounds (e.g. cisplatin). For these reasons, the research of new compounds that can bypass this limitation is in continuous development. Recently, mixed Pt(ii)-As(iii) systems have been synthesized and tested as potential anticancer agents. The mechanism of action of these kinds of drugs is unclear. Since in other platinum(ii) containing drugs, hydrolysis plays an important role in the activation of the compound before it reaches DNA, we have explored the aquation process using density functional theory (DFT), focusing our attention on the arsenoplatin complex, [Pt(μ-NHC(CH 3 )O) 2 ClAs(OH) 2 ]. As DNA is believed to be the cellular target for Pt anticancer drugs, the metalation mechanism of DNA purine bases has been also investigated. Also for this new drug it appears that guanine is the preferred site with respect to adenine as with other platinum-containing compounds. A comparison with cisplatin is performed in order to highlight the contribution of arsenic in the anticancer activity of this new proposed anticancer agent.

  5. Development of Alendronate-conjugated Poly (lactic-co-glycolic acid)-Dextran Nanoparticles for Active Targeting of Cisplatin in Osteosarcoma

    PubMed Central

    Liu, Ping; Sun, Liang; Zhou, Dong-sheng; Zhang, Peng; Wang, Yong-hui; Li, Dong; Li, Qing-hu; Feng, Rong-jie

    2015-01-01

    In this study, we developed a novel poly (lactic-co-glycolic acid)-dextran (PLD)-based nanodelivery system to enhance the anticancer potential of cisplatin (CDDP) in osteosarcoma cells. A nanosized CDDP-loaded PLGA-DX nanoparticle (PLD/CDDP) controlled the release rate of CDDP up to 48 h. In vitro cytotoxicity assay showed a superior anticancer effect for PLD/CDDP and with an appreciable cellular uptake via endocytosis-mediated pathways. PLD/CDDP exhibited significant apoptosis of MG63 cancer cells compared to that of free CDDP. Approximately ~25% of cells were in early apoptosis phase after PLD/CDDP treatment comparing to ~15% for free CDDP after 48h incubation. Similarly, PLD/CDDP exhibited ~30% of late apoptosis cells comparing to only ~8% for free drug treatment. PLD/CDDP exhibited significantly higher G2/M phase arrest in MG63 cells than compared to free CDDP with a nearly 2-fold higher arrest in case of PLD/CDDP treated group (~60%). Importantly, PLD/CDDP exhibited a most significant anti-tumor activity with maximum tumor growth inhibition. The superior inhibitory effect was further confirmed by a marked reduction in the number of CD31 stained tumor blood vessels and decrease in the Ki67 staining intensity for PLD/CDDP treated animal group. Overall, CDDP formulations could provide a promising and most effective platform in the treatment of osteosarcoma. PMID:26619950

  6. Nitrosoureas: a review of experimental antitumor activity.

    PubMed

    Schabel, F M

    1976-06-01

    The chemical class of drugs known as the nitrosoureas are a recently developed group of very active alkylating-agent anticancer drugs which are best represented by BCNU, CCNU, and methyl-CCNU (meCCNU). The nitrosoureas are among the most active, if not the most active, anticancer drugs both quantitatively (log kill of sensitive tumor cells in vivo) and qualitatively (spectrum of mouse, rat, and hamster tumors responding to treatment). Therapeutic anticancer activity of the nitrosoureas has been consistently observed with oral as well as parenteral administration. The nitrosoureas are clearly the most active group of anticancer drugs observed against experimental meningeal leukemias and intracerebrally implanted transplantable primary tumors of central nervous system origin (eg, gliomas, ependymoblastomas, and astrocytomas in mice and hamsters). The nitrosoureas have been observed to be less than additive in lethal toxicity for vital normal cells in the mouse in combination with representatives of the other major classes of anticancer agents, eg, purine antagonists, pyrimidine antagonists, inhibitors of DNA polymerase(s) or ribonucleotide reductase(s), mitotic inhibitors, drugs that bind to or intercalate with DNA, and other alkylating agents. Therapeutic synergism against one or more transplantable or spontaneous tumors of mice, rats, or hamsters with one of several nitrosoureas in two-drug combinations with representatives of most of the major classes of anticancer agents listed above has been reported. With a number of advanced-stages mouse tumors, generally considered to be refractory to treatment with most anticancer agents, long-term cures have been obtained with combination-drug or combined-modality (surgery plus chemotherapy) treatment. The demonstrated lack of cross-resistance of several leukemias and solid tumors of mice selected for resistance to BCNU, meCCNU, or other alkylating agents suggests that the widely held opinion that all alkylating agents are very similar in biologic mechanism of action, and therefore resistance to one alkylating agent probably predicts cross-resistance to all alkylating agents, may no longer be tenable. If not, then alkylating-agent drug combinations, either used alone or combined with other treatment modalities (eg, surgery) which have been reported to result in therapeutic improvement in a number of experimental murine tumor systems, may be indicated for serious consideration as surgical adjuvant chemotherapy by surgeons or as primary therapy by medical oncologists.

  7. Anti-proliferative activities on HeLa cancer cell line of Thai medicinal plant recipes selected from MANOSROI II database.

    PubMed

    Manosroi, Jiradej; Boonpisuttinant, Korawinwich; Manosroi, Worapaka; Manosroi, Aranya

    2012-07-13

    The Thai/Lanna medicinal plant recipe database "MANOSROI II" contained the medicinal plant recipes of all regions in Thailand for the treatment of various diseases including anti-cancer medicinal plant recipes. To investigate anti-proliferative activity on HeLa cell lines of medicinal plant recipes selected from the Thai/Lanna medicinal plant recipe database "MANOSROI II". The forty aqueous extracts of Thai/Lanna medicinal plant recipes selected from the Thai/Lanna medicinal plant recipe database "MANOSROI II" were investigated for anti-proliferative activity on HeLa cell line by SRB assay. The apoptosis induction by caspase-3 activity and MMP-2 inhibition activity by zymography on HeLa cell line of the three selected aqueous extracts, which gave the highest anti-proliferative activity were determined. Phytochemicals and anti-oxidative activities including free radical scavenging activity, inhibition of lipid peroxidation and metal chelating inhibition activities were also investigated. Sixty percentages of the medicinal plant recipes selected from "MANOSROI II" database showed anti-proliferative activity on HeLa cell line. The recipes of N031(Albizia chinensis (Osbeck) Merr, Cassia fistula L., and Dargea volubilis Benth.ex Hook. etc.), N039 (Nymphoides indica L., Peltophorum pterocarpum (DC.), and Polyalthia debilis Finet et Gagnep etc.) and N040 (Nymphoides indica L. Kuntze, Sida rhombifolia L., and Xylinbaria minutiflora Pierre. etc.) gave higher anti-proliferative activity than the standard anti-cancer drug, cisplatin of 1.25, 1.29 and 30.18 times, respectively. The positive relationship between the anti-proliferative activity and the MMP-2 inhibition activity and metal chelating inhibition activity was observed, but no relationship between the anti-proliferative activity and apoptosis induction, free radical scavenging activity and lipid peroxidation inhibition activity. Phytochemicals found in these extracts were alkaloids, flavonoids, tannins and xanthones, but not anthraquinones and carotenoids. The recipe N040 exhibited the highest anti-proliferative and MMP-2 inhibition on HeLa cancer cell line at 30 and threefolds of cisplatin, respectively (p<0.05), while recipe N031 gave the highest caspase-3 activity (1.29-folds over the control) (p<0.05). This study has demonstrated that recipe N040 selected from MANOSROI II database appeared to be a good candidate with high potential for the further development as an anti-cancer agent. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    PubMed

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  9. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum.

    PubMed

    Ren, Meng-Yue; Yu, Qing-Tian; Shi, Chun-Yu; Luo, Jia-Bo

    2017-02-13

    Cancer is one of the most common lethal diseases, and natural products have been extensively studied as anticancer agents considering their availability, low toxicity, and economic affordability. Plants belonging to the genus Aconitum have been widely used medically in many Asian countries since ancient times. These plants have been proven effective for treating several types of cancer, such as lung, stomach, and liver cancers. The main effective components of Aconitum plants are diterpenoid alkaloids-which are divided into C 18 -, C 19 -, C 20 -, and bis-diterpenoid alkaloids-are reportedly some of the most promising, naturally abundant compounds for treating cancer. This review focuses on the progress of diterpenoid alkaloids with different structures derived from Aconitum plants and some of their derivatives with potential anticancer activities. We hope that this work can serve as a reference for further developing Aconitum diterpenoid alkaloids as anticancer agents.

  11. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synthesis of Some Novel Fused Pyrimido[4″,5″:5',6']-[1,2,4]triazino[3',4':3,4] [1,2,4]triazino[5,6-b]indoles with Expected Anticancer Activity.

    PubMed

    Ali, Rania S; Saad, Hosam A

    2018-03-19

    Our current goal is the synthesis of polyheterocyclic compounds starting from 3-amino-[1,2,4]triazino[5,6- b ]indole 1 and studying their anticancer activity to determine whether increasing of the size of the molecules increases the anticancer activity or not. 1-Amino[1,2,4]triazino[3',4':3,4]-[1,2,4]triazino[5,6- b ]indole-2-carbonitrile ( 4 ) was prepared by the diazotization of 3-amino[1,2,4]-triazino[5,6- b ]indole 1 followed by coupling with malononitrile in basic medium then cyclization under reflux to get 4 . Also, new fused pyrimido[4″,5″:5',6'][1,2,4]triazino-[3',4':3,4][1,2,4]triazino[5,6- b ]indole derivative 6 was prepared and used to obtain polycyclic heterocyclic systems. Confirmation of the synthesized compounds' structures was carried out using elemental analyses and spectral data (IR, ¹H-NMR and 13 C-NMR and mass spectra). The anticancer activity of some of the synthesized compounds was tested against HepG2, HCT-116 and MCF-7 cell lines. The anticancer screening results showed that some derivatives display good activity which was more potent than that of the reference drug used. Molecular docking was used to predict the binding between some of the synthesized compounds and the prostate cancer 2q7k hormone and breast ‎cancer 3hb5 receptors.

  13. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance

    PubMed Central

    Breslin, Susan; O'Driscoll, Lorraine

    2016-01-01

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs. PMID:27304190

  14. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents.

    PubMed

    Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V

    2017-02-15

    The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.

    PubMed

    Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung

    2010-02-17

    Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.

  16. Synthesis and biological evaluation of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives as potential anticancer agents.

    PubMed

    Lan, Lan; Qin, Weixi; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin

    2014-01-01

    A novel series of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives were synthesized via Van Leusen pyrrole synthesis. The in vitro anticancer activity against a panel of 16 cancer cell lines and 2 normal cell lines was investigated by MTT assay. It was found that some of the pyrrole compounds showed similar antiproliferative activity against cancer cells compared with Paclitaxel, but little impact on normal cell lines, which indicated that the novel pyrrole derivatives could be used as potential anticancer candidates for possessing both selectivity and good therapeutic efficacy. Structure-activity relationship analysis found that 3-phenylacetyl-4- (4-methylthio phenyl)-1H-pyrrole derivatives displayed the most strong anticancer activity, among which [4-(4-methylthio phenyl)-1H-pyrrol- 3-yl] (4-methoxy phenyl) methanone (3j) was employed to investigate the effect of these pyrrole analogues on cell cycle by propidium iodide (PI) staining on cell flow cytometry. Cell necrotic effect of 10.0 µM 3j against MGC80-3 cells were also observed under fluorescence microscope and transmission electron microscope by ultrathin sections observation.

  17. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study

    PubMed Central

    Choudhari, Milind K.; Haghniaz, Reihaneh; Rajwade, Jyutika M.; Paknikar, Kishore M.

    2013-01-01

    Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP) was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), and B16F1 (murine melanoma), at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 μg/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value). EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange) and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling) assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 μg/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity. PMID:23762169

  18. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Anticancer activity of Indian stingless bee propolis: an in vitro study.

    PubMed

    Choudhari, Milind K; Haghniaz, Reihaneh; Rajwade, Jyutika M; Paknikar, Kishore M

    2013-01-01

    Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP) was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), and B16F1 (murine melanoma), at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 μg/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value). EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange) and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling) assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 μg/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity.

  20. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis

    PubMed Central

    Shi, Shaoqing; Wang, Qiong; Xu, Jennings; Jang, Jun-Ho; Padilla, Mabel T.; Nyunoya, Toru; Xing, Chengguo; Zhang, Lin; Lin, Yong

    2015-01-01

    Drug resistance is a major hurdle in anticancer chemotherapy. Combined therapy using drugs with distinct mechanisms of function may increase anticancer efficacy. We have recently identified the novel chalcone derivative, chalcone-24 (Chal-24), as a potential therapeutic that kills cancer cells through activation of an autophagy-mediated necroptosis pathway. In this report, we investigated if Chal-24 can be combined with the frontline genotoxic anticancer drug, cisplatin for cancer therapy. The combination of Chal-24 and cisplatin synergistically induced apoptotic cytotoxicity in lung cancer cell lines, which was dependent on Chal-24-induced autophagy. While cisplatin slightly potentiated the JNK/Bcl2/Beclin1 pathway for autophagy activation, its combination with Chal-24 strongly triggered proteasomal degradation of the cellular inhibitor of apoptosis proteins (c-IAPs) and formation of the Ripoptosome complex that contains RIP1, FADD and caspase 8. Furthermore, the cisplatin and Chal-24 combination induced dramatic degradation of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein large (cFLIPL) which suppresses Ripoptosome-mediated apoptosis activation. These results establish a novel mechanism for potentiation of anticancer activity with the combination of Chal-24 and cisplatin: to enhance apoptosis signaling through Ripoptosome formation and to release the apoptosis brake through c-FLIPL degradation. Altogether, our work suggests that the combination of Chal-24 and cisplatin could be employed to improve chemotherapy efficacy. PMID:25682199

  1. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2).

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

  2. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  3. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  4. Caffeine induces sustained apoptosis of human gastric cancer cells by activating the caspase-9/caspase-3 signalling pathway

    PubMed Central

    Liu, Hanyang; Zhou, Yan; Tang, Liming

    2017-01-01

    Caffeine is one of the most widely consumed substances found in beverages, and has demonstrated anticancer effects in several types of cancer. The present study aimed to examine the anticancer effects of caffeine on gastric cancer (GC) cells (MGC-803 and SGC-7901) in vitro, and to determine whether the apoptosis-related caspase-9/−3 pathway is associated with these effects. The sustained antiproliferative effects of caffeine on gastric cancer were also investigated. GC cell viability and proliferation were evaluated using cell counting and colony forming assays, following treatment with various concentrations of caffeine. Flow cytometry was performed to assess cell cycle dynamics and apoptosis. Western blot analysis was conducted to detect the activity of the caspase-9/−3 pathway. The results indicated that caffeine treatment significantly suppressed GC cell growth and viability and induced apoptosis by activating the caspase-9/−3 pathway. Furthermore, the anticancer effects of caffeine appeared to be sustained, as the caspase-9/−3 pathway remained active following caffeine withdrawal. In conclusion, caffeine may function as a sustained anticancer agent by activating the caspase-9/−3 pathway, which indicates that it may be useful as a therapeutic candidate in gastric cancer. PMID:28677810

  5. The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate.

    PubMed

    Marrache, Sean; Dhar, Shanta

    2015-03-01

    A key hallmark of many aggressive cancers is accelerated glucose metabolism. The enzymes that catalyze the first step of glucose metabolism are hexokinases. High levels of hexokinase 2 (HK2) are found in cancer cells, but only in a limited number of normal tissues. Metabolic reprogramming of cancer cells using the energy blocker, 3-bromopyruvate (3-BP) that inhibits HK2 has the potential to provide tumor-specific anticancer agents. However, the unique structural and functional characteristics of mitochondria prohibit selective subcellular targeting of 3-BP to modulate the function of this organelle for therapeutic gain. A mitochondria targeted gold nanoparticle (T-3-BP-AuNP) decorated with 3-BP and delocalized lipophilic triphenylphosphonium cations to target the mitochondrial membrane potential (Δ ψ m ) was developed for delivery of 3-BP to cancer cell mitochondria by taking advantage of higher Δ ψ m in cancer cells compared to normal cells. In vitro studies demonstrated enhanced anticancer activity of T-3-BP-AuNPs compared to the non-targeted construct NT-3-BP-AuNP or free 3-BP. The anticancer activity of T-3-BP-AuNP was further enhanced upon laser irradiation by exciting the surface plasmon resonance band of AuNP and thereby utilizing a combination of 3-BP chemotherapeutic and AuNP photothermal effects. The less toxic behavior of T-3-BPNPs in normal mesenchymal stem cells indicated that these NPs preferentially kill cancer cells. T-3-BP-AuNPs showed enhanced ability to modulate cancer cell metabolism by inhibiting glycolysis as well as demolishing mitochondrial oxidative phosphorylation. Our findings demonstrated that concerted chemo-photothermal treatment of glycolytic cancer cells with a single NP capable of targeting mitochondria mediating simultaneous release of a glycolytic inhibitor and photothermal ablation may have promise as a new anticancer therapy.

  6. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.

    PubMed

    Soni, Rina; Soman, Shubhangi S

    2018-09-01

    DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Anticancer effects of different seaweeds on human colon and breast cancers.

    PubMed

    Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Maranguy, Cyr Abel Ogandaga; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Pissibanganga, Ordelia Gwenaelle Manvoudou; Ko, Kisung; Seo, Jae In; Choo, Young Kug

    2014-09-24

    Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  8. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    PubMed

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  9. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  10. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities.

    PubMed

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2016-11-15

    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC 50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC 50 <1.56μM) and 6l (IC 50 =2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC 50 values of 1.10 and 1.16μmol/L respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min

    2017-02-01

    A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50  = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50  = 8.2 μm), HCT-15 (IC 50  = 21 μm) and MCF-7 cells (IC 50  = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50  > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  12. In vitro and in vivo anti-cancer activity of silymarin on oral cancer.

    PubMed

    Won, Dong-Hoon; Kim, Lee-Han; Jang, Boonsil; Yang, In-Hyoung; Kwon, Hye-Jeong; Jin, Bohwan; Oh, Seung Hyun; Kang, Ju-Hee; Hong, Seong-Doo; Shin, Ji-Ae; Cho, Sung-Dae

    2018-05-01

    Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.

  13. Potential role of tocotrienols in the treatment and prevention of breast cancer.

    PubMed

    Sylvester, Paul W; Akl, Mohamed R; Malaviya, Abhita; Parajuli, Parash; Ananthula, Suryatheja; Tiwari, Roshan V; Ayoub, Nehad M

    2014-01-01

    Vitamin E is a generic term that refers to a family of compounds that is further divided into two subgroups called tocopherols and tocotrienols. Although all natural forms of vitamin E display potent antioxidant activity, tocotrienols are significantly more potent than tocopherols in inhibiting tumor cell growth and viability, and anticancer activity of tocotrienols is mediated independently of their antioxidant activity. In addition, the anticancer effects of tocotrienols are observed using treatment doses that have little or no effect on normal cell function or viability. This review will summarize experimental studies that have identified the intracellular mechanism mediating the anticancer effects of tocotrienols. Evidence is also provided showing that combined treatment of tocotrienol with other cancer chemotherapies can result in a synergistic inhibition in cancer cell growth and viability. Taken together, these findings strongly indicate that tocotrienols may provide significant health benefits in the prevention and/or treatment of cancer when used either alone as monotherapy or in combination with other anticancer agents. © 2013 International Union of Biochemistry and Molecular Biology.

  14. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  15. Anticancer agent ABT-737 possesses anti-atopic dermatitis activity via blockade of caspase-1 in atopic dermatitis in vitro and in vivo models.

    PubMed

    Jeong, Hyun-Ja; Ryu, Ka-Jung; Kim, Hyung-Min

    2018-06-29

    Previous studies reported that depletion of Bcl-2 has a protective effect against allergic diseases. Furthermore, recently our study showed that anticancer drug has antiallergic inflammatory effect. An anticancer agent ABT-737 is an inhibitor of Bcl-2 and has an anti-inflammatory effect. However, the antiallergic inflammatory activity of ABT-737 is still unknown. Here, we aimed to explore the anti-atopic dermatitis (AD) activity and the mechanism of ABT-737 in AD models. HaCaT cells were used for in vitro experiments. To evaluate the effect of ABT-737 in vivo model, BalB/c mice were orally administered ABT-737 for 6 weeks in 2,4-dinitrofluorobenzene (DNFB)-induced AD-like murine model. Major assays were enzyme-linked immunosorbent assay, reverse transcription-PCR, caspase-1 assay, histamine assay, and H&E staining. ABT-737 significantly decreased thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity in activated HaCaT cells. In DNFB-induced AD mice, oral administration of ABT-737 alleviated clinical severity and scratching behavior. ABT-737 decreased levels of AD-related biomarkers including IgE, histamine, TSLP, and inflammatory cytokines. In addition, ABT significantly reduced caspase-1 activity in skin lesions of AD mice. ABT-737 elicited an anti-AD activity via suppression of caspase-1 activation in AD in vitro and in vivo models. Therefore, this study provides important information regarding the use of anticancer drugs for controlling allergic inflammatory diseases.

  16. Anticancer Effects of Sandalwood (Santalum album).

    PubMed

    Santha, Sreevidya; Dwivedi, Chandradhar

    2015-06-01

    Effective management of tumorigenesis requires development of better anticancer agents with greater efficacy and fewer side-effects. Natural products are important sources for the development of chemotherapeutic agents and almost 60% of anticancer drugs are of natural origin. α-Santlol, a sesquiterpene isolated from Sandalwood, is known for a variety of therapeutic properties including anti-inflammatory, anti-oxidant, anti-viral and anti-bacterial activities. Cell line and animal studies reported chemopreventive effects of sandalwood oil and α-santalol without causing toxic side-effects. Our laboratory identified its anticancer effects in chemically-induced skin carcinogenesis in CD-1 and SENCAR mice, ultraviolet-B-induced skin carcinogenesis in SKH-1 mice and in vitro models of melanoma, non-melanoma, breast and prostate cancer. Its ability to induce cell-cycle arrest and apoptosis in cancer cells is its most reported anticancer mechanism of action. The present review discusses studies that support the anticancer effect and the mode of action of sandalwood oil and α-santalol in carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Study on Anticancer Activity of Extracts of Sponges Collected from Biak Water, Indonesia

    NASA Astrophysics Data System (ADS)

    Trianto, A.; Ridhlo, A.; Triningsih, D. W.; Tanaka, J.

    2017-02-01

    Indonesia is center of biodiversity where marine sponges are abundant. a source of bioactive compounds with various pharmaceutical properties such as anticancer, antifungal, antibacterial, antioxidants, anti-inflammatory, and anti-malarial. In a continuation of a search for biologically active molecules from marine organisms we investigated the potency of marine sponges as anticancer. A total of 106 sponge specimens were collected between 3-40 m depths by SCUBA diving in Biak waters during August 2005. The specimens were extracted with methanol to provided crude extracts. The methanolic extracts were tested against NBT-T2 cell line. The assay result showed that 8.5 %, 29.2 % and 46.2 % of the extract have activity against the cell line at 0.1, 1.0 and 10.0 μg/mL. While, a 16.0 % of the extract did not showed activity against the cell line.

  18. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  19. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds.

    PubMed

    Hu, Yichen; Zhang, Jinming; Zou, Liang; Fu, Chaomei; Li, Peng; Zhao, Gang

    2017-06-01

    Chenopodium quinoa, a promising nutraceutical cereal, has attracted increasing research interest, yet its polysaccharides remains to get few systematic studies. In this study, we employed orthogonal experimental design to optimize the ultrasound-assisted extraction process for highest yield of C. quinoa polysaccharides. A novel C. quinoa polysaccharide (CQP) fraction with high content and low molecular weight (8852Da) was subsequently purified by column chromatography, constituted by galacturonic acid and glucose monosaccharides. The purified CQP exhibited significantly antioxidant effect against DPPH + and ABTS + , with even higher efficiency than some other reported polysaccharides. Moreover, CQP could promote the RAW264.7 macrophage proliferation, while suppress the nitri oxide production on inflammatory RAW264.7 macrophage in a dose- and time-dependent manner. In view of the pathological correlation of free radical, inflammation and carcinogenesis, the anticancer effect of CQP was further investigated on human liver cancer SMMC 7721 and breast cancer MCF-7 cells. Interestingly, CQP displayed cytotoxicity against cancer cells, while none proliferation inhibition on normal cells. These results suggest that the bioactive polysaccharide from C. quinoa provided the promising potential as a natural antioxidant, immune-regulating and anticancer candidate for food and even drug application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Amphiphilic lipid derivatives of 3'-hydroxyurea-deoxythymidine: preparation, properties, molecular self-assembly, simulation and in vitro anticancer activity.

    PubMed

    Li, Miao; Qi, Shuo; Jin, Yiguang; Yao, Weishang; Zhang, Sa; Zhao, Jingyu

    2014-11-01

    Lipid derivatives of nucleoside analogs and their nanoassemblies have become the research hotspot due to their unique function in cancer therapy. Six lipid derivatives of 3'-hydroxyurea-deoxythymidine were prepared with zidovudine as the raw material. The 5'-substituted lipid chains in the derivatives were from the various fatty acids including octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecanoic acid corresponding to the derivatives OHT, DHT, DDHT, TDHT, HDHT and ODHT. The amphiphilic derivatives formed Langmuir monolayers at the air/water interface with different surface pressure-molecular area isotherms depending on the length of lipid chains. The nanoassemblies of OHT, DHT, DDHT, TDHT and HDHT and the nanoscale precipitates of ODHT were obtained after we injected their tetrahydrofuran solutions doped with hydrophilic long chained polymers into water. Electron microscopy showed that the morphology of nanoassemblies may be vesicles or nanotubes depending on the length of lipid chains. The shorter the lipid chains were, the softer the nanoassemblies. Computer simulation supported the experimental results. The nanoassemblies and the nanoscale precipitates showed much higher anticancer effects on SW620 cells than the parent drug hydroxyurea. The nanostructures of the derivatives are promising anticancer nanomedicines. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Plant-derived anticancer agents - curcumin in cancer prevention and treatment.

    PubMed

    Creţu, Elena; Trifan, Adriana; Vasincu, Al; Miron, Anca

    2012-01-01

    Nowadays cancer is still a major public health issue. Despite all the progresses made in cancer prevention, diagnosis and treatment, mortality by cancer is on the second place after the one caused by cardiovascular diseases. The high mortality and the increasing incidence of certain cancers (lung, prostate, colorectal) justify a growing interest for the identification of new pharmacological agents efficient in cancer prevention and treatment. In the last fifty years many plant-derived agents (vinblastine, vincristine, vindesine, paclitaxel, docetaxel, topotecan, irinotecan, elliptinium) played a major role in cancer treatment. Other very promising plant-derived anticancer agents (combrestatins, betulinic acid, roscovitine, purvalanols, indirubins) are in clinical or preclinical trials. Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anticancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene. Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles (NanoCurc) showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies. BILITY.

  2. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles.

    PubMed

    Selvaraj, V; Grace, A Nirmala; Alagar, M; Hamerton, I

    2010-04-01

    Synthesis of thioguanine (TG)-capped Au nanoparticles (Au@TG) and their enhanced in vitro antimicrobial and anticancer efficacy against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Aspergillus fumigatus, Aspergillus niger and Hep2 cancer cell (Human epidermiod cell) have been reported. The nature of binding between 6-TG and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The present experimental studies suggests that Au@TG are more potential than TG towards antimicrobial and anticancer activities. Hence, gold nanoparticles have the potential to be used as effective carriers for anticancer drug.

  3. In vitro anticancer effects of insect tea in TCA8113 cells.

    PubMed

    Qian, Yu; Li, Gui-Jie; Wang, Rui; Zhou, Ya-Lin; Sun, Peng; Zhao, Xin

    2014-01-01

    Insect tea is widely used a traditional drink or traditional Chinese medicine in China. This study was conducted with an aim to determine the in vitro anticancer effect of Insect tea in cancer cells. The anticancer effects of Insect tea were evaluated in human tongue carcinoma TCA8113 cells using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry analysis, nuclear staining with 4,6-diamidino-2-phenylindole (DAPI), reverse transcription-polymerase chain reaction (RT-PCR) analysis, and western bolt assay. At 200 μg/mL, Insect tea inhibited the growth of TCA8113 cells by 80.7%, which was higher than the inhibition caused by 100 μg/mL Insect tea but lower than that of 200 μg/mL green tea. Compared to the control cancer cells, Insect tea significantly (P<0.05) induced apoptosis as determined by DAPI staining and flow cytometry analysis results. Insect tea significantly induced apoptosis in cancer cells by upregulating BAX, CASP3, CASP9 and downregulating BCL2. Genes encoding nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were significantly downregulated by Insect tea, demonstrating its anti-inflammatory properties. Insect tea also exerted a great anti-metastasis effect on cancer cells as demonstrated by decreased expression of matrix metalloproteinase (MMP) genes and increased expression of tissue inhibitors of metalloproteinases (TIMPs). The results showed that Insect tea has good in vitro anticancer effects in TCA8113 cells, like green tea.

  4. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    PubMed

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  5. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  6. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Singh, Abhishek K; Khan, Feroz; Srivastava, Santosh K; Pant, Aditya B

    2014-01-01

    In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18β-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.

  7. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    NASA Astrophysics Data System (ADS)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  8. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  9. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy

    PubMed Central

    Ge, Liang; You, Xinru; Huang, Jun; Chen, Yuejian; Chen, Li; Zhu, Ying; Zhang, Yuan; Liu, Xiqiang; Wu, Jun; Hai, Qian

    2018-01-01

    For enhanced anti-cancer performance, human serum albumin fragments (HSAFs) nanoparticles (NPs) were developed as paclitaxel (PTX) carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs. PMID:29946256

  10. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.).

    PubMed

    Kumar Singh, Sandeep; Patra, Arjun

    2018-04-18

    Polygonatum verticillatum (L.) All. (Ruscaceae), one of the Ashtawarga plants, is widely used for treatment of various ailments. The present study was undertaken to determine the phenolic composition, antioxidant, anti-inflammatory and anticancer activities of several extracts (petroleum ether, dichloromethane, chloroform, ethanol, and aqueous) from the rhizomes of the plant. Coarsely powdered dry rhizome was successively extracted with different solvents of increasing polarity (petroleum ether, dichloromethane, chloroform, ethanol and water). The phenolic compositions, in terms of total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TTC), were evaluated with the Folin-Ciocalteu assay, aluminum chloride colorimetric assay and vanillin spectrophotometric assay, respectively. Total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays were used to assess the antioxidant potential of each extract. A protein denaturation model and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to evaluate in vitro anti-inflammatory and anticancer activities, respectively. Gas chromatography-mass spectrometry (GC/MS) analysis was carried out to demonstrate various phytoconstituents in each extract. Correlation studies were also performed between phenolic composition (TPC, TFC and TTC) and different biological activities. Ethanol extract showed maximum TPC (0.126 mg/g, gallic acid equivalent in dry sample), TFC (0.094 mg/g, rutin equivalent in dry sample) and TTC (29.32 mg/g, catechin equivalent in dry sample), as well as antioxidant and anti-inflammatory properties. Chloroform extract exhibited the strongest cytotoxicity against the human breast cancer cell line, MCF-7. GC/MS analysis revealed the presence of 90 different phytoconstituents among the extracts. Antioxidant and anti-inflammatory activities had a positive correlation with TPC, TFC and TTC. However, the anticancer activity showed a negative correlation with TPC, TFC and TTC. From the present study, it can be concluded that P. verticillatum possessed remarkable antioxidant, anti-inflammatory, and anticancer activities, which could be due to different secondary metabolites of the plant. Phenolic compounds are likely responsible for antioxidant and anti-inflammatory activities. However, flavonoids and other compounds might contribute to the anticancer potential of the plant. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  11. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    PubMed

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.

  12. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  13. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.

    PubMed

    Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra

    2016-12-06

    The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.

  14. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    NASA Astrophysics Data System (ADS)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2016-08-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  15. Self-Assembled Tea Tannin Graft Copolymer as Nanocarriers for Antimicrobial Drug Delivery and Wound Healing Activity.

    PubMed

    Mahata, Denial; Nag, Ahindra; Nando, Golok B; Mandal, Santi M; Franco, Octavio L

    2018-04-01

    Green chemistry polymers from renewable resources have recently received much more attention from pharmaceutical researchers. However, the appropriate application of a polymer depends on its chemical nature, biocompatibility and microstructure. Here, tannin polyphenols from the common beverage, tea, are used to develop a novel self-assembled porous capsule as a microstructure of hydrogel for versatile biological applications, such as drug delivery, antioxidant and wound healing activity. Hydrogel has been successfully used for the delivery of both anticancer and antimicrobial drugs. The developed material shows excellent biocompatibility and antioxidant activity in vitro. The scratch assay for in vitro wound healing activity reveals their higher potential to repair the damaged cells in comparison to control.

  16. HLBT-100: a highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L.

    PubMed

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N; Bryant, Joseph

    2017-01-01

    The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. The plant biomass was extracted using supercritical fluid extraction technology with CO 2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC 50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI 50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the cell cycle as evidenced by the accumulation of cells with 

  17. Antitumor Activity of Monoterpenes Found in Essential Oils

    PubMed Central

    Sobral, Marianna Vieira; Xavier, Aline Lira; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2014-01-01

    Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented. PMID:25401162

  18. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models.

    PubMed

    Liu, Qiang; Chen, Weichang; Jiao, Yang; Hou, Jianquan; Wu, Qingyu; Liu, Yanli; Qi, Xiaofei

    2014-05-15

    Many natural compounds possess antitumor growth activities. Pulsatilla chinensis is an herb used in traditional Chinese medicine to treat infectious diseases. More recently, extracts from P chinensis have been shown to contain antitumor activities. In this study, we isolated Pulsatilla saponin A as an active compound from P chinensis extracts and tested its anticancer activity in vitro and in vivo. In cell culture, Pulsatilla saponin A significantly inhibited the growth of human hepatocellular carcinoma SMCC-7721 cells and pancreatic BXPC3 and SW1990 cancer cells. Similar inhibitory activities were observed when the compound was tested in mouse xenograft tumor models using human hepatocellular carcinoma Bel-7402 and pancreatic cancer SW1990 cells. In Comet assay and flow cytometric analysis of cell cycle distribution and annexin V expression, DNA damage, G2 arrest, and apoptosis were identified in Pulsatilla saponin A-treated cancer cells. Based on the results of Western blotting, p53 and cyclin B protein levels were higher, whereas Bcl-2 protein levels were lower in Pulsatilla saponin A-treated cancer cells than in vehicle-treated cells. Pulsatilla saponin A may exert its antitumor effect by inducing DNA damage and causing G2 arrest and apoptosis in cancer cells. Pulsatilla saponin A and its derivatives may be developed as a new class of anticancer agents. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  19. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents.

    PubMed

    Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath

    2018-05-01

    To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.

  20. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting.

    PubMed

    Lovejoy, Katherine S; Lippard, Stephen J

    2009-12-28

    The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.

  1. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives.

    PubMed

    Al Matarneh, Cristina M; Mangalagiu, Ionel I; Shova, Sergiu; Danac, Ramona

    2016-01-01

    A study concerning design, synthesis, structure and in vitro antimycobacterial and anticancer evaluation of new fused derivatives with pyrrolo[2,1-c][4,7]phenanthroline skeleton is described. The strategy adopted for synthesis involves a [3 + 2] dipolar cycloaddition of several in situ generated 4,7-phenanthrolin-4-ium ylides to different substituted alkynes and alkenes. Stereo- and regiochemistry of cycloaddition reactions were discussed. The structure of the new compounds was proven unambiguously, single-crystal X-ray diffraction studies including. The antimycobacterial and anticancer activity of a selection of new synthesized compounds was evaluated against Mycobacterium tuberculosis H37Rv under aerobic conditions and 60 human tumour cell line panel, respectively. Five of the tested compounds possess a moderate antimycobacterial activity, while two of the compounds have a significant antitumor activity against renal cancer and breast cancer.

  2. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.

    PubMed

    Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying

    2009-07-23

    A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.

  3. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines.

    PubMed

    Saber, Amir; Alipour, Beitollah; Faghfoori, Zeinab; Mousavi Jam, Ali; Yari Khosroushahi, Ahmad

    2017-05-01

    There is a common agreement on the important role of the gastrointestinal microbiota in the etiology of cancer. Benign probiotic yeast strains are able to ameliorate intestinal microbiota and regulate the host metabolism, physiology, and immune system through anti-inflammatory, antiproliferative, and anticancer effects. We hypothesized that Pichia kudriavzevii AS-12 secretion metabolites possess anticancer activity on human colorectal cancer cells (HT-29, Caco-2) via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of P. kudriavzevii AS-12 secretion metabolites and the underlying mechanisms. The cytotoxicity evaluations were performed via 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay; 4',6-diamidino-2-phenylindole staining; and FACS-flow cytometry tests. Also, the effects of P. kudriavzevii AS-12 secretion metabolites on the expression level of 6 important genes (BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9 and Fas-R) involved in the extrinsic and intrinsic apoptosis pathways were studied by real-time polymerase chain reaction method. P. kudriavzevii AS-12 secretion metabolites showed significant (P < .0001) cytotoxic effects on HT-29 cells (57.5%) and Caco-2 (32.5%) compared to KDR/293 normal cells (25%). Moreover, the cytotoxic effects of examined yeast supernatant on HT-29 cells were comparable with 5-fluorouracil, as a positive control (57.5% versus 62.2% respectively). Flow cytometric results showed that the induction of apoptosis is the main mechanism of the anticancer effects. Also, according to the reverse transcriptase polymerase chain reaction results, the expression level of proapoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than untreated and normal cells, whereas the antiapoptotic gene (Bcl-2) was downregulated. P. kudriavzevii AS-12 secretion metabolites exert its anticancer effects by inhibiting cell proliferation and inducing intrinsic and extrinsic apoptosis in colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  5. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest.

    PubMed

    Qi, Fei; Yan, Qiang; Zheng, Zhaozheng; Liu, Jian; Chen, Yan; Zhang, Guiyang

    2018-01-01

    Colon cancer ranks second in mortality among all human malignancies, creating thus a need for exploration of novel molecules that would prove effective, cost-effective and with lower toxicity. In the recent past monoterpenes have gained tremendous attention for their anticancer activity. In the present study we evaluated the anticancer effects of two important monoterpenes, geraniol and geranyl acetate against colo-205 cancer cells. The antiproliferative activity was determined by MTT assay. Apoptosis was assessed by DAPI staining and DNA damage was checked by comet assay. The cell cycle analysis was carried out by flow cytometry and protein expression was examined by western blotting. The results showed that both geraniol and geranyl acetate exhibited significant anticancer activity against colo-205 cancer cell line with IC50 values of 20 and 30 μM respectively. To find out the underlying mechanism, DAPI staining was carried out and it was observed that both the monoterpenes, geraniol and geranyl acetate, induced apoptosis in colo-205 cells. The apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expressions, indicative of mitochondrial apoptosis. Moreover, these two monoterpenes could trigger DNA damage and G2/M cell cycle arrest in colo-205 cells. Taken together, we propose that geraniol and geranyl acetate may prove to be important lead molecular candidates for the treatment of colon cancer. Their anticancer activity can be attributed to the ability to trigger apoptosis, DNA damage and cell cycle arrest.

  6. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Anti-Cancer Efficacy of Silybin Derivatives - A Structure-Activity Relationship

    PubMed Central

    Agarwal, Chapla; Wadhwa, Ritambhara; Deep, Gagan; Biedermann, David; Gažák, Radek; Křen, Vladimír; Agarwal, Rajesh

    2013-01-01

    Silybin or silibinin, a flavonolignan isolated from Milk thistle seeds, is one of the popular dietary supplements and has been extensively studied for its antioxidant, hepatoprotective and anti-cancer properties. We have envisioned that potency of silybin could be further enhanced through suitable modification/s in its chemical structure. Accordingly, here, we synthesized and characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS), 7-O-methylsilybin (7OM), 7-O-galloylsilybin (7OG), 7,23-disulphatesilybin (DSS), 7-O-palmitoylsilybin (7OP), and 23-O-palmitoylsilybin (23OP); and compared their anti-cancer efficacy using human bladder cancer HTB9, colon cancer HCT116 and prostate carcinoma PC3 cells. In all the 3 cell lines, DHS, 7OM and 7OG demonstrated better growth inhibitory effects and compared to silybin, while other silybin derivatives showed lesser or no efficacy. Next, we prepared the optical isomers (A and B) of silybin, DHS, 7OM and 7OG, and compared their anti-cancer efficacy. Isomers of these three silybin derivatives also showed better efficacy compared with respective silybin isomers, but in each, there was no clear cut silybin A versus B isomer activity preference. Further studies in HTB cells found that DHS, 7OM and 7OG exert better apoptotic activity than silibinin. Clonogenic assays in HTB9 cells further confirmed that both the racemic mixtures as well as pure optical isomers of DHS, 7OM and 7OG were more effective than silybin. Overall, these results clearly suggest that the anti-cancer efficacy of silybin could be significantly enhanced through structural modifications, and identify strong anti-cancer efficacy of silybin derivatives, namely DHS, 7OM, and 7OG, signifying that their efficacy and toxicity should be evaluated in relevant pre-clinical cancer models in rodents. PMID:23555889

  8. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangling; Luo, Peihua; Wang, Jincheng

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 andmore » 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.« less

  9. Access to innovation: is there a difference in the use of expensive anticancer drugs between French hospitals?

    PubMed

    Bonastre, Julia; Chevalier, Julie; Van der Laan, Chantal; Delibes, Michel; De Pouvourville, Gerard

    2014-06-01

    In DRG-based hospital payment systems, expensive drugs are often funded separately. In France, specific expensive drugs (including a large proportion of anticancer drugs) are fully reimbursed up to national reimbursement tariffs to ensure equity of access. Our objective was to analyse the use of expensive anticancer drugs in public and private hospitals, and between regions. We had access to sales per anticancer drug and per hospital in the year 2008. We used a multilevel model to study the variation in the mean expenditure of expensive anticancer drugs per course of chemotherapy and per hospital. The mean expenditure per course of chemotherapy was €922 [95% CI: 890-954]. At the hospital level, specialisation in chemotherapies for breast cancers was associated with a higher expenditure of anticancer drugs per course for those hospitals with the highest proportion of cancers at this site. There were no differences in the use of expensive drugs between the private and the public hospital sector after controlling for case mix. There were no differences between the mean expenditures per region. The absence of disparities in the use of expensive anticancer drugs between hospitals and regions may indicate that exempting chemotherapies from DRG-based payments and providing additional reimbursement for these drugs has been successful at ensuring equal access to care. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Anticancer and Immunopotentiating Activities of Crude Polysaccharides from Pleurotus nebrodensis on Mouse Sarcoma 180.

    PubMed

    Cha, Youn Jeong; Alam, Nuhu; Lee, Jae Seong; Lee, Kyung Rim; Shim, Mi Ja; Lee, Min Woong; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Lee, Tae Soo

    2012-12-01

    Pleurotus nebrodensis is an edible and commercially available mushroom in Korea. This study was conducted in order to evaluate the anticancer and immunopotentiating activities of crude polysaccharides, extracted in methanol, neutral saline, and hot water (hereafter referred to as Fr. MeOH, Fr. NaCl, and Fr. HW, respectively) from the fruiting bodies of P. nebrodensis. β-Glucan and protein contents in Fr. MeOH, Fr. NaCl, and Fr. HW extracts of P. nebrodensis ranged from 23.79~36.63 g/100 g and 4.45~6.12 g/100 g, respectively. Crude polysaccharides were not cytotoxic against sarcoma 180, HT-29, NIH3T3, and RAW 264.7 cell lines at a range of 10~2,000 µg/mL. Intraperitoneal injection with crude polysaccharides resulted in a life prolongation effect of 11.76~27.06% in mice previously inoculated with sarcoma 180. Treatment with Fr. NaCl resulted in an increase in the numbers of spleen cells by 1.49 fold at the concentration of 50 µg/mL, compared with control. Fr. HW improved the immuno-potentiating activity of B lymphocytes through an increase in alkaline phosphatase activity by 1.65 fold, compared with control at 200 µg/mL. Maximum production of nitric oxide (14.3 µM) was recorded in the Fr. NaCl fraction at 200 µg/mL. Production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) was significantly higher, compared to control, and IL-6 production was highest, in contrast to TNF-α, IL-1β, and positive control, concanavalin at the tested concentration of the various fractions. Results of the current study suggest that polysaccharides extracted from P. nebrodensis have a strong anticancer effect and may be useful as an ingredient of biopharmaceutical products for treatment of cancer.

  11. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer treatment while reducing systemic side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. In vivo anti-cancer activity of Korean Angelica gigas and its major pyranocoumarin decursin.

    PubMed

    Lee, Hyo Jeong; Lee, Hyo Jung; Lee, Eun Ok; Lee, Jae Ho; Lee, Kuen Sung; Kim, Kwan Hyun; Kim, Sung-Hoon; Lü, Junxuan

    2009-01-01

    We have reported that a 10-herbal traditional formula containing Korean Angelica gigas Nakai (AGN) exerts potent anti-cancer efficacy and identified decursin and decursinol angelate (DA) from AGN as novel anti-androgens. Here, we determined whether AGN would exert in vivo anti-cancer activity and whether decursin or DA could account for its efficacy. The AGN ethanol extract was tested against the growth of mouse Lewis lung cancer (LLC) allograft in syngenic mice or human PC-3 and DU145 prostate cancer xenograft in immunodeficient mice. The pharmacokinetics of decursin and DA were determined. The AGN extract significantly inhibited LLC allograft growth (30 mg/kg) and PC-3 and DU145 xenograft growth (100 mg/kg) without affecting the body weight of the host mice. Biomarker analyses revealed decreased cell proliferation (Ki67, PCNA), decreased angiogenesis (VEGF, microvessel density) and increased apoptosis (TUNEL, cPARP) in treated tumors. Decursin and DA injected intraperitoneally were rapidly hydrolyzed to decursinol. Decursinol and decursin at 50 mg/kg inhibited LLC allograft growth to the same extent, comparable to 30 mg AGN/kg. Therefore the AGN extract possessed significant in vivo anti-cancer activity, but decursin and DA only contributed moderately to that activity, most likely through decursinol.

  13. Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.

    PubMed

    Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai

    2014-12-01

    To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. Hyaluronate tethered, "smart" multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin.

    PubMed

    Datir, Satyajit R; Das, Manasmita; Singh, Raman Preet; Jain, Sanyog

    2012-11-21

    The present study reports the optimized synthesis, physicochemical characterization, and biological evaluation of a novel, multiwalled carbon nanotube-hyaluronic acid (MWCNT-HA) conjugate, complexed with an anticancer agent, Doxorubicin (DOX) via π-π stacking interaction. The therapeutic conjugate was concomitantly labeled with a near-infrared fluorescent dye, Alexa-Flour-647 (AF-647), and radiotracer Technetium-99m ((99m)Tc) to track its whereabouts both in vitro and in vivo via optical and scintigraphic imaging techniques. Covalent functionalization of MWCNTs with HA facilitated their internalization into human lung adenocarcinoma, A549 cells via hyaluronan receptors (HR) mediated endocytosis. Internalized nanotubes showed lysosomal trafficking, followed by low pH-triggered DOX release under endolysosomal conditions. Consequently, DOX-loaded HA-MWCNTs exhibited 3.2 times higher cytotoxicity and increased apoptotic activity than free DOX in equivalent concentrations. Organ distribution studies in Ehlrich ascites tumor (EAT) bearing mice model indicated that tumor specific localization of (99m)Tc-MWCNT-HA-DOX is significantly higher than both free drug and nontargeted MWCNTs. Pharmacodynamic studies in chemically breast-cancer-induced rats showed that the tumor-growth inhibitory effect of HA-MWCNT-DOX was 5 times higher than free DOX in equivalent concentration. DOX delivered through HA-MWCNTs was devoid of any detectable cardiotoxity, hepatotoxicity, or nephrotoxicity. All these promising attributes make HA-MWCNTs a "smart" platform for tumor-targeted delivery of anticancer agents.

  15. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  16. (-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer.

    PubMed

    Crous-Masó, Joan; Palomeras, Sònia; Relat, Joana; Camó, Cristina; Martínez-Garza, Úrsula; Planas, Marta; Feliu, Lidia; Puig, Teresa

    2018-05-11

    (-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.

  17. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. The Design and Development of Potent Small Molecules as Anticancer Agents Targeting EGFR TK and Tubulin Polymerization

    PubMed Central

    Ihmaid, Saleh; Ahmed, Hany E. A.; Zayed, Mohamed F.

    2018-01-01

    Some novel anthranilate diamides derivatives 4a–e, 6a–c and 9a–d were designed and synthesized to be evaluated for their in vitro anticancer activity. Structures of all newly synthesized compounds were confirmed by infra-red (IR), high-resolution mass (HR-MS) spectra, 1H nuclear magnetic resonance (NMR) and 13C nuclear magnetic resonance (NMR) analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using erlotinib as a reference drug against two different types of breast cancer cells. The molecular docking study was performed for representative compounds against two targets, epidermal growth factor receptor (EGFR) and tubulin in colchicine binding site to assess their binding affinities in order to rationalize their anticancer activity in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the anthranilate diamide showed excellent activity with nanomolar or sub nanomolar half maximal inhibitory concentration (IC50) values against tumor cells. EGFR tyrosine kinase (TK) inhibition assay, tubulin inhibition assay and apoptosis analysis were performed for selected compounds to get more details about their mechanism of action. Extensive structure activity relationship (SAR) analyses were also carried out. PMID:29385728

  19. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis.

    PubMed

    Ha, Tae Kwun; Jung, Inae; Kim, Mi Eun; Bae, Sung Kwon; Lee, Jun Sik

    2017-07-01

    Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Testing therapeutic potency of anticancer drugs in animal studies: a commentary.

    PubMed

    Den Otter, Willem; Steerenberg, Peter A; Van der Laan, Jan Willem

    2002-04-01

    Regulatory authorities for medicines in European countries deal with many applications for admission to the market of anticancer drugs. Each application must be supported by preclinical and clinical data, among which testing of the therapeutic activity of drugs in animals is important. Recently, the Committee for Proprietary Medicinal Products (CPMP) has released a note for guidance on the preclinical evaluation of anticancer medicinal products. This note provides only general statements regarding tests of anticancer drugs in rodents. This stimulates considerations on how to organize and how to evaluate these tests. In this article we describe our considerations regarding these items based on our experience with applications in The Netherlands since 1993. (c) 2002 Elsevier Science (USA).

  1. Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali

    2015-01-01

    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.

  2. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  4. New estradiol-linked nitrosoureas: can the pharmacokinetic properties help to explain the pharmacodynamic activities?

    PubMed

    Betsch, B; Berger, M R; Spiegelhalder, B; Eisenbrand, G; Schmähl, D

    1989-01-01

    The pharmacokinetics of 1-(2-chloroethyl)-1-nitrosocarbamoyl-L-alanine-estradiol-17-ester (CNC-alanine-estradiol-17-ester) a new estradiol-linked anticancer drug and the unlinked DNA-crosslinking agent 1-(2-chloroethyl)-1-nitrosocarbamoyl-L-alanine (CNC-alanine) have been studied in methylnitrosourea-induced female Sprague-Dawley rats after equimolar intravenous and oral administration. In comparison with the unlinked single agent, the CNC-alanine-estradiol-17-ester showed a 3-fold longer halflife in plasma and a three times larger volume of distribution. The distribution after intravenous administration was nearly three times faster. The absorption after peroral administration was likewise two times faster. The bioavailability of the estradiol-linked drug was determined to be 52%. After application of CNC-alanine-estradiol-17-ester the cytostatic metabolite CNC-alanine was found, indicating the cleavage of the ester bond. CNC-alanine generated from CNC-alanine-estradiol-17-ester showed a 50% longer halflife than when applied directly. The results indicate that linking 2-chloroethyl-nitrosoureas to estradiol can result in new anticancer agents with modified properties in comparison to the unlinked single agent. The higher antineoplastic activity of the hormone-linked drug can mainly be attributed to differences in the pharmacokinetic behaviour.

  5. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin

    PubMed Central

    Larson, Nate; Greish, Khaled; Bauer, Hillevi; Maeda, Hiroshi; Ghandehari, Hamidreza

    2011-01-01

    Polymeric micelles carrying the heat shock protein 90 inhibitor tanespimycin (17-N-Allylamino-17-demethoxygeldanamycin) were synthesized using poly(styrene-co-maleic acid) (SMA) copolymers and evaluated in vitro and in vivo. SMA-tanespimycin micelles were prepared with a loading efficiency of 93%. The micelles incorporated 25.6% tanespimycin by weight, exhibited a mean diameter of 74 ± 7 nm by dynamic light scattering and a zeta potential of -35 ± 3 mV. Tanespimycin was released from the micelles in a controlled manner in vitro, with 62% released in 24 hours from a pH 7.4 buffer containing bovine serum albumin. The micellar drug delivery systems for tanespimycin showed potent activity against DU145 human prostate cancer cells, with an IC50 of 230 nM. They further exhibited potent anti-cancer activity in vivo in nu/nu mice bearing subcutaneous DU145 human prostate cancer tumor xenografts, with significantly higher anticancer efficacy as measured by tumor regression when compared to free tanespimycin at an equivalent single dose of 10 mg/kg. These data suggest further investigation of SMA-tanespimycin as a promising agent in the treatment of prostate cancer. PMID:21856392

  6. Targeted Delivery of Ubiquitin-Conjugated BH3 Peptide-Based Mcl-1 Inhibitors into Cancer Cells

    PubMed Central

    2015-01-01

    BH3 peptides are key mediators of apoptosis and have served as the lead structures for the development of anticancer therapeutics. Previously, we reported the application of a simple cysteine-based side chain cross-linking chemistry to NoxaBH3 peptides that led to the generation of the cross-linked NoxaBH3 peptides with increased cell permeability and higher inhibitory activity against Mcl-1 (Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., Lin, Q. (2012) J. Am. Chem. Soc.134, 1473422920569). To deliver cross-linked NoxaBH3 peptides selectively into cancer cells for enhanced efficacy and reduced systemic toxicity, here we report the conjugation of the NoxaBH3 peptides with the extracellular ubiquitin, a recently identified endogenous ligand for CXCR4, a chemokine receptor overexpressed in cancer cells. The resulting ubiquitin-NoxaBH3 peptide conjugates showed increased inhibitory activity against Mcl-1 and selective killing of the CXCR4-expressing cancer cells. The successful delivery of the NoxaBH3 peptides by ubiquitin into cancer cells suggests that the ubiquitin/CXCR4 axis may serve as a general route for the targeted delivery of anticancer agents. PMID:24410055

  7. Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman's polypore fungus with modern biotechnological potential.

    PubMed

    Pleszczyńska, Małgorzata; Lemieszek, Marta K; Siwulski, Marek; Wiater, Adrian; Rzeski, Wojciech; Szczodrak, Janusz

    2017-05-01

    Higher Basidiomycota have been used in natural medicine throughout the world for centuries. One of such fungi is Fomitopsis betulina (formerly Piptoporus betulinus), which causes brown rot of birch wood. Annual white to brownish fruiting bodies of the species can be found on trees in the northern hemisphere but F. betulina can also be cultured as a mycelium and fruiting body. The fungus has a long tradition of being applied in folk medicine as an antimicrobial, anticancer, and anti-inflammatory agent. Probably due to the curative properties, pieces of its fruiting body were carried by Ötzi the Iceman. Modern research confirms the health-promoting benefits of F. betulina. Pharmacological studies have provided evidence supporting the antibacterial, anti-parasitic, antiviral, anti-inflammatory, anticancer, neuroprotective, and immunomodulating activities of F. betulina preparations. Biologically active compounds such as triterpenoids have been isolated. The mushroom is also a reservoir of valuable enzymes and other substances such as cell wall (1→3)-α-D-glucan which can be used for induction of microbial enzymes degrading cariogenic dental biofilm. In conclusion, F. betulina can be considered as a promising source for the development of new products for healthcare and other biotechnological uses.

  8. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  9. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  10. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin

    PubMed Central

    Yoon, M J; Kang, Y J; Lee, J A; Kim, I Y; Kim, M A; Lee, Y S; Park, J H; Lee, B Y; Kim, I A; Kim, H S; Kim, S-A; Yoon, A-R; Yun, C-O; Kim, E-Y; Lee, K; Choi, K S

    2014-01-01

    Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells. PMID:24625971

  11. Effectiveness of hsp90 inhibitors as anti-cancer drugs.

    PubMed

    Xiao, Li; Lu, Xiangyi; Ruden, Douglas M

    2006-10-01

    Hsp90 is a chaperone with over 100 identified client proteins. What makes Hsp90 especially promising as a target for anti-cancer drugs is that many of its client proteins are in signaling and chromatin-remodeling pathways, and these pathways are often disrupted in many types of cancers. Recently, it was determined that Hsp90 bound to a client protein in a co-chaperone complex has a higher ATPase activity and binds to the geldanamycin inhibitor with over 100-fold higher affinity than the low-ATPase form. Consequently, despite Hsp90 being an abundant protein in most cell types, Hsp90 inhibitors accumulate at high levels primarily in tumor cells because tumor cells are "oncogene addicted" and require especially high levels of the high-ATPase form of Hsp90. Numerous classes of Hsp90 inhibitors have recently been developed, such as the anasamysin geldanamycin and derivatives 17-AAG and 17-DMAG; the macrolide radicicol and derivatives; purine-scaffold derivatives; pyrazoles; and shepherdins that bind to the N-terminal high-affinity ATP-binding domain of Hsp90. Other inhibitors have recently been shown to bind to the C-terminal dimerization domain of Hsp90, such as cisplatin and novobiocin, or modify Hsp90 postranslationally, such as histone deacetylase or proteasome inhibitors. In this mini-review, we present hypothetical mechanisms for Hsp90 inhibitors in treating cancers, preliminary studies in early clinical trials, and potential tumor-killing and tumor-promoting activities of Hsp90 inhibitors.

  12. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    PubMed

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  13. Alkyl isothiocyanates suppress epidermal growth factor receptor kinase activity but augment tyrosine kinase activity.

    PubMed

    Nomura, Takahiro; Uehara, Yoshimasa; Kawajiri, Hiroo; Ryoyama, Kazuo; Yamori, Takao; Fuke, Yoko

    2009-10-01

    We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in microg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.

  14. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections.

    PubMed

    Chen, Jin; He, Zheng-Min; Wang, Feng-Ling; Zhang, Zheng-Sheng; Liu, Xiu-zhen; Zhai, Dan-Dan; Chen, Wei-Dong

    2016-02-05

    Invasive fungal infections (IFI) are important complications of cancer, and they have become a major cause of morbidity and mortality in cancer patients. Effective anti-infection therapy is necessary to inhibit significant deterioration from these infections. However, they are difficult to treat, and increasing antifungal drug resistance often leads to a relapse. Curcumin, a natural component that is isolated from the rhizome of Curcuma longa plants, has attracted great interest among many scientists studying solid cancers over the last half century. Interestingly, curcumin provides an ideal alternative to current therapies because of its relatively safe profile, even at high doses. To date, curcumin's potent antifungal activity against different strains of Candida, Cryptococcus, Aspergillus, Trichosporon and Paracoccidioides have been reported, indicating that curcumin anticancer drugs may also possess an antifungal role, helping cancer patients to resist IFI complications. The aim of this review is to discuss curcumin's dual pharmacological activities regarding its applications as a natural anticancer and antifungal agent. These dual pharmacological activities are expected to lead to clinical trials and to improve infection survival among cancer patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model.

    PubMed

    Sittaramane, Vinoth; Padgett, Jihan; Salter, Philip; Williams, Ashley; Luke, Shauntelle; McCall, Rebecca; Arambula, Jonathan F; Graves, Vincent B; Blocker, Mark; Van Leuven, David; Bowe, Keturah; Heimberger, Julia; Cade, Hannah C; Immaneni, Supriya; Shaikh, Abid

    2015-11-01

    In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthetic cyclin dependent kinase inhibitors. New generation of potent anti-cancer drugs.

    PubMed

    Hajdúch, M; Havlíèek, L; Veselý, J; Novotný, R; Mihál, V; Strnad, M

    1999-01-01

    The unsatisfactory results of current anti-cancer therapies require the active search for new drugs, new treatment strategies and a deeper understanding of the host-tumour relationship. From this point of view, the drugs with a capacity to substitute the functions of altered tumour suppressor genes are of prominent interest. Since one of the main functions of oncosuppressors is to mediate cell cycle arrest via modification of cyclin dependent kinases (CDKs) activity, the compounds with ability to substitute altered functions of these genes in neoplastic cells are of prominent interest. Synthetic inhibitors of cyclin dependent kinases (CDKIs) are typical representatives of such drugs. Olomoucine (OC), flavopiridol (FP), butyrolactone I (BL) and their derivatives selectively inhibit CDKs and thus constrain tumor cell proliferation under in vitro and/or in vivo conditions. We originally discovered OC and its inhibitory activity toward CDK1 family of CDKs, and recently reported the induction of apoptosis and tumor regression following OC application. Moreover, the OC family of synthetic CDKIs has the capacity of directly inhibit CDK7, the principal enzyme required for activating other CDKs, and thus these compounds are the first known CDK7 inhibitors. Its unique mechanism of action and potent anti-cancer activity under both in vitro and in vivo conditions provide a unique tool to inhibit tumour cell proliferation, and to selectively induce apoptosis in neoplastic tissues. The mechanisms of anti-cancer activities of FP, BL, OC and related synthetic CDKIs are compared and discussed in this paper.

  17. Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer

    NASA Astrophysics Data System (ADS)

    Lan, Ya-Quan; Xiao, Ke-Jing; Wu, Yun-Jie; Chen, Qiu-Yun

    2017-04-01

    To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661 nm when excited with 643 nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10 W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.

  18. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  19. Multimodal HDAC Inhibitors with Improved Anticancer Activity.

    PubMed

    Schobert, Rainer; Biersack, Bernhard

    2018-01-01

    Histone deacetylases (HDACs) play a significant role in the proliferation and dissemination of cancer and represent promising epigenetic drug targets. The HDAC inhibitor vorinostat featuring a zinc-binding hydroxamate fragment was already clinically approved. However, HDAC inhibitors containing hydroxamic acids are often hampered by acquired or intrinsic drug resistance and may lead to enhanced tumor aggressiveness. In order to overcome these drawbacks of hydroxamate HDAC inhibitors, a series of multimodal derivatives of this compound class, including such with different zinc-binding groups, was recently developed and showed promising anticancer activity. This review provides an overview of the chemistry and pleiotropic anticancer modes of action of these conceptually new HDAC inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?

    PubMed

    Levina, Aviva; Lay, Peter A

    2017-07-18

    Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles.

    PubMed

    Patil, Maheshkumar Prakash; Kim, Gun-Do

    2017-01-01

    This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.

  2. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    PubMed Central

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  3. Developments in platinum anticancer drugs

    NASA Astrophysics Data System (ADS)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  4. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin.

    PubMed

    Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B

    2015-12-01

    Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.

  5. Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Ashkani, Sadegh

    2015-09-23

    Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties. E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL. In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

  6. Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells.

    PubMed

    Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon

    2017-01-15

    Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the inhibitory effects against CYP2J2 in HLMs and anti-cancer activity in human hepatocellular carcinoma HepG2 cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.

    PubMed

    Lefranc, Florence; Tabanca, Nurhayat; Kiss, Robert

    2017-10-01

    This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery.

    PubMed

    Cirpanli, Yasemin; Bilensoy, Erem; Lale Doğan, A; Caliş, Sema

    2009-09-01

    Camptothecin (CPT) is a potent anticancer agent. The clinical application of CPT is restricted by poor water solubility and instability under physiological conditions. Solubilization and stabilization of CPT were realized through nanoparticulate systems of amphiphilic cyclodextrins, poly(lactide-co-glycolide) (PLGA) or poly-epsilon-caprolactone (PCL). Nanoparticles were prepared with nanoprecipitation technique, whereas cyclodextrin nanoparticles were prepared from preformed inclusion complexes of CPT with amphiphilic cyclodextrins. Polymeric nanoparticles, on the other hand, were loaded with CPT:HP-beta-CD inclusion complex to solubilize and stabilize the drug. Mean particle sizes were under 275 nm, and polydispersity indices were lower than 0.2 for all formulations. Drug-loading values were significantly higher for amphiphilic cyclodextrin nanoparticles when compared with those for PLGA and PCL nanoparticles. Nanoparticle formulations showed a significant controlled release profile extended up to 12 days for amphiphilic cyclodextrin nanoparticles and 48h for polymeric nanoparticles. Anticancer efficacy of the nanoparticles was evaluated in comparison with CPT solution in dimethyl sulfoxide (DMSO) on MCF-7 breast adenocarcinoma cells. Amphiphilic cyclodextrin nanoparticles showed higher anticancer efficacy than PLGA or PCL nanoparticles loaded with CPT and the CPT solution in DMSO. These results indicated that CPT-loaded amphiphilic cyclodextrin nanoparticles might provide a promising carrier system for the effective delivery of this anticancer drug having bioavailability problems.

  9. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    PubMed

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.

  10. Recent discoveries of anticancer flavonoids.

    PubMed

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors

    PubMed Central

    Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2013-01-01

    Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669

  12. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins.

    PubMed

    de J Hiller, Noemi; A A E Silva, Nayane; Faria, Robson X; Souza, André Luís A; Resende, Jackson A L C; Borges Farias, André; Correia Romeiro, Nelilma; de Luna Martins, Daniela

    2018-06-01

    Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy.

    PubMed

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity.

  14. Evaluation of in vitro anticancer activity of 1,8-Cineole-containing n-hexane extract of Callistemon citrinus (Curtis) Skeels plant and its apoptotic potential.

    PubMed

    Sampath, Sowndarya; Veeramani, Vidhya; Krishnakumar, Gopal Shankar; Sivalingam, Udhayakumar; Madurai, Suguna Lakshmi; Chellan, Rose

    2017-09-01

    Plants are the source of a variety of secondary metabolites, which are often used in the anticancer activity. Discovering new anticancer drug from herbal source is more important in both biological and pharmacological activities. Hence, the objective of this study is to identify the anticancer agent in Callistemon citrinus (Curtis) Skeels (CC) for the treatment of cancer. Very recently we have reported an increased antioxidant activity in the ethanolic and methanolic extracts (EE and ME) of CC but significantly reduced activity (rather increased cytotoxicity), in the n-hexane extract (HE). In this study, the cytotoxicity of all the three solvent extracts was tested against A431, MG-63 and HaCaT cell lines by MTT assay. Interestingly HE has showed increased anti-proliferative effect against the cancer cells but was resisted by non-malignant cells. HPLC and GC-MS analysis revealed the presence of 1,8-Cineole as a predominant compound in HE, the semi-purified bioactive extract. Henceforth, this would be called HE-C and be used for further analyses to understand its mode of action on induced apoptosis/necrosis. Alamar blue assay of HE-C showed cytotoxicity and change in morphological characteristics, which was confirmed by AO/EB staining using fluorescence microscopy, ultra-structural features of apoptosis using SEM and TEM. HE-C induced cell death was also detected by FACS using FITC-labelled Annexin-V and Propidium iodide. ROS generation was monitored using DCF-DA by flow cytometry. The overall results suggested that the selective extract (HE-C) containing 1,8-Cineole has shown potential anti-cancer activity in a dose-dependent manner, and cell death was induced through ROS-mediated apoptosis. Our findings provide an insight into the potential of 1,8-Cineole as a novel drug for killing cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Impediments to Enhancement of CPT-11 Anticancer Activity by E. coli Directed Beta-Glucuronidase Therapy

    PubMed Central

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R.

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity. PMID:25688562

  16. Antioxidant Peptides from Terrestrial and Aquatic Plants Against Cancer.

    PubMed

    Marquez-Rios, Enrique; Del-Toro-Sanchez, Carmen Lizette

    2018-02-13

    Cancer is the leading cause of morbidity and mortality worldwide. Therefore, the search for new and less aggressive treatments is currently the focus of the anticancer research. An attractive alternative for this purpose is the use of bioactive peptides from plants. Plants live everywhere on Earth, both on land and in water, and they are a major source of diverse molecules with pharmacological potential as antioxidant peptides. Hence, this review focuses on the importance of the antioxidant activity of terrestrial and aquatic plant peptides against cancer throughout several mechanisms. The influence of the antioxidant activity of peptides by different factors such as molecular weight and amino acid composition as a crucial factor for anticancer activity is also revised. Furthermore, the relation of antioxidant activity with anticancer property as well as safety and legal aspects of protein hydrolysates and bioactive peptides for their use in cancer treatments is discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root.

    PubMed

    Jia, Xuejing; Zhang, Chao; Hu, Jie; He, Muxue; Bao, Jiaolin; Wang, Kai; Li, Peng; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Zhang, Qingwen; He, Chengwei

    2015-11-23

    Box-Behnken design (BBD), one of the most common response surface methodology (RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95%±0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  18. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage

    PubMed Central

    Peng, Xiaohua; Gandhi, Varsha

    2013-01-01

    Targeting tumor cells is an important strategy to improve the selectivity of cancer therapies. With the advanced studies in cancer biology, we know that cancer cells are usually under increased oxidative stress. The high level of reactive oxygen species in cancer cells has been exploited for developing novel therapeutic strategies to preferentially kill cancer cells. Our group, amongst others, have used boronic acids/esters as triggers for developing ROS-activated anticancer prodrugs that target cancer cells. The selectivity was achieved by combining a specific reaction between boronates and H2O2 with the efficient masking of drug toxicity in the prodrug via boronates. Prodrugs activated via ferrocene-mediated oxidation have also been developed to improve the selectivity of anticancer drugs. We describe how the strategies of ROS-activation can be used for further development of new ROS-targeting prodrugs, eventually leading to novel approaches and/or combined technology for more efficient and selective treatment of cancers. PMID:22900465

  19. Synthesis and structure-activity relationship studies of furan-ring fused chalcones as antiproliferative agents.

    PubMed

    Saito, Yusuke; Kishimoto, Maho; Yoshizawa, Yuko; Kawaii, Satoru

    2015-02-01

    As part of our continuing investigation of flavonoid derivatives as potential anticancer substances, the synthesis of 25 cinnamoyl derivatives of benzofuran as furan-fused chalcones was carried-out and these compounds were further evaluated for their antiproliferative activity towards HL60 promyelocytic leukemia cells. In comparison with 2',4'-dihydroxychalcone, attachment of a furan moiety on the A-ring enhanced activity by more than twofold. Benzofurans may be useful in the design of biologically active flavonoids. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  1. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    PubMed

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  2. Anti-cancer scopes and associated mechanisms of Scutellaria extract and flavonoid wogonin

    USDA-ARS?s Scientific Manuscript database

    Extracts of Scutellaria species have been used in Eastern traditional medicine as well in the Americas for the treatment of several human ailments, including cancer. Crude extracts or flavonoids derived from Scutellaria have been scientifically studied for potential anti-cancer activity using in vit...

  3. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent.

    PubMed

    Ghorbani, Marjan; Hamishehkar, Hamed

    2017-12-01

    The aim of this study was to design and develop a new pH-responsive nano-platform for controlled and targeted delivery of anticancer drugs. Engineering of pH-responsive nanocarriers was prepared via decoration of gold nanoparticles (NPs) by thiolated (methoxy-poly(ethylene glycol)-b-poly((2-dimethylamino) ethyl methacrylate-co-itaconic acid) (mPEG-b-p(DMAEMA-co-IA) copolymer and fully characterized by various techniques and subsequently used for loading and targeted delivery of anticancer agent, methotrexate (MTX). By conjugation of MTX with the amino groups of polymeric shell of gold NPs (with the high loading capacity of 31%), since MTX is also the target ligand of folate receptors, the targeted performance of NPs examined through the cell uptake study. The results indicated that MTX-loaded NPs showed 1.3 times more cell internalization than MTX free NPs. Cell cytotoxicity studies pointed out ~1.5 and 3 times higher cell cytotoxicity after 24h for MTX-loaded nanoparticles than MTX in MTT assay and cell cycle arrest experiments, respectively. Additionally, mPEG was used as the outer shell of NPs which caused the long-term dispersibility of the NPs even under high ionic strength. The in-vitro pH-triggered drug release of MTX showed that MTX released more than three times in simulated cancerous tissue (40°C, pH5.3) than physiologic condition (37°C, pH7.4) during 48h. The results of various experiments determined that the developed smart nanocarrier proposed as a promising nanocarrier for active and passive targeting of anionic anti-cancer agents such as MTX. Copyright © 2017. Published by Elsevier B.V.

  4. Liposomal formulation of {alpha}-tocopheryl maleamide: In vitro and in vivo toxicological profile and anticancer effect against spontaneous breast carcinomas in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turanek, Jaroslav; Wang Xiufang; Knoetigova, Pavlina

    2009-06-15

    The vitamin E analogue {alpha}-tocopheryl succinate ({alpha}-TOS) is an efficient anti-cancer drug. Improved efficacy was achieved through the synthesis of {alpha}-tocopheryl maleamide ({alpha}-TAM), an esterase-resistant analogue of {alpha}-tocopheryl maleate. In vitro tests demonstrated significantly higher cytotoxicity of {alpha}-TAM towards cancer cells (MCF-7, B16F10) compared to {alpha}-TOS and other analogues prone to esterase-catalyzed hydrolysis. However, in vitro models demonstrated that {alpha}-TAM was cytotoxic to non-malignant cells (e.g. lymphocytes and bone marrow progenitors). Thus we developed lyophilized liposomal formulations of both {alpha}-TOS and {alpha}-TAM to solve the problem with cytotoxicity of free {alpha}-TAM (neurotoxicity and anaphylaxis), as well as the low solubilitymore » of both drugs. Remarkably, neither acute toxicity nor immunotoxicity implicated by in vitro tests was detected in vivo after application of liposomal {alpha}-TAM, which significantly reduced the growth of cancer cells in hollow fiber implants. Moreover, liposomal formulation of {alpha}-TAM and {alpha}-TOS each prevented the growth of tumours in transgenic FVB/N c-neu mice bearing spontaneous breast carcinomas. Liposomal formulation of {alpha}-TAM demonstrated anti-cancer activity at levels 10-fold lower than those of {alpha}-TOS. Thus, the liposomal formulation of {alpha}-TAM preserved its strong anti-cancer efficacy while eliminating the in vivo toxicity found of the free drug applied in DMSO. Liposome-based targeted delivery systems for analogues of vitamin E are of interest for further development of efficient and safe drug formulations for clinical trials.« less

  5. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs.

    PubMed

    Wang, Wenlong; Zhang, Liang; Le, Yuan; Chen, Jian-Feng; Wang, Jiexin; Yun, Jimmy

    2016-02-10

    Resveratrol (RES) is a natural polyphenol which can be considered as a nutraceutical because of its benefits such as anticancer and antioxidant activity. In this paper, we designed polymer-RES conjugates as anticancer drug carrier for synergistic therapeutic effect in cancer treatment. Bicalutamide (BIC) was used as a model drug to investigate the drug release behaviors and in vitro anticancer performance. PEG-RES and PEG-Glycine-RES nanoparticles were prepared and characterized. The size of the prepared particles was around 50 nm with RES content of 17.2 and 16.3 wt% for PEG-RES and PEG-Glycine-RES, respectively, and BIC loading efficiency were of 81.6% and 84.5%, separately. Release rate of RES from conjugates depended on the stability of ester group against hydrolysis. BIC release was much faster than RES release. The anticancer activity of BIC loaded PEGylated RES nanoparticles was much better than that of free BIC, indicating the conjugates provided a synergetic cytotoxicity to cancer cells. Confocal laser scanning microscopy observation and flow cytometry analyses indicated that PEGylated RES conjugates were more efficiently internalized into cells, released drug into cytoplasm. These results suggest that PEGylated RES conjugates show great potential for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity

    PubMed Central

    Song, Xuxia; Li, Xuebo; Zhang, Fengcong; Wang, Changyun

    2017-01-01

    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources. PMID:28191021

  7. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

  9. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  10. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.

    PubMed

    Tyagi, Nikhil; Tyagi, Monika; Pachauri, Manendra; Ghosh, Prahlad C

    2015-11-01

    Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.

  11. Matrix metalloproteinase inhibitors as anticancer agents.

    PubMed

    Konstantinopoulos, Panagiotis A; Karamouzis, Michalis V; Papatsoris, Athanasios G; Papavassiliou, Athanasios G

    2008-01-01

    The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.

  12. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor.

    PubMed

    Bhushan, Shashi; Kakkar, Vandita; Pal, Harish Chandra; Mondhe, D M; Kaur, Indu Pal

    2016-01-25

    AP9-cd, a novel lignan composition from Cedrus deodara has significant anticancer potential, and to further enhance its activity, it was lucratively encumbered into solid lipid nanoparticles (SLNs). These nanoparticles were formulated by micro-emulsion technique with 70% drug trap competence. AP9-cd-SLNs were regular, solid, globular particles in the range of 100-200 nm, which were confirmed by electron microscopic studies. Moreover, AP9-cd-SLNs were found to be stable for up to six months in terms of color, particle size, zeta potential, drug content and entrapment. AP9-cd-SLNs have 30-50% higher cytotoxic and apoptotic potential than the AP9-cd alone. The augmented anticancer potential of AP9-cd-SLNs was observed in cytotoxic IC50 value, apoptosis signaling cascade and in Ehrlich ascites tumor (EAT) model. AP9-cd-SLNs induce apoptosis in Molt-4 cells via both intrinsic and extrinsic pathway. Moreover, the dummy nanoparticles (SLNs without AP9-cd) did not have any cytotoxic effect in cancer as well as in normal cells. Consequently, SLNs of AP9-cd significantly augment the apoptotic and antitumor potential of AP9-cd. The present study provides a podium for ornamental the remedial latent via novel delivery systems like solid lipid nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells

    PubMed Central

    Mehbuba Hossain, Sultana; Chowdhury, Ezharul Hoque

    2018-01-01

    Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA) with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA) exhibited the highest (31.38%) binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug. PMID:29534497

  14. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells.

    PubMed

    Susloparova, A; Koppenhöfer, D; Vu, X T; Weil, M; Ingebrandt, S

    2013-02-15

    In this study, impedance spectroscopy measurements of silicon-based open-gate field-effect transistor (FET) devices were utilized to study the adhesion status of cancer cells at a single cell level. We developed a trans-impedance amplifier circuit for the FETs with a higher bandwidth compared to a previously described system. The new system was characterized with a fast lock-in amplifier, which enabled measuring of impedance spectra up to 50 MHz. We studied cellular activities, including cell adhesion and anti-cancer drug induced apoptosis of human embryonic kidney (HEK293) and human lung adenocarcinoma epithelial (H441) cells. A well-known chemotherapeutic drug, topotecan hydrochloride, was used to investigate the effect of this drug to tumor cells cultured on the FET devices. The presence of the drug resulted in a 20% change in the amplitude of the impedance spectra at 200 kHz as a result of the induced apoptosis process. Real-time impedance measurements were performed inside an incubator at a constant frequency. The experimental results can be interpreted with an equivalent electronic circuit to resolve the influence of the system parameters. The developed method could be applied for the analysis of the specificity and efficacy of novel anti-cancer drugs in cancer therapy research on a single cell level in parallelized measurements. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W. Y.; Cheng, Christopher H. K.; Au, Doris W. T.; Teng, Gao-Jun; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2012-08-01

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 +/- 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC50) was 0.05 +/- 0.03 μg ml-1 for DOX/SPIO, while it was 0.13 +/- 0.02 μg ml-1 for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  16. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin

    PubMed Central

    Wright, Elise P.; Padula, Matthew P.; Higgins, Vincent J.; Aldrich-Wright, Janice R.; Coorssen, Jens R.

    2014-01-01

    Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics. PMID:28250393

  17. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.

    PubMed

    Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun

    2018-04-25

    Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida.

    PubMed

    Han, Yun; Wu, Jun; Liu, Tingting; Hu, Youdong; Zheng, Qiusheng; Wang, Binsheng; Lin, Haiyan; Li, Xia

    2016-02-01

    The purpose of this paper was to investigate separation, characterization and anticancer activities of a sulfated polysaccharide (SPUP) from Undaria pinnatifida. Firstly, polysaccharide from U. pinnatifida was separated by DEAE-52 cellulose and Sephacryl S-400 column chromatography. As results, SPUP was obtained with the yield of 19.42%. Then, SPUP was characterized using chemical analysis, gas chromatography, size-exclusion HPLC chromatography, UV-vis spectra and FT-IR spectrum. The content of total sugar, uronic acid, protein and sulfate radical were 80.48%, 3.21%, 7.12% and 29.14%, respectively. SPUP was a heteropolysaccharide composed of fucose, glucose and galactose in a molar percentage of 27.15:19.34:53.51 with molecular weight of 97.9 kDa. Finally, the strongly against breast cancer activity of SPUP was confirmed by DMBA-induced breast cancer rats model. AS results, SPUP can significantly restrain breast abnormal enlargement, prolong tumor latency and reduced tumor incidence. Immunomodulatory activity and regulating abnormal sex hormones level might contribute to its anticancer activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    PubMed Central

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  20. Isolation, structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria.

    PubMed

    Arumugam, T; Senthil Kumar, P; Hemavathy, R V; Swetha, V; Karishma Sri, R

    2018-02-01

    Actinobacteria is the most widely distributed organism in the mangrove environment and produce a large amount of secondary metabolites. A new environmental actinobacterial stain exhibited strong antimicrobial activity against vancomycin and methicillin resistant actinobacteria. The active producer strain was found to be as Brevibacillus brevis EGS9, which was confirmed by its morphological, biochemical characteristics and 16S rRNA gene sequencing. It was deposited in NCBI GeneBank database and received with an accession number of KX388147. Brevibacillus brevis EGS9 was cultivated by submerged fermentation to produce antimicrobial compounds. The anti-proliferative agent was extracted from Brevibacillus brevis EGS9 with ethyl acetate. The bioactive metabolites of mangrove actinobacteria was identified by Liquid chromatography with mass spectrometry analysis. The result of the present investigation revealed that actinobacteria isolated from mangroves are potent source of anticancer activity. The strain of Brevibacillus brevis EGS9 exhibited a potential in vitro anticancer activity. The present research concluded that the actinobacteria isolated from mangrove soil sediment are valuable in discovery of novel species. Copyright © 2017. Published by Elsevier Ltd.

  1. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities

    NASA Astrophysics Data System (ADS)

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-01

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2- and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.

  2. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed.

    PubMed

    Agbaria, Riad; Gabarin, Adi; Dahan, Arik; Ben-Shabat, Shimon

    2015-01-01

    The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.

  3. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com; Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Ourmore » results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.« less

  4. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii.

    PubMed

    Vaikundamoorthy, Ramalingam; Krishnamoorthy, Varunkumar; Vilwanathan, Ravikumar; Rajendran, Rajaram

    2018-05-01

    The purpose of this study was to investigate the anticancer activity of polysaccharides from brown seaweed Sargassum wightii (SWP) on human breast cancer cells. Initially, two polysaccharide fractions (SWP1 and SWP2) were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. As a result, SWP1 was obtained with the yield of 21.48% was characterized using chemical analysis, GC-MS, 1 H NMR and 13 C NMR. The chemical composition of the extracted polysaccharide contains a neutral polysaccharide with a high total sugar content and low protein, phenol and flavonoid content. GC-MS analysis revealed the presence of galactofuranose and arabinose and NMR spectra shows the presence of β-galactose signals. Anticancer activity shows that the polysaccharides significantly reduce the proliferation of breast cancer cells (MCF7 and MDA-MB-231) in a dose-dependent manner. Further, polysaccharides induced the apoptosis in the breast cancer cells by increasing ROS generation, cleaving mitochondrial membrane and nuclei damage. Finally, polysaccharides increased the activity of caspase 3/9, thus leads to apoptosis of breast cancer. Together, polysaccharides from S. wightii could be a new source of natural anticancer agent against breast cancer with potential value in the manufacturing supplements and drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.

  6. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure–Activity Relationships, and Molecular Mechanisms of Action

    PubMed Central

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  7. Noscapinoids with anti-cancer activity against human acute lymphoblastic leukemia cells (CEM): a three dimensional chemical space pharmacophore modeling and electronic feature analysis.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C

    2012-01-01

    We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.

  8. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells

    PubMed Central

    Lee, Hsin-chung; Ling, Qing-Dong; Yu, Wan-Chun; Hung, Chunh-Ming; Kao, Ta-Chun; Huang, Yi-Wei; Higuchi, Akon

    2013-01-01

    Purpose We evaluated the higher levels of carcinoembryonic antigen (CEA) secreted by the LoVo human colon carcinoma cells in a medium containing anticancer drugs. Drug-resistant LoVo cells were analyzed by subcutaneously xenotransplanting them into mice. The aim of this study was to evaluate whether the drug-resistant cells isolated in this study were cancer-initiating cells, known also as cancer stem cells (CSCs). Methods The production of CEA was investigated in LoVo cells that were cultured with 0–10 mM of anticancer drugs, and we evaluated the increase in CEA production by the LoVo cells that were stimulated by anticancer drug treatment. The expression of several CSC markers in LoVo cells treated with anticancer drugs was also evaluated. Following anticancer drug treatment, LoVo cells were injected subcutaneously into the flanks of severe combined immunodeficiency mice in order to evaluate the CSC fraction. Results Production of CEA by LoVo cells was stimulated by the addition of anticancer drugs. Drug-resistant LoVo cells expressed lower levels of CSC markers, and LoVo cells treated with any of the anticancer drugs tested did not generate tumors within 8 weeks from when the cells were injected subcutaneously into severe combined immunodeficiency mice. These results suggest that the drug-resistant LoVo cells have a smaller population of CSCs than the untreated LoVo cells. Conclusion Production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs. The drug-resistant subpopulation of LoVo colon cancer cells could stimulate the production of CEA, but these cells did not act as CSCs in in vivo tumor generation experiments. PMID:23818760

  9. Anticancer Effects of Extracts from the Fruit of Morinda Citrifolia (Noni) in Breast Cancer Cell Lines.

    PubMed

    Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K

    2016-03-01

    Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Quercetin exerts synergetic anti-cancer activity with 10-hydroxy camptothecin.

    PubMed

    Tang, Qin; Ji, Fangling; Wang, Jingyun; Guo, Lianying; Li, Yachen; Bao, Yongming

    2017-11-15

    Quercetin (Qu) is known as a dietary antioxidant with numerous bioactivities, but its function in anti-cancer has not been fully investigated. Here, we show that Qu at low doses (≤10μM) significantly enhances the inhibition of 10-hydroxy camptothecin (HCPT) on the proliferation of MCF7, BGC823 and HepG2 cells. A plasmid DNA relaxation assay indicates that the inhibition of HCPT on the catalytic activity of topoisomerase I (Topo I) is increased by Qu at 10μM. Compared to the treatment by Qu or HCPT alone, phosphorylation at Ser 139 of γH2A.X in MCF7 cells starts to increase significantly (P<0.05) at 6h when treated by the combination of 10μM Qu and 0.62μM HCPT. Moreover, the combinational group successively arrests MCF7 cells at G1, S and G2/M phases from 12h to 48h via up-regulation of p21 and induces apoptosis at 24h by triggering intrinsic cell death pathways. In addition, the inhibition effects of the combinational group on the proliferation of MCF7 cells are eliminated by pretreatment with 100μM Z-VAD-FMK (a caspase inhibitor). Finally, by using nude mice xenografting assay of MCF7 cells, we demonstrate that tumor inhibition rates of combinational group are significantly higher than single-drug group. In summary, the synergic anti-cancer mechanism of Qu and HCPT in MCF7 cells is through the combined inhibitory effects of Qu and HCPT on Topo I, which synergistically induce cell cycle arrest and apoptosis by triggering DNA damage. Copyright © 2017. Published by Elsevier B.V.

  11. Characterization of the Apoptotic Response Induced by the Cyanine Dye D112: A Potentially Selective Anti-Cancer Compound

    PubMed Central

    Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie

    2015-01-01

    Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702

  12. The continuing search for antitumor agents from higher plants

    PubMed Central

    Pan, Li; Chai, Heebyung; Kinghorn, A. Douglas

    2009-01-01

    Plant secondary metabolites and their semi-synthetic derivatives continue to play an important role in anticancer drug therapy. In this short review, selected single chemical entity antineoplastic agents from higher plants that are currently in clinical trials as cancer chemotherapy drug candidates are described. These compounds are representative of a wide structural diversity. In addition, the approaches taken toward the discovery of anticancer agents from tropical plants in the laboratory of the authors are summarized. The successful clinical utilization of cancer chemotherapeutic agents from higher plants has been evident for about half a century, and, when considered with the promising pipeline of new plant-derived compounds now in clinical trials, this augurs well for the continuation of drug discovery research efforts to elucidate additional candidate substances of this type. PMID:20228943

  13. Trivanillic polyphenols with anticancer cytostatic effects through the targeting of multiple kinases and intracellular Ca2+ release

    PubMed Central

    Lamoral-Theys, Delphine; Wauthoz, Nathalie; Heffeter, Petra; Mathieu, Véronique; Jungwirth, Utte; Lefranc, Florence; Nève, Jean; Dubois, Jacques; Dufrasne, François; Amighi, Karim; Berger, Walter; Gailly, Philippe; Kiss, Robert

    2012-01-01

    Abstract Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. PMID:21810170

  14. In vitro and in vivo bioactivities of aqueous and ethanol extracts from Helicteres angustifolia L. root.

    PubMed

    Li, Kejuan; Lei, Zhongfang; Hu, Xuansheng; Sun, Shuang; Li, Shuhong; Zhang, Zhenya

    2015-08-22

    Helicteres angustifolia L. (H. angustifolia L.) has been used as traditional medicine in the treatment of cancer in China and Laos. Its medical benefits, however, are still lacking of scientific evidence. Two extracts successively obtained from the root of H. angustifolia L., namely the aqueous root extract (ARE) and the ethanolic root extract (ERE), were used to evaluate the antioxidant and anticancer activities in vitro, and the antitumor efficacy of ARE was examined in vivo, respectively. ARE and ERE were extracted successively from H. angustifolia L. root with water and ethanol. In vitro antioxidant activities were assessed by radicals scavenging assay, ferrous chelating assay and reducing power assay. In vitro anticancer activities of ARE and ERE were evaluated by their cytotoxic effects against three human cancer cell lines. In addition, the anti-tumor activities of ARE in vivo were assessed by using Ht1080 (human fibrosarcoma cell line Ht1080) tumor xenografts mice. BALB/c nude mice were orally administrated with 200mg/kg/d of ARE. The tumor inhibition rate was determined on day 42 after treatment by using histopathology analysis of the tumor tissues. Furthermore, relevant biochemical parameters in blood were analyzed to monitor their cytotoxic effect. In vitro assays indicated that ARE possessed relatively higher antioxidant and anticancer activities than ERE, with IC50 values of 82.31 ± 9.62, 62.50 ± 6.99, and 127.49 ± 2.9 μg/mL against DLD-1, A549, and HepG2 cells, respectively. In vivo tumor inhibition experiments suggested that ARE possessed significant antitumor efficacy in BALB/c nude mice with a tumor inhibition rate of 49.83 ± 14.38% (p<0.05) and little toxicity was observed to the host. ARE from H. angustifolia L. possessed high antioxidant activities is active against liver cancer HepG2, lung cancer A549 and colon cancer DLD-1 cells in vitro and tumor xenografts bearing BALB/c nude mice in vivo. Further studies on elucidation of the mechanisms involved and isolation of the active components may provide more valuable information for the development of functional products from H. angustifolia L. and their application in cancer treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    PubMed

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  16. Forest bathing enhances human natural killer activity and expression of anti-cancer proteins.

    PubMed

    Li, Q; Morimoto, K; Nakadai, A; Inagaki, H; Katsumata, M; Shimizu, T; Hirata, Y; Hirata, K; Suzuki, H; Miyazaki, Y; Kagawa, T; Koyama, Y; Ohira, T; Takayama, N; Krensky, A M; Kawada, T

    2007-01-01

    In order to explore the effect of forest bathing on human immune function, we investigated natural killer (NK) activity; the number of NK cells, and perforin, granzymes and granulysin-expression in peripheral blood lymphocytes (PBL) during a visit to forest fields. Twelve healthy male subjects, age 37-55 years, were selected with informed consent from three large companies in Tokyo, Japan. The subjects experienced a three-day/two-night trip in three different forest fields. On the first day, subjects walked for two hours in the afternoon in a forest field; and on the second day, they walked for two hours in the morning and afternoon, respectively, in two different forest fields. Blood was sampled on the second and third days, and NK activity; proportions of NK, T cells, granulysin, perforin, and granzymes A/B-expressing cells in PBL were measured. Similar measurements were made before the trip on a normal working day as the control. Almost all of the subjects (11/12) showed higher NK activity after the trip (about 50 percent increased) compared with before. There are significant differences both before and after the trip and between days 1 and 2 in NK activity. The forest bathing trip also significantly increased the numbers of NK, perforin, granulysin, and granzymes A/B-expressing cells. Taken together, these findings indicate that a forest bathing trip can increase NK activity, and that this effect at least partially mediated by increasing the number of NK cells and by the induction of intracellular anti-cancer proteins.

  17. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor progression and metastasis in prostate cancer

    USDA-ARS?s Scientific Manuscript database

    The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol (Res), found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of Res, the ...

  18. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A., E-mail: mab@mayo.ed

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereasmore » Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.« less

  19. Synthesis of nοvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents.

    PubMed

    Magoulas, George E; Tsigkou, Tzoanna; Skondra, Lina; Lamprou, Margarita; Tsoukala, Panagiota; Kokkinogouli, Vassiliki; Pantazaka, Evangelia; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Papadimitriou, Evangelia

    2017-07-15

    The natural product artemisinin and derivatives thereof are currently considered as the drugs of choice for the treatment of malaria. At the same time, a significant number of such drugs have also shown interesting anticancer activity. In the context of the present research work, artemisinin was structurally modified and anchored to naturally occurring polyamines to afford new artemisinin dimeric conjugates whose potential anticancer activity was evaluated. All artemisinin conjugates tested were more effective than artemisinin itself in decreasing the number of MCF7 breast cancer cells. The effect required conjugation and was not due to the artemisinin analogue or the polyamine, alone or in combination. To elucidate potential mechanism of action, we used the most effective conjugates 6, 7, 9 and 12 and found that they decreased expression and secretion of the angiogenic growth factor pleiotrophin by the cancer cells themselves, and inhibited angiogenesis in vivo and endothelial cell growth in vitro. These data suggest that the new artemisinin dimers are good candidates for the development of effective anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis, Characterization, and Anti-Cancer Activity of Some New N'-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones Derivatives.

    PubMed

    El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-13

    Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.

  1. MONITORING OF SYNERGISTIC ENHANCEMENT OF CAFFEIC ACID ON ESCHERICHIA COLI K-12 RECA::GFP STRAIN TREATED WITH DACARBAZINE.

    PubMed

    Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Swidersk, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata

    2017-05-01

    Caffeic acid and its derivatives because of its biological activities, including antioxidants, antithrombosis, antihypertensive, antifibrosis, antiviral, and anti-tumor properties are good candidates as adjuvants in anticancer therapy. The aim of this study was the examination of cyto- and genotoxic effect of caffeic acid on Escherichia coli K-12 recA::gfp strain treated with dacarbazine. Obtained results indicate that dacarbazine and caffeic acid influenced the reactivity of recA promoter and modulate the level of gfp expression in genetic construct rrcA::gfpmut2 in E. coli K-12. Simultaneuos administration of dacarbazine with caffeic acid caused the stronger inhibition of the bacteria growth than the dacarbazine and caffeic acid separated administration to bacteria cells. The simultaneous effect of the both tested chemicals - dacarbazine and caffeic acid indicated (cytostatic effect) anticancer activity in relation to bacteria cells. It suggests, that combination of known anticancer drug - dacarbazine w ith caffeic acid exerted synergistic cytotoxic and genotoxic effects toward E. coli K- 12 cells and indicated the possibility of usefulness of caffeic acid as a natural adjuvant in anticancer therapy.

  2. Synergistic anticancer effects of triptolide and celastrol, two main compounds from thunder god vine.

    PubMed

    Jiang, Qi-Wei; Cheng, Ke-Jun; Mei, Xiao-Long; Qiu, Jian-Ge; Zhang, Wen-Ji; Xue, You-Qiu; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Zhang, Xu; Lv, Min; Chen, Mei-Wan; Wei, Xing; Shi, Zhi

    2015-10-20

    Triptolide and celastrol are two main active compounds isolated from Thunder God Vine with the potent anticancer activity. However, the anticancer effect of triptolide in combination with celastrol is still unknown. In the present study, we demonstrated that the combination of triptolide with celastrol synergistically induced cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the increased intracellular ROS accumulation in cancer cells. Pretreatment with ROS scavenger N-acetyl-L-cysteine dramatically blocked the apoptosis induced by co-treatment with triptolide and celastrol. Treatment with celastrol alone led to the decreased expressions of HSP90 client proteins including survivin, AKT, EGFR, which was enhanced by the addition of triptolide. Additionally, the celastrol-induced expression of HSP70 and HSP27 was abrogated by triptolide. In the nude mice with xenograft tumors, the lower-dose combination of triptolide with celastrol significantly inhibited the growth of tumors without obvious toxicity. Overall, triptolide in combination with celastrol showed outstanding synergistic anticancer effect in vitro and in vivo, suggesting that this beneficial combination may offer a promising treatment option for cancer patients.

  3. The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration

    PubMed Central

    Becker, Michael S.; Müller, Paul M.; Bajorat, Jörg; Schroeder, Anne; Giaisi, Marco; Amin, Ehsan; Ahmadian, Mohammad R.; Rocks, Oliver; Köhler, Rebecca; Krammer, Peter H.; Li-Weber, Min

    2016-01-01

    Chemotherapy is one of the pillars of anti-cancer therapy. Although chemotherapeutics cause regression of the primary tumor, many chemotherapeutics are often shown to induce or accelerate metastasis formation. Moreover, metastatic tumors are largely resistant against chemotherapy. As more than 90% of cancer patients die due to metastases and not due to primary tumor formation, novel drugs are needed to overcome these shortcomings. In this study, we identified the anticancer phytochemical Rocaglamide (Roc-A) to be an inhibitor of cancer cell migration, a crucial event in metastasis formation. We show that Roc-A inhibits cellular migration and invasion independently of its anti-proliferative and cytotoxic effects in different types of human cancer cells. Mechanistically, Roc-A treatment induces F-actin-based morphological changes in membrane protrusions. Further investigation of the molecular mechanisms revealed that Roc-A inhibits the activities of the small GTPases RhoA, Rac1 and Cdc42, the master regulators of cellular migration. Taken together, our results provide evidence that Roc-A may be a lead candidate for a new class of anticancer drugs that inhibit metastasis formation. PMID:27340868

  4. Molecular targets and anti-cancer potential of escin.

    PubMed

    Cheong, Dorothy H J; Arfuso, Frank; Sethi, Gautam; Wang, Lingzhi; Hui, Kam Man; Kumar, Alan Prem; Tran, Thai

    2018-05-28

    Escin is a mixture of triterpenoid saponins extracted from the horse chestnut tree, Aesculus hippocastanum. Its potent anti-inflammatory and anti-odematous properties makes it a choice of therapy against chronic venous insufficiency and odema. More recently, escin is being actively investigated for its potential activity against diverse cancers. It exhibits anti-cancer effects in many cancer cell models including lung adenocarcinoma, hepatocellular carcinoma and leukemia. Escin also attenuates tumor growth and metastases in various in vivo models. Importantly, escin augments the effects of existing chemotherapeutic drugs, thereby supporting the role of escin as an adjunct or alternative anti-cancer therapy. The beneficial effects of escin can be attributed to its inhibition of proliferation and induction of cell cycle arrest. By regulating transcription factors/growth factors mediated oncogenic pathways, escin also potentially mitigates chronic inflammatory processes that are linked to cancer survival and resistance. This review provides a comprehensive overview of the current knowledge of escin and its potential as an anti-cancer therapy through its anti-proliferative, pro-apoptotic, and anti-inflammatory effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    NASA Astrophysics Data System (ADS)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to breast cancer cells for inducing apoptosis. Cytochrome c is an endogenous mitochondrial protein and upon its release to cytosol, leads to apoptotic cell death. Although the mechanism by which Cyt c induces apoptosis theoretically makes it an attractive anti-cancer therapeutic agent, the lack of physicochemical characteristics required for successful cell permeation requires the use of delivery systems such as nanocarriers to facilitate its intracellular delivery. Cytochrome c, being a protein, is susceptible to changes in structural integrity and aggregation which might occur upon exposure to organic solvents and high shear/stress conditions, often used during nanoparticle preparation. Furthermore, successful delivery to cell cytosol requires endosomal release. Therefore, to deliver Cyt c intracellularly, while maintaining conditions for its stability, entrapment was performed using a film hydration method with 1,2-dioleoyl-3-trimethylammonium-propane and cholesterol (DOTAP-Chol) liposomes. It was shown that modulation of hydration buffer pH from 7 to 8.5 increased entrapment of Cyt c in DOTAP-Chol liposomes from 2% to 30%. The optimized formulation showed apoptotic activity in MDA-MB-231 cells. It was also shown that no aggregation, secondary and heme crevice structure change and deamidation was observed for Cyt c released from optimized formulation and that released Cyt c retained apoptotic activity after storage of formulation for twenty eight days at 4 °C.

  6. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, N.; Kumar, S.; Marlowe, T.

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less

  7. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola).

    PubMed

    Gavamukulya, Yahaya; Abou-Elella, Faten; Wamunyokoli, Fred; AEl-Shemy, Hany

    2014-09-01

    To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. The results showed that A. muricata was a promising new antioxidant and anticancer agent. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; ...

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less

  9. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    PubMed

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-10-13

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  10. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  11. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    NASA Astrophysics Data System (ADS)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  12. Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer.

    PubMed

    Jain, K; Jain, N K

    2014-07-01

    The present research work describes the formulation of arginine conjugated 3.0G Poly(propylene) imine (PPI) dendrimers, mimicking the surface structure of an endogenous angiogenesis-inhibitor endostatin; for tumor specific delivery of a model anticancer drug, doxorubicin hydrochloride (Dox). Synthesis of PPI dendrimers and conjugation of arginine to surface groups was confirmed by FTIR, NMR, TEM and mass spectrometry. Drug was loaded by equilibrium dialysis method and developed formulation was evaluated for entrapment efficiency, hemolytic toxicity, in vitro drug release, stability, anti-angiogenic activity via in vivo chick embryo chorioallantoic membrane (CAM) assay, and anticancer activity and cell uptake using MCF-7 cancer cell lines. The system exhibited the initial rapid release followed by sustained release of Dox with significant antiangiogenic activity in the CAM assay. Further, the arginine conjugated dendrimers was found to inhibit growth of cancer cells in ex vivo studies with MCF-7 cell lines. Cell uptake studies suggested that in comparison to free drug the formulation was preferably taken up by the tumor cells. Thus the two pronged attack on cancerous tissue i.e., inhibition of angiogenesis and killing of cancer cells by anticancer drug, might prove to be a promising approach in the treatment of fatal disease, cancer.

  13. Anticancer Effect of Nemopilema nomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model

    PubMed Central

    Bae, Seong Kyeong; Kim, Munki; Pyo, Min Jung; Kim, Minkyung; Yang, Sujeoung; Yoon, Won Duk; Han, Chang Hoon

    2017-01-01

    Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells. PMID:28785288

  14. Optical imaging of tumor cells in hollow fibers: evaluation of the antitumor activities of anticancer drugs and target validation.

    PubMed

    Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L

    2007-08-01

    The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.

  15. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  16. Enhanced anticancer activity in vitro and in vivo of luteolin incorporated into long-circulating micelles based on DSPE-PEG2000 and TPGS.

    PubMed

    Yan, Hongmei; Wei, Pingping; Song, Jie; Jia, Xiaobin; Zhang, Zhenhai

    2016-10-01

    This study aimed to evaluate enhanced anticancer activity in vitro and in vivo of luteolin-loaded long-circulating micelles (DTLLMs) formulated. DTLLM was the luteolin formulation prepared with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly (ethylene glycol 2000) (DSPE-PEG2000 ) and d-α-tocopheryl polyethylene glycol succinate (TPGS) in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumour efficacy and in vivo tumour targeting of these micelles using non-small cell lung cancer (NSCLC) A549 cells. Results showed that the obtained micelles have a mean particle size of around 42.34 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, DTLLM displayed a more potent antiproliferative action on A549 cell lines than luteolin; half-maximal inhibitory concentration (IC50 ) was 7.29 vs 19.14 μg/ml, respectively. The antitumour efficacy test in nude mice showed that DTLLM exhibited significantly higher antitumour activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the long-circulating micelles formulation achieved targeted drug delivery and make drug release slow to prolong the circulating time. DTLLM might be a potential antitumour formulation. © 2016 Royal Pharmaceutical Society.

  17. Structurally simplified biphenyl combretastatin A4 derivatives retain in vitro anti-cancer activity dependent on mitotic arrest

    PubMed Central

    Tarade, Daniel; Ma, Dennis; Pignanelli, Christopher; Mansour, Fadi; Simard, Daniel; van den Berg, Sean; Gauld, James; McNulty, James; Pandey, Siyaram

    2017-01-01

    The cis-stilbene, combretastatin A4 (CA4), is a potent microtubule targeting and vascular damaging agent. Despite promising results at the pre-clinical level and extensive clinical evaluation, CA4 has yet to be approved for therapeutic use. One impediment to the development of CA4 is an inherent conformational instability about the ethylene linker, which joins two aromatic rings. We have previously published preliminary data regarding structurally simplified biphenyl derivatives of CA4, lacking an ethylene linker, which retain anti-proliferative and pro-apoptotic activity, albeit at higher doses. Our current study provides a more comprehensive evaluation regarding the anti-proliferative and pro-apoptotic properties of biphenyl CA4 derivatives in both 2D and 3D cancerous and non-cancerous cell models. Computational analysis has revealed that cytotoxicity of CA4 and biphenyl analogues correlates with predicted tubulin affinity. Additional mechanistic evaluation of the biphenyl derivatives found that their anti-cancer activity is dependent on prolonged mitotic arrest, in a similar manner to CA4. Lastly, we have shown that cancer cells deficient in the extrinsic pathway of apoptosis experience delayed cell death following treatment with CA4 or analogues. Biphenyl derivatives of CA4 represent structurally simplified analogues of CA4, which retain a similar mechanism of action. The biphenyl analogues warrant in vivo examination to evaluate their potential as vascular damaging agents. PMID:28253265

  18. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.

    PubMed

    Arodola, Olayide A; Soliman, Mahmoud E S

    2015-01-01

    Based on experimental data, the anticancer activity of nelfinavir (NFV), a US Food and Drug Administration (FDA)-approved HIV-1 protease inhibitor (PI), was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90), a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, "loop docking" - an enhanced in-house developed molecular docking approach - followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =-9.2 kcal/mol) when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 μM). Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =-9.0, -8.6, and -8.5 kcal/mol, respectively). Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602) played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding mechanism of the FDA-approved HIV PIs binding to human Hsp90. Information gained from this study should also provide a route map toward the design, optimization, and further experimental investigation of potential derivatives of PIs to treat HER2+ breast cancer.

  19. Synthesis and Evaluation of Cytotoxic Activity of Some Pyrroles and Fused Pyrroles.

    PubMed

    Fatahala, Samar S; Mohamed, Mosaad S; Youns, Mahmoud; Abd-El Hameed, Rania H

    2017-01-01

    Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata

    PubMed Central

    Karker, Manel; Falleh, Hanen; Msaada, Kamel; Smaoui, Abderrazak; Abdelly, Chedly; Legault, Jean; Ksouri, Riadh

    2016-01-01

    Reaumuria vermiculata is a xero-halophytic specie widely distributed in the south of Tunisia. In the current study, antioxidant, anti-inflammatory and anticancer activities of Reaumuria vermiculata shoot extracts as well as its phenolic compounds were investigated in different solvent extracts (hexane, dichloromethane, methanol and water). Results showed a strong antioxidant activity, using the ORAC method and a cell based-assay, in methanol extract as well as an important phenolic composition (117.12 mg GAE/g). Hexane and dichloromethane proved an interesting anticancer activity against A-549 lung carcinoma cells, with IC50 values of 17 and 23 µg/ml, respectively. Besides, dichloromethane extract displayed the utmost anti-inflammatory activity, inhibiting NO release over 100 % at 80 µg/ml in LPS-stimulated RAW 264.7. Taken together, these finding suggest that R. vermiculata exhibited an interesting biological activities which may be related to the phenolic composition of this plant. Moreover, the identification of phenolic compounds in R. vermiculata dichloromethane extract using RP-HPLC revealed that myricetin was the major molecule. These results allow us to propose R. vermiculata as a valuable source for bioactive and natural compounds exhibiting interesting biological capacities. PMID:27298615

  1. In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid.

    PubMed

    Chakravarti, Bandana; Maurya, Ranjani; Siddiqui, Jawed Akhtar; Bid, Hemant Kumar; Rajendran, S M; Yadav, Prem P; Konwar, Rituraj

    2012-06-26

    Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc. However, the anti-cancer activity of this plant or its constituents has never been studied systematically in any cancer types so far. To evaluate the anti-cancer activities of the ethanolic extract of W. tomentosa and identified constituent active molecule(s) against breast cancer. Powdered leaves of W. tomentosa were extracted with ethanol. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa were tested for its anti-proliferative and pro-apoptotic effects in breast cancer cells MCF-7 and MDA-MB-231. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa inhibited the proliferation of human breast cancer cell lines, MCF-7 and MDA-MB-231. The fraction F-4 obtained from hexane fraction inhibited proliferation of MCF-7 and MDA-MB-231 cells in concentration and time dependent manner with IC₅₀ of 50 μg/ml and 30 μg/ml for 24 h, 28 μg/ml and 22 μg/ml for 48 h and 25 μg/ml and 20 μg/ml for 72 h respectively. The fraction F-4 induced G1 cell cycle arrest, reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and subsequent apoptosis. Apoptosis is indicated in terms of increased Bax/Bcl-2 ratio, enhanced Annexin-V positivity, caspase 8 activation and DNA fragmentation. The active molecule isolated from fraction F-4, oleanolic acid and urosolic acid inhibited cell proliferation of MCF-7 and MDA-MB-231 cells at IC₅₀ value of 7.5 μM and 7.0 μM respectively, whereas there is devoid of significant cell inhibiting activity in non-cancer originated cells, HEK-293. In both MCF-7 and MDA-MB-231, oleanolic acid and urosolic acid induced cell cycle arrest and apoptosis as indicated by significant increase in Annexin-V positive apoptotic cell counts. Our results suggest that W. tomentosa extracts has significant anti-cancer activity against breast cancer cells due to induction of apoptosis pathway. Olenolic and urosolic acid are important constituent molecules in the extract responsible for anti-cancer activity of W. tomentosa.

  2. Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity.

    PubMed

    Abdelrahman, Mostafa; Mahmoud, Hassan Y A H; El-Sayed, Magdi; Tanaka, Shuhei; Tran, L S

    2017-07-01

    Exploration of new and promising anticancer compounds continues to be one of the main tasks of cancer research because of the drug resistance, high cytotoxicity and limitations of tumor selectivity. Natural products represent a better choice for cancer treatment in comparison with synthetic compounds because of their pharmacokinetic properties and lower side effects. In the current study, we isolated a steroidal saponin, named Cepa2, from the dry roots of shallot (Allium cepa L. Aggregatum group), and determined its structure by using two-dimensional nuclear manganic resonance (2D NMR). The 1 H NMR and 13 C NMR data revealed that the newly isolated Cepa2 compound is identical to alliospiroside A (C 38 H 60 O 12 ) [(25S)-3β-hydroxyspirost-5-en-1β-yl-2-O-(6-deoxy-α-L-mannopyranosyl)-α-L-arabinopyranoside], whose anticancer activity remains elusive. Our in vitro examination of the cytotoxic activity of the identified Cepa2 against P3U1 myeloma cancer cell line showed its high efficiency as an anticancer with 91.13% reduction in P3U1 cell viability 12 h post-treatment. The reduction of cell viability was correlated with the increase in reactive oxygen species levels in Cepa2-treated P3U1 cells, as compared with untreated cells. Moreover, scanning electron microscope results demonstrated apoptosis of the Cepa2-treated P3U1 cells in a time course-dependent manner. The results of our study provide evidence for the anticancer properties of the natural Cepa2/alliospiroside A extracted from shallot plants, and a strong foundation for in-depth investigations to build theoretical bases for cell apoptosis and development of novel anticancer drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Metal Occupancy of Zinc Finger Motifs as Determinants for Zn2+-Mediated Chemosensitization of Prostate Cancer Cells

    DTIC Science & Technology

    2013-12-01

    leukemia (AML) and glioblastoma ( GBM ). Our laboratory is interested in the potential of F10 for improved treatment of prostate cancer based upon...displays strong anti-cancer activity and minimal systemic toxicity in pre-clinical models of AML and GBM and that in previous studies demonstrated...of the low toxicity and strong anti-cancer activity of F10 in animal models of AML and GBM this combination is likely to be effective and well

  4. Synthesis of a novel fused pyrrolodiazepine-based library with anti-cancer activity.

    PubMed

    Malik, Neha; Iyamu, Iredia D; Scheidt, Karl A; Schiltz, Gary E

    2018-04-11

    Development of drugs for new and persistent diseases will increasingly rely on the expansion of accessible chemical space to allow exploration of novel molecular targets. Here we report the synthesis of a library of novel fused heterobicyclic small molecules based on the 1,4-diazepine and 2,4-pyrrolidinedione scaffolds. Key chemical transformations included a Mannich-type condensation and chemoselective N-acylation reactions. Screening shows anti-cancer activity of several library compounds which suggests translational potential of this novel chemical scaffold.

  5. Difluoromethylornithine in cancer: new advances.

    PubMed

    Alexiou, George A; Lianos, Georgios D; Ragos, Vassileios; Galani, Vasiliki; Kyritsis, Athanassios P

    2017-04-01

    Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.

  6. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  7. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    PubMed Central

    Martínez, C; García-Martín, E; Pizarro, R M; García-Gamito, F J; Agúndez, J A G

    2002-01-01

    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs. British Journal of Cancer (2002) 87, 681–686. doi:10.1038/sj.bjc.6600494 www.bjcancer.com © 2002 Cancer Research UK PMID:12237780

  8. In vitro growth inhibition of human cancer cells by novel honokiol analogs.

    PubMed

    Lin, Jyh Ming; Prakasha Gowda, A S; Sharma, Arun K; Amin, Shantu

    2012-05-15

    Honokiol possesses many pharmacological activities including anti-cancer properties. Here in, we designed and synthesized honokiol analogs that block major honokiol metabolic pathway which may enhance their effectiveness. We studied their cytotoxicity in human cancer cells and evaluated possible mechanism of cell cycle arrest. Two analogs, namely 2 and 4, showed much higher growth inhibitory activity in A549 human lung cancer cells and significant increase of cell population in the G0-G1 phase. Further elucidation of the inhibition mechanism on cell cycle showed that analogs 2 and 4 inhibit both CDK1 and cyclin B1 protien levels in A549 cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.

    PubMed

    Alvares, Dayane S; Ruggiero Neto, João; Ambroggio, Ernesto E

    2017-06-01

    Polybia-MP1 (IDWKKLLDAAKQIL-NH 2 ) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione.

    PubMed

    Sufi, Shamim Akhtar; Adigopula, Lakshmi Narayana; Syed, Safiulla Basha; Mukherjee, Victor; Coumar, Mohane S; Rao, H Surya Prakash; Rajagopalan, Rukkumani

    2017-01-01

    Previously we showed that BDMC, an analogue of curcumin suppresses growth of human breast and laryngeal cancer cell line by causing apoptosis. Here, we demonstrate the enhanced anti-cancer activity of a heterocyclic ring (indole) incorporated curcumin analogue ((1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-Dione), ICA in short, in comparison to curcumin. ICA was synthesized by a one pot condensation reaction. Anti-cancer potential of ICA was assessed in three human cancer cell lines of different origin (Lung adenocarcinoma (A549), leukemia (K562) and colon cancer (SW480)) by MTT assay. Mode of cell death was determined by acridine orange-ethidium bromide (Ao-Eb) staining. Putative cellular targets of ICA were investigated by molecular docking studies. Cell cycle analysis following curcumin or ICA treatment in SW480 cell line was carried out by flow cytometry. Expression levels of Cyclin D1 and apoptotic markers, such as Caspase 3, 8 and 9 were studied by western blot analysis in SW480 cell line treated with or without ICA and curcumin. The yield of ICA synthesis was found to be 69% with a purity of 98%. ICA demonstrated promising anti-cancer activity compared to curcumin alone, as discerned by MTT assay. ICA was non-toxic to the cell line of normal origin. We further observed that ICA is ∼2 fold more potent than curcumin in inhibiting the growth of SW480 cells. Ao-Eb staining revealed that ICA could induce apoptosis in all the cell lines tested. Molecular docking studies suggest that ICA may possibly exhibit its anticancer effect by inhibiting EGFR in A549, Bcr-Abl in K562 and GSK-3β kinase in SW480 cell line. Moreover, ICA showed strong binding avidity for Bcl-2 protein in silico, which could result in induction of apoptosis. Cell cycle analysis revealed that both curcumin and ICA induced concomitant cell cycle arrest at G0/G1 and G2/M phase. Western blot shows that ICA could effectively down regulate the expression of cell cycle protein cyclin D1, while promoting the activation of Caspase 3, 8 and 9 when compared to curcumin in human colon cancer cell line SW480. The result of this study indicates that ICA could hold promise to be a potential anti-cancer agent. Since ICA has shown encouraging results in terms of its anti-cancer activity compared to curcumin, further research is necessary to fully delineate the underlying molecular mechanism of its anticancer potential. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Macrophages Exhibit a Large Repertoire of Activation States via Multiple Mechanisms of Macrophage-activating Factors.

    PubMed

    Sumiya, Y U; Inoue, Takahiro; Ishikawa, Mami; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2016-07-01

    Macrophages are important components of human defense systems and consequently key to antitumor immunity. Human-serum macrophage activation factor (serum MAF) can activate macrophages, making it a promising reagent for anticancer therapy. We established four different macrophage subtypes through introduction of different culture conditions to THP-1- and U937-derived macrophages. We assessed phagocytic activity to understand subtype responses to typical macrophage activation factors (MAFs) and the activation mechanisms of serum MAF. All four macrophage subtypes differed in their response to all MAFs. Moreover, serum MAF had two different activation mechanisms: N-acetylgalactosamine (GalNAc)-dependent and GalNAc-independent. Macrophage activation states and mechanisms are heterogeneous. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Synthesis, Characterization, Anticancer and Antibacterial Activity of Some Novel Pyrano[2,3-d]pyrimidinone Carbonitrile Derivatives.

    PubMed

    Aremu, Oluwole S; Gopaul, Kaalin; Kadam, Pramod; Singh, Moganavelli; Mocktar, Chunderika; Singh, Parvesh; Koorbanally, Neil A

    2017-01-01

    Pyrimidines have widespread activity and have shown potent antibacterial and anticancer activity. To synthesise a range of pyrimidine diones and test them for their antibacterial and anticancer activity. The pyranopyrimidin-2,4-dione derivatives (1-7) were synthesized in a one-pot reaction by reacting malononitrile and barbituric acid with several aromatic aldehydes in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in aqueous medium. The compounds were tested for their antibacterial activity using the broth microdilution method and for their cytotoxicity against three cell lines, HeLa (cervical cancer), Caco-2 (human colon adenocarcinoma) and HEK 293 (human embryonic kidney cells) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. Compounds 1-7 were successfully synthesized in yields of >90%. The 3,4-dihydroxyaryl (3) and the 2,5- dimethoxyaryl (7) derivatives were novel. Compounds 3, 5 (4'-methoxy derivative) and 6 (2',3'-dimethoxy derivative) showed antibacterial activity comparable to or better than the standard ampicillin. All the test compounds 1-7 showed good anticancer activity. The IC50 values ranged from 3.46 to 37.13 μM (HeLa); 136.78 to 297.05 μM (Caco-2) and 137.84 to 333.81 μM (HEK293). The best activity was seen in the HeLa cell line when compared to the standard 5FU (5-Fluorouracil IC50 of 41.85 μM), with 1, 2, 5 and 7 having IC50 values of 10.64, 3.46, 4.36 and 4.44 μM respectively. Additionally, two representative compounds (1 and 7) found to be potent against the two cell lines (HeLa and HEK 293) were docked into the binding site of human kinesin Eg5 with the aim of predicting their binding propensities and to establish their mechanism of action. The Lipinski parameters of these compounds were also computed and analysed for their drug-likeness. Compound 6 is an excellent candidate for a broad spectrum antibiotic with MBCs of 45.6-365.2 μM, while both 3 and 6 have the potential to be developed into an antibiotic against MRSA, with MBCs of 183-199 μM. Since all synthesized compounds showed IC50 values of 10 μM or less especially against the HeLa cells, they can be considered good lead compounds for anticancer agents. Additionally, the docking simulations suggested a good binding affinity of the compounds with Eg5 and indicated their anti-cancer action, at least partially, through its inhibition. The predicted Lipinski descriptors also indicated the potential of these compounds as an orally active drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Metal complexes as DNA intercalators.

    PubMed

    Liu, Hong-Ke; Sadler, Peter J

    2011-05-17

    DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru(II)- and Os(II)-arene complexes and the methods used to detect arene-DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure-activity relationships. The interactions between these complexes and DNA show close similarities to those of covalent polycyclic aromatic carcinogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(η(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(η(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru-arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure- activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.

  14. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study.

    PubMed

    Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B

    2015-01-01

    Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.

  15. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells.

    PubMed

    Ren, Kewei; Zhang, Wenzhe; Wu, Gang; Ren, Jianzhuang; Lu, Huibin; Li, Zongming; Han, Xinwei

    2016-12-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-cancer and antioxidative properties. Berberine, a major component of Berberis vulgaris extract, exhibits potent anti-cancer activities through distinct molecular mechanisms. However, the anticancer effect of galangin in combination with berberine is still unknown. In the present study, we demonstrated that the combination of galangin with berberine synergistically resulted in cell growth inhibition, apoptosis and cell cycle arrest at G2/M phase with the increased intracellular reactive oxygen species (ROS) levels in oesophageal carcinoma cells. Pretreatment with ROS scavenger promoted the apoptosis dramatically induced by co-treatment with galangin and berberine. Treatment with galangin and berberine alone caused the decreased expressions of Wnt3a and β-catenin. Interestingly, combination of galangin with berberine could further suppress Wnt3a and β-catenin expression and induce apoptosis in cancer cells. Additionally, in nude mice with xenograft tumors, the combinational treatment of galangin and berberine significantly inhibited the tumor growth without obvious toxicity. Overall, galangin in combination with berberine presented outstanding synergistic anticancer role in vitro and in vivo, indicating that the beneficial combination of galangin and berberine might provide a promising treatment for patients with oesophageal carcinoma. Copyright © 2016. Published by Elsevier Masson SAS.

  16. Design, synthesis, anticancer screening, docking studies and in silico ADME prediction of some β-carboline derivatives.

    PubMed

    Abdelsalam, Mohamed A; AboulWafa, Omaima M; M Badawey, El-Sayed A; El-Shoukrofy, Mai S; El-Miligy, Mostafa M; Gouda, Noha; Elaasser, Mahmoud M

    2018-05-22

    Medicinal interest has focused on β-carbolines as anticancer agents. Several β-carbolines were designed, synthesized and evaluated for their cytotoxic activity against MCF-7 and A-549 cancer cell lines using MTT assay. Compounds 13a, 13c, 13d and 20a were the most promising showing high selectivity indices. Compounds 13c and 20a showed potent inhibition of topoisomerase (topo-I) and kinesin spindle protein (KSP/Eg5 ATPase) which was confirmed by their docking results into the active site of both enzymes. In silico physicochemical calculations predicted that compounds 13a, 13d and 20a obeyed Lipinski's rule of five. Compounds 13c and 20a are multitarget anticancer leads that act as potent inhibitors for both topo-I and/or KSP ATPase.

  17. The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells

    PubMed Central

    Chan, Wai Kin; Lorenzi, Philip L.; Anishkin, Andriy; Purwaha, Preeti; Rogers, David M.; Sukharev, Sergei; Rempe, Susan B.; Weinstein, John N.

    2014-01-01

    l-Asparaginase (l-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that l-ASP’s glutaminase activity is not always required for the enzyme’s anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli l-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type l-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of l-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of l-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of l-ASP would provide larger therapeutic indices than wild-type l-ASP for ASNS-negative cancers. PMID:24659632

  18. Anticancer and antioxidant activity of bread enriched with broccoli sprouts.

    PubMed

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.

  19. The molecular shape and the field similarities as criteria to interpret SAR studies for fragment-based design of platinum(IV) anticancer agents. Correlation of physicochemical properties with cytotoxicity.

    PubMed

    Lorenzo, Julia; Montaña, Ángel M

    2016-09-01

    Molecular shape similarity and field similarity have been used to interpret, in a qualitative way, the structure-activity relationships in a selected series of platinum(IV) complexes with anticancer activity. MM and QM calculations have been used to estimate the electron density, electrostatic potential maps, partial charges, dipolar moments and other parameters to correlate the stereo-electronic properties with the differential biological activity of complexes. Extended Electron Distribution (XED) field similarity has been also evaluated for the free 1,4-diamino carrier ligands, in a fragment-based drug design approach, comparing Connolly solvent excluded surface, hydrophobicity field surface, Van der Waals field surface, nucleophilicity field surface, electrophilicity field surface and the extended electron-distribution maxima field points. A consistency has been found when comparing the stereo-electronic properties of the studied series of platinum(IV) complexes and/or the free ligands evaluated and their in vitro anticancer activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan, Iran.

    PubMed

    Akhbari, Maryam; Kord, Reza; Jafari Nodooshan, Saeedeh; Hamedi, Sepideh

    2018-01-07

    In this study, biological properties of the essential oil isolated from seeds of Foeniculum vulgare (F. vulgare) were evaluated. GC-MS analysis revealed Trans-Anethole (80.63%), L-Fenchone (11.57%), Estragole (3.67%) and Limonene (2.68%) were the major compounds of the essential oil. Antibacterial activity of the essential oil against nine Gram-positive and Gram-negative strains was studied using disc diffusion and micro-well dilution assays. Essential oil exhibited the antibacterial activity against three Gram-negative strains of Pseudomonas aeruginosa, Escherichia coli, and Shigella dysenteriae. The preliminary study on toxicity of seed oil was performed using Brine Shrimp lethality test (BSLT). Results indicated the high toxicity effect of essential oil (LC50 = 10 μg/mL). In vitro anticancer activity of seed oil was investigated against human breast cancer (MDA-Mb) and cervical epithelioid carcinoma (Hela) cell lines by MTT assay. Results showed the seed oil behave as a very potent anticancer agent with IC50 of lower than 10 μg/mL in both cases.

Top