Sample records for higher average powers

  1. 152 W average power Tm-doped fiber CPA system.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2014-08-15

    A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.

  2. Laser processing of ceramics for microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  3. Nuclear-powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This paper reports that using Puget Sound Naval Shipyard as a model, GAO examined the Navy's accounting practices at nuclear shipyards. In fiscal year 1991, Puget Sound worked on 24 nuclear-powered and three conventionally powered ships. About 31 percent of the workdays and 35 percent of total costs were for nuclear work. The average cost per workday for nuclear labor was 25 percent higher than for non-nuclear work, and the average cost per day for overhead for nuclear work was about 60 percent higher. These higher costs are due to the complexity of nuclear work, which requires a higher levelmore » of services, and the higher cost of specially trained workers and specialized shipyard departments that support nuclear work.« less

  4. Theoretical study of enhancing the piezoelectric nanogenerator's output power by optimizing the external force's shape

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Qin, Yong

    2017-07-01

    The average power is one of the key parameters of piezoelectric nanogenerators (PENGs). In this paper, we demonstrate that the PENG's output can be gigantically improved by choosing driving force with an appropriate shape. When the load resistance is 100 MΩ and the driven forces have a magnitude of 19.6 nN, frequency of 10 Hz, the average power of PENG driven by square shaped force is six orders of magnitude higher than that driven by triangular shaped and sinusoidal shaped forces. These results are of importance for optimizing the average power of the PENGs in practical applications.

  5. Determinants of mobile phone output power in a multinational study: implications for exposure assessment.

    PubMed

    Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E

    2009-10-01

    The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.

  6. Output power distributions of terminals in a 3G mobile communication network.

    PubMed

    Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan

    2012-05-01

    The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.

  7. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  8. Analytical Assessment of the Relationship between 100MWp Large-scale Grid-connected Photovoltaic Plant Performance and Meteorological Parameters

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang

    2017-05-01

    This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.

  9. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests.

    PubMed

    Coakley, Sarah L; Passfield, Louis

    2018-06-01

    Time-to-exhaustion (TTE) trials are used in a laboratory setting to measure endurance performance. However, there is some concern with their ecological validity compared with time-trials (TT). Consequently, we aimed to compare cycling performance in TTE and TT where the duration of the trials was matched. Seventeen trained male cyclists completed three TTE trials at 80, 100 and 105% of maximal aerobic power (MAP). On a subsequent visit they performed three TT over the same duration as the TTE. Participants were blinded to elapsed time, power output, cadence and heart rate (HR). Average TTE was 865 ± 345 s, 165 ± 98 s and 117 ± 45 s for the 80, 100 and 105% trials respectively. Average power output was higher for TTE (294 ± 44 W) compared to TT (282 ± 43 W) at 80% MAP (P < 0.01), but not at 100 and 105% MAP (P > 0.05). There was no difference in cadence, HR, or RPE for any trial (P > 0.05). Critical power (CP) was also higher when derived from TTE compared to TT (P < 0.01). It is concluded that TTE results in a higher average power output compared to TT at 80% MAP. When determining CP, TTE rather than TT protocols appear superior.

  10. ²²⁶Ra, ²³²Th and ⁴⁰K radionuclides enhancement rate and dose assessment for residues of lignite-fired thermal power plants in Turkey.

    PubMed

    Parmaksiz, A; Arikan, P; Vural, M; Yeltepe, E; Tükenmez, I

    2011-11-01

    A total of 77 coal, slag and fly ash samples collected from six thermal power plants were measured by gamma-ray spectrometry. The average (226)Ra activity concentrations in coal, slag and fly ash were measured as 199.8±16.7, 380.3±21.8 and 431.5±29.0 Bq kg(-1), respectively. The average (232)Th activity concentrations in coal, slag and fly ash were measured as 32.0±2.4, 74.0±9.0 and 87.3±9.8 Bq kg(-1), respectively. The average (40)K activity concentrations in coal, slag and fly ash were found to be 152.8±12.1, 401.3±25.0 and 439.0±30.2 Bq kg(-1), respectively. The radium equivalent activities of samples varied from 147.6±8.5 to 1077.4±53.3 Bq kg(-1). The gamma and alpha index of one thermal power plant's fly ash were calculated to be 3.5 and 5 times higher than that of the reference values. The gamma absorbed dose rates were found to be higher than that of the average Earth's crust. The annual effective dose of residues measured in four thermal power plants were calculated higher than that of the permitted dose rate for public, i.e. 1 mSv y(-1).

  11. THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.

    PubMed

    Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J

    2017-02-20

    An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.

  12. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  13. Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, Thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    Previous Thulium fiber laser lithotripsy (TFL) studies were limited to a peak power of 70 W (35 mJ / 500 μs), requiring operation in dusting mode with low pulse energy (35 mJ) and high pulse rate (300 Hz). In this study, a novel, compact, air-cooled, TFL capable of operating at up to 500 W peak power, 50 W average power, and 2000 Hz, was tested. The 1940-nm TFL was used with pulse duration (500 μs), average power (10 W), and fiber (270- μm-core) fixed, while pulse energy and pulse rate were changed. A total of 23 large uric acid (UA) stones and 16 large calcium oxalate monohydrate (COM) stones were each separated into 3 modes (Group 1-"Dusting"- 33mJ/300Hz; Group 2-"Fragmentation"-200mJ/50Hz; Group 3-"Dual mode"-Fragmentation then Dusting). The fiber was held manually in contact with stone on a 2-mm-mesh sieve submerged in a flowing saline bath. UA ablation rates were 2.3+/-0.8, 2.3+/-0.2, and 4.4+/-0.8 mg/s and COM ablation rates were 0.4+/-0.1, 1.0+/-0.1, and 0.9+/-0.4 mg/s, for Groups 1, 2, and 3. Dual mode provided 2x higher UA ablation rates than other modes. COM ablation threshold is 3x higher than UA, so dusting provided lower COM ablation rates than other modes. Future studies will explore higher average laser power than 10 W for rapid TFL ablation of large stones.

  14. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  15. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.

  16. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    PubMed

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p < 0.05). No significant differences were found in P01. The men had significantly higher P02 at all loads except 75% BW). Maximum P was reached at light loads (men at 25% BW and women at 0% BW), and P decreased uniformly thereafter. Individual power-load curves show a deflection point. It is proposed that the load where the power-load deflection point occurs be used as the power training load and not the load at which maximum P is reached. It is also proposed that loads not be described in %1-repetition maximum (RM), but as %BW. This system can be used to safely assess and train power with loaded jumps and free weights.

  17. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  18. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  19. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  20. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems.

    PubMed

    Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia

    2011-08-01

    A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.

  1. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    PubMed

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  2. Optimal Scheduling of Time-Shiftable Electric Loads in Expeditionary Power Grids

    DTIC Science & Technology

    2015-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDITIONARY POWER GRIDS by John G...to 09-25-2015 4. TITLE AND SUBTITLE OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDI- TIONARY POWER GRIDS 5. FUNDING NUMBERS 6. AUTHOR(S...eliminate unmanaged peak demand, reduce generator peak-to-average power ratios, and facilitate a persistent shift to higher fuel efficiency. Using

  3. Abnormal cardiovascular responses induced by localized high power microwave exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.-T; Brown, D.O.; Johnson, C.E.

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in themore » neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.« less

  4. Measured radiofrequency exposure during various mobile-phone use scenarios.

    PubMed

    Kelsh, Michael A; Shum, Mona; Sheppard, Asher R; McNeely, Mark; Kuster, Niels; Lau, Edmund; Weidling, Ryan; Fordyce, Tiffani; Kühn, Sven; Sulser, Christof

    2011-01-01

    Epidemiologic studies of mobile phone users have relied on self reporting or billing records to assess exposure. Herein, we report quantitative measurements of mobile-phone power output as a function of phone technology, environmental terrain, and handset design. Radiofrequency (RF) output data were collected using software-modified phones that recorded power control settings, coupled with a mobile system that recorded and analyzed RF fields measured in a phantom head placed in a vehicle. Data collected from three distinct routes (urban, suburban, and rural) were summarized as averages of peak levels and overall averages of RF power output, and were analyzed using analysis of variance methods. Technology was the strongest predictor of RF power output. The older analog technology produced the highest RF levels, whereas CDMA had the lowest, with GSM and TDMA showing similar intermediate levels. We observed generally higher RF power output in rural areas. There was good correlation between average power control settings in the software-modified phones and power measurements in the phantoms. Our findings suggest that phone technology, and to a lesser extent, degree of urbanization, are the two stronger influences on RF power output. Software-modified phones should be useful for improving epidemiologic exposure assessment.

  5. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  6. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  7. Improvement of two-photon microscopic imaging in deep regions of living mouse brains by utilizing a light source based on an electrically controllable gain-switched laser diode

    NASA Astrophysics Data System (ADS)

    Sawada, Kazuaki; Kawakami, Ryosuke; Fang, Yi-Cheng; Hung, Jui-Hung; Kozawa, Yuichi; Otomo, Kohei; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2018-02-01

    In vivo two-photon microscopy is an advantageous technique for observing living mouse brains at high spatial resolutions. We previously used a 1064 nm high-power light source based on an electrically controllable gain-switched laser diode (maximum power: 4 W, repetition rate: 10 MHz, pulse width: 7.5 picoseconds) and successfully visualized EYFP expressing neurons at deeper regions in H-line mouse brains under living conditions. However, severe damages were frequently observed when the laser power after the objective lens was over 600 mW, suggesting that a higher average power might not be suitable for visualizing neural structures and functions at deep regions. To increase fluorescent signals as a strategy to avoid such invasions, here, we evaluated the effects of the excitation laser parameters such as the repetition rate (5 - 10 MHz), or the peak power, at the moderate average powers (10 - 500 mW), by taking the advantage that this electrically controllable light source could be used to change the repetition rate independently from the average power or the pulse width. The fluorescent signals of EYFP at layer V of the cerebral cortex were increased by approximately twofold when the repetition rate was decreased from 10 MHz to 5 MHz at the same average power. We also confirmed similar effects in the EYFP solution (335 μM) and fixed brain slices. These results suggest that in vivo two-photon microscopic imaging might be improved by increasing the peak power at the same average power while avoiding the severe damages in living brains.

  8. The relationship between wind power, electricity demand and winter weather patterns in Great Britain

    NASA Astrophysics Data System (ADS)

    Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.

    2017-06-01

    Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.

  9. Development of miniature, high frequency pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.

    2010-04-01

    Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.

  10. Experimental study of efficiency of solar panel by phase change material cooling

    NASA Astrophysics Data System (ADS)

    Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng

    2017-07-01

    The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.

  11. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays.

    PubMed

    Dan, Alex; Reiner, Miriam

    2017-12-01

    Interacting with 2D displays, such as computer screens, smartphones, and TV, is currently a part of our daily routine; however, our visual system is built for processing 3D worlds. We examined the cognitive load associated with a simple and a complex task of learning paper-folding (origami) by observing 2D or stereoscopic 3D displays. While connected to an electroencephalogram (EEG) system, participants watched a 2D video of an instructor demonstrating the paper-folding tasks, followed by a stereoscopic 3D projection of the same instructor (a digital avatar) illustrating identical tasks. We recorded the power of alpha and theta oscillations and calculated the cognitive load index (CLI) as the ratio of the average power of frontal theta (Fz.) and parietal alpha (Pz). The results showed a significantly higher cognitive load index associated with processing the 2D projection as compared to the 3D projection; additionally, changes in the average theta Fz power were larger for the 2D conditions as compared to the 3D conditions, while alpha average Pz power values were similar for 2D and 3D conditions for the less complex task and higher in the 3D state for the more complex task. The cognitive load index was lower for the easier task and higher for the more complex task in 2D and 3D. In addition, participants with lower spatial abilities benefited more from the 3D compared to the 2D display. These findings have implications for understanding cognitive processing associated with 2D and 3D worlds and for employing stereoscopic 3D technology over 2D displays in designing emerging virtual and augmented reality applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Relationship between Curricular Physical Activity and College Retention after the First Year

    ERIC Educational Resources Information Center

    Bounds, Laura E.

    2014-01-01

    College retention has become increasingly important for many reasons. Individuals who attain bachelor's degrees, on average, have higher earning power and more career options than individuals with only a high school degree. Higher education institutes also benefit when students are retained and graduate. With the most recent budget crisis, higher…

  13. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  14. Ultralow-frequency PiezoMEMS energy harvester using thin-film silicon and parylene substrates

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Olszewski, Oskar Z.; O'Murchu, Cian; Mathewson, Alan

    2018-01-01

    Developing a self-sustained leadless pacemaker requires the development of an ultralow-frequency energy harvesting system that can fit within the required dimensions. This paper reports on the design and development of two types of PiezoMEMS energy harvesters that fit within the capsule dimensions and have a low resonant frequency between 20 to 30 Hz, which is required for the application. A bullet-shaped mass was designed to maximize the displacement and enhance power density of the devices. In addition, two types of devices were fabricated and compared (i) a silicon-based cantilever and (ii) a parylene-C-based cantilever with a thin aluminum nitride layer. The silicon device demonstrated higher peak power of 29.8 μW compared with the 6.4 μW for the parylene device. However, due to the low duty cycle of the heart rate and the damping factors of the two materials the average power was significantly higher for the parylene device (2.71 μW) compared with the silicon device (1.22 μW) per cantilever. The results demonstrate that a polymer-based energy harvester can increase the average power due to low damping for an impulse-based vibration application.

  15. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.

    2013-08-01

    Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.

  16. Heat input and accumulation for ultrashort pulse processing with high average power

    NASA Astrophysics Data System (ADS)

    Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart

    2018-05-01

    Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.

  17. Estimating Economic and Logistic Utility of Connecting to Unreliable Power Grids

    DTIC Science & Technology

    2016-06-17

    the most unreliable host nation grids almost always have a higher availability than solar photovoltaics ( PV ), which for most parts of the world will...like solar , and still design a facility energy architecture that benefits from that source when available. Index Terms—facilities management, energy...Maintenance PV Photovoltaic SAIDI System Average Interruption Duration Index SAIFI System Average Interruption Frequency Index SHP Simplified Host

  18. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  19. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Brewer, Eli Henry

    We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The recirculation of cabin air also significantly reduced in-cabin particle concentrations. Recirculation of cabin air is an excellent and immediate solution to increase vehicle mileage and improve cabin air quality.

  20. Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber.

    PubMed

    Gattass, Rafael R; Brandon Shaw, L; Sanghera, Jasbinder S

    2014-06-15

    We report on a proof of concept for a compact supercontinuum source for the mid-infrared wavelength range based on a microchip laser and nonlinear conversion inside a selenide-based optical fiber. The spectrum extends from 3.74 to 4.64 μm at -10  dB from the peak and 3.65 to 4.9 μm at -20  dB from the peak; emitting beyond the wavelength range that periodically poled lithium niobate (PPLN) starts to display a power penalty. Wavelength conversion occurs inside the core of a single-mode fiber, resulting in a high-brightness emission source. A maximum average power of 5 mW was demonstrated, but the architecture is scalable to higher average powers.

  1. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less

  2. An optimal tuning strategy for tidal turbines

    PubMed Central

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  3. An optimal tuning strategy for tidal turbines

    NASA Astrophysics Data System (ADS)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  4. An optimal tuning strategy for tidal turbines.

    PubMed

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  5. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle

    NASA Astrophysics Data System (ADS)

    Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.

    2014-01-01

    This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.

  6. Enhancing Trust in the Smart Grid by Applying a Modified Exponentially Weighted Averages Algorithm

    DTIC Science & Technology

    2012-06-01

    2.1 Power Production and Distribution System . . . . . . . . . . . . . . . . . . . . 14 2.2 Steam Turbine Partial or Full Load Operating Limitations... turbines used for power production are designed to operate at specific frequencies and incur stress related damage when operating at higher or lower...2.2 illustrates the operational limits of a representative steam turbine with the following characteristics as measured in Hertz (Hz) [8]: • The

  7. Efficient 2-μm Tm:YAP Q-switched and CW lasers

    NASA Astrophysics Data System (ADS)

    Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew

    2018-02-01

    Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.

  8. Generation of 1-J bursts with picosecond pulses from Perla B thin-disk laser system

    NASA Astrophysics Data System (ADS)

    Chyla, Michal; Nagisetty, Siva S.; Severova, Patricie; Zhou, Huang; Smrz, Martin; Endo, Akira; Mocek, Tomas

    2018-02-01

    In many fields of modern physics and industrial applications high-average power pulsed diode-pumped solid-state lasers are essential. Scaling of these lasers towards higher pulse energies is often limited by the onset of thermal effects which are determined by the average power. In this paper we would like to propose a way of increasing the pulse energies by operating the PERLA B laser system in 100 Hz burst mode with 1 ms burst duration and intra-burst repetition rate of 10 kHz. The CPA-based system incorporates fiber front-end, regenerative amplifier and the multipass amplifier followed by the booster amplifier and <2ps compressor.

  9. Corneal refractive power and eccentricity in the 40- to 64-year-old population of Shahroud, Iran.

    PubMed

    Asgari, Soheila; Hashemi, Hassan; Mehravaran, Shiva; Khabazkhoob, Mehdi; Emamian, Mohammad Hassan; Jafarzadehpur, Ebrahim; Shariati, Mohammad; Fotouhi, Akbar

    2013-01-01

    To determine the normal corneal curvature, power, and eccentricity in an Iranian population and their determinants. This report is part of a population-based study conducted in 2009. Of the 5190 participants of the study, Pentacam data from 8532 eyes of 4266 people who met the inclusion criteria for this analysis were used. For each eye, we extracted minimum and maximum keratometry readings, the average of the 2 readings (mean-K), the difference between these 2 parameters (keratometric astigmatism), and corneal eccentricity. The average mean-K, keratometric astigmatism, and eccentricity were 43.73 ± 2.47, 0.90 ± 0.93, and 0.27 ± 0.63 diopter, respectively. Mean-K was directly correlated with age; inversely correlated with body mass index, axial length, white-to-white corneal diameter, and anterior chamber depth; increased at higher amounts of myopia; and was higher in women compared with men. Keratometric astigmatism was significantly higher in women, increased at higher amount of refractive error, but showed no association with other variables. Eccentricity was correlated indirectly with age and white-to-white corneal diameter, and directly with axial length. It increased with myopia. Compared with other studies, the mean corneal power and eccentricity values were lower in this Iranian population sample. Our findings may have implications for clinical interventions, especially refractive surgery. Further studies can identify the causes of such differences in the shape and size of the cornea, which may also be attributable to the choice of the measuring device.

  10. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

  11. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.

    PubMed

    Phan, Hoang Vu; Truong, Quang Tri; Park, Hoon Cheol

    2017-04-19

    This work presents a parametric study to find a proper wing configuration for achieving economical flight using unsteady blade element theory, which is based on the 3D kinematics of a flapping wing. Power loading was first considered as a performance parameter for the study. The power loadings at each wing section along the wingspan were obtained for various geometric angles of attack (AoAs) by calculating the ratios of the vertical forces generated and the power consumed by that particular wing section. The results revealed that the power loading of a negatively twisted wing could be higher than the power loading that a flat wing can have; the power loading of the negatively twisted wing was approximately 5.9% higher. Given the relatively low average geometric AoA (α A,root   ≈  44° and α A,tip   ≈  25°), the vertical force produced by the twisted wing for the highest power loading was approximately 24.4% less than that produced by the twisted wing for the strongest vertical force. Therefore, for a given wing geometry and flapping amplitude, a flapping-wing micro air vehicle required a 13.5% increase in flapping frequency to generate the same strongest cycle-average vertical force while saving about 24.3% power. However, when force 3 /power 2 and force 2 /power ratios were considered as performance indices, the twisted wings for the highest force 3 /power 2 (α A,root   ≈  43° and α A,tip   ≈  30°) and force 2 /power (α A,root   ≈  43° and α A,tip   ≈  36°) required only 6.5% and 4% increases in flapping frequency and consumed 26.2% and 25.3% less power, respectively. Thus, it is preferable to use a flapping wing operating at a high frequency using the geometric AoAs for the highest power loading, force 3 /power 2 ratio, and force 2 /power ratio over a flapping wing operating at a low frequency using a high geometric AoA with the strongest vertical force. Additionally, by considering both aerodynamic and inertial forces, this study obtained average geometric AoAs in the range of 30° to 40°, which are similar to those of a typical hovering insect's wings. Therefore, the operation of an aerodynamically uneconomical, high AoA in a hovering insect's wings during flight is explainable.

  12. Tramadol effects on physical performance and sustained attention during a 20-min indoor cycling time-trial: A randomised controlled trial.

    PubMed

    Holgado, Darías; Zandonai, Thomas; Zabala, Mikel; Hopker, James; Perakakis, Pandelis; Luque-Casado, Antonio; Ciria, Luis; Guerra-Hernandez, Eduardo; Sanabria, Daniel

    2018-07-01

    To investigate the effect of tramadol on performance during a 20-min cycling time-trial (Experiment 1), and to test whether sustained attention would be impaired during cycling after tramadol intake (Experiment 2). Randomized, double-blind, placebo controlled trial. In Experiment 1, participants completed a cycling time-trial, 120-min after they ingested either tramadol or placebo. In Experiment 2, participants performed a visual oddball task during the time-trial. Electroencephalography measures (EEG) were recorded throughout the session. In Experiment 1, average time-trial power output was higher in the tramadol vs. placebo condition (tramadol: 220W vs. placebo: 209W; p<0.01). In Experiment 2, no differences between conditions were observed in the average power output (tramadol: 234W vs. placebo: 230W; p>0.05). No behavioural differences were found between conditions in the oddball task. Crucially, the time frequency analysis in Experiment 2 revealed an overall lower target-locked power in the beta-band (p<0.01), and higher alpha suppression (p<0.01) in the tramadol vs. placebo condition. At baseline, EEG power spectrum was higher under tramadol than under placebo in Experiment 1 while the reverse was true for Experiment 2. Tramadol improved cycling power output in Experiment 1, but not in Experiment 2, which may be due to the simultaneous performance of a cognitive task. Interestingly enough, the EEG data in Experiment 2 pointed to an impact of tramadol on stimulus processing related to sustained attention. EudraCT number: 2015-005056-96. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. kW picosecond thin-disk regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Wandt, Christoph; Klingebiel, Sandro; Schultze, Marcel; Prinz, Stephan; Teisset, Catherine Y.; Stark, Sebastian; Grebing, Christian; Bessing, Robert; Herzig, Tobias; Häfner, Matthias; Budnicki, Aleksander; Sutter, Dirk; Metzger, Thomas

    2018-02-01

    TRUMPF Scientific Lasers provides ultrafast laser sources for the scientific community with high pulse energies and high average power. All systems are based on the industrialized TRUMPF thin-disk technology. Regenerative amplifiers systems with multi-millijoule pulses, kilohertz repetition rates and picosecond pulse durations are available. Record values of 220mJ at 1kHz could be demonstrated originally developed for pumping optical parametric amplifiers. The ultimate goal is to combine high energies, <100mJ per pulse, with average powers of several hundred watts to a kilowatt. Based on a regenerative amplifier containing two Ytterbium doped thin-disks operated at ambient temperature pulses with picosecond duration and more than 100mJ could be generated at a repetition rate of 10kHz reaching 1kW of average output power. This system is designed to operate at different repetition rates from 100kHz down to 5kHz so that even higher pulse energies can be reached. This type of ultrafast sources uncover new application fields in science. Laser based lightning rods, X-ray lasers and Compton backscatter sources are among them.

  14. Need for higher fuel burnup at the Hatch Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckhman, J.T.

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make themore » conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.« less

  15. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    NASA Astrophysics Data System (ADS)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  16. Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.

  17. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2017-01-01

    We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.

  18. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.

    PubMed

    Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M

    2013-07-01

    We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.

  19. Vulnerability of US and European electricity supply to climate change

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.; Ludwig, Fulco; Vögele, Stefan; Lettenmaier, Dennis P.; Kabat, Pavel

    2012-09-01

    In the United States and Europe, at present 91% and 78% (ref. ) of the total electricity is produced by thermoelectric (nuclear and fossil-fuelled) power plants, which directly depend on the availability and temperature of water resources for cooling. During recent warm, dry summers several thermoelectric power plants in Europe and the southeastern United States were forced to reduce production owing to cooling-water scarcity. Here we show that thermoelectric power in Europe and the United States is vulnerable to climate change owing to the combined impacts of lower summer river flows and higher river water temperatures. Using a physically based hydrological and water temperature modelling framework in combination with an electricity production model, we show a summer average decrease in capacity of power plants of 6.3-19% in Europe and 4.4-16% in the United States depending on cooling system type and climate scenario for 2031-2060. In addition, probabilities of extreme (>90%) reductions in thermoelectric power production will on average increase by a factor of three. Considering the increase in future electricity demand, there is a strong need for improved climate adaptation strategies in the thermoelectric power sector to assure futureenergy security.

  20. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  1. Overweight and pregnancy complications.

    PubMed

    Abrams, B; Parker, J

    1988-01-01

    The association between increased prepregnancy weight for height and seven pregnancy complications was studied in a multi-racial sample of more than 4100 recent deliveries. Body mass indices were calculated and used to classify women as average weight (90-119 percent of ideal or BMI 19.21-25.60), moderately overweight (120-135 percent ideal or BMI 25.61-28.90), and very overweight (greater than 135 percent ideal or BMI greater than 28.91) prior to pregnancy. Compared to women of average weight for height, very overweight women had a higher risk of diabetes, hypertension, pregnancy-induced hypertension and primary cesarean section delivery. Moderately overweight women were also at higher risk than average for diabetes, pregnancy-induced hypertension and primary cesarean deliveries but the relative risks were of a smaller magnitude than for very overweight women. With women of average prepregnancy body mass as reference, moderately elevated, but not significant relative risks were found for perinatal mortality in the very overweight group, for urinary tract infections in both overweight groups, and a decreased risk for anemia was found in the very overweight group. However, post-hoc power analyses indicated that the number of overweight women in the sample did not allow adequate statistical power to detect these small differences in risk. To overcome limitations associated with low statistical power, the results of three recent studies of these outcomes in very overweight pregnant women were combined and summarized using Mantel-Haenzel techniques. This second, larger analysis suggested that very overweight women are at significantly higher risk for all seven outcomes studied. Summary results for moderately overweight women could not be calculated, since only two of the studies had evaluated moderately overweight women separately. These latter results support other findings that both moderate overweight and very overweight are risk factors during pregnancy, with the highest risk occurring in the heaviest group. Although these results indicate that moderate overweight is a risk factor during pregnancy, additional studies are needed to confirm the impact of being 20-35 percent above ideal weight prior to pregnancy. The results of this analysis also imply that since the baseline incidence of many perinatal complications is low, studies relating overweight and pregnancy complications should include large enough samples of overweight women so that there is adequate statistical power to reliably detect differences in complication rates.

  2. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  3. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  4. Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China.

    PubMed

    Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui

    2015-09-01

    STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas.

  5. Impact of Financing Instruments and Strategies on the Wind Power Production Costs: A Case of Lithuania

    NASA Astrophysics Data System (ADS)

    Bobinaite, V.; Konstantinaviciute, I.

    2018-04-01

    The paper aims at demonstrating the relevance of financing instruments, their terms and financing strategies in relation to the cost of wind power production and the ability of wind power plant (PP) to participate in the electricity market in Lithuania. The extended approach to the Levelized Cost of Energy (LCOE) is applied. The feature of the extended approach lies in considering the lifetime cost and revenue received from the support measures. The research results have substantiated the relevance of financing instruments, their terms and strategies in relation to their impact on the LCOE and competitiveness of wind PP. It has been found that financing of wind PP through the traditional financing instruments (simple shares and bank loans) makes use of venture capital and bonds coming even in the absence of any support. It has been estimated that strategies consisting of different proportions of hard and soft loans, bonds, own and venture capital result in the average LCOE of 5.1-5.7 EURct/kWh (2000 kW), when the expected electricity selling price is 5.4 EURct/kWh. The financing strategies with higher shares of equity could impact by around 6 % higher LCOE compared to the strategies encompassing higher shares of debt. However, seeking to motivate venture capitalists, bond holders or other new financiers entering the wind power sector, support measures (feed-in tariff or investment subsidy) are relevant in case of 250 kW wind PP. It has been estimated that under the unsupported financing strategies, the average LCOE of 250 kW wind PP will be 7.8-8.8 EURct/kWh, but it will reduce by around 50 % if feed-in tariff or 50 % investment subsidy is applied.

  6. Pc-5 wave power in the plasmasphere and trough: CRRES observations

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Angelopoulos, V.; Takahashi, K.; Singer, H. J.; Anderson, R. R.

    2009-12-01

    The CRRES (Combined Release and Radiation Effects Satellite) mission provides an opportunity to study the distribution of MHD wave power in the inner magnetosphere both inside the high-density plasmasphere and in the low-density trough. We present a statistical survey of Pc-5 wave power using CRRES magnetometer and plasma wave data separated into plasmasphere and trough intervals. Using a database of plasmapause crossings, we examined differences in power spectral density between the plasmasphere and trough regions. We found significant differences between the plasmasphere and trough in the radial profiles of Pc-5 wave power. On average, wave power was higher in the trough, but the difference in power depended on magnetic local time. Our study shows that determining the plasmapause location is important for understanding and modeling the MHD wave environment in the Pc-5 frequency band.

  7. Generation of µW level plateau harmonics at high repetition rate.

    PubMed

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  8. Micro-hydrokinetic turbine potential for sustainable power generation in Malaysia

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Kamaruddin, N. M.; Mohamed-Kassim, Z.

    2018-05-01

    Micro-hydrokinetic turbine (μ-HKT) technology is considered a viable option for sustainable, green and low cost power production. In recent years, there is growing number of research and development on this technology to replace conventional power production systems such as fossil fuel as well as to provide off-grid electrification to communities in remote areas. This paper provides an overview of μ-HKT system, the implementation of the technology and the potential of using μ-HKT in Malaysia. A review on the climate in Malaysia shows that its average annual rainfall is higher than the world’s average annual rainfall. It contributes to the total hydropower resource of about 29,000 MW which is available all year-round. Currently, hydropower resource contributes only 7.4% of the total electrical power production in Malaysia but is expected to increase with the main contribution coming from μ-HKT. However, the μ-HKT technology has not been adopted in Malaysia due to some challenges that hinder the development of the system. This paper reviews the μ-HKT technology and its potential for application in Malaysia, particularly in remote areas.

  9. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  10. Estimating the vibration level of an L-shaped beam using power flow techniques

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  11. FY2005 Progress Summary and FY2006 Program Plan Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbers, C

    The primary focus this year was to operate the system with two amplifiers populated with and pumped by eight high power diode arrays. The system was operated for extended run periods which enabled average power testing of components, diagnostics, and controls. These tests were highly successful, with a demonstrated energy level of over 55 joules for 4 cumulative hours at a repetition rate of 10 Hz (average power 0.55 kW). In addition, high average power second harmonic generation was demonstrated, achieving 227 W of 523.5 nm light (22.7 J, 10 Hz, 15 ns, 30 minutes) Plans to achieve higher energymore » levels and average powers are in progress. The dual amplifier system utilizes a 4-pass optical arrangement. The Yb:S-FAP slabs were mounted in aerodynamic aluminum vane structures to allow turbulent helium gas flow across the faces. Diagnostic packages that monitored beam performance were deployed during operation. The laser experiments involved injecting a seed beam from the front end into the system and making four passes through both amplifiers. Beam performance diagnostics monitored the beam on each pass to assess system parameters such as gain and nearfield intensity profiles. This year, an active mirror and wavefront sensor were procured and demonstrated in an off-line facility. The active mirror technology can correct for low order phase distortions at user specified operating conditions (such as repetition rates different than 10 Hz) and is a complementary technology to the static phase plates used in the system for higher order distortions. A picture of the laser system with amplifier No.2 (foreground) and amplifier No.1 (background) is shown in Fig. 1.0.1.1. The control system and diagnostics were recently enhanced for faster processing and allow remote operation of the system. The growth and fabrication of the Yb:S-FAP slabs constituted another major element of our program objectives. Our goal was to produce at least fourteen 4x6 cm2 crystalline slabs. These goals were met. Nine crystal boules were successfully grown to produce 14 slabs. In addition, we have prepared the way to scale the Yb:S-FAP crystals to the next growth diameter (10-inch diameter as opposed to 7-inch diameter). An outside contract was placed with Northrop-Grumman to scaleup the Yb:S-FAP crystal size. The following sections discuss the above accomplishments in more technical detail and are followed by plans and a budget request for FY2006.« less

  12. A miniaturized human-motion energy harvester using flux-guided magnet stacks

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2016-11-01

    We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.

  13. Superconducting traveling wave accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, Z.D.

    1984-11-01

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less

  14. Informing Estimates of Program Effects for Studies of Mathematics Professional Development Using Teacher Content Knowledge Outcomes.

    PubMed

    Phelps, Geoffrey; Kelcey, Benjamin; Jones, Nathan; Liu, Shuangshuang

    2016-10-03

    Mathematics professional development is widely offered, typically with the goal of improving teachers' content knowledge, the quality of teaching, and ultimately students' achievement. Recently, new assessments focused on mathematical knowledge for teaching (MKT) have been developed to assist in the evaluation and improvement of mathematics professional development. This study presents empirical estimates of average program change in MKT and its variation with the goal of supporting the design of experimental trials that are adequately powered to detect a specified program effect. The study drew on a large database representing five different assessments of MKT and collectively 326 professional development programs and 9,365 teachers. Results from cross-classified hierarchical growth models found that standardized average change estimates across the five assessments ranged from a low of 0.16 standard deviations (SDs) to a high of 0.26 SDs. Power analyses using the estimated pre- and posttest change estimates indicated that hundreds of teachers are needed to detect changes in knowledge at the lower end of the distribution. Even studies powered to detect effects at the higher end of the distribution will require substantial resources to conduct rigorous experimental trials. Empirical benchmarks that describe average program change and its variation provide a useful preliminary resource for interpreting the relative magnitude of effect sizes associated with professional development programs and for designing adequately powered trials. © The Author(s) 2016.

  15. Reliability and Validity Assessment of a Linear Position Transducer

    PubMed Central

    Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.

    2015-01-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Cox, Jonathan Albert

    Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less

  17. Less Physician Practice Competition Is Associated With Higher Prices Paid For Common Procedures.

    PubMed

    Austin, Daniel R; Baker, Laurence C

    2015-10-01

    Concentration among physician groups has been steadily increasing, which may affect prices for physician services. We assessed the relationship in 2010 between physician competition and prices paid by private preferred provider organizations for fifteen common, high-cost procedures to understand whether higher concentration of physician practices and accompanying increased market power were associated with higher prices for services. Using county-level measures of the concentration of physician practices and county average prices, and statistically controlling for a range of other regional characteristics, we found that physician practice concentration and prices were significantly associated for twelve of the fifteen procedures we studied. For these procedures, counties with the highest average physician concentrations had prices 8-26 percent higher than prices in the lowest counties. We concluded that physician competition is frequently associated with prices. Policies that would influence physician practice organization should take this into consideration. Project HOPE—The People-to-People Health Foundation, Inc.

  18. Effects of temporal averaging on short-term irradiance variability under mixed sky conditions

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.

    2018-05-01

    Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.

  19. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  20. Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.

    2011-01-01

    We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.

  1. Gender Roles and Mental Health in Women With and at Risk for HIV

    PubMed Central

    Brody, Leslie R.; Stokes, Lynissa R.; Dale, Sannisha K.; Kelso, Gwendolyn A.; Cruise, Ruth C.; Weber, Kathleen M.; Burke-Miller, Jane K.; Cohen, Mardge H.

    2014-01-01

    Predominantly low-income and African American women from the same community, HIV-infected (n = 100; HIV+) and uninfected (n = 42; HIV−), were assessed on reported gender roles in sexual and other close relationships—including levels of self-silencing, unmitigated communion, and sexual relationship power—at a single recent study visit during 2008–2012. Recent gender roles were investigated in relation to depressive symptoms and health-related quality of life assessed both at a single visit during 2008–2012 and averaged over semiannual visits (for depressive symptoms) and annual visits (for quality of life) occurring between 1994 and 2012. Compared to HIV− women, HIV+ women reported significantly higher levels of several aspects of self-silencing, unmitigated communion, and multi-year averaged depressive symptoms as well as lower levels of sexual relationship power and recent and multi-year averaged quality of life. For both HIV+ and HIV− women, higher self-silencing and unmitigated communion significantly related to recent or multi-year averaged higher depressive symptoms and lower quality of life. Intervention strategies designed to increase self-care and self-advocacy in the context of relationships could potentially minimize depressive symptoms and enhance quality of life in women with and at risk for HIV. PMID:25492991

  2. Lower Costs, Higher Returns: UNCF HBCUs in a High-Priced College Environment. Financing African American College Aspirations Series

    ERIC Educational Resources Information Center

    Richards, David A. R.

    2014-01-01

    While research consistently shows the earning power of college degrees, those returns are best weighed against the cost of attending post-secondary institutions, historically black colleges and universities (HBCUs) included. This study is an update of "Affordability of UNCF-Member Institutions" (2009), and compares the average costs at…

  3. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier

    DOE PAGES

    Zhao, Zhi; Sheehy, Brian; Minty, Michiko

    2017-03-29

    Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.

  4. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    NASA Astrophysics Data System (ADS)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  5. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas W.; Apte, Joshua S.; Martien, Philip T.; Kirchstetter, Thomas W.

    2015-08-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate ;head-end; power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  6. Health care expenditure and life expectancy in Australia: how well do we perform?

    PubMed

    Taylor, R; Salkeld, G

    1996-06-01

    The Australian health care system consists of mixed public and private financing underpinned by Medicare, a universal government-run insurance scheme paid through taxation (and levy) on income. Australia has improved its ranking for life expectancy (at birth) since 1960, and in 1990 ranked ninth and seventh of 24 countries for females and males respectively; this is ahead of the United States and United Kingdom, and approximately equal to Canada. Australian hospital bed supply and utilisation are average, after deletion of day-only cases. The proportion of gross domestic product (GDP) spent on health, in relation to GDP per capita (adjusted for purchasing power), in Australia in 1990 was average, and the prices for health care from 1975 to 1990 did not increase when adjusted for inflation. Although 68 per cent of health expenditure emanates from public sources in Australia, this is lower than in the majority of European countries and Canada. Some countries are doing poorly (such as the United States, with lower than average life expectancy and higher than predicted health expenditure) and some countries are doing well (with higher than average life expectancy and lower than predicted health expenditure; for example, Japan). Australia has higher than average life expectancy and only slightly higher than predicted health expenditure per capita. Although the Australian system could be improved, there are no indications that radical changes are required. The relatively high life expectancy in Australia can be attributed to favourable social and economic conditions, successful public health programs, and the availability of universal quality health care.

  7. Scaling of Yb-Fiber Frequency Combs

    NASA Astrophysics Data System (ADS)

    Ruehl, Axel; Marcinkevicius, Andrius; Fermann, Martin E.; Hartl, Ingmar

    2010-06-01

    Immediately after their introduction in 1999, femtosecond laser frequency combs revolutionized the field of precision optical frequency metrology and are key elements in many experiments. Frequency combs based on femtosecond Er-fiber lasers based were demonstrated in 2005, allowing additionally rugged, compact set-ups and reliable unattended long-term operation. The introduction of Yb-fiber technology led to an dramatic improvement in fiber-comb performance in various aspects. Low-noise Yb-fiber femtosecond oscillators enabled a reduction of relative comb tooth linewidth to the sub-Hz level as well as scaling of the fundamental comb spacings up to 1 GHz. This is beneficial for any frequency-domain comb application due to the higher power per comb-mode. Many spectroscopic applications require, however, frequency combs way beyond the wavelength range accessible with broad band laser materials, so nonlinear conversion and hence higher peak intensity is required. We demonstrated power scaling of Yb-fiber frequency combs up to 80 W average power in a strictly linear chirped-pulse amplification schemes compatible with low-noise phase control. These high-power Yb-fiber-frequency combs facilitated not only the extension to the mid-IR spectral region. When coupled to a passive enhancement cavity, the average power can be further scaled to the kW-level opening new capabilities for XUV frequency combs via high-harmonic generation. All these advances of fiber-based frequency combs will trigger many novel applications both in fundamental and applied sciences. Schibli et al., Nature Photonics 2 355 (2008). Hartl et al., MF9 in Advanced Solid-State Photonics. 2009, Optical Society of America. Ruehl et al., AWC7 in Advanced Solid-State Photonics. 2010, Optical Society of America. Adler et al., Optics Letters 34 1330 (2009). Yost et al., Nature Physics 5 815 (2009).

  8. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  9. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  10. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  11. Critical Elements in Fly Ash from the Combustion of Bituminous Coal in Major Polish Power Plants

    NASA Astrophysics Data System (ADS)

    Bielowicz, Barbara; Botor, Dariusz; Misiak, Jacek; Wagner, Marian

    2018-03-01

    The concentration of critical elements, including such REE as Fe, Co, W, Zn, Cr, Ni, V, Mn, Ti, Ag, Ga, Ta, Sr, Li, and Cu, in the so-called fly ash obtained from the 9 Polish power plants and 1 thermal power station has been determined. The obtained values, compared with the global average concentration in bituminous coal ash and sedimentary rocks (Clarke values), have shown that the enrichment of fly ash in the specified elements takes place in only a few bituminous coal processing sites in Poland. The enrichment factor (EF) is only slightly higher (the same order of magnitude) than the Clarke values. The enrichment factor in relation to the Clarke value in the Earth's crust reached values above 10 in all of the examined ashes for the following elements: Cr, Ni, V, W, and, in some ash samples, also Cu and Zn. The obtained values are low, only slightly higher than the global average concentrations in sedimentary rocks and bituminous coal ashes. The ferromagnetic grains (microspheres) found in bituminous coal fly ashes seem to be the most economically prospective in recovery of selected critical elements. The microanalysis has shown that iron cenospheres and plerospheres in fly ash contain, in addition to enamel and iron oxides (magnetite and hematite), iron spinels enriched in Co, Cr, Cu, Mn, Ni, W, and Zn.

  12. Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.

    2018-06-01

    In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.

  13. Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement

    NASA Astrophysics Data System (ADS)

    Umansky, Moti; Weihs, Daphne

    2012-08-01

    In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program should also be backwards compatible. Symbolic Math Toolboxes (5.5) is required. The Curve Fitting Toolbox (3.0) is recommended. Computer: Tested on Windows only, yet should work on any computer running MATLAB. In Windows 7, should be used as administrator, if the user is not the administrator the program may not be able to save outputs and temporary outputs to all locations. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.11 / 2010b or higher. Supplementary material: Sample output files (approx. 30 MBytes) are available. Classification: 12 External routines: Several MATLAB subfunctions (m-files), freely available on the web, were used as part of and included in, this code: count, NaN suite, parseArgs, roundsd, subaxis, wcov, wmean, and the executable pdfTK.exe. Nature of problem: In many physical and biophysical areas employing single-particle tracking, having the time-dependent power-laws governing the time-averaged meansquare displacement (MSD) of a single particle is crucial. Those power laws determine the mode-of-motion and hint at the underlying mechanisms driving motion. Accurate determination of the power laws that describe each trajectory will allow categorization into groups for further analysis of single trajectories or ensemble analysis, e.g. ensemble and time-averaged MSD. Solution method: The algorithm in the provided program automatically analyzes and fits time-dependent power laws to single particle trajectories, then group particles according to user defined cutoffs. It accepts time-dependent trajectories of several particles, each trajectory is run through the program, its time-averaged MSD is calculated, and power laws are determined in regions where the MSD is linear on a log-log scale. Our algorithm searches for high-curvature points in experimental data, here time-dependent MSD. Those serve as anchor points for determining the ranges of the power-law fits. Power-law scaling is then accurately determined and error estimations of the parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.

  14. Joint kinetics in rearfoot versus forefoot running: implications of switching technique.

    PubMed

    Stearne, Sarah M; Alderson, Jacqueline A; Green, Benjamin A; Donnelly, Cyril J; Rubenson, Jonas

    2014-08-01

    To better understand the mechanical factors differentiating forefoot and rearfoot strike (RFS) running, as well as the mechanical consequences of switching techniques, we assessed lower limb joint kinetics in habitual and imposed techniques in both groups. All participants performed both RFS and forefoot strike (FFS) techniques on an instrumented treadmill at 4.5 m·s while force and kinematic data were collected. Total (sum of ankle, knee, and hip) lower limb work and average power did not differ between habitual RFS and FFS runners. However, moments, negative work and negative instantaneous and average power during stance were greater at the knee in RFS and at the ankle in FFS techniques. When habitual RFS runners switched to an imposed FFS, they were able to replicate the sagittal plane mechanics of a habitual FFS; however, the ankle internal rotation moment was increased by 33%, whereas the knee abduction moments were not reduced, remaining 48.5% higher than a habitual FFS. In addition, total positive and negative lower limb average power was increased by 17% and 9%, respectively. When habitual FFS runners switched to an imposed RFS, they were able to match the mechanics of habitual RFS runners with the exception of knee abduction moments, which remained 38% lower than a habitual RFS and, surprisingly, a reduction of total lower limb positive average power of 10.5%. There appears to be no clear overall mechanical advantage of a habitual FFS or RFS. Switching techniques may have different injury implications given the altered distribution in loading between joints but should be weighed against the overall effects on limb mechanics; adopting an imposed RFS may prove the most beneficial given the absence of any clear mechanical performance decrements.

  15. Multiple bunch HOM evaluation for ERL cavities

    DOE PAGES

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; ...

    2017-06-15

    In this paper we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron–ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when themore » ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.« less

  16. Multiple bunch HOM evaluation for ERL cavities

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; Hao, Yue; Ptitsyn, Vadim

    2017-09-01

    In this work we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron-ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when the ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.

  17. Multiple bunch HOM evaluation for ERL cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.

    In this paper we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron–ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when themore » ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.« less

  18. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  19. Using Reanalysis Data for the Prediction of Seasonal Wind Turbine Power Losses Due to Icing

    NASA Astrophysics Data System (ADS)

    Burtch, D.; Mullendore, G. L.; Delene, D. J.; Storm, B.

    2013-12-01

    The Northern Plains region of the United States is home to a significant amount of potential wind energy. However, in winter months capturing this potential power is severely impacted by the meteorological conditions, in the form of icing. Predicting the expected loss in power production due to icing is a valuable parameter that can be used in wind turbine operations, determination of wind turbine site locations and long-term energy estimates which are used for financing purposes. Currently, losses due to icing must be estimated when developing predictions for turbine feasibility and financing studies, while icing maps, a tool commonly used in Europe, are lacking in the United States. This study uses the Modern-Era Retrospective Analysis for Research and Applications (MERRA) dataset in conjunction with turbine production data to investigate various methods of predicting seasonal losses (October-March) due to icing at two wind turbine sites located 121 km apart in North Dakota. The prediction of icing losses is based on temperature and relative humidity thresholds and is accomplished using three methods. For each of the three methods, the required atmospheric variables are determined in one of two ways: using industry-specific software to correlate anemometer data in conjunction with the MERRA dataset and using only the MERRA dataset for all variables. For each season, a percentage of the total expected generated power lost due to icing is determined and compared to observed losses from the production data. An optimization is performed in order to determine the relative humidity threshold that minimizes the difference between the predicted and observed values. Eight seasons of data are used to determine an optimal relative humidity threshold, and a further three seasons of data are used to test this threshold. Preliminary results have shown that the optimized relative humidity threshold for the northern turbine is higher than the southern turbine for all methods. For the three test seasons, the optimized thresholds tend to under-predict the icing losses. However, the threshold determined using boundary layer similarity theory most closely predicts the power losses due to icing versus the other methods. For the northern turbine, the average predicted power loss over the three seasons is 4.65 % while the observed power loss is 6.22 % (average difference of 1.57 %). For the southern turbine, the average predicted power loss and observed power loss over the same time period are 4.43 % and 6.16 %, respectively (average difference of 1.73 %). The three-year average, however, does not clearly capture the variability that exists season-to-season. On examination of each of the test seasons individually, the optimized relative humidity threshold methodology performs better than fixed power loss estimates commonly used in the wind energy industry.

  20. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  1. Short time ahead wind power production forecast

    NASA Astrophysics Data System (ADS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  2. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  3. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  4. Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity.

    PubMed

    Lafortuna, C L; Fumagalli, E; Vangeli, V; Sartorio, A

    2002-02-01

    Short-term alactic anaerobic performance in jumping (5 consecutive jumps with maximal effort), sprint running (8 m) and stair climbing (modified Margaria test) were measured in 75 obese subjects (BMI: 40.3+/-5.0 kg/m2) and in 36 lean control subjects (BMI: 22.4+/-3.2 kg/m2) of the same age and gender distribution. The results show that obese subjects attained a significantly lower specific (per unit body mass) power output both in jumping (W(spec,j); p<0.001) and stair climbing (W(spec,s); p<0.001) and run at a significantly lower average velocity (v; p<0.001) during sprinting. In spite of the different motor skillfulness required to accomplish the jumping and climbing tests, W(spec,s) (and hence the vertical velocity in climbing, v(v)) was closely correlated with W(spec,j) (R2=0.427, p<0.001). In jumping, although the average force during the positive work phase was significantly higher in obese subjects (p<0.001), no difference between the 2 groups was detected in absolute power. In stair climbing the absolute power output of obese resulted significantly higher (18%) than that of lean controls (p<0.001). In sprint running, the lower average horizontal velocity attained by obese subjects also entailed a different locomotion pattern with shorter step length (L(s); p<0.001), lower frequency (p<0.001) and longer foot contact time with ground (T(c,r); p<0.001). W(spec,j) seems to be a determinant of the poorer motor performance of obese, being significantly correlated with: I) the vertical displacement of the centre of gravity (R2=0.853, p<0.001) in jumping; II) with v(v) in stair climbing; and III) with T(c,r) (R2=0.492, p<0.001), L(s) (R2=0.266, p<0.001) and v (R2=0.454, p<0.001) in sprinting. The results suggest that obese individuals, although partially hampered in kinetic movements, largely rely on their effective specific power output to perform complex anaerobic tasks, and they suffer from the disproportionate excess of inert mass of fat. Furthermore, in view of the sedentary style of life and the consequent degree of muscle de-conditioning accompanying this condition, it may prove useful to implement rehabilitation programs for obesity with effective power training protocols.

  5. The effect of caffeine as an ergogenic aid in anaerobic exercise.

    PubMed

    Woolf, Kathleen; Bidwell, Wendy K; Carlson, Amanda G

    2008-08-01

    The study examined caffeine (5 mg/kg body weight) vs. placebo during anaerobic exercise. Eighteen male athletes (24.1+/-5.8 yr; BMI 26.4+/-2.2 kg/m2) completed a leg press, chest press, and Wingate test. During the caffeine trial, more total weight was lifted with the chest press, and a greater peak power was obtained during the Wingate test. No differences were observed between treatments for the leg press and average power, minimum power, and power drop (Wingate test). There was a significant treatment main effect found for postexercise glucose and insulin concentrations; higher concentrations were found in the caffeine trial. A significant interaction effect (treatment and time) was found for cortisol and glucose concentrations; both increased with caffeine and decreased with placebo. Postexercise systolic blood pressure was significantly higher during the caffeine trial. No differences were found between treatments for serum free-fatty-acid concentrations, plasma lactate concentrations, serum cortisol concentrations, heart rate, and rating of perceived exertion. Thus, a moderate dose of caffeine resulted in more total weight lifted for the chest press and a greater peak power attained during the Wingate test in competitive athletes.

  6. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    PubMed

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.

  7. Towards 24/7 continuous heart rate monitoring.

    PubMed

    Tarniceriu, Adrian; Parak, Jakub; Renevey, Philippe; Nurmi, Marko; Bertschi, Mattia; Delgado-Gonzalo, Ricard; Korhonen, Ilkka

    2016-08-01

    Heart rate (HR) and HR variability (HRV) carry rich information about physical activity, mental and physical load, physiological status, and health of an individual. When combined with activity monitoring and personalized physiological modelling, HR/HRV monitoring may be used for monitoring of complex behaviors and impact of behaviors and external factors on the current physiological status of an individual. Optical HR monitoring (OHR) from wrist provides a comfortable and unobtrusive method for HR/HRV monitoring and is better adhered by users than traditional ECG electrodes or chest straps. However, OHR power consumption is significantly higher than that for ECG based methods due to the measurement principle based on optical illumination of the tissue. We developed an algorithmic approach to reduce power consumption of the OHR in 24/7 HR trending. We use continuous activity monitoring and a fast converging frequency domain algorithm to derive a reliable HR estimate in 7.1s (during outdoor sports, in average) to 10.0s (during daily life). The method allows >80% reduction in power consumption in 24/7 OHR monitoring when average HR monitoring is targeted, without significant reduction in tracking accuracy.

  8. The Energy Spectrum of Solar Energetic Electrons

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yang, L.; Krucker, S.; Wimmer-Schweingruber, R. F.; Bale, S. D.

    2015-12-01

    Here we present a statistical survey of the energy spectrum of solar energetic electron events (SEEs) observed by the WIND 3DP instrument from 1995 though 2014. For SEEs with the minimum energy below 10 keV and the maximum energy above 100 keV, ~85% (~2%) have a double-power-law energy spectrum with a steepening (hardening) above the break energy, while ~13% have a single-power-law energy spectrum at all energies. The average spectral index is ~2.4 below the energy break and is ~4.0 above the energy break. For SEEs detected only at energies <10 keV (>20 keV), they generally show a single-power-law spectrum with the average index of ~3.0 (~3.3). The spectrum of SEEs detected only below 10 keV appears to get harder with increasing solar activity, but the spectrum of SEEs with higher-energy electrons shows no clear correlation with solar activity. We will also investigate whether the observed energy spectrum of SEEs at 1 AU mainly reflects the electron acceleration at the Sun or the electron transport in the interplanetary medium.

  9. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  10. Analysis of economic determinants of fertility in Iran: a multilevel approach.

    PubMed

    Moeeni, Maryam; Pourreza, Abolghasem; Torabi, Fatemeh; Heydari, Hassan; Mahmoudi, Mahmood

    2014-08-01

    During the last three decades, the Total Fertility Rate (TFR) in Iran has fallen considerably; from 6.5 per woman in 1983 to 1.89 in 2010. This paper analyzes the extent to which economic determinants at the micro and macro levels are associated with the number of children in Iranian households. Household data from the 2010 Household Expenditure and Income Survey (HEIS) is linked to provincial data from the 2010 Iran Multiple-Indicator Demographic and Health Survey (IrMIDHS), the National Census of Population and Housing conducted in 1986, 1996, 2006 and 2011, and the 1985-2010 Iran statistical year books. Fertility is measured as the number of children in each household. A random intercept multilevel Poisson regression function is specified based on a collective model of intra-household bargaining power to investigate potential determinants of the number of children in Iranian households. Ceteris paribus (other things being equal), probability of having more children drops significantly as either real per capita educational expenditure or real total expenditure of each household increase. Both the low- and the high-income households show probabilities of having more children compared to the middle-income households. Living in provinces with either higher average amount of value added of manufacturing establishments or lower average rate of house rent is associated to higher probability of having larger number of children. Higher levels of gender gap indices, resulting in household's wife's limited power over household decision-making, positively affect the probability of having more children. Economic determinants at the micro and macro levels, distribution of intra-household bargaining power between spouses and demographic covariates determined fertility behavior of Iranian households.

  11. Analysis of economic determinants of fertility in Iran: a multilevel approach

    PubMed Central

    Moeeni, Maryam; Pourreza, Abolghasem; Torabi, Fatemeh; Heydari, Hassan; Mahmoudi, Mahmood

    2014-01-01

    Background: During the last three decades, the Total Fertility Rate (TFR) in Iran has fallen considerably; from 6.5 per woman in 1983 to 1.89 in 2010. This paper analyzes the extent to which economic determinants at the micro and macro levels are associated with the number of children in Iranian households. Methods: Household data from the 2010 Household Expenditure and Income Survey (HEIS) is linked to provincial data from the 2010 Iran Multiple-Indicator Demographic and Health Survey (IrMIDHS), the National Census of Population and Housing conducted in 1986, 1996, 2006 and 2011, and the 1985–2010 Iran statistical year books. Fertility is measured as the number of children in each household. A random intercept multilevel Poisson regression function is specified based on a collective model of intra-household bargaining power to investigate potential determinants of the number of children in Iranian households. Results: Ceteris paribus (other things being equal), probability of having more children drops significantly as either real per capita educational expenditure or real total expenditure of each household increase. Both the low- and the high-income households show probabilities of having more children compared to the middle-income households. Living in provinces with either higher average amount of value added of manufacturing establishments or lower average rate of house rent is associated to higher probability of having larger number of children. Higher levels of gender gap indices, resulting in household’s wife’s limited power over household decision-making, positively affect the probability of having more children. Conclusion: Economic determinants at the micro and macro levels, distribution of intra-household bargaining power between spouses and demographic covariates determined fertility behavior of Iranian households. PMID:25197678

  12. Comparison of Physical and Physiological Profiles in Elite and Amateur Young Wrestlers.

    PubMed

    Demirkan, Erkan; Koz, Mitat; Kutlu, Mehmet; Favre, Mike

    2015-07-01

    The aim of this study is to examine the physical and physiological determinants of wrestling success between elite and amateur male wrestlers. The wrestlers (N = 126) were first assigned to 3 groups based on their competitive level (top elite, elite, and amateur) and then to 6 groups according to their body mass (light, middle, and heavy weight) and their competitive level (elite and amateur). Top elite and elite wrestlers had significantly (p ≤ 0.05) more training experiences and maximal oxygen uptake compared with the amateur group. In separating weight classes, light- and middle-weight elite (MWE) wrestlers had significantly (p ≤ 0.05) more training experience (7-20%) compared with the light- and middle-weight amateur (MWA) wrestlers. No significant differences were detected between elite and amateur groups (light-, middle-, and heavy-weight wrestlers) for age, body mass, height, body mass index, and body fat (p > 0.05), with the exception of height for heavy wrestlers. Leg average and peak power values (in watts and watts per kilogram) in MWE were higher than MWA (6.5 and 13%, p ≤ 0.05). Relative leg average power value in heavy-weight elite (HWE) (in watts per kilogram) was higher than heavy-weight amateur (HWA) (9.6%, p ≤ 0.05). It was seen that elite wrestlers in MWE and HWE statistically possessed a higher V̇O2max (12.5 and 11.4%, respectively) than amateur middle- and heavy-weight wrestlers (p ≤ 0.05). The results of this study suggest that training experience, aerobic endurance, and anaerobic power and capacity will give a clear advantage for the wrestlers to take part in the elite group.

  13. The enerMENA meteorological network - Solar radiation measurements in the MENA region

    NASA Astrophysics Data System (ADS)

    Schüler, D.; Wilbert, S.; Geuder, N.; Affolter, R.; Wolfertstetter, F.; Prahl, C.; Röger, M.; Schroedter-Homscheidt, M.; Abdellatif, G.; Guizani, A. Allah; Balghouthi, M.; Khalil, A.; Mezrhab, A.; Al-Salaymeh, A.; Yassaa, N.; Chellali, F.; Draou, D.; Blanc, P.; Dubranna, J.; Sabry, O. M. K.

    2016-05-01

    For solar resource assessment of solar power plants and adjustment of satellite data, high accuracy measurement data of irradiance and ancillary meteorological data is needed. For the MENA region (Middle East and Northern Africa), which is of high importance for concentrating solar power applications, so far merely 2 publicly available ground measurement stations existed (BSRN network). This gap has been filled by ten stations in Morocco, Algeria, Tunisia, Egypt and Jordan. In this publication the data quality is analyzed by evaluating data completeness and the cleanliness of irradiance sensors in comparison for all of the stations. The pyrheliometers have an average cleanliness of 99.2 % for week-daily cleaning. This is a 5 times higher effort than for Rotating Shadowband Irradiometer (RSI) stations which even have a slightly higher average cleanliness of 99.3 % for weekly cleaning. Furthermore, RSI stations show a data completeness of 99.4 % compared to 93.6 % at the stations equipped with thermal sensors. The results of this analysis are used to derive conclusions concerning instrument choice and are hence also applicable to other solar radiation measurements outside the enerMENA network. It turns out that RSIs are the more reliable and robust choice in cases of high soiling, rare station visits for cleaning and maintenance, as usual in desert sites. Furthermore, annual direct normal and global horizontal irradiation as well as average meteorological parameters are calculated for all of the stations.

  14. Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions

    NASA Astrophysics Data System (ADS)

    Kotchasarn, Chirawat; Saengudomlert, Poompat

    We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.

  15. Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putter, Roland de; Wagner, Christian; Verde, Licia

    2012-04-01

    Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory andmore » while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only ∼ 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc{sup −1} at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc{sup −1}. As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.« less

  16. Neuromuscular performance of lower limbs during voluntary and reflex activity in power- and endurance-trained athletes.

    PubMed

    Kyröläinen, H; Komi, P V

    1994-01-01

    Neural, mechanical and muscle factors influence muscle force production. This study was therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P < 0.01-0.001) with higher rates for force production (P < 0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.

  17. Modified nonlinear amplifying loop mirror for mode-locked fibre oscillators with record-high energy and high-average-power pulsed output

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey

    2018-02-01

    The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.

  18. Two-photon excitation of 2,5-diphenyloxazole using a low power green solid state laser

    NASA Astrophysics Data System (ADS)

    Luchowski, Rafal

    2011-01-01

    This Letter concerns two-photon excitation of 2,5-diphenyloxazole (PPO) upon illumination from a pulsed 532 nm solid state laser, with an average power of 30 mW, and a repetition rate of 20 MHz. A very agreeable emission spectrum position and shape has been achieved for PPO receiving one- and two-photon excitation, which suggests that the same excited state is involved for both excitation modes. Also, a perfect quadratic dependence of laser power in the emission intensity function has been recorded. We tested the application of a small solid state green laser to two-photon induced time-resolved fluorescence, revealing the emission anisotropy of PPO to be considerably higher for two-photon than for one-photon excitation.

  19. In vivo assessment of diet-induced rat hepatic steatosis development by percutaneous single-fiber spectroscopy detects scattering spectral changes due to fatty infiltration

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Sultana, Nigar; Holyoak, G. Reed; Ritchey, Jerry W.; Wall, Corey R.; Murray, Jill K.; Bartels, Kenneth E.

    2015-11-01

    This study explores percutaneous single-fiber spectroscopy (SfS) of rat livers undergoing fatty infiltration. Eight test rats were fed a methionine-choline-deficient (MCD) diet, and four control rats were fed a normal diet. Two test rats and one control rat were euthanized on days 12, 28, 49, and 77 following initiation of the diet, after percutaneous SfS of the liver under transabdominal ultrasound guidance. Histology of each set of the two euthanized test rats showed mild and mild hepatic lipid accumulations on day 12, moderate and severe on day 28, severe and mild on day 49, and moderate and mild on day 77. Livers with moderate or higher lipid accumulation generally presented higher spectral reflectance intensity when compared to lean livers. Livers of the eight test rats on day 12, two of which had mild lipid accumulation, revealed an average scattering power of 0.37±0.14 in comparison to 0.07±0.14 for the four control rats (p<0.01). When livers of the test rats with various levels of fatty infiltration were combined, the average scattering power was 0.36±0.15 in comparison to 0.14±0.24 of the control rats (0.05

  20. Predictors of cerebral microembolization during phased radiofrequency ablation of atrial fibrillation: analysis of biophysical parameters from the ablation generator.

    PubMed

    Nagy-Balo, Edina; Kiss, Alexandra; Condie, Catherine; Stewart, Mark; Edes, Istvan; Csanadi, Zoltan

    2014-06-01

    Pulmonary vein isolation with phased radiofrequency current and use of a pulmonary vein ablation catheter (PVAC) has recently been associated with a high incidence of clinically silent brain infarcts on diffusion-weighted magnetic resonance imaging and a high microembolic signal (MES) count detected by transcranial Doppler. The purpose of this study was to investigate the potential correlation between different biophysical parameters of energy delivery (ED) and MES generation during PVAC ablation. MES counts during consecutive PVAC ablations were recorded for each ED and time stamped for correlation with temperature, power, and impedance data from the GENius 14.4 generator. Additionally, catheter-tissue contact was characterized by the template deviation score, calculated by comparing the temperature curve with an ideal template representing good contact, and by the respiratory contact failure score, to quantify temperature variations indicative of intermittent contact due to respiration. A total of 834 EDs during 48 PVAC ablations were analyzed. A significant increase in MES count was associated with a lower average temperature, a temperature integral over 62°C, a higher average power, the total energy delivered, higher respiration and template deviation scores (P <.0001), and simultaneous ED to the most proximal and distal poles of the PVAC (P <.0001). MES generation during ablation is related to different indicators of poor electrode-tissue contact, the total power delivered, and the interaction between the most distal and the most proximal electrodes. Copyright © 2014. Published by Elsevier Inc.

  1. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  2. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  3. Standard-Cell, Open-Architecture Power Conversion Systems

    DTIC Science & Technology

    2005-10-01

    TLmax Maximum junction temperature 423 OK Table 5. 9. PEBB average model description in VTB. Terminal Type Name - 4 -, A Power DC Bus + B Power AC Pole...5 A. Switching models ........................................................................................ 5 B. Average ...11-6 IV. Average Modeling of PEBB-Based Converters...................................................... 11-10 0 IV. 1.Voltage

  4. Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Song, Shaowei; Mao, Jun; Shuai, Jing; Zhu, Hangtian; Ren, Zhensong; Saparamadu, Udara; Tang, Zhongjia; Wang, Bo; Ren, Zhifeng

    2018-02-01

    The recent discovery of a high thermoelectric figure of merit (ZT) in an n-type Mg3Sb2-based Zintl phase triggered an intense research effort to pursue even higher ZT. Based on our previous report on Mg3.1Nb0.1Sb1.5Bi0.49Te0.01, we report here that partial texturing in the (001) plane is achieved by double hot pressing, which is further confirmed by the rocking curves of the (002) plane. The textured samples of Mg3.1Nb0.1Sb1.5Bi0.49Te0.01 show a much better average performance in the (00l) plane. Hall mobility is significantly improved to ˜105 cm2 V-1 s-1 at room temperature in the (00l) plane due to texturing, resulting in higher electrical conductivity, a higher power factor of ˜18 μW cm-1 K-2 at room temperature, and also higher average ZT. This work shows that texturing is good for higher thermoelectric performance, suggesting that single crystals of n-type Mg3Sb2-based Zintl compounds are worth pursuing.

  5. [Analysis of the characteristic of pharyngeal paraesthesia patients by high resolution manometry].

    PubMed

    Gu, Yun; Qian, Wei

    2015-09-01

    To discuss the pressure changing characteristics of upper esophageal sphincter (UES), lower esophageal sphincter (LES) and the esophagus kinetic characteristics of pharyngeal paraesthesia patients. To take high resolution manometry in 44 cases of pharyngeal paraesthesia patients and 23 normal subjects separately. According to the RSI score,the 44 patients were divided into group A (the group without reflux, RSI < 13, n = 25) and group B (the group with reflux, RSI ≥ 13, n = 19). The UES average resting pressure and average residual pressure of patients group were higher than the control group (P < 0.05); The UES average resting pressure and average residual pressure of group B were higher than group A (P < 0.05); The LES average resting pressure and average residual pressure of group B were lower than group A and the control group (P < 0.05); The comparison of LES average resting pressure and average residual pressure between group A and the control group was not statistically significant (P > 0.05). The esophagus DCI of group B was lower than that of group A and control group (P < 0.05). The esophagus DCI comparison between group A and control group was not statistically significant (P > 0.05). The pharyngeal paresthesia symptoms of'patients was associated with the increasing of UES pressure. The pharyngeal paresthesia symptoms of group with reflux was related to low pressure of LES and high pressure of UES. The last part of esophagus of group with reflux had obstacles in powers, which weaken the peristalsis and declined the ability to clear the bolus and gastric reflux material.

  6. Generation of high powers from diode pumped chromium-3+ doped colquiriites

    NASA Astrophysics Data System (ADS)

    Eichenholz, Jason Matthew

    1998-12-01

    There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.

  7. High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs

    DTIC Science & Technology

    2008-04-01

    high -average power S - band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42...al., “ High - power Four-cavity S - band multiple-beam klystron design,” IEEE Trans. Plasma Science, vol. 33, pp. 1119-1135, April 2005. [3] D.K Abe, et...APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High -average Power Broadband 18-beam

  8. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  9. Using Zipf-Mandelbrot law and graph theory to evaluate animal welfare

    NASA Astrophysics Data System (ADS)

    de Oliveira, Caprice G. L.; Miranda, José G. V.; Japyassú, Hilton F.; El-Hani, Charbel N.

    2018-02-01

    This work deals with the construction and testing of metrics of welfare based on behavioral complexity, using assumptions derived from Zipf-Mandelbrot law and graph theory. To test these metrics we compared yellow-breasted capuchins (Sapajus xanthosternos) (Wied-Neuwied, 1826) (PRIMATES CEBIDAE) found in two institutions, subjected to different captive conditions: a Zoobotanical Garden (hereafter, ZOO; n = 14), in good welfare condition, and a Wildlife Rescue Center (hereafter, WRC; n = 8), in poor welfare condition. In the Zipf-Mandelbrot-based analysis, the power law exponent was calculated using behavior frequency values versus behavior rank value. These values allow us to evaluate variations in individual behavioral complexity. For each individual we also constructed a graph using the sequence of behavioral units displayed in each recording (average recording time per individual: 4 h 26 min in the ZOO, 4 h 30 min in the WRC). Then, we calculated the values of the main graph attributes, which allowed us to analyze the complexity of the connectivity of the behaviors displayed in the individuals' behavioral sequences. We found significant differences between the two groups for the slope values in the Zipf-Mandelbrot analysis. The slope values for the ZOO individuals approached -1, with graphs representing a power law, while the values for the WRC individuals diverged from -1, differing from a power law pattern. Likewise, we found significant differences for the graph attributes average degree, weighted average degree, and clustering coefficient when comparing the ZOO and WRC individual graphs. However, no significant difference was found for the attributes modularity and average path length. Both analyses were effective in detecting differences between the patterns of behavioral complexity in the two groups. The slope values for the ZOO individuals indicated a higher behavioral complexity when compared to the WRC individuals. Similarly, graph construction and the calculation of its attributes values allowed us to show that the complexity of the connectivity among the behaviors was higher in the ZOO than in the WRC individual graphs. These results show that the two measuring approaches introduced and tested in this paper were capable of capturing the differences in welfare levels between the two conditions, as shown by differences in behavioral complexity.

  10. A Theory of the von Weimarn Rules Governing the Average Size of Crystals Precipitated from a Supersaturated Solution

    NASA Technical Reports Server (NTRS)

    Barlow, Douglas A.; Baird, James K.; Su, Ching-Hua

    2003-01-01

    More than 75 years ago, von Weimarn summarized his observations of the dependence of the average crystal size on the initial relative concentration supersaturation prevailing in a solution from which crystals were growing. Since then, his empirically derived rules have become part of the lore of crystal growth. The first of these rules asserts that the average crystal size measured at the end of a crystallization increases as the initial value of the relative supersaturation decreases. The second rule states that for a given crystallization time, the average crystal size passes through a maximum as a function of the initial relative supersaturation. Using a theory of nucleation and growth due to Buyevich and Mansurov, we calculate the average crystal size as a function of the initial relative supersaturation. We confirm the von Weimarn rules for the case where the nucleation rate is proportional to the third power or higher of the relative supersaturation.

  11. Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.

    Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints.more » We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.« less

  12. Approximating lens power.

    PubMed

    Kaye, Stephen B

    2009-04-01

    To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.

  13. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less

  14. Powered two-wheeler drivers' risk of hitting a pedestrian in towns.

    PubMed

    Clabaux, Nicolas; Fournier, Jean-Yves; Michel, Jean-Emmanuel

    2014-12-01

    The risk of collision between pedestrians and powered two-wheelers is poorly understood today. The objective of this research is to determine the risk for powered two-wheeler drivers of hitting and injuring a pedestrian per kilometer driven in towns and to compare this risk with that run by four-wheeled vehicle drivers. Using the bodily injury accidents recorded by the police on nine roads in the city of Marseille in 2011 and a campaign of observations of powered two-wheeler traffic, we estimated the risk per kilometer driven by powered two-wheeler drivers of hitting a pedestrian and compared it with the risk run by four-wheeled vehicle drivers. The results show that the risk for powered two-wheeler drivers of hitting and injuring a pedestrian is significantly higher than the risk run by four-wheeled vehicle drivers. On the nine roads studied, it is on average 3.33 times higher (95% CI: 1.63; 6.78). Taking four more years into account made it possible to consolidate these results and to tighten the confidence interval. There does indeed seem to be problems in the interactions between pedestrians and powered two-wheeler users in urban traffic. These interaction problems lead to a higher risk of hitting and injuring a pedestrian for powered two-wheeler drivers than for four-wheeled vehicle drivers. The analysis of the police reports suggests that part of this increased risk comes from filtering maneuvers by powered two-wheelers. Possible countermeasures deal with the urban street layout. Measures consisting in reducing the width and the number of traffic lanes to a strict minimum and installing medians or pedestrian islands could be an effective way for the prevention of urban accidents between pedestrians and powered two-wheelers. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.

  15. Methods of increasing thermal efficiency of steam and gas turbine plants

    NASA Astrophysics Data System (ADS)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  16. Better prognostic marker in ICU - APACHE II, SOFA or SAP II!

    PubMed

    Naqvi, Iftikhar Haider; Mahmood, Khalid; Ziaullaha, Syed; Kashif, Syed Mohammad; Sharif, Asim

    2016-01-01

    This study was designed to determine the comparative efficacy of different scoring system in assessing the prognosis of critically ill patients. This was a retrospective study conducted in medical intensive care unit (MICU) and high dependency unit (HDU) Medical Unit III, Civil Hospital, from April 2012 to August 2012. All patients over age 16 years old who have fulfilled the criteria for MICU admission were included. Predictive mortality of APACHE II, SAP II and SOFA were calculated. Calibration and discrimination were used for validity of each scoring model. A total of 96 patients with equal gender distribution were enrolled. The average APACHE II score in non-survivors (27.97+8.53) was higher than survivors (15.82+8.79) with statistically significant p value (<0.001). The average SOFA score in non-survivors (9.68+4.88) was higher than survivors (5.63+3.63) with statistically significant p value (<0.001). SAP II average score in non-survivors (53.71+19.05) was higher than survivors (30.18+16.24) with statistically significant p value (<0.001). All three tested scoring models (APACHE II, SAP II and SOFA) would be accurate enough for a general description of our ICU patients. APACHE II has showed better calibration and discrimination power than SAP II and SOFA.

  17. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  18. Hydroelectric production from Brazil's São Francisco River could cease due to climate change and inter-annual variability.

    PubMed

    de Jong, Pieter; Tanajura, Clemente Augusto Souza; Sánchez, Antonio Santos; Dargaville, Roger; Kiperstok, Asher; Torres, Ednildo Andrade

    2018-09-01

    By the end of this century higher temperatures and significantly reduced rainfall are projected for the Brazilian North and Northeast (NE) regions due to Global Warming. This study examines the impact of these long-term rainfall changes on the Brazilian Northeast's hydroelectric production. Various studies that use different IPCC models are examined in order to determine the average rainfall reduction by the year 2100 in comparison to baseline data from the end of the 20th century. It was found that average annual rainfall in the NE region could decrease by approximately 25-50% depending on the emissions scenario. Analysis of historical rainfall data in the São Francisco basin during the last 57years already shows a decline of more than 25% from the 1961-90 long-term average. Moreover, average annual rainfall in the basin has been below its long-term average every year bar one since 1992. If this declining trend continues, rainfall reduction in the basin could be even more severe than the most pessimistic model projections. That is, the marked drop in average rainfall projected for 2100, based on the IPCC high emissions scenario, could actually eventuate before 2050. Due to the elasticity factor between rainfall and streamflow and because of increased amounts of irrigation in the São Francisco basin, the reduction in the NE's average hydroelectric production in the coming decades could be double the predicted decline in rainfall. Conversely, it is estimated that wind power potential in the Brazilian NE will increase substantially by 2100. Therefore both wind and solar power will need to be significantly exploited in order for the NE region to sustainably replace lost hydroelectric production. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Learning Hierarchical Feature Extractors for Image Recognition

    DTIC Science & Technology

    2012-09-01

    space as a natural criterion for devising better pools. Finally, we propose ways to make coding faster and more powerful through fast convolutional...parameter is the set of pools over which the summary statistic is computed. We propose locality in feature configuration space as a natural criterion for...pooling (dotted lines) is consistently higher than average pooling (solid lines), but the gap is much less signif - icant with intersection kernel (closed

  20. Measurement of natural radioactivity and assessment of associated radiation hazards in soil around Baoji second coal-fired thermal power plant, China.

    PubMed

    Lu, Xinwei; Li, Xiaoxue; Yun, Pujun; Luo, Dacheng; Wang, Lijun; Ren, Chunhui; Chen, Cancan

    2012-01-01

    Activity concentrations of natural radionuclides (226)Ra, (232)Th and (40)K in soil around Baoji Second coal-fired thermal power plant of China were determined using gamma ray spectrometry. The mean activity concentrations of (226)Ra, (232)Th and (40)K in soil were found to be 40.3 ± 3.5, 59.6 ± 3.1 and 751.2 ± 12.4 Bq kg(-1), respectively, which are all higher than the corresponding average values in Shaanxi, Chinese and world soil. The radium equivalent activity (Ra(eq)), the air absorbed dose rate (D), the annual effective dose (E), the external hazard index (H(ex)) and internal hazard index (H(in)) were evaluated and compared with the internationally reported or reference values. All the soil samples have Ra(eq) lower than the limit of 370 Bq kg(-1) and H(ex) and H(in) less than unity. The overall mean outdoor terrestrial gamma air absorbed dose rate is ∼86.6 ± 3.4 nGy h(-1) and the corresponding outdoor annual effective dose is 0.106 ± 0.004 mSv, which is higher than the worldwide average (0.07 mSv y(-1)) for outdoor's annual effective dose.

  1. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  2. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  3. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.

    PubMed

    Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel

    2018-06-05

    In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.

  4. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  5. Performance of an annular solid-oxide fuel cell micro-stack array operating in single-chamber conditions

    NASA Astrophysics Data System (ADS)

    Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui

    An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.

  6. Module failure isolation circuit for paralleled inverters. [preventing system failure during power conditioning for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1979-01-01

    A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.

  7. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  8. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  9. Power allocation for SWIPT in K-user interference channels using game theory

    NASA Astrophysics Data System (ADS)

    Wen, Zhigang; Liu, Ying; Liu, Xiaoqing; Li, Shan; Chen, Xianya

    2018-12-01

    A simultaneous wireless information and power transfer system in interference channels of multi-users is considered. In this system, each transmitter sends one data stream to its targeted receiver, which causes interference to other receivers. Since all transmitter-receiver links want to maximize their own average transmission rate, a power allocation problem under the transmit power constraints and the energy-harvesting constraints is developed. To solve this problem, we propose a game theory framework. Then, we convert the game into a variational inequalities problem by establishing the connection between game theory and variational inequalities and solve the variational inequalities problem. Through theoretical analysis, the existence and uniqueness of Nash equilibrium are both guaranteed by the theory of variational inequalities. A distributed iterative alternating optimization water-filling algorithm is derived, which is proved to converge. Numerical results show that the proposed algorithm reaches fast convergence and achieves a higher sum rate than the unaided scheme.

  10. Experimental investigation of the transverse modal instabilities onset in high power fully-aperiodic-large-pitch fiber lasers

    NASA Astrophysics Data System (ADS)

    Malleville, Marie-Alicia; Benoît, Aurélien; Dauliat, Romain; Leconte, Baptiste; Darwich, Dia; du Jeu, Rémi; Jamier, Raphaël.; Schwuchow, Anka; Schuster, Kay; Roy, Philippe

    2018-02-01

    Over the last decade, significant work has been carried out in order to increase the energy/peak power provided by fiber lasers. Indeed, new microstructured fibers with large (or very large) mode area cores (LMA) such as Distributed Mode Filtering (DMF) fibers and Large-Pitch Fibers (LPF) have been developed to address this concern. These technologies have allowed diffraction-limited emission with core diameters higher than 80 μm, and have state-of-the-art performances in terms of pulse energy or peak power while keeping an excellent spatial beam quality. Although these fibers were designed to reach high power levels while maintaining a single transverse mode propagation, power scaling becomes quickly limited by the onset of transverse modal instabilities (TMI). This effect suddenly arises when a certain average power threshold is exceeded, drastically degrading the emitted beam quality. In this work, we investigate the influence of the core dimensions and the refractive index mismatch between the active core and the background cladding material, on the TMI power threshold in rod-type Fully-Aperiodic-LPF. This fiber structure was specifically designed to enhance the higher-order modes (HOMs) delocalization out of the gain region and thus push further the onset of modal instabilities. Using a 400W pump diode at 976 nm, the power scaling, as well as the spatial beam quality and its temporal behavior were investigated in laser configuration, which theoretically provides a lower TMI power threshold than the amplifier one due to the lack of selective excitation of the fundamental mode.

  11. Design of High Speed and Low Offset Dynamic Latch Comparator in 0.18 µm CMOS Process

    PubMed Central

    Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Ali, Mohammad Alauddin Mohammad; Marufuzzaman, Mohammad

    2014-01-01

    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2. PMID:25299266

  12. High β produced by neutral beam injection in the START (Small Tight Aspect Ratio Tokamak) spherical tokamak

    NASA Astrophysics Data System (ADS)

    Sykes, Alan

    1997-05-01

    The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.

  13. 47 CFR 15.403 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... power control level. Power must be summed across all antennas and antenna elements. The average must not... symbols, during which the average symbol envelope power is constant. (q) RLAN. Radio Local Area Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch between...

  14. The 10 kW power electronics for hydrogen arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Hill, Gerald M.

    1992-01-01

    A combination of emerging mission considerations such as 'launch on schedule', resource limitations, and the development of higher power spacecraft busses has resulted in renewed interest in high power hydrogen arcjet systems with specific impulses greater than 1000 s for Earth-space orbit transfer and maneuver applications. Solar electric propulsion systems with about 10 kW of power appear to offer payload benefits at acceptable trip times. This work outlines the design and development of 10 kW hydrogen arcjet power electronics and results of arcjet integration testing. The power electronics incorporated a full bridge switching topology similar to that employed in state of the art 5 kW power electronics, and the output filter included an output current averaging inductor with an integral pulse generation winding for arcjet ignition. Phase shifted, pulse width modulation with current mode control was used to regulate the current delivered to arcjet, and a low inductance power stage minimized switching transients. Hybrid power Metal Oxide Semiconductor Field Effect Transistors were used to minimize conduction losses. Switching losses were minimized using a fast response, optically isolated, totem-pole gate drive circuit. The input bus voltage for the unit was 150 V, with a maximum output voltage of 225 V. The switching frequency of 20 kHz was a compromise between mass savings and higher efficiency. Power conversion efficiencies in excess of 0.94 were demonstrated, along with steady state load current regulation of 1 percent. The power electronics were successfully integrated with a 10 kW laboratory hydrogen arcjet, and reliable, nondestructive starts and transitions to steady state operation were demonstrated. The estimated specific mass for a flight packaged unit was 2 kg/kW.

  15. The role of a microfinance program on HIV risk behavior among Haitian women.

    PubMed

    Rosenberg, Molly S; Seavey, Brian K; Jules, Reginal; Kershaw, Trace S

    2011-07-01

    Microfinance loans targeted at vulnerable female populations have the potential to foster female economic independence, possibly leading to the negotiation of safer sexual practices and reduced HIV risk. This study assessed the relationship between experience with microfinance loans and HIV risk behavior among 192 female clients of the Haitian microfinance organization Fonkoze. Clients with longer microfinance experience were generally found to have lower indicators of HIV risk behavior and higher indicators of relationship power compared to those with shorter experience. In particular, those with longer memberships were 72% less likely to report partner infidelity, were 3.95 times more likely to use condoms with an unfaithful partner, and had higher average general power index scores compared to those with shorter experience. This study provides evidence that long-term exposure to microfinance is associated with reduced HIV risk behavior in Haitian women and that this reduction may be partly regulated by influencing relationship power. These results suggest the need to further explore the use of microfinance as a tool to prevent the spread of HIV.

  16. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    NASA Astrophysics Data System (ADS)

    Bingham, C. E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/sq cm). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6/sq cm) exit aperture, corresponding to a flux of about 2 kW/sq cm. This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/sq cm) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty.

  17. Theoretical study of the design and performance of a high-gain, high-extraction-efficiency FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.

    1996-10-01

    We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5%more » is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.« less

  18. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2015-03-01

    Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.

  19. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.

    PubMed

    Olsen, Thomas

    2007-02-01

    This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p < 0.00001). The number of predictions within +/- 0.5 D, +/- 1.0 D and +/- 2.0 D of the expected outcome was 62.5%, 92.4% and 99.9% with PCI, compared with 45.5%, 77.3% and 98.4% with ultrasound, respectively (p < 0.00001). The 2-variable ACD method resulted in an average error in PCI predictions of 0.46 D, which was significantly higher than the error in the 5-variable method (p < 0.001). The accuracy of IOL power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.

  20. An Analysis of the Effects of RFID Tags on Narrowband Navigation and Communication Receivers

    NASA Technical Reports Server (NTRS)

    LaBerge, E. F. Charles

    2007-01-01

    The simulated effects of the Radio Frequency Identification (RFID) tag emissions on ILS Localizer and ILS Glide Slope functions match the analytical models developed in support of DO-294B provided that the measured peak power levels are adjusted for 1) peak-to-average power ratio, 2) effective duty cycle, and 3) spectrum analyzer measurement bandwidth. When these adjustments are made, simulated and theoretical results are in extraordinarily good agreement. The relationships hold over a large range of potential interference-to-desired signal power ratios, provided that the adjusted interference power is significantly higher than the sum of the receiver noise floor and the noise-like contributions of all other interference sources. When the duty-factor adjusted power spectral densities are applied in the evaluation process described in Section 6 of DO-294B, most narrowband guidance and communications radios performance parameters are unaffected by moderate levels of RFID interference. Specific conclusions and recommendations are provided.

  1. Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Yoshida, Ryo; Mishima, Toshihiko; Azuma, Kingo; Nakao, Setsuo

    2018-06-01

    Titanium nitride (TiN) films are prepared by reactive high-power pulsed sputtering Penning discharges at a total pressure of 0.7 Pa and an average power of 60 W, where the nitrogen fraction is varied up to 15%. The peak value of the instantaneous power ranges between 3 and 14 kW, and the peak power density ranges between 0.3 and 1.2 kW cm‑2. The hardness of TiN films is higher than 22 GPa at the nitrogen fractions lower than 10% and it reaches 31 GPa at a nitrogen fraction of 5%. The X-ray diffraction peak of TiN(111) texture is observed for all prepared films, showing the grain size of about 10 nm. In X-ray photoelectron spectroscopy, oxygen is mainly bonded to titanium, but the intensity of the TiN bond is dominant in the entire Ti 2p spectrum. The intensity ratio of N 1s to Ti 2p ranges between 0.85 and 0.95.

  2. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  3. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.

  4. Computer usage and national energy consumption: Results from a field-metering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Baymore » Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.« less

  5. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system.

    PubMed

    Kwon, Sangil; Park, Yonghee; Park, Junhong; Kim, Jeongsoo; Choi, Kwang-Ho; Cha, Jun-Seok

    2017-01-15

    This paper presents the on-road nitrogen oxides (NO x ) emissions measurements from Euro 6 light-duty diesel vehicles using a portable emissions measurement system on the predesigned test routes in the metropolitan area of Seoul, Korea. Six diesel vehicles were tested and the NO x emissions results were analyzed according to the driving routes, driving conditions, data analysis methods, and ambient temperatures. Total NO x emissions for route 1, which has higher driving severity than route 2, differed by -4-60% from those for route 2. The NO x emissions when the air conditioner (AC) was used were higher by 68% and 85%, on average, for routes 1 and 2, respectively, compared to when the AC was not used. The analytical results for NO x emissions by the moving averaging window method were higher by 2-31% compared to the power binning method. NO x emissions at lower ambient temperatures (0-5°C) were higher by 82-192% compared to those at higher ambient temperatures (15-20°C). This result shows that performance improvements of exhaust gas recirculation and the NO x after-treatment system will be needed at lower ambient temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, D.

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less

  7. [The epidemiological characteristics and correlated factors of daily hassles for thermal power plant workers].

    PubMed

    Wu, Hui; Yu, Shan-fa; Zhou, Wen-hui; Gu, Gui-zhen

    2012-07-01

    This study aimed to investigate the epidemiological characteristics and correlated factors of daily hassles among thermal power plant workers. A mass screening of daily hassles and correlated factors was conducted on 498 workers from a thermal power plant in Zhengzhou in July, 2008. The questionnaires included Daily Hassles Questionnaires, Work Roles Questionnaires, Job Content Questionnaires (Chinese version), Effort-Reward Imbalance (Chinese version), Work Locus of Control Scale and Type A Behavior Scale, with content covering demographic characters and occupational stress correlated factors among subjects. The daily hassles was divided into lower level and higher level according to scores, and the epidemiological characteristics and correlated factors of daily hassles were analyzed. A total of 446 qualified questionnaires were obtained, effective response rate was 89.6% (446/498). For respondents, the age was (36.96 ± 6.49) years old, working length of the current job was (12.05 ± 7.54) years, the daily hassles scores was (9.01 ± 2.50), and the prevalence rate of the higher level of daily hassles was 34.1% (152/446). The multiple non-conditional logistic regression analysis showed 5-14 years' working length of current job (OR = 0.451, 95%CI: 0.225 - 0.904), average income > 3000 yuan(OR = 0.372, 95%CI: 0.202 - 0.684), reward (OR = 0.557, 95%CI: 0.325 - 0.954) and coping strategy (OR = 0.552, 95%CI: 0.330 - 0.925) were negatively correlated with daily hassles, and shift-work (OR = 1.887, 95%CI: 1.108 - 3.215), effort (OR = 2.053, 95%CI: 1.198 - 3.519), psychological demand (OR = 1.797, 95%CI: 1.049 - 3.078), negative affectivity (OR = 3.421, 95%CI: 2.065 - 5.668) were positively correlated with daily hassles. The prevalence rate of the higher level of daily hassles was considerable high for thermal power plant workers. Its negative correlated factors included 5 - 14 years' working length of the current job, average income > 3000 yuan, reward and coping strategy and its positive corelated factors included shift-work, effort, psychological demand and negative affectivity.

  8. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was one of the most important influence factors for the differences. Emission factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. The test inland ships and some test offshore vessels in China always had higher EFs for CO, NOx, and PM than previous studies. Besides, due to the significant influence of engine type on shipping emissions and that no accurate local EFs could be used in inventory calculation, much more measurement data for different vessels in China are still in urgent need. Best-fit engine speeds during actual operation should be based on both emission factors and economic costs.

  9. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.

  10. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.

  11. Fluid simulation of the bias effect in inductive/capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Ru; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, BE-2610 Antwerp; Gao, Fei

    Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6 A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitivemore » discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0–300 V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2 MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120 V at 2 MHz and 90 V at 27.12 MHz.« less

  12. Acoustic Effects in Classical Nucleation Theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  13. Applications of high average power nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velsko, S.P.; Krupke, W.F.

    1996-02-05

    Nonlinear optical frequency convertors (harmonic generators and optical parametric oscillators are reviewed with an emphasis on high average power performance and limitations. NLO materials issues and NLO device designs are discussed in reference to several emerging scientific, military and industrial commercial applications requiring {approx} 100 watt average power level in the visible and infrared spectral regions. Research efforts required to enable practical {approx} 100 watt class NLO based laser systems are identified.

  14. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  15. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization.

    PubMed

    Bayiz, Yagiz; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo

    2018-05-08

    In this work, a multi-objective optimization framework is developed for optimizing low Reynolds number ([Formula: see text]) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying [Formula: see text] and Rossby number ([Formula: see text], or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing the lift coefficient and minimizing the power coefficient in dimensionless space, explicitly revealing the trade-off between lift generation and power consumption. The results indicate that revolving wings are more efficient when the required average lift coefficient [Formula: see text] is low (<1 for [Formula: see text] and  <1.6 for [Formula: see text]), while flapping wings are more efficient in achieving higher [Formula: see text]. With the dimensionless power loading as the single-objective performance measure to be maximized, rotary flight is more efficient than flapping wings for [Formula: see text] regardless of the amount of energy storage assumed in the flapping wing actuation mechanism, while flapping flight is more efficient for [Formula: see text]. It is observed that wings with low [Formula: see text] perform better when higher [Formula: see text] is needed, whereas higher [Formula: see text] cases are more efficient at [Formula: see text] regions. However, for the selected geometry and [Formula: see text], the efficiency is weakly dependent on [Formula: see text] when the dimensionless power loading is maximized.

  16. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  17. Overview of High Power Vacuum Dry RF Load Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less

  18. Simulation Analysis of Wireless Power Transmission System for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping

    2018-03-01

    In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.

  19. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  20. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  1. Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin

    2011-03-01

    In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate themore » effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.« less

  2. Emission characteristics of offshore fishing ships in the Yellow Bo Sea, China.

    PubMed

    Liu, Yingshuai; Ge, Yunshan; Tan, Jianwei; Fu, Mingliang; Shah, Asad Naeem; Li, Luqiang; Ji, Zhe; Ding, Yan

    2018-03-01

    Maritime transport has been playing a decisive role in global trade. Its contribution to the air pollution of the sea and coastal areas has been widely recognized. The air pollutant emission inventories of several harbors in China have already been established. However, the emission factors of local ships have not been addressed comprehensively, and thus are lacking from the emission inventories. In this study, on-board emission tests of eight diesel-powered offshore fishing ships were conducted near the coastal region of the northern Yellow Bo Sea fishing ground of Dalian, China. Results show that large amounts of fine particles (<0.5μm, 90%) were found in maneuvering mode, which were about five times higher than those during cruise mode. Emission rates as well as emission factors based on both distance and fuel were determined during the cruise and maneuvering modes (including departure and arrival). Average emission rates and distance-based emission factors of CO, HC and PM were much higher during the maneuvering mode as compared with the cruise mode. However, the average emission rate of Nitrous Oxide (NO x ) was higher during the cruise mode as compared with the maneuvering modes. On the contrary, the average distance-based emission factors of NO x were lower during the cruise mode relative to the maneuvering mode due to the low sailing speed of the latter. Copyright © 2017. Published by Elsevier B.V.

  3. Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].

  4. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    PubMed

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  5. Nitrogen dioxide exposures inside ice skating rinks.

    PubMed Central

    Brauer, M; Spengler, J D

    1994-01-01

    OBJECTIVES. The common operation of fuel-powered resurfacing equipment in enclosed ice skating rinks has the potential for producing high concentrations of carbon monoxide and nitrogen dioxide. Exposures to these gaseous combustion products may adversely affect the health of those inside the rink. Little information is available on pollutant concentrations under normal operating conditions. METHODS. One-week average nitrogen dioxide concentrations in 70 northeastern US rinks were measured with passive samplers during normal winter season conditions. RESULTS. The median nitrogen dioxide level inside rinks was 180 ppb, more than 10 times higher than the median outdoor concentration. One-week average nitrogen dioxide concentrations above 1000 ppb were measured in 10% of the rinks. CONCLUSIONS. Considering that short-term peak concentrations were likely to have reached two to five times the measured 1-week averages, our results suggest that nitrogen dioxide levels were well above short-term air quality guidelines and constitute a public health concern of considerable magnitude. PMID:8129060

  6. Automatic vision-based grain optimization and analysis of multi-crystalline solar wafers using hierarchical region growing

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Tsai, Du-Ming; Chuang, Wei-Che

    2017-04-01

    Solar power has become an attractive alternative source of energy. The multi-crystalline solar cell has been widely accepted in the market because it has a relatively low manufacturing cost. Multi-crystalline solar wafers with larger grain sizes and fewer grain boundaries are higher quality and convert energy more efficiently than mono-crystalline solar cells. In this article, a new image processing method is proposed for assessing the wafer quality. An adaptive segmentation algorithm based on region growing is developed to separate the closed regions of individual grains. Using the proposed method, the shape and size of each grain in the wafer image can be precisely evaluated. Two measures of average grain size are taken from the literature and modified to estimate the average grain size. The resulting average grain size estimate dictates the quality of the crystalline solar wafers and can be considered a viable quantitative indicator of conversion efficiency.

  7. Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community.

    PubMed

    Bujan, Jelena; Yanoviak, Stephen P; Kaspari, Michael

    2016-09-01

    Desiccation resistance, the ability of an organism to reduce water loss, is an essential trait in arid habitats. Drought frequency in tropical regions is predicted to increase with climate change, and small ectotherms are often under a strong desiccation risk. We tested hypotheses regarding the underexplored desiccation potential of tropical insects. We measured desiccation resistance in 82 ant species from a Panama rainforest by recording the time ants can survive desiccation stress. Species' desiccation resistance ranged from 0.7 h to 97.9 h. We tested the desiccation adaptation hypothesis, which predicts higher desiccation resistance in habitats with higher vapor pressure deficit (VPD) - the drying power of the air. In a Panama rainforest, canopy microclimates averaged a VPD of 0.43 kPa, compared to a VPD of 0.05 kPa in the understory. Canopy ants averaged desiccation resistances 2.8 times higher than the understory ants. We tested a number of mechanisms to account for desiccation resistance. Smaller insects should desiccate faster given their higher surface area to volume ratio. Desiccation resistance increased with ant mass, and canopy ants averaged 16% heavier than the understory ants. A second way to increase desiccation resistance is to carry more water. Water content was on average 2.5% higher in canopy ants, but total water content was not a good predictor of ant desiccation resistance or critical thermal maximum (CT max), a measure of an ant's thermal tolerance. In canopy ants, desiccation resistance and CT max were inversely related, suggesting a tradeoff, while the two were positively correlated in understory ants. This is the first community level test of desiccation adaptation hypothesis in tropical insects. Tropical forests do contain desiccation-resistant species, and while we cannot predict those simply based on their body size, high levels of desiccation resistance are always associated with the tropical canopy.

  8. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David

    2012-03-01

    The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.

  9. Numerical study on the lubrication performance of compression ring-cylinder liner system with spherical dimples

    PubMed Central

    Liu, Cheng; Zhang, Yong-Fang; Li, Sha; Müller, Norbert

    2017-01-01

    The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width. PMID:28732042

  10. Average focal length and power of a section of any defined surface.

    PubMed

    Kaye, Stephen B

    2010-04-01

    To provide a method to allow calculation of the average focal length and power of a lens through a specified meridian of any defined surface, not limited to the paraxial approximations. University of Liverpool, Liverpool, United Kingdom. Functions were derived to model back-vertex focal length and representative power through a meridian containing any defined surface. Average back-vertex focal length was based on the definition of the average of a function, using the angle of incidence as an independent variable. Univariate functions allowed determination of average focal length and power through a section of any defined or topographically measured surface of a known refractive index. These functions incorporated aberrations confined to the section. The proposed method closely approximates the average focal length, and by inference power, of a section (meridian) of a surface to a single or scalar value. It is not dependent on the paraxial and other nonconstant approximations and includes aberrations confined to that meridian. A generalization of this method to include all orthogonal and oblique meridians is needed before a comparison with measured wavefront values can be made. Copyright (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Evaluating architecture impact on system energy efficiency

    PubMed Central

    Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317

  12. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    NASA Astrophysics Data System (ADS)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  13. Evaluating architecture impact on system energy efficiency.

    PubMed

    Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.

  14. Female scarcity reduces women's marital ages and increases variance in men's marital ages.

    PubMed

    Kruger, Daniel J; Fitzgerald, Carey J; Peterson, Tom

    2010-08-05

    When women are scarce in a population relative to men, they have greater bargaining power in romantic relationships and thus may be able to secure male commitment at earlier ages. Male motivation for long-term relationship commitment may also be higher, in conjunction with the motivation to secure a prospective partner before another male retains her. However, men may also need to acquire greater social status and resources to be considered marriageable. This could increase the variance in male marital age, as well as the average male marital age. We calculated the Operational Sex Ratio, and means, medians, and standard deviations in marital ages for women and men for the 50 largest Metropolitan Statistical Areas in the United States with 2000 U.S Census data. As predicted, where women are scarce they marry earlier on average. However, there was no significant relationship with mean male marital ages. The variance in male marital age increased with higher female scarcity, contrasting with a non-significant inverse trend for female marital age variation. These findings advance the understanding of the relationship between the OSR and marital patterns. We believe that these results are best accounted for by sex specific attributes of reproductive value and associated mate selection criteria, demonstrating the power of an evolutionary framework for understanding human relationships and demographic patterns.

  15. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    PubMed

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  16. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  17. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.

    PubMed

    Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U

    2011-01-17

    We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.

  18. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...

  19. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...

  20. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...

  1. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...

  2. Computationally Efficient Resampling of Nonuniform Oversampled SAR Data

    DTIC Science & Technology

    2010-05-01

    noncoherently . The resample data is calculated using both a simple average and a weighted average of the demodulated data. The average nonuniform...trials with randomly varying accelerations. The results are shown in Fig. 5 for the noncoherent power difference and Fig. 6 for and coherent power...simple average. Figure 5. Noncoherent difference between SAR imagery generated with uniform sampling and nonuniform sampling that was resampled

  3. RF Design of a High Average Beam-Power SRF Electron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan

    2016-06-01

    There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.

  4. The Effect of Body Build and BMI on Aerobic Test Performance in School Children (10-15 Years)

    PubMed Central

    Slinger, Jantine; Verstappen, Frans; Breda, Eric Van; Kuipers, Harm

    2006-01-01

    Body Mass Index (BMI) has often questionably been used to define body build. In the present study body build was defined more specifically using fat free mass index (FFMI = fat free mass normalised to the stature) and fat mass index (FMI = fat mass normalised to stature). The body build of an individual is ‘solid’ in individuals with a high FFMI for their FMI and is ‘slender’ in individuals with a low FFMI relative to their FMI. The aim of the present study was to investigate the association between aerobic test performance and body build defined as solid, average or slender in 10 to 15 year old children. Five-hundred-and-two children (53% boys) aged 10 to 15 years of age were included in the study. Aerobic test performance was estimated with an incremental cycle ergometer protocol and a shuttle run test. BMI and percentage fat (by skin folds) were determined to calculate FMI and FFMI. After adjustment for differences in age, gender and body mass the solid group achieved a significantly higher maximal power output (W) and power output relative to body mass (W/kg) during the cycle test (p < 0.05) and a higher shuttle-run score (p < 0.05) compared to the slender group. The power output relative to FFM (W/kg FFM) was comparable (p > 0.05) between different body build groups. This study showed that body build is an important determinant of the aerobic test performance. In contrast, there were no differences in aerobic test performance per kilogramme FFM over the body build groups. This suggests that the body build may be determined by genetic predisposition. Key Points Children with a solid body build perform better in aerobic exercise tests than slender children. The power output relative to fat free mass was comparable in the solid, slender and average group. Besides body composition, body build should be considered related to other performance measurements. PMID:24357967

  5. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  6. Stable plume rise in a shear layer.

    PubMed

    Overcamp, Thomas J

    2007-03-01

    Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.

  7. Competing four-wave mixing processes in dispersion oscillating telecom fiber.

    PubMed

    Finot, Christophe; Fatome, Julien; Sysoliatin, Alexej; Kosolapov, A; Wabnitz, Stefan

    2013-12-15

    We experimentally study the dynamics of the generation of multiple sidebands by means of a quasi-phase-matched four-wave mixing (FWM) process occurring in a dispersion-oscillating, highly nonlinear optical fiber. The fiber under test is pumped by a ns microchip laser operating in the normal average group-velocity dispersion regime and in the telecom C band. We reveal that the growth of higher-order sidebands is strongly influenced by the competition with cascade FWM between the pump and the first-order quasi-phase matched sidebands. The properties of these competing FWM processes are substantially affected when a partially coherent pump source is used, leading to a drastic reduction of the average power needed for sideband generation.

  8. High-power and steady-state operation of ICRF heating in the large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less

  9. Dynamic Changes in Spectral and Spatial Signatures of High Frequency Oscillations in Rat Hippocampi during Epileptogenesis in Acute and Chronic Stages.

    PubMed

    Song, Pan-Pan; Xiang, Jing; Jiang, Li; Chen, Heng-Sheng; Liu, Ben-Ke; Hu, Yue

    2016-01-01

    To analyze spectral and spatial signatures of high frequency oscillations (HFOs), which include ripples and fast ripples (FRs, >200 Hz) by quantitatively assessing average and peak spectral power in a rat model of different stages of epileptogenesis. The lithium-pilocarpine model of temporal lobe epilepsy was used. The acute phase of epilepsy was assessed by recording intracranial electroencephalography (EEG) activity for 1 day after status epilepticus (SE). The chronic phase of epilepsy, including spontaneous recurrent seizures (SRSs), was assessed by recording EEG activity for 28 days after SE. Average and peak spectral power of five frequency bands of EEG signals in CA1, CA3, and DG regions of the hippocampus were analyzed with wavelet and digital filter. FRs occurred in the hippocampus in the animal model. Significant dynamic changes in the spectral power of FRS were identified in CA1 and CA3. The average spectral power of ripples increased at 20 min before SE ( p  < 0.05), peaked at 10 min before diazepam injection. It decreased at 10 min after diazepam ( p  < 0.05) and returned to baseline after 1 h. The average spectral power of FRs increased at 30 min before SE ( p  < 0.05) and peaked at 10 min before diazepam. It decreased at 10 min after diazepam ( p  < 0.05) and returned to baseline at 2 h after injection. The dynamic changes were similar between average and peak spectral power of FRs. Average and peak spectral power of both ripples and FRs in the chronic phase showed a gradual downward trend compared with normal rats 14 days after SE. The spectral power of HFOs may be utilized to distinguish between normal and pathologic HFOs. Ictal average and peak spectral power of FRs were two parameters for predicting acute epileptic seizures, which could be used as a new quantitative biomarker and early warning marker of seizure. Changes in interictal HFOs power in the hippocampus at the chronic stage may be not related to seizure occurrence.

  10. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    PubMed

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  11. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  12. Characteristics of typical non-road machinery emissions in China by using portable emission measurement system.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Tan, Jianwei; Zeng, Tao; Liang, Bin

    2012-10-15

    Non-road machinery, especially construction equipment could be an important pollutant source of the deterioration in air quality in Chinese urban areas due to its large quantity and to the absence of stringent emission requirements. In this study, emission tests were performed on 12 excavators and 8 wheel loaders by using portable emission measurement system (PEMS) to determine their emission characteristics. The typical operating modes were categorized as idling mode, moving mode and working mode. Compared with those during idling and moving modes, the average time-based emission factors during working mode of HC were 2.61 and 1.27 times higher, NO(x) were 3.66 and 1.36 times higher, and PM were 4.05 and 1.95 times higher, respectively. Under all conditions, categories of the measured emissions increased with the rise in engine power. Compared with those of Stage I emission standard equipment, gaseous emissions and PM emitted from Stage II emission standard equipment were lower. The results indicated that, from Stage I to Stage II, the average reductions of HC, NO(x) and PM were 56%, 37% and 29% for the working mode, respectively. Those results also demonstrated the effectiveness of emission control regulation and the improvement of emission control technology. The data and tests show that the longer the accumulated working hours, the higher HC and NO(x) average fuel-based emission factors are. The emissions measured from the construction vehicles employed in this study were higher than the data collected in previous studies, which shows that it is critical for the government to put into effect more stringent emission regulations to further improve the air quality in Chinese urban areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. 47 CFR 15.403 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between several transmission power levels in the data transmission process. (s) U-NII devices. Intentional... bridge in a peer-to-peer connection or as a connector between the wired and wireless segments of the... the presence of a radar. (c) Average Symbol Envelope Power. The average symbol envelope power is the...

  14. Relationship Factors and Trajectories of Intimate Partner Violence among South African Women during Pregnancy and the Postpartum Period

    PubMed Central

    Groves, Allison K.; McNaughton-Reyes, H. Luz; Foshee, Vangie A.; Moodley, Dhayendre; Maman, Suzanne

    2014-01-01

    Intimate partner violence (IPV) is a significant public health problem in South Africa. However, there is limited research on whether and how IPV changes during pregnancy and the postpartum period and on the factors that might affect women's risk during this time. In this study, we describe the mean trajectories of physical and psychological IPV during pregnancy and the postpartum period and examine whether relationship power, partner social support, and relationship stress are associated with women's trajectories of IPV. Data come from a longitudinal study with 1,480 women recruited during pregnancy between May 2008 and June 2010 at a public clinic in Durban. Women completed behavioral assessments at their first antenatal visit, at fourteen weeks and at nine months postpartum. Women's experiences of IPV were measured at all three time points and relationship power, partner social support and relationship stress were each measured at the baseline assessment. We used multilevel random coefficients growth modeling to build our models. The mean trajectory for both types of IPV was flat which means that, on average, there was not significant change in levels of IPV over pregnancy and the postpartum period. However, there was significant individual variability in trajectories of IPV over the study period. Women who had higher relationship power had lower levels of physical and psychological IPV over time than women with lower relationship power. Additionally, women with higher relationship stress and lower partner support had higher levels of psychological IPV at pregnancy. Interventions that maximize women's relationship power and partner social support and minimize relationship stress during this transformative time are needed. PMID:25268363

  15. The Neuromuscular Qualities of Higher- and Lower-Level Mixed-Martial-Arts Competitors.

    PubMed

    James, Lachlan P; Beckman, Emma M; Kelly, Vincent G; Haff, G Gregory

    2017-05-01

    To determine whether the maximal strength, impulse, and power characteristics of competitive mixed-martial-arts (MMA) athletes differ according to competition level. Twenty-nine male semiprofessional and amateur MMA competitors were stratified into either higher-level (HL) or lower-level (LL) performers on the basis of competition grade and success. The 1-repetition-maximum (1RM) squat was used to assess lower-body dynamic strength, and a spectrum of impulse, power, force, and velocity variables were evaluated during an incremental-load jump squat. In addition, participants performed an isometric midthigh pull (IMTP) and 1RM bench press to determine whole-body isometric force and upper-body dynamic strength capabilities, respectively. All force and power variables were expressed relative to body mass (BM). The HL competitors produced significantly superior values across a multitude of measures. These included 1RM squat strength (1.84 ± 0.23 vs 1.56 ± 0.24 kg BM; P = .003), in addition to performance in the incremental-load jump squat that revealed greater peak power (P = .005-.002), force (P = .002-.004), and velocity (P = .002-.03) at each load. Higher measures of impulse (P = .01-.04) were noted in a number of conditions. Average power (P = .002-.02) and velocity (P = .01-.04) at all loads in addition to a series of rate-dependent measures were also superior in the HL group (P = .005-.02). The HL competitors' 1RM bench-press values approached significantly greater levels (P = .056) than the LL group's, but IMTP performance did not differ between groups. Maximal lower-body neuromuscular capabilities are key attributes distinguishing HL from LL MMA competitors. This information can be used to inform evidenced-based training and performance-monitoring practices.

  16. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  17. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  18. Modulation instability initiated high power all-fiber supercontinuum lasers and their applications

    NASA Astrophysics Data System (ADS)

    Alexander, Vinay V.; Kulkarni, Ojas P.; Kumar, Malay; Xia, Chenan; Islam, Mohammed N.; Terry, Fred L.; Welsh, Michael J.; Ke, Kevin; Freeman, Michael J.; Neelakandan, Manickam; Chan, Allan

    2012-09-01

    High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ˜0.8 to 4 μm, >5 W in a near IR SC extending from ˜0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ˜0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ˜3.9 W in an SC extending from ˜0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ˜1.5 to ˜2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ˜2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ˜1.9 to 4.5 μm with ˜2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.

  19. Efficient visible and UV generation by frequency conversion of a mode-filtered fiber amplifier

    NASA Astrophysics Data System (ADS)

    Kliner, Dahv A. V.; Di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Smith, Arlee V.

    2003-07-01

    We have generated the second, third, fourth, and fifth harmonics of the output of a Yb-doped fiber amplifier seeded by a passively Q-switched Nd:YAG microchip laser. The fiber amplifier employed multimode fiber (25 μm core diameter, V ~ 7.4) to provide high-peak-power pulses, but diffraction-limited beam quality was obtained by use of bend-loss-induced mode filtering. The amplifier output had a pulse duration of 0.97 ns and smooth, transform-limited temporal and spectral profiles (~500 MHz linewidth). We obtained high nonlinear conversion efficiencies using a simple optical arrangement and critically phase-matched crystals. Starting with 320 mW of average power at 1064 nm (86 ´J per pulse at a 3.7 kHz repetition rate), we generated 160 mW at 532 nm, 38 mW at 355 nm, 69 mW at 266 nm, and 18 mW at 213 nm. The experimental results are in excellent agreement with calculations. Significantly higher visible and UV powers will be possible by operating the fiber amplifier at higher repetition rates and pulse energies and by further optimizing the nonlinear conversion scheme.

  20. Control of electrothermal heating during regeneration of activated carbon fiber cloth.

    PubMed

    Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J

    2011-01-15

    Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.

  1. Electromagnetic redesign of the HYPERcollar applicator: toward improved deep local head-and-neck hyperthermia.

    PubMed

    Togni, P; Rijnen, Z; Numan, W C M; Verhaart, R F; Bakker, J F; van Rhoon, G C; Paulides, M M

    2013-09-07

    Accumulating evidence shows that hyperthermia improves head-and-neck cancer treatment. Over the last decade, we introduced a radiofrequency applicator, named HYPERcollar, which enables local heating also of deep locations in this region. Based on clinical experience, we redesigned the HYPERcollar for improved comfort, reproducibility and operator handling. In the current study, we analyze the redesign from an electromagnetic point of view. We show that a higher number of antennas and their repositioning allow for a substantially improved treatment quality. Combined with the much better reproducibility of the water bolus, this will substantially minimize the risk of underexposure. All improvements combined enable a reduction of hot-spot prominence (hot-spot to target SAR quotient) by 32% at an average of 981 W, which drastically reduces the probability for system power to become a treatment limiting source. Moreover, the power deposited in the target selectively can be increased by more than twofold. Hence, we expect that the HYPERcollar redesign currently under construction allows us to double the clinically applied power to the target while reducing the hot-spots, resulting in higher temperatures and, consequently, better clinical outcome.

  2. An Approach to Average Modeling and Simulation of Switch-Mode Systems

    ERIC Educational Resources Information Center

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of average modeling of PWM switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The paper discusses the derivation of PSPICE/ORCAD-compatible average models of the switch-mode power stages, their software implementation, and…

  3. 18 CFR 301.5 - Changes in Average System Cost methodology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...

  4. 18 CFR 301.5 - Changes in Average System Cost methodology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...

  5. 18 CFR 301.5 - Changes in Average System Cost methodology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...

  6. 18 CFR 301.5 - Changes in Average System Cost methodology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...

  7. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  8. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    NASA Astrophysics Data System (ADS)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of such VLDs can occur today in some coasts where the wind is quite strong and the rain can support some shrubs.

  9. The metabolic power and energetic demands of elite Gaelic football match play.

    PubMed

    Malone, Shane; Solan, Barry; Collins, Kieran; Doran, Dominic

    2017-05-01

    Metabolic power has not yet been investigated within elite Gaelic football. The aim of the current investigation was to compare the metabolic power demands between positional groups and examine the temporal profile of elite Gaelic football match play. Global positional satellite system (GPS) data were collected from 50 elite Gaelic football players from 4 inter-county teams during 35 elite competitive matches over a three season period. A total of 351 complete match samples were obtained for final analysis. Players were categorized based on positional groups; full-back, half-back, midfield, half-forward and full-forward. Instantaneous raw velocity data was obtained from the GPS and exported to a customized spreadsheet which provided estimations of both speed based, derived metabolic power and energy expenditure variables (total distance, high speed distance, average metabolic power, high power distance and total energy expenditure). Match mean distance was 9222±1588 m, reflective of an average metabolic power of 9.5-12.5 W·kg-1, with an average energy expenditure of 58-70 Kj·kg-1 depending on position. There were significant differences between positional groups for both speed-based and metabolic power indices. Midfielders covered more total and high-speed distance, as well as greater average and overall energy expenditure compared to other positions (P<0.001). A reduction in total, high-speed, and high-power distance, as well as average metabolic power throughout the match (P<0.001) was observed. Positional differences exist for both metabolic power and traditional running based variables. The middle three positions (midfield, half-back and half-forward) possess greater activity profiles when compared to other positional groups. The reduction in metabolic power and traditional running based variables are comparable across match play. The current study demonstrates that metabolic power may contribute to our understanding of Gaelic football match-play.

  10. Design of airborne wind turbine and computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  11. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

  12. Influence of face-down and face-up bonding on the degree of polarization of superluminescent diode

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai

    2017-12-01

    Face-down and face-up bonded polarization-insensitive buried heterojunction superluminescent diode has been studied in terms of thermal behavior and degree of polarization. Our studies have shown that the thermal rollover of current-power characteristic for face-down bonding was about 1.16 times higher than face-up configurations, and face-down bonding can offer higher heat transfer than face-up one. However, face-down bonding will cause more physical stress to the device, and the average value of degree of polarization for face-down bonding devices (35.3%) was much higher than face-up ones (-2.1%). After 48 h high temperature storage at 85∘C, the stress of face-down devices obtained a better relaxation due to the more stress accumulation.

  13. Physical fitness, injuries, and team performance in soccer.

    PubMed

    Arnason, Arni; Sigurdsson, Stefan B; Gudmundsson, Arni; Holme, Ingar; Engebretsen, Lars; Bahr, Roald

    2004-02-01

    To investigate the relationship between physical fitness and team success in soccer, and to test for differences in physical fitness between different player positions. Participants were 306 male soccer players from 17 teams in the two highest divisions in Iceland. Just before the start of the 1999 soccer season, the following variables were tested: height and weight, body composition, flexibility, leg extension power, jump height, and peak O2 uptake. Injuries and player participation in matches and training were recorded through the 4-month competitive season. Team average physical fitness was compared with team success (final league standing) using a linear regression model. Physical fitness was also compared between players in different playing positions. A significant relationship was found between team average jump height (countermovement jump and standing jump) and team success (P = 0.009 and P = 0.012, respectively). The same trend was also found for leg extension power (P = 0.097), body composition (% body fat, P = 0.07), and the total number of injury days per team (P = 0.09). Goalkeepers demonstrated different fitness characteristics from outfield players. They were taller and heavier, more flexible in hip extension and knee flexion, and had higher leg extension power and a lower peak O2 uptake. However, only minor differences were observed between defenders, midfield players, and attackers. Coaches and medical support teams should pay more attention to jump and power training, as well as preventive measures and adequate rehabilitation of previous injuries to increase team success.

  14. Size effects on electrical properties of chemically grown zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rathod, K. N.; Joshi, Zalak; Dhruv, Davit; Gadani, Keval; Boricha, Hetal; Joshi, A. D.; Solanki, P. S.; Shah, N. A.

    2018-03-01

    In the present article, we study ZnO nanoparticles grown by cost effective sol–gel technique for various electrical properties. Structural studies performed by x-ray diffraction (XRD) revealed hexagonal unit cell phase with no observed impurities. Transmission electron microscopy (TEM) and particle size analyzer showed increased average particle size due to agglomeration effect with higher sintering. Dielectric constant (ε‧) decreases with increase in frequency because of the disability of dipoles to follow higher electric field. With higher sintering, dielectric constant reduced owing to the important role of increased formation of oxygen vacancy defects. Universal dielectric response (UDR) was verified by straight line fitting of log (fε‧) versus log (f) plots. All samples exhibit UDR behavior and with higher sintering more contribution from crystal cores. Impedance studies suggest an important role of boundary density while Cole–Cole (Z″ versus Z‧) plots have been studied for the relaxation behavior of the samples. Average normalized change (ANC) in impedance has been studied for all the samples wherein boundaries play an important role. Frequency dependent electrical conductivity has been understood on the basis of Jonscher’s universal power law. Jonscher’s law fits suggest that conduction of charge carrier is possible in the context of correlated barrier hopping (CBH) mechanism for lower temperature sintered sample while for higher temperature sintered ZnO samples, Maxwell–Wagner (M–W) relaxation process has been determined.

  15. Fission gas release during power bumping at high burnup

    NASA Astrophysics Data System (ADS)

    Cunningham, M. E.; Freshley, M. D.; Lanning, D. D.

    1993-03-01

    Research to define the behavior of Zircaloy-clad light-water reactor fuel irradiated to high burnup levels was conducted by the High Burnup Effects Program (HBEP). One activity conducted by the HBEP was to "bump" the power level of irradiated, commercial light-water reactor fuel rods to design limit linear heat generation rates at end-of-life. These bumping irradiations simulated end-of-life design limit linear heat generation rates and provided data on the effects of short-term, high power irradiations at high burnup applicable to the design and operating constraints imposed by maximum allowable fuel rod internal gas pressure limits. Based on net fission gas release during the bumping irradiations, it was observed that higher burnup rods had greater rod-average fractional fission gas release than lower burnup rods at equal bumping powers. It was also observed that a hold period of 48 hours at the peak power was insufficient to achieve equilibrium fission gas release. Finally, differences in the prebump location of fission gas, i.e., within the UO 2 matrix or at grain boundaries, affected the fission gas release during the bumping irradiations.

  16. All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber.

    PubMed

    Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao

    2016-10-03

    We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.

  17. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  18. Pilot study for quantifying driving characteristics during power wheelchair soccer.

    PubMed

    Kumar, Amit; Karmarkar, Amol M; Collins, Diane M; Souza, Ana; Oyster, Michelle L; Cooper, Rosemarie; Cooper, Rory A

    2012-01-01

    This study determined the driving characteristics of wheelchair users during power wheelchair soccer games. Data for this study were collected at the 28th and 29th National Veterans Wheelchair Games. Nineteen veterans who were 18 years or older and power wheelchair soccer players completed a brief demographic survey and provided information about their power wheelchairs. A customized data-logging device was placed on each participant's wheelchair before power soccer game participation. The data logger was removed at the end of the final game for each participant. The average distance traveled during the games was 899.5 +/- 592.5 m, and the average maximum continuous distance traveled was 256.0 +/- 209.4 m. The average wheelchair speed was 0.8 +/- 0.2 m/s, and the average duration of driving time was 17.6 +/- 8.3 min. Average proportion of time spent at a speed >1 m/s was 30.7% +/- 33.8%, between 0.5 and 1 m/s was 16.2% +/- 34.4%, and <0.5 m/s was 21.4% +/- 24.3%. The information from this descriptive study provides insight for future research in the field of adapted sports for people with high levels of impairments who use power wheelchairs for their mobility.

  19. Econophysics of adaptive power markets: When a market does not dampen fluctuations but amplifies them

    NASA Astrophysics Data System (ADS)

    Krause, Sebastian M.; Börries, Stefan; Bornholdt, Stefan

    2015-07-01

    The average economic agent is often used to model the dynamics of simple markets, based on the assumption that the dynamics of a system of many agents can be averaged over in time and space. A popular idea that is based on this seemingly intuitive notion is to dampen electric power fluctuations from fluctuating sources (as, e.g., wind or solar) via a market mechanism, namely by variable power prices that adapt demand to supply. The standard model of an average economic agent predicts that fluctuations are reduced by such an adaptive pricing mechanism. However, the underlying assumption that the actions of all agents average out on the time axis is not always true in a market of many agents. We numerically study an econophysics agent model of an adaptive power market that does not assume averaging a priori. We find that when agents are exposed to source noise via correlated price fluctuations (as adaptive pricing schemes suggest), the market may amplify those fluctuations. In particular, small price changes may translate to large load fluctuations through catastrophic consumer synchronization. As a result, an adaptive power market may cause the opposite effect than intended: Power demand fluctuations are not dampened but amplified instead.

  20. Motivation and academic achievement in medical students.

    PubMed

    Yousefy, Alireza; Ghassemi, Gholamreza; Firouznia, Samaneh

    2012-01-01

    Despite their ascribed intellectual ability and achieved academic pursuits, medical students' academic achievement is influenced by motivation. This study is an endeavor to examine the role of motivation in the academic achievement of medical students. In this cross-sectional correlational study, out of the total 422 medical students, from 4th to final year during the academic year 2007-2008, at School of Medicine, Isfahan University of Medical Sciences, 344 participated in completion of the Inventory of School Motivation (ISM), comprising 43 items and measuring eight aspects of motivation. The gold standard for academic achievement was their average academic marks at pre-clinical and clinical levels. Data were computer analyzed by running a couple of descriptive and analytical tests including Pearson Correlation and Student's t-student. Higher motivation scores in areas of competition, effort, social concern, and task were accompanied by higher average marks at pre-clinical as well as clinical levels. However, the latter ones showed greater motivation for social power as compared to the former group. Task and competition motivation for boys was higher than for girls. In view of our observations, students' academic achievement requires coordination and interaction between different aspects of motivation.

  1. A multimode terahertz-Orotron with the special Smith–Purcell radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; Lu, Yalin; Wang, Lin

    2016-05-02

    We proposed and investigated a terahertz Orotron, which is based on the recently revealed special Smith–Purcell radiation. It overcomes the main obstacles of the traditional Orotron in the terahertz region—unreachable high starting-current-density and low radiation power. With the experimentally available electron beam and facilities, its average output power can reach hundreds of milliwatts and even several watts in terahertz region, which is many orders of magnitude higher than that of the traditional Orotron. Additionally, it can be controlled to operate in ether the first or the second order mode, and the radiation frequency can extend from 0.1 THz to 1more » THz. These remarkable advantages make it a promising terahertz source for practical applications.« less

  2. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; hide

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.

  3. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  4. The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica

    NASA Astrophysics Data System (ADS)

    Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.

    2018-04-01

    Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling studies as the steeper gradients of uplift predicted from the more realistic 3D model may promote stability in marine-grounded regions of West Antarctica. Including lateral variations in lithospheric thickness, at least to the level of considering West and East Antarctica separately, is important for capturing short wavelength deformation and it has the potential to provide a better fit to GPS observations as well as an improved GIA correction for GRACE data.

  5. Measuring radio-signal power accurately

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Newton, J. W.; Winkelstein, R. A.

    1979-01-01

    Absolute value of signal power in weak radio signals is determined by computer-aided measurements. Equipment operates by averaging received signal over several-minute period and comparing average value with noise level of receiver previously calibrated.

  6. Mining the earth's heat in the basin and range

    USGS Publications Warehouse

    Sass, John H.

    1995-01-01

    The Geothermal Program of the U.S. Geological Survey (USGS) is revisiting the Basin and Range Province after a hiatus of over a decade. The Basin and Range is a region of Neogene extension and generally high, but regionally and locally variable heat flow. The northern Basin and Range (Great Basin) has higher mean elevation and more intense Quaternary extension than does the southern Basin and Range, and a somewhat higher average heat flow. Present geothermal electric power generation (500+ MW) is entirely from hydrothermal systems of the Great Basin. The USGS is seeking industrial partners to investigate the potential for new hydrothermal reservoirs and to develop the technology to enhance the productivity of existing reservoirs.

  7. Radiological impact of airborne effluents of coal and nuclear plants.

    PubMed

    McBride, J P; Moore, R E; Witherspoon, J P; Blanco, R E

    1978-12-08

    Radiation doses from airborne effluents of model coal-fired and nuclear power plants (1000 megawatts electric) are compared. Assuming a 1 percent ash release to the atmosphere (Environmental Protection Agency regulation) and 1 part per million of uranium and 2 parts per million of thorium in the coal (approximately the U.S. average), population doses from the coal plant are typically higher than those from pressurized-water or boiling-water reactors that meet government regulations. Higher radionuclide contents and ash releases are common and would result in increased doses from the coal plant. The study does not assess the impact of non-radiological pollutants or the total radiological impacts of a coal versus a nuclear economy.

  8. 22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz

    NASA Astrophysics Data System (ADS)

    Clady, R.; Azamoum, Y.; Charmasson, L.; Ferré, A.; Utéza, O.; Sentis, M.

    2018-05-01

    We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics ( f/4.5).

  9. The N-Pact Factor: Evaluating the Quality of Empirical Journals with Respect to Sample Size and Statistical Power

    PubMed Central

    Fraley, R. Chris; Vazire, Simine

    2014-01-01

    The authors evaluate the quality of research reported in major journals in social-personality psychology by ranking those journals with respect to their N-pact Factors (NF)—the statistical power of the empirical studies they publish to detect typical effect sizes. Power is a particularly important attribute for evaluating research quality because, relative to studies that have low power, studies that have high power are more likely to (a) to provide accurate estimates of effects, (b) to produce literatures with low false positive rates, and (c) to lead to replicable findings. The authors show that the average sample size in social-personality research is 104 and that the power to detect the typical effect size in the field is approximately 50%. Moreover, they show that there is considerable variation among journals in sample sizes and power of the studies they publish, with some journals consistently publishing higher power studies than others. The authors hope that these rankings will be of use to authors who are choosing where to submit their best work, provide hiring and promotion committees with a superior way of quantifying journal quality, and encourage competition among journals to improve their NF rankings. PMID:25296159

  10. Estimation of the energy loss at the blades in rowing: common assumptions revisited.

    PubMed

    Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J

    2010-08-01

    In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.

  11. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Qunfang; Zhu, Yifang

    2010-01-01

    Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children's exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.

  12. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime

    PubMed Central

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-01-01

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in terms of average network delay, average throughput, average bandwidth efficiency and network lifetime. PMID:27598167

  13. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power output at a local level and a tool that wind farm developers could use to inform site selection. A particular priority was to assess how the potential wind power outputs over a 25-30 year windfarm lifetime in less windy, but resource-stable regions, compare with those from windier but more variable sites.

  14. Stochastic Growth Theory of Spatially-Averaged Distributions of Langmuir Fields in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Boshuizen, Christopher R.; Cairns, Iver H.; Robinson, P. A.

    2001-01-01

    Langmuir-like waves in the foreshock of Earth are characteristically bursty and irregular, and are the subject of a number of recent studies. Averaged over the foreshock, it is observed that the probability distribution is power-law P(bar)(log E) in the wave field E with the bar denoting this averaging over position, In this paper it is shown that stochastic growth theory (SGT) can explain a power-law spatially-averaged distributions P(bar)(log E), when the observed power-law variations of the mean and standard deviation of log E with position are combined with the log normal statistics predicted by SGT at each location.

  15. Characteristics and Energy Use of Volume Servers in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, H.; Shehabi, A.; Ganeshalingam, M.

    Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less

  16. Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power

    NASA Astrophysics Data System (ADS)

    Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker

    2005-10-01

    A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.

  17. Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power.

    PubMed

    Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker

    2005-10-03

    A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.

  18. Concerns and perceptions immediately following Superstorm Sandy: ratings for property damage were higher than for health issues

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2015-01-01

    Governmental officials, health and safety professionals, early responders, and the public are interested in the perceptions and concerns of people faced with a crisis, especially during and immediately after a disaster strikes. Reliable information can lead to increased individual and community preparedness for upcoming crises. The objective of this research was to evaluate concerns of coastal and central New Jersey residents within the first 100 days of Superstorm Sandy’s landfall. Respondents living in central New Jersey and Jersey shore communities were differentially impacted by the storm, with shore residents having higher evacuation rates (47% vs. 13%), more flood waters in their homes, longer power outages (average 23 vs. 6 days), and longer periods without Internet (29 vs. 6 days). Ratings of concerns varied both among and within categories as a function of location (central vs. coastal New Jersey), stressor level (ranging from 1 to 3 for combinations of power outages, high winds, and flooding), and demographics. Respondents were most concerned about property damage, health, inconveniences, ecological services, and nuclear power plants in that order. Respondents from the shore gave higher ratings to the concerns within each major category, compared to those from central Jersey. Four findings have implications for understanding future risk, recovery, and resiliency: (1) respondents with the highest stressor level (level 3) were more concerned about water damage than others, (2) respondents with flood damage were more concerned about water drainage and mold than others, (3) respondents with the highest stressor levels rated all ecological services higher than others, and (4) shore respondents rated all ecological services higher than central Jersey residents. These data provide information to design future preparedness plans, improve resiliency for future severe weather events, and reduce public health risk. PMID:27011757

  19. Evaluation of performance of select fusion experiments and projected reactors

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1978-01-01

    The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.

  20. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    PubMed Central

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  1. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  2. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  3. Optimal pitching axis location of flapping wings for efficient hovering flight.

    PubMed

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.

  4. Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Rezaei, Farzaneh; Richard, Tom L.; Logan, Bruce E.

    Microbial fuel cells (MFCs) produce bioelectricity from a wide variety of organic and inorganic substrates. Chitin can be used as a slowly degrading substrate in MFCs and thus as a long-term fuel to sustain power by these devices in remote locations. However, little is known about the effects of particle size on power density and length of the power cycle (longevity). We therefore examined power generation from chitin particles sieved to produce three average particle sizes (0.28, 0.46 and 0.78 mm). The longevity increased from 9 to 33 days with an increase in the particle diameter from 0.28 to 0.78 mm. Coulombic efficiency also increased with particle size from 18% to 56%. The maximum power density was lower for the largest (0.78 mm) particles (176 mW m -2), with higher power densities for the 0.28 mm (272 mW m -2) and 0.46 mm (252 mW m -2) particle sizes. The measured lifetimes of these particles scaled with particle diameter to the 1.3 power. Application of a fractal dissolution model indicates chitin particles had a three-dimensional fractal dimension between 2 and 2.3. These results demonstrate particles can be used as a sustainable fuel in MFCs, but that particle sizes will need to be controlled to achieve desired power levels.

  5. 100 GeV SLAC Linac

    NASA Astrophysics Data System (ADS)

    Farkas, Z. D.

    2002-03-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  6. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America

  7. Analysis of mobile phone design features affecting radiofrequency power absorbed in a human head phantom.

    PubMed

    Kuehn, Sven; Kelsh, Michael A; Kuster, Niels; Sheppard, Asher R; Shum, Mona

    2013-09-01

    The US FCC mandates the testing of all mobile phones to demonstrate compliance with the rule requiring that the peak spatial SAR does not exceed the limit of 1.6 W/kg averaged over any 1 g of tissue. These test data, measured in phantoms with mobile phones operating at maximum antenna input power, permitted us to evaluate the variation in SARs across mobile phone design factors such as shape and antenna design, communication technology, and test date (over a 7-year period). Descriptive statistical summaries calculated for 850 MHz and 1900 MHz phones and ANOVA were used to evaluate the influence of the foregoing factors on SARs. Service technology accounted for the greatest variability in compliance test SARs that ranged from AMPS (highest) to CDMA, iDEN, TDMA, and GSM (lowest). However, the dominant factor for SARs during use is the time-averaged antenna input power, which may be much less than the maximum power used in testing. This factor is largely defined by the communication system; e.g., the GSM phone average output can be higher than CDMA by a factor of 100. Phone shape, antenna type, and orientation of a phone were found to be significant but only on the order of up to a factor of 2 (3 dB). The SAR in the tilt position was significantly smaller than for touch. The side of the head did not affect SAR levels significantly. Among the remaining factors, external antennae produced greater SARs than internal ones, and brick and clamshell phones produced greater SARs than slide phones. Assuming phone design and usage patterns do not change significantly over time, we have developed a normalization procedure and formula that permits reliable prediction of the relative SAR between various communication systems. This approach can be applied to improve exposure assessment in epidemiological research. Copyright © 2013 Wiley Periodicals, Inc.

  8. Community wind electrical power case study: Muir Beach. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, R.; Freebairn-Smith, R.

    1979-10-01

    Muir Beach experiences relatively steady northwest coastal winds. Recordings at anemometer stations have indicated wind speeds averaging 10 to 12 mph over the year. This compares favorably with the minimum of 8 to 9 mph generally considered necessary for feasible wind-electric generation. Given the town's wind environment, a 100 kW wind turbine of the kind planned could provide an annual output of about 150,000 kWh, or about one-eighth of Muir Beach's projected need. Especially promising for Muir Beach are other potential sites at higher elevations on neighboring Mt. Tamalpais, where federal records indicate annual average speeds of 18 mph. Eachmore » 100 kW wind turbine sited there could conservatively yield at least double and perhaps triple the output of the first system.« less

  9. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.

  10. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  11. Dynamics Behaviors of Scale-Free Networks with Elastic Demand

    NASA Astrophysics Data System (ADS)

    Li, Yan-Lai; Sun, Hui-Jun; Wu, Jian-Jun

    Many real-world networks, such as transportation networks and Internet, have the scale-free properties. It is important to study the bearing capacity of such networks. Considering the elastic demand condition, we analyze load distributions and bearing capacities with different parameters through artificially created scale-free networks. The simulation results show that the load distribution follows a power-law form, which means some ordered pairs, playing the dominant role in the transportation network, have higher demand than other pairs. We found that, with the decrease of perceptual error, the total and average ordered pair demand will decrease and then stay in a steady state. However, with the increase of the network size, the average demand of each ordered pair will decrease, which is particularly interesting for the network design problem.

  12. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  13. Excess Capacity in China’s Power Systems: A Regional Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiang; Liu, Xu; Karl, Fredrich

    2016-11-01

    This paper examines China’s regional electricity grids using a reliability perspective, which is commonly measured in terms of a reserve margin. Our analysis shows that at the end of 2014, the average reserve margin for China as a whole was roughly 28%, almost twice as high as a typical planning reserve margin in the U.S. However, this national average masks huge variations in reserve margins across major regional power grid areas: the northeastern region has the highest reserve margin of over 60%, followed by the northwestern region at 49%, and the southern grid area at 35%. In this analysis, wemore » also examined future reserve margins for regional electricity grids in China under two scenarios: 1) a low scenario of national annual electricity consumption growth rates of 1.5% between 2015 and 2020 and 1.0% between 2020 and 2025, and 2) a high scenario of annual average growth rates of 3.0% and 2.0%, respectively. Both scenarios suggest that the northeastern, northwestern, and southern regions have significant excess generation capacity, and that this excess capacity situation will continue over the next decade without regulatory intervention. The northern and central regions could have sufficient generation capacity to 2020, but may require additional resources in a higher growth scenario. The eastern region requires new resources by 2020 in both scenarios.« less

  14. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities

    NASA Astrophysics Data System (ADS)

    Woldeyesus, Tibebe Argaw

    Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.

  15. Performance of one hundred watt HVM LPP-EUV source

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2015-03-01

    We have been developing CO2-Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL. Unique and original technologies such as: combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulses shooting, and mitigation with magnetic field, have been developed in Gigaphoton Inc. The theoretical and experimental data have clearly showed the advantage of our proposed strategy. Based on these data we are developing first practical source for HVM - "GL200E". This data means 250W EUV power will be able to realize around 20kW level pulsed CO2 laser. We have reported engineering data from our recent test such around 43W average clean power, CE=2.0%, with 100kHz operation and other data 19). We have already finished preparation of higher average power CO2 laser more than 20kW at output power cooperate with Mitsubishi Electric Corporation 14). Recently we achieved 92W with 50kHz, 50% duty cycle operation 20). We have reported component technology progress of EUV light source system. We report promising experimental data and result of simulation of magnetic mitigation system in Proto #1 system. We demonstrated several data with Proto #2 system: (1) emission data of 140W in burst under 70kHz 50% duty cycle during 10 minutes. (2) emission data of 118W in burst under 60kHz 70% duty cycle during 10 minutes. (3) emission data of 42W in burst under 20kHz 50% duty cycle (10000pls/0.5ms OFF) during 3 hours (110Mpls). Also we report construction of Pilot #1 system. Final target is week level operation with 250W EUV power with CE=4%, more than 27kW CO2 laser power by the end of Q2 of 2015.

  16. Wide field video-rate two-photon imaging by using spinning disk beam scanner

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko

    2018-02-01

    The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.

  17. Compact fixed wavelength femtosecond oscillators as an add-on for tunable Ti:sapphire lasers extend the range of applications towards multimodal imaging and optogenetics

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2016-03-01

    Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.

  18. SUZAKU VIEW OF X-RAY SPECTRAL VARIABILITY OF THE RADIO GALAXY CENTAURUS A: PARTIAL COVERING ABSORBER, REFLECTOR, AND POSSIBLE JET COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukazawa, Yasushi; Hiragi, Kazuyoshi; Yamazaki, Syoko

    2011-12-20

    We observed a nearby radio galaxy, Centaurus A (Cen A), three times with Suzaku in 2009 and measured the wide-band X-ray spectral variability more accurately than previous measurements. The Cen A was in an active phase in 2009, and the flux became higher by a factor of 1.5-2.0 and the spectrum became harder than that in 2005. The Fe-K line intensity increased by 20%-30% from 2005 to 2009. The correlation of the count rate between the XIS 3-8 keV and PIN 15-40 keV band showed a complex behavior with a deviation from a linear relation. The wide-band X-ray continuum inmore » 2-200 keV can be fitted with an absorbed power-law model plus a reflection component, or a power law with a partial covering Compton-thick absorption. The difference spectra between high and low flux periods in each observation were reproduced by a power law with a partial covering Compton-thick absorption. Such a Compton-thick partial covering absorber was observed for the first time in Cen A. The power-law photon index of the difference spectra in 2009 is almost the same as that of the time-averaged spectra in 2005, but steeper by {approx}0.2 than that of the time-averaged spectra in 2009. This suggests an additional hard power-law component with a photon index of <1.6 in 2009. This hard component could be a lower part of the inverse-Compton-scattered component from the jet, whose gamma-ray emission has recently been detected with the Fermi Large Area Telescope.« less

  19. Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.

    PubMed

    Martin, Kevan A C; Schröder, Sylvia

    2016-02-24

    The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.

  20. Assessing health benefits of controlling air pollution from power generation: the case of a lignite-fired power plant in Thailand.

    PubMed

    Thanh, B D; Lefevre, T

    2001-02-01

    The impact pathway approach (IPA) is used to estimate quantitatively the level of health effects caused by particulate matter (PM10) and sulfur dioxide (SO2) emission from a lignite-fired power plant located in the Mae Moh area in northern region of Thailand. Health benefits are then assessed by comparing the levels of estimated health impacts without and with the installation of the flue gas desulfurization (FGD) equipment. The US EPA industrial source complex model is used to model air pollution dispersion at the local scale, and the sector average limited mixing meso-scale model is used to model air pollution transport at the regional scale. The quantification of the health end points in physical terms is carried out using the dose-response functions established recently for the population in Bangkok, Thailand. Monetarization of these effects is based on the benefit transfer method with appropriate adjustment. Finally, it has been found that the installation of the FGD to control SO2 emission at Mae Moh significantly reduces adverse health effects not only on the population living near the power plant but also all over the country. A FGD unit installed at the 300-MW power unit can result, on average, in 16 fewer cases of acute mortality, 12 fewer cases of respiratory and cardiac hospital admissions, and almost 354,000 fewer days with acute respiratory symptoms annually. In monetary terms this benefit is equivalent to US $18.2 million (1995 prices) per annum. This benefit is much higher than the annualized investment and operation costs of FGD (US $7.4 million/yr). Copyright 2001 Springer-Verlag

  1. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  2. Comparison of spectral estimators for characterizing fractionated atrial electrograms

    PubMed Central

    2013-01-01

    Background Complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF) are commonly assessed using the discrete Fourier transform (DFT), but this can lead to inaccuracy. In this study, spectral estimators derived by averaging the autocorrelation function at lags were compared to the DFT. Method Bipolar CFAE of at least 16 s duration were obtained from pulmonary vein ostia and left atrial free wall sites (9 paroxysmal and 10 persistent AF patients). Power spectra were computed using the DFT and three other methods: 1. a novel spectral estimator based on signal averaging (NSE), 2. the NSE with harmonic removal (NSH), and 3. the autocorrelation function average at lags (AFA). Three spectral parameters were calculated: 1. the largest fundamental spectral peak, known as the dominant frequency (DF), 2. the DF amplitude (DA), and 3. the mean spectral profile (MP), which quantifies noise floor level. For each spectral estimator and parameter, the significance of the difference between paroxysmal and persistent AF was determined. Results For all estimators, mean DA and mean DF values were higher in persistent AF, while the mean MP value was higher in paroxysmal AF. The differences in means between paroxysmals and persistents were highly significant for 3/3 NSE and NSH measurements and for 2/3 DFT and AFA measurements (p<0.001). For all estimators, the standard deviation in DA and MP values were higher in persistent AF, while the standard deviation in DF value was higher in paroxysmal AF. Differences in standard deviations between paroxysmals and persistents were highly significant in 2/3 NSE and NSH measurements, in 1/3 AFA measurements, and in 0/3 DFT measurements. Conclusions Measurements made from all four spectral estimators were in agreement as to whether the means and standard deviations in three spectral parameters were greater in CFAEs acquired from paroxysmal or in persistent AF patients. Since the measurements were consistent, use of two or more of these estimators for power spectral analysis can be assistive to evaluate CFAE more objectively and accurately, which may lead to improved clinical outcome. Since the most significant differences overall were achieved using the NSE and NSH estimators, parameters measured from their spectra will likely be the most useful for detecting and discerning electrophysiologic differences in the AF substrate based upon frequency analysis of CFAE. PMID:23855345

  3. Plasma core power exhaust in ELMy H-Mode in JET with ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Metzger, C.; Appel, L.; Drewelow, P.; Horvath, L.; Matthews, G. F.; Szepesi, G.; Solano, E. R.; contributors, JET

    2018-07-01

    The mitigation of target heat load in future steady state fusion devices will require dissipation of a significant amount of power through radiation. Plasma operations relying on ELMy H-modes could be problematic since ELMs may transport substantial amounts of power to the target without significant dissipation. Therefore, estimation of the average ELM power exhaust from the plasma core is crucial to evaluate the potential limitation on the power dissipation in ELMy H-mode regime. A series of more than 50 Type-I ELMy H-mode discharges in JET with ITER-Like Wall (JET-ILW) with a wide range of conditions has been used here to compare the average ELM power to the average input power. The effect of input power, ELM frequency, plasma current, confinement and radiation on ELM power exhaust has been studied and reported in this paper. Good agreement has been found here with previous studies made in carbon machines. This work suggests that it should not be possible to dissipate more than 70%–80% of the input power in Type-I ELMy H-modes in JET-ILW which is consistent with the maximum radiative fraction found experimentally.

  4. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  5. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  6. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    NASA Astrophysics Data System (ADS)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  7. Acousto-optic modulation in diode pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek

    2007-02-01

    The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.

  8. Restructuring, ownership and efficiency in the electricity industry

    NASA Astrophysics Data System (ADS)

    Shanefelter, Jennifer Kaiser

    The first chapter considers improvements in productive efficiency that can result from a movement from a regulated framework to one that allows for market-based incentives for industry participants. Specifically, I look at the case of restructuring in the electricity generation industry. Using data from the electricity industry, this analysis considers the total effect of restructuring on one input to the production process, labor, as reflected in employment levels, payroll per employee and aggregate establishment payroll. Using concurrent payroll and employment data from non-utility ("merchant") and utility generators in both restructured and nonrestructured states, I estimate the effect of market liberalization, comprising both new entry and state-level legislation, on employment and payroll in this industry. I find that merchant owners of divested generation assets employ significantly fewer people, but that the payroll per employee is not significantly different from what workers at utility-owned plants are paid. As a result, the new merchant owners of these plants have significantly lower aggregate payroll expenses. Decomposing the effect into a merchant effect and a divestiture effect, I find that merchant ownership is the primary driver of these results. As documented in Chapter 1, merchant power plants have lower overall payroll costs than plants owned by utilities. Employment at merchant power plants is characterized by reduced staffing levels but higher average payroll per employee. A hypothesis set forth in that paper is that merchant generators employ fewer workers at the lower end of the wage distribution, resulting in a higher average payroll per employee. The second chapter of this paper examines whether employment at nonutility power plants, that is, those that are either divested or native merchant power plants, is skewed towards more skilled labor. This chapter also considers the extent to which the difference in employment levels is the result of a reduction in superfluous or redundant employment, as suggested by the broadening of union job titles during the 1990s. Additionally, the second chapter examines the wage trend in the industry, which is not observable using aggregate establishment payroll data. I find that in the electricity industry, after controlling for person-level characteristics, employee wages are statistically equivalent in states with a high degree of restructuring activity as in traditionally regulated states. When the person-level controls are dropped, wages are significantly higher in states with a more competitive industry structure. This supports the hypothesis that employment has been reduced disproportionately among the lower-skilled employees in the industry. Chapters 1 and 2 document the experience of labor in the electricity industry in the post-regulatory restructuring era. Chapter 1 finds evidence that employment has been reduced significantly at electricity generation plants that are owned by nonutilities ("merchants"). That chapter also finds that the nonutility average wage is higher than the utility average wage. Chapter 2 further finds that the average wage is increasing in the industry not because individual employees, adjusting for worker characteristics, are better-compensated to an equal degree, but rather because nonutility-owned plants are using employees with a different set of attributes. Chapter 3 of this analysis considers the shift in the wage distribution, identifying how different types of employees have fared under restructuring, which provides insight into which employees most benefit from restructuring in this industry. Chapters 1 and 2 hypothesize that low-skill employees in this industry were most affected by regulatory restructuring, which eroded the regulatory rents that accrued to this group in the form of employment stabilization. I graph the wage distribution in the electricity industry, breaking the data into different groups to judge how the distribution has changed for each. This yields a visual indication of the impact of changes in the industry wage distribution. Next, using the Oaxaca-Blinder technique, I decompose the wage difference of high- and low-merchant states into a piece that is explained by a shift in worker attributes plus the difference in the valuation that is placed on these attributes. I also look at between-group and within-group changes, concluding that the relative wages of higher-skill workers are increasing in excess of the wages of other workers.

  9. Transient analysis of a solid oxide fuel cell stack with crossflow configuration

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Liu, S. F.

    2018-05-01

    This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.

  10. Radioactive cesium concentrations in coastal suspended matter after the Fukushima nuclear accident.

    PubMed

    Kubo, Atsushi; Tanabe, Kai; Suzuki, Genta; Ito, Yukari; Ishimaru, Takashi; Kasamatsu-Takasawa, Nobue; Tsumune, Daisuke; Mizuno, Takuji; Watanabe, Yutaka W; Arakawa, Hisayuki; Kanda, Jota

    2018-06-01

    Radioactive cesium concentrations in the suspended matter of the coastal waters around the Fukushima Daiichi Nuclear Power Plant (FDNPP) were investigated between January 2014 and August 2015. The concentrations of radioactive cesium in the suspended matter were two orders higher in magnitude than those determined in the sediment. In addition, we discovered highly radioactive Cs particles in the suspended matter using autoradiography. The geometrical average radioactivity of particles was estimated to be 0.6 Bq at maximum and 0.2 Bq on average. The contribution ratio of highly radioactive Cs particles to each sample ranged from 13 to 54%, and was 36% on average. A major part of the radioactive Cs concentration in the suspended matter around the FDNPP was strongly influenced by the highly radioactive particles. The subsequent resuspension of highly radioactive Cs particles has been suggested as a possible reason for the delay in radioactive Cs depuration from benthic biota. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The predictive power of local properties of financial networks

    NASA Astrophysics Data System (ADS)

    Caraiani, Petre

    2017-01-01

    The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.

  12. Pulsed power systems for environmental and industrial applications

    NASA Astrophysics Data System (ADS)

    Neau, E. L.

    1994-10-01

    The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10's of kiloamperes of current and average power levels in excess of 100 kW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring grater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, and Sandia National Laboratories, is called Quantum Manufacturing.

  13. Power absorbed during whole-body vertical vibration: Effects of sitting posture, backrest, and footrest

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2010-07-01

    Previous studies have quantified the power absorbed in the seated human body during exposure to vibration but have not investigated the effects of body posture or the power absorbed at the back and the feet. This study investigated the effects of support for the feet and back and the magnitude of vibration on the power absorbed during whole-body vertical vibration. Twelve subjects were exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random vertical vibration (0.25-20 Hz) while sitting on a rigid seat in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest. Force and acceleration were measured at the seat, the feet, and the backrest to calculate the power absorbed at these three locations. At all three interfaces (seat, feet, and back) the absorbed power increased in proportion to the square of the magnitude of vibration, with most power absorbed from vibration at the seat. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Supporting the feet with the footrest reduced the total absorbed power at the seat, with greater reductions with higher footrests. It is concluded that contact between the thighs and the seat increases the power absorbed at the seat whereas a backrest can either increase or decrease the power absorbed at the seat.

  14. The Physiological Profile of Junior Soccer Players at SSBB Surabaya Bhakti

    NASA Astrophysics Data System (ADS)

    Nashirudin, M.; Kusnanik, N. W.

    2018-01-01

    Soccer players are required to have good physical fitness in order to achieve optimum accomplishment; physical fitness stands as the foundation of technical and tactical proficiency as well as the mental maturity during the matches. The purpose of this study was to identify the physiological profile of junior soccer players of SSB Surabaya Bhakti age 16-17. The research was conducted at 20 junior soccer players. This research was quantitative with descriptive analysis. Data were collected by testing of physiological (anaerobic power and capacity including explosive leg power, speed, agility; aerobic capacity: cardiovascular endurance). Data was analyzed using percentage. The result showed that the percentage of explosive leg power of junior soccer players were 30% (good category), speed was 85% (average category), right agility was 90% (average category), left agility was 75% (average category). On the other hand, the aerobic power and capacity of the junior soccer players in this study was 50% (average category). The conclusion of this research is that the physiological profile of junior soccer players at SSB Surabaya Bhakti age 16-17 was majority in average category.

  15. Electric and magnetic field exposures for people living near a 735-kilovolt power line.

    PubMed Central

    Levallois, P; Gauvin, D; St-Laurent, J; Gingras, S; Deadman, J E

    1995-01-01

    The purpose of this study was to assess the effect of a 735-kV transmission line on the electric and magnetic field exposures of people living at the edge of the line's right of way. Exposure of 18 adults, mostly white-collar workers, living in different bungalows located 190-240 feet from the line (exposed subjects) was compared to that of 17 adults living in similar residences far away from any transmission line. Each subject carried a Positron meter for 24 hr during 1 workday, which measured 60-Hz electric and magnetic fields every minute. All measurements were carried out in parallel for exposed and unexposed subjects during the same weeks between September and December. During measurements the average loading on the line varied between 600 and 1100 A. The average magnetic field intensity while at home was 4.4 times higher among exposed subjects than unexposed (7.1 versus 1.6 mG, p = 0.0001) and 6.2 times higher when considering only the sleeping period (6.8 versus 1.1 mG, p = 0.0001). Based on the 24-hr measurement, average magnetic field exposure was three times higher among the exposed. Electric field intensity was also higher among the exposed while at home (26.3 versus 14.0 V/m, p = 0.03). Magnetic field intensity among the exposed was positively correlated with the loading on the line (r = 0.8, p = 0.001). Percentage of time above a magnetic field threshold (2 mG or 7.8 mG) was a good indicator to distinguish the two types of exposure.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7498095

  16. Fundamental formulae for wave-energy conversion.

    PubMed

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  17. Application of the electroosmotic effect for thrust generation

    NASA Astrophysics Data System (ADS)

    Hansen, Thomas Edward

    The present work focuses on demonstrating the capabilities of electroosmotic pumps, (EOP) to generate thrust. An underwater glider was successfully propelled by electroosmosis for the first time published - at 0.85 inches per second. Asymmetric AC voltage pulsing proved to produce higher flow rates then equivalent DC pumps for the same average voltage. Ultra-short pulsing proved 100 nanosecond rise times in EOP are possible, which surpassed published predictions by three orders of magnitude. Theories behind efficiency losses of high power EOP were investigated. Direct measurement of effective voltage at the face of a membrane is the most accurate way to determine voltage drop across the electrolyte of an EOP. Forced convection lowered efficiency of the EOP for low voltages by preventing capacitance charging, but proved to prolong pump life during high power application.

  18. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.

  19. Circularly symmetric cusped random beams in free space and atmospheric turbulence.

    PubMed

    Wang, Fei; Korotkova, Olga

    2017-03-06

    A class of random stationary, scalar sources producing cusped average intensity profiles (i.e. profiles with concave curvature) in the far field is introduced by modeling the source degree of coherence as a Fractional Multi-Gaussian-correlated Schell-Model (FMGSM) function with rotational symmetry. The average intensity (spectral density) generated by such sources is investigated on propagation in free space and isotropic and homogeneous atmospheric turbulence. It is found that the FMGSM beam can retain the cusped shape on propagation at least in weak or moderate turbulence regimes; however, strong turbulence completely suppresses the cusped intensity profile. Under the same atmospheric conditions the spectral density of the FMGSM beam at the receiver is found to be much higher than that of the conventional Gaussian Schell-model (GSM) beam within the narrow central area, implying that for relatively small collecting apertures the power-in-bucket of the FMGSM beam is higher than that of the GSM beam. Our results are of importance to energy delivery, Free-Space Optical communications and imaging in the atmosphere.

  20. Western Australian students' alcohol consumption and expenditure intentions for Schoolies.

    PubMed

    Jongenelis, Michelle I; Pettigrew, Simone; Biagioni, Nicole; Hagger, Martin S

    2017-07-01

    In Australia, the immediate post-school period (known as 'Schoolies') is associated with heavy drinking and high levels of alcohol-related harm. This study investigated students' intended alcohol consumption during Schoolies to inform interventions to reduce alcohol-related harm among this group. An online survey was administered to students in their senior year of schooling. Included items related to intended daily alcohol consumption during Schoolies, amount of money intended to be spent on alcohol over the Schoolies period, and past drinking behaviour. On average, participants (n=187) anticipated that they would consume eight standard drinks per day, which is substantially higher than the recommended maximum of no more than four drinks on a single occasion. Participants intended to spend an average of A$131 on alcohol over the Schoolies period. Although higher than national guidelines, intended alcohol consumption was considerably lower than has been previously documented during Schoolies events. The substantial amounts of money expected to be spent during Schoolies suggest this group has adequate spending power to constitute an attractive target market for those offering alternative activities that are associated with lower levels of alcohol-related harm.

  1. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  2. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhart, Brian David; Gill, David Dennis

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is amore » fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.« less

  3. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  4. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Investigation of CSRZ code in FSO communication

    NASA Astrophysics Data System (ADS)

    Zhang, Zhike; Chang, Mingchao; Zhu, Ninghua; Liu, Yu

    2018-02-01

    A cost-effective carrier-suppressed return-to-zero (CSRZ) code generation scheme is proposed by employing a directly modulated laser (DML) module operated at 1.5 μm wavelength. Furthermore, the performance of CSRZ code signal in free-space optical (FSO) link transmission is studied by simulation. It is found from the results that the atmospheric turbulence can deteriorate the transmission performance. However, due to have lower average transmit power and higher spectrum efficient, CSRZ code signal can obtain better amplitude suppression ratio compared to the Non-return-to-zero (NRZ) code.

  6. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males.

    PubMed

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.

  7. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males

    PubMed Central

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721

  8. Psychometric assessment of the Persian version of the Ferrans and Powers 3.0 index in hemodialysis patients.

    PubMed

    Dehesh, Tania; Zare, Najaf; Jafari, Peyman; Sagheb, Mohammad Mehdi

    2014-06-01

    This study aimed to assess the psychometric properties of the Persian version of the Ferrans and Powers 3.0 quality of life index (dialysis type) in patients receiving hemodialysis (HD) in order to describe their health-related quality of life (HRQOL). The sample (n = 150) consisted of adult HD patients receiving HD for at least 6 months from the establishment of the study. A total of 88 men and 62 women, with an average age of 50.47, from Shiraz, southern Iran, were enrolled in this study. The questionnaire was translated into Persian language using back translation and bilingual techniques. Convergent, discriminant, and construct validity of the Ferrans and Powers 3.0 dialysis version was evaluated. To check the internal consistency of the data, Cronbach's alpha, which indicates the reliability of the data, was used for the entire questionnaire and for the subscales. The convergent and discriminant validity and success scaling rate for both sexes were 100 %. Cronbach's alpha was 0.95 overall, which was greater than 0.7 for all the subscales except for the family subscale. Our results suggest that HD patients in southern Iran have higher HRQOL scores when compared with those in other countries. Despite the higher mean HRQOL score for men compared with women, men had significantly higher HRQOL scores only in the health and functioning subscale. There was no significant correlation between HD patients' HRQOL and educational level. The Persian version of Ferrans and Powers 3.0 has sufficient reliability and validity for measuring the quality of life of Persian-speaking HD patients. Female HD patients need more support and attention from family and society.

  9. Kinetic and kinematic differences between squats performed with and without elastic bands.

    PubMed

    Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M

    2010-01-01

    The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.

  10. An assessment of radiation doses at an educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the nuclear accident.

    PubMed

    Tsuji, Masayoshi; Kanda, Hideyuki; Kakamu, Takeyasu; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Mori, Yayoi; Okochi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2012-03-01

    On 11 March 2011, the Great East Japan Earthquake occurred. Due to this earthquake and subsequent tsunami, malfunctions occurred at the Fukushima Daiichi nuclear power plant. Radioactive material even reached the investigated educational institution despite being 57.8 km away from the power station. With the goal of ensuring the safety of our students, we decided to carry out a risk assessment of the premises of this educational institution by measuring radiation doses at certain locations, making it possible to calculate estimated radiation accumulation. Systematic sampling was carried out at measurement points spaced at regular intervals for a total of 24 indoor and outdoor areas, with 137 measurements at heights of 1 cm and 100 cm above the ground surface. Radiation survey meters were used to measure environmental radiation doses. Radiation dose rates and count rates were higher outdoors than indoors, and higher 1 cm above the ground surface than at 100 cm. Radiation doses 1 cm above the ground surface were higher on grass and moss than on asphalt and soil. The estimated radiation exposure for a student spending an average of 11 h on site at this educational institution was 9.80 μSv. Environmental radiation doses at our educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the accident were lower than the national regulation dose for schools (3.8 μSv/h) at most points. Differences in radiation doses depending on outdoor surface properties are important to note for risk reduction.

  11. Bias in discriminating very mild dementia for older adults with different levels of education in Hong Kong.

    PubMed

    Chang, Jianfang; Tse, Chi-Shing; Leung, Grace Tak Yu; Fung, Ada Wai Tung; Hau, Kit-Tai; Chiu, Helen Fung Kum; Lam, Linda Chiu Wa

    2014-06-01

    Education has a profound effect on older adults' cognitive performance. In Hong Kong, some dementia screening tasks were originally designed for developed population with, on average, higher education. We compared the screening power of these tasks for Chinese older adults with different levels of education. Community-dwelling older adults who were healthy (N = 383) and with very mild dementia (N = 405) performed the following tasks: Mini-Mental State Examination, Alzheimer's Disease Assessment Scale-Cognitive subscales, Verbal Fluency, Abstract Thinking, and Visual/Digit Span. Logistic regression was used to examine the power of these tasks to predict Clinical Dementia Rating (CDR 0.5 vs. 0). Logistic regression analysis showed that while the screening power of the total scores in all tasks was similar for high and low education groups, there were education biases in some items of these tasks. The differential screening power in high and low education groups was not identical across items in some tasks. Thus, in cognitive assessments, we should exercise great caution when using these potentially biased items for older adults with limited education.

  12. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems.

    PubMed

    Bombelli, Paolo; Iyer, Durgaprasad Madras Rajaraman; Covshoff, Sarah; McCormick, Alistair J; Yunus, Kamran; Hibberd, Julian M; Fisher, Adrian C; Howe, Christopher J

    2013-01-01

    Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha(-1) year(-1)) than for E. glabrescens (0.088 ± 0.008 GJ ha(-1) year(-1)). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.

  13. Exposure of the general public due to wireless LAN applications in public places.

    PubMed

    Schmid, G; Preiner, P; Lager, D; Uberbacher, R; Georg, R

    2007-01-01

    The typical exposure caused by wireless LAN applications in public areas has been investigated in a variety of scenarios. Small-sized (internet café) and large-scale (airport) indoor scenarios as well as outdoor scenarios in the environment of access points (AP) supplying for residential areas and public places were considered. The exposure assessment was carried out by numerical GTD/UTD computations based on optical wave propagation, as well as by verifying frequency selective measurements in the considered scenarios under real life conditions. In the small-sized indoor scenario the maximum temporal peak values of power density, spatially averaged over body dimensions, were found to be lower than 20 mW/m(2), corresponding to 0.2% of the reference level according to the European Council Recommendation 1999/519/EC. Local peak values of power density might be 1-2 orders of magnitude higher, spatial and time-averaged values for usual data traffic conditions might be 2-3 orders of magnitude lower, depending on the actual data traffic. In the considered outdoor scenarios, exposure was several orders of magnitude lower than in indoor scenarios due to the usually larger distances to the AP antennas.

  14. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.

    PubMed

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-05-15

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  15. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    PubMed Central

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-01-01

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116

  16. High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.

    PubMed

    Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K

    2015-08-10

    Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532 nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (∼100 times) as well as peak efficiency (∼5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers.

  17. The global characteristics of atmosphere emissions in the lower thermosphere and their aeronomic implications. [OGO-4 airglow photometric observations of oxygen

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Chandra, S.

    1974-01-01

    The green line of atomic oxygen and the Herzberg bands of molecular oxygen as observed from the OGO-4 airglow photometer are discussed in terms of their spatial and temporal distributions and their relation to the atomic oxygen content in the lower thermosphere. Daily maps of the distribution of emissions show considerable structure (cells, patches, and bands) with appreciable daily changes. When data are averaged over periods of several days in length, the resulting patterns have occasional tendencies to follow geomagnetic parallels. The Seasonal variations are characterized by maxima in both the Northern and Southern Hemispheres in October, with the Northern Hemisphere having substantially higher emission rates. Formulae are derived relating the vertical column emission rates of the green line and the Herzberg bands to the atomic oxygen peak density. Global averages for the time period for these data (August 1967 to January 1968), when converted to maximum atomic oxygen densities near 95 km, have a range of 2.0 x 10 to the 11th power/cu cm 2.7 x 10 to the 11th power/cu cm.

  18. Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum

    NASA Astrophysics Data System (ADS)

    Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Zhang, Tielong; Bruno, Roberto; Kovacs, Peter

    2015-05-01

    We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s-1. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.

  19. The rate of transient beta frequency events predicts behavior across tasks and species

    PubMed Central

    Law, Robert; Tsutsui, Shawn; Moore, Christopher I; Jones, Stephanie R

    2017-01-01

    Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations. PMID:29106374

  20. Long-duration high-efficiency operation of a continuously pulsed copper laser utilizing copper bromide as a lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.

  1. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  2. Exposure to airborne asbestos in thermal power plants in Mongolia

    PubMed Central

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Background: Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. Objective: To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Methods: Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). Results: The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0.93 f/cm3. Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1.0 f/cm3. If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0.1 f/cm3. Conclusion: Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia. PMID:25730489

  3. Exposure to airborne asbestos in thermal power plants in Mongolia.

    PubMed

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0·93 f/cm(3). Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1·0 f/cm(3). If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0·1 f/cm(3). Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia.

  4. [Water-soluble anions of atmosphere on Tianwan nuclear power station].

    PubMed

    Zhao, Heng-Qiang; He, Ying; Zheng, Xiao-Ling; Chen, Fa-Rong; Pang, Shi-Ping; Wang, Cai-Xia; Wang, Xiao-Ru

    2010-11-01

    Three major water-soluble anions (Cl-, SO4(2-) and NO3-) in the atmosphere of the Tianwan nuclear power station in Lianyungang were determined by ion chromatography from June 2005 to May 2006. The results showed that the annual average concentration of Cl-, SO4(2-) and NO3- in the atmosphere of Tianwan nuclear power station was (33.12 +/- 53.63) microg x m(-3), (53.34 +/- 30.34) microg x m(-3) and (8.34 +/- 4.47) microg x m(-3), respectively. The concentrations of the three water-soluble anions showed evident trend of seasonal variation. The concentrations of Cl-, SO4(2-) reached the highest level in summer and the lowest level in winter, while the concentration of NO3- in autumn and winter was higher than those in summer and spring. Meteorological parameters such as wind direction, wind speed, temperature and relative humidity were studied and showed definite influence to the anions concentration of the atmosphere. This is the first simultaneous monitoring of corrosive anions in the atmosphere of Chinese coastal nuclear power plant, and it will provide basis for the prevention of marine atmospheric corrosion, which will ensure the safely operating of our nuclear power industry.

  5. Browns Ferry-1 single-loop operation tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, J.; Wood, R.T.; Otaduy, P.J.

    1985-09-01

    This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less

  6. Independent Analysis of Real-Time, Measured Performance Data From Microcogenerative Fuel Cell Systems Installed in Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Heather E.; Colella, Whitney G.

    2015-06-01

    Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to 15 distinct 5 kW-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a 1 s sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initialmore » data indicate that the FCSs have relatively stable performance and a long-term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer's stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer's stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 degrees C, lower than the manufacturer's stated maximum hot water delivery temperature of 65 degrees C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at rated value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at rated value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at rated value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS Unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a maximum decline in electric power output of approximately 18% was observed over a 500 h period in Jan. 2012.« less

  7. Nonlinear pulse compression stage delivering 43-W few-cycle pulses with GW peak-power at 2-μm wavelength

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schüuzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Limpert, J.

    2018-02-01

    In this contribution we demonstrate the nonlinear pulse compression of an ultrafast thulium-doped fiber laser down to 14 fs FWHM duration (sub-3 optical cycles) at a record average power of 43 W and 34.5 μJ pulse energy. To the best of our knowledge, we present the highest average power few-cycle laser source at 2 μm wavelength. This performance level in combination with GW-class peak power makes our laser source extremely interesting for driving high-harmonic generation or for generating mid-infrared frequency combs via intra-pulse frequency down-conversion at an unprecedented average power. The experiments were enabled by an ultrafast thulium-doped fiber laser delivering 110 fs pulses at high repetition rates, and an argon gas-filled antiresonant hollow-core fiber (ARHCF) with excellent transmission and weak anomalous dispersion, leading to the self-compression of the pulses. We have shown that ARHCFs are well-suited for nonlinear pulse compression around 2 μm wavelength and that this concept features excellent power handling capabilities. Based on this result, we discuss the next steps for energy and average power scaling including upscaling the fiber dimensions in order to fully exploit the capabilities of our laser system, which can deliver several GW of peak power. This way, a 100 W-class laser source with mJ-level few-cycle pulses at 2 μm wavelength is feasible in the near future.

  8. Low statistical power in biomedical science: a review of three human research domains.

    PubMed

    Dumas-Mallet, Estelle; Button, Katherine S; Boraud, Thomas; Gonon, Francois; Munafò, Marcus R

    2017-02-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0-10% or 11-20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.

  9. Low statistical power in biomedical science: a review of three human research domains

    PubMed Central

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409

  10. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  11. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Appendix 1 instructions...

  12. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Appendix 1 instructions...

  13. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Appendix 1 instructions...

  14. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Appendix 1 instructions...

  15. Distinguished Lecture Series - Balancing the Energy & Climate Budget

    ScienceCinema

    None

    2017-12-09

    The average American uses 11400 Watts of power continuously. This is the equivalent of burning 114 x100 Watt light bulbs, all the time. The average person globally uses 2255 Watts of power, or a little less than 23 x100 Watt light bulbs.

  16. 1.5-μm high-average power laser amplifier using a Er,Yb:glass planar waveguide for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki

    2012-11-01

    We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.

  17. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  18. Reflection and refraction of hydromagnetic waves at the magnetopause

    NASA Technical Reports Server (NTRS)

    Verzariu, P.

    1973-01-01

    Reflection and transmission coefficients of MHD waves are obtained at a stable, plane interface which separates two compressible, perfectly conducting media in relative motion to each other. The coefficients are evaluated for representative conditions of the quiet-time, near-earth magnetopause. The transmission coefficient averaged over a hemispherical distribution of incident waves is found to be 1-2%. Yet the magnitude of the energy flux deposited into the magnetosphere in a day averaged over a hemispherical distribution of waves having amplitudes of say 2-3 gamma, is estimated to be of the order 10 to the 22-nd power erg. Therefore the energy input of MHD waves must contribute significantly to the energy budget of the magnetosphere. The assumption that the boundary surface is a tangential discontinuity with no curvature limits the present theory to hydromagnetic frequencies higher than about .1 Hz.

  19. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  20. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  1. High-average-power CTH:YAG for the medical environment

    NASA Astrophysics Data System (ADS)

    Wright, Sidney P.; Adamkiewicz, Edward J.; Moulton, Peter F.

    1992-06-01

    Medical procedures such as arthroscopy have placed increasing demands on the output performance of the CTH:YAG laser at 2.1 micrometers . Intensive research has been conducted to improve the average power, pulse energies, and rep rates while reducing any failure mechanisms. The results of this work is reported along with a discussion of the important engineering parameters concerning the design of a high power medical CTH:YAG laser.

  2. Molecular and neurodevelopmental benefits to children of closure of a coal burning power plant in China.

    PubMed

    Tang, Deliang; Lee, Joan; Muirhead, Loren; Li, Ting Yu; Qu, Lirong; Yu, Jie; Perera, Frederica

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are major toxic air pollutants released during incomplete combustion of coal. PAH emissions are especially problematic in China because of their reliance on coal-powered energy. The prenatal period is a window of susceptibility to neurotoxicants. To determine the health benefits of reducing air pollution related to coal-burning, we compared molecular biomarkers of exposure and preclinical effects in umbilical cord blood to neurodevelopmental outcomes from two successive birth cohorts enrolled before and after a highly polluting, coal-fired power plant in Tongliang County, China had ceased operation. Women and their newborns in the two successive cohorts were enrolled at the time of delivery. We measured PAH-DNA adducts, a biomarker of PAH-exposure and DNA damage, and brain-derived neurotrophic factor (BDNF), a protein involved in neuronal growth, in umbilical cord blood. At age two, children were tested using the Gesell Developmental Schedules (GDS). The two cohorts were compared with respect to levels of both biomarkers in cord blood as well as developmental quotient (DQ) scores across 5 domains. Lower levels of PAH-DNA adducts, higher concentrations of the mature BDNF protein (mBDNF) and higher DQ scores were seen in the 2005 cohort enrolled after closure of the power plant. In the two cohorts combined, PAH-DNA adducts were inversely associated with mBDNF as well as scores for motor (p = 0.05), adaptive (p = 0.022), and average (p = 0.014) DQ. BDNF levels were positively associated with motor (p = 0.018), social (p = 0.001), and average (p = 0.017) DQ scores. The findings indicate that the closure of a coal-burning plant resulted in the reduction of PAH-DNA adducts in newborns and increased mBDNF levels that in turn, were positively associated with neurocognitive development. They provide further evidence of the direct benefits to children's health as a result of the coal plant shut down, supporting clean energy and environmental policies in China and elsewhere.

  3. Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry-Mass Spectrometry.

    PubMed

    Dit Fouque, Kevin Jeanne; Moreno, Javier; Hegemann, Julian D; Zirah, Séverine; Rebuffat, Sylvie; Fernandez-Lima, Francisco

    2018-04-17

    Lasso peptides are a fascinating class of bioactive ribosomal natural products characterized by a mechanically interlocked topology. In contrast to their branched-cyclic forms, lasso peptides have higher stability and have become a scaffold for drug development. However, the identification and separation of lasso peptides from their unthreaded topoisomers (branched-cyclic peptides) is analytically challenging since the higher stability is based solely on differences in their tertiary structures. In the present work, a fast and effective workflow is proposed for the separation and identification of lasso from branched cyclic peptides based on differences in their mobility space under native nanoelectrospray ionization-trapped ion mobility spectrometry-mass spectrometry (nESI-TIMS-MS). The high mobility resolving power ( R) of TIMS resulted in the separation of lasso and branched-cyclic topoisomers ( R up to 250, 150 needed on average). The advantages of alkali metalation reagents (e.g., Na, K, and Cs salts) as a way to increase the analytical power of TIMS is demonstrated for topoisomers with similar mobilities as protonated species, efficiently turning the metal ion adduction into additional separation dimensions.

  4. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.

    PubMed

    Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P; Xu, Chris

    2018-05-01

    Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.

  5. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.

    PubMed

    Nguyen, Tuan Anh; Vu Phan, Hoang; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-06-20

    This experimental study investigates the effect of three parameters: wing aspect ratio (AR), wing offset, and flapping frequency, on thrust generation and power consumption of a flapping-wing system based on a rack-pinion mechanism. The new flapping-wing system is simple but robust, and is able to create a large flapping amplitude. The thrust measured by a load cell reveals that for a given power, the flapping-wing system using a higher wing AR produces larger thrust and higher flapping frequency at the wing offset of 0.15[Formula: see text] or 0.20[Formula: see text] ([Formula: see text] is the mean chord) than other wing offsets. Of the three parameters, the flapping frequency plays a more significant role on thrust generation than either the wing AR or the wing offset. Based on the measured thrusts, an empirical equation for thrust prediction is suggested, as a function of wing area, flapping frequency, flapping angle, and wing AR. The difference between the predicted and measured thrusts was less than 7%, which proved that the empirical equation for thrust prediction is reasonable. On average, the measured power consumption to flap the wings shows that 46.5% of the input power is spent to produce aerodynamic forces, 14.0% to overcome inertia force, 9.5% to drive the rack-pinion-based flapping mechanism, and 30.0% is wasted as the power loss of the installed motor. From the power analysis, it is found that the wing with an AR of 2.25 using a wing offset of 0.20[Formula: see text] showed the optimal power loading in the flapping-wing system. In addition, the flapping frequency of 25 Hz is recommended as the optimal frequency of the current flapping-wing system for high efficiency, which was 48.3%, using a wing with an AR of 2.25 and a wing offset of 0.20[Formula: see text] in the proposed design.

  6. Verification and optimization of the CFETR baseline scenario

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Lao, L. L.; Meneghini, O.; Staebler, G. M.; Candy, J.; Smith, S. P.; Snyder, P. B.; Prater, R.; Chen, X.; Chan, V. S.; Li, J.; Chen, J.; Shi, N.; Guo, W.; Pan, C.; Jian, X.

    2016-10-01

    The baseline scenario of China Fusion Engineering Test Reactor (CFETR) was designed starting from 0D calculations. The CFETR baseline scenario satisfies the minimum goal of Fusion Nuclear Science Facility aimed at bridging the gaps between ITER and DEMO. 1.5D calculations are presented to verify the on-going efforts in higher-dimensional modeling of CFETR. Steady-state scenarios are calculated self-consistently by the OMFIT integrated modeling framework that includes EFIT for equilibrium, ONETWO for sources and current, TGYRO for transport. With 68MW of neutral beam power and 8MW of ECH injected to the plasma, the average ion temperature is maintained at 15keV, while 150MW fusion power is produced. The neutral beams also drive 55% of the plasma current. Modest fast ion diffusion will reduce NBCD and affect the profile substantially. Top-launch ECH will increase the current drive and the power absorption rate. EPED model are being included. Work supported by U.S. DOE under DE-FC02-04ER54698 and the USTC CFETR contract.

  7. An Evaluation of Functional Sit-to-Stand Power in Cohorts of Healthy Adults Aged 18-97 Years.

    PubMed

    Glenn, Jordan M; Gray, Michelle; Vincenzo, Jennifer; Paulson, Sally; Powers, Melissa

    2017-04-01

    This investigation examined differences in functional sit-to-stand power/velocity between cohorts of adults aged 18-97 years. This study included 264 healthy adults classified into four cohorts (18-40, C1; 60-69, C2; 70-79, C2; ≥ 80, C4). Participants completed the sit-to-stand task five times. Power and velocity were measured via the TENDO power analyzer. Absolute average power was maintained from C1-C3, but decreased (p < .01) in C4. Absolute peak power decreased between C1-C2 (p < .01), was similar between C2-C3, and decreased in C4 (p < .01). Relative (to body weight) average and peak power decreased between C1-C2 (p < .01), was similar between C2-C3, and decreased in C4 (p < .01). Average velocity was similar between C1 and C2, but decreased in C3 (p < .01) and C4 (p < .01), respectively. Peak velocity was significantly different between all cohorts (p < .01). Declines in functional power may plateau during the seventh and eighth decades, accelerating after 80 years.

  8. Effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players.

    PubMed

    Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung

    2017-10-01

    [Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.

  9. Recent trends in power system reliability and implications for evaluating future investments in resiliency

    DOE PAGES

    Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.; ...

    2016-10-27

    Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less

  10. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  11. Wind Power Energy in Southern Brazil: evaluation using a mesoscale meteorological model

    NASA Astrophysics Data System (ADS)

    Krusche, Nisia; Stoevesandt, Bernhard; Chang, Chi-Yao; Peralta, Carlos

    2015-04-01

    In recent years, several wind farms were build in the coast of Rio Grande do Sul state. This region of Brazil was identified, in wind energy studies, as most favorable to the development of wind power energy, along with the Northeast part of the country. Site assessments of wind power, over long periods to estimate the power production and forecasts over short periods can be used for planning of power distribution and enhancements on Brazil's present capacity to use this resource. The computational power available today allows the simulation of the atmospheric flow in great detail. For instance, one of the authors participated in a research that demonstrated the interaction between the lake and maritime breeze in this region through the use of a atmospheric model. Therefore, we aim to evaluate simulations of wind conditions and its potential to generate energy in this region. The model applied is the Weather Research and Forecasting , which is the mesoscale weather forecast software. The calculation domain is centered in 32oS and 52oW, in the southern region of Rio Grande do Sul state. The initial conditions of the simulation are taken from the global weather forecast in the time period from October 1st to October 31st, 2006. The wind power potential was calculated for a generic turbine, with a blade length of 52 m, using the expression: P=1/2*d*A*Cp*v^3, where P is the wind power energy (in Watts), d is the density (equal to 1.23 kg/m^3), A is the area section, which is equal to 8500 m2 , and v is the intensity of the velocity. The evaluation was done for a turbine placed at 50 m and 150 m of height. A threshold was chosen for a turbine production of 1.5 MW to estimate the potential of the site. In contrast to northern Brazilian region, which has a rather constant wind condition, this region shows a great variation of power output due to the weather variability. During the period of the study, at least three frontal systems went over the region, and thre was a associated variation of wind intensity. The monthly average indicate several small regions with a higher value of energy. Average production higher than 1.5 MW, for the area inland, was of 72.9% for a turbine at 150 m height but only 13.1% for one at 50 m height. This initial study indicates the variability of the region in terms of wind power availability. It can be extended to the study of extreme situations, as the case of very strong winds that knocked down 8 wind turbines in this region on the 20 of December of 2014. Simulations with high degree of spacial details will be the next step in this investigation.

  12. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  13. The role of capital costs in decarbonizing the electricity sector

    NASA Astrophysics Data System (ADS)

    Hirth, Lion; Steckel, Jan Christoph

    2016-11-01

    Low-carbon electricity generation, i.e. renewable energy, nuclear power and carbon capture and storage, is more capital intensive than electricity generation through carbon emitting fossil fuel power stations. High capital costs, expressed as high weighted average cost of capital (WACC), thus tend to encourage the use of fossil fuels. To achieve the same degree of decarbonization, countries with high capital costs therefore need to impose a higher price on carbon emissions than countries with low capital costs. This is particularly relevant for developing and emerging economies, where capital costs tend to be higher than in rich countries. In this paper we quantitatively evaluate how high capital costs impact the transformation of the energy system under climate policy, applying a numerical techno-economic model of the power system. We find that high capital costs can significantly reduce the effectiveness of carbon prices: if carbon emissions are priced at USD 50 per ton and the WACC is 3%, the cost-optimal electricity mix comprises 40% renewable energy. At the same carbon price and a WACC of 15%, the cost-optimal mix comprises almost no renewable energy. At 15% WACC, there is no significant emission mitigation with carbon pricing up to USD 50 per ton, but at 3% WACC and the same carbon price, emissions are reduced by almost half. These results have implications for climate policy; carbon pricing might need to be combined with policies to reduce capital costs of low-carbon options in order to decarbonize power systems.

  14. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.

    PubMed

    Robertson, Benjamin D; Sawicki, Gregory S

    2014-07-21

    We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. High density culture of white bass X striped bass fingerlings in raceways using power plant heated effluent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.M.; Burton, G.L.; Schweinforth, R.L.

    1983-06-01

    White bass (Morone chrysops) X striped bass (M. saxatilis) hybrids weighing 1691/lb were initially stocked in five 24 ft/sup 3/ floating screen cages for 20 days. Hybrids averaging one inch in total length and 361 fish/lb were released in four 614 ft/sup 3/ concrete raceways. Two stocking densities, 2.6 and 5.1 fish/ft/sup 3/, were evaluated in the 94-day study using a flow rate of 300 gpm/raceway. Water temperatures averaged 79/sup 0/F and water quality was adequate throughout the production period. Fish were hand fed to satiation daily. Columnaris and Aeromonas hydrophila caused the most serious disease problems. Gas supersaturation wasmore » suspect in high mortality levels during cage culture of hybrid bass fry. Cannibalism may have been responsible for unaccountable losses prior to raceway stocking and at harvest. The study yielded 5773 hybrids weighing 658 lb. The high density treatment showed greater weight gain, average weight, average length and percent survival as well as improved food conversion. Results suggest that higher stocking densities and periodic grading may increase production and suppress cannibalism. 10 references, 3 figures, 3 tables.« less

  16. Environmental effects of interstate power trading on electricity consumption mixes.

    PubMed

    Marriott, Joe; Matthews, H Scott

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. We create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these "consumption mixes" can provide a more accurate assessment of electricity use in life-cycle analyses. We conclude that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy--such as resource extraction and material processing sectors--are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses.

  17. RMP ELM Suppression in DIII-D Plasmas with ITER Similar Shapes and Collisionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T.E.; Fenstermacher, M. E.; Moyer, R.A.

    2008-01-01

    Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, = 0.26, plasmas and in ITER similar shaped (ISS) plasmas, = 0.53, with ITER relevant collisionalities ve 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller inmore » ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.« less

  18. Multiphoton near-infrared femtosecond laser pulse-induced DNA damage with and without the photosensitizer proflavine.

    PubMed

    Shafirovich, V; Dourandin, A; Luneva, N P; Singh, C; Kirigin, F; Geacintov, N E

    1999-03-01

    The excitation of pBr322 supercoiled plasmid DNA with intense near-IR 810 nm fs laser pulses by a simultaneous multiphoton absorption mechanism results in single-strand breaks after treatment of the irradiated samples with Micrococcus luteus UV endonuclease. This enzyme cleaves DNA strands at sites of cyclobutane dimers that are formed by the simultaneous absorption of three (or more) 810 nm IR photons (pulse width approximately 140 fs, 76 MHz pulse repetition, average power output focused through 10x microscope objective is approximately 1.2 MW/cm2). Direct single-strand breaks (without treatment with M. luteus) were not observed under these conditions. However, in the presence of 6 microM of the intercalator proflavine (PF), both direct single- and double-strand breaks are observed under conditions where substantial fractions of undamaged supercoiled DNA molecules are still present. The fraction of direct double-strand breaks is 30 +/- 5% of all measurable strand cleavage events, is independent of dosage (up to 6.4 GJ/cm2) and is proportional to In, where I is the average power/area of the 810 nm fs laser pulses, and n = 3 +/- 1. The nicking of two DNA strands in the immediate vicinity of the excited PF molecules gives rise to this double-strand cleavage. In contrast, excitation of the same samples under low-power, single-photon absorption conditions (approximately 400-500 nm) gives rise predominantly to single-strand breaks, but some double-strand breaks are observed at the higher dosages. Thus, single-photon excitation with 400-500 nm light and multiphoton activation of PF by near-IR fs laser pulses produces different distributions of single- and double-strand breaks. These results suggest that DNA strand cleavage originates from unrelaxed, higher excited states when PF is excited by simultaneous IR multiphoton absorption processes.

  19. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  20. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  1. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  2. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  3. Fundamental study of an industrial reactive HPPMS (Cr,Al)N process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Brögelmann, T.; Kruppe, N. C.; Engels, M.; von Keudell, A.; Hecimovic, A.; Ludwig, A.; Grochla, D.; Banko, L.

    2017-07-01

    In this work, a fundamental investigation of an industrial (Cr,Al)N reactive high power pulsed magnetron sputtering (HPPMS) process is presented. The results will be used to improve the coating development for the addressed application, which is the tool coating for plastics processing industry. Substrate-oriented plasma diagnostics and deposition of the (Cr,Al)N coatings were performed for a variation of the HPPMS pulse frequency with values from f = 300 Hz to f = 2000 Hz at constant average power P = 2.5 kW and pulse length ton = 40 μs. The plasma was investigated using an oscilloscope, an intensified charge coupled device camera, phase-resolved optical emission spectroscopy, and an energy-dispersive mass spectrometer. The coating properties were determined by means of scanning electron microscopy, glow discharge optical emission spectroscopy, cantilever stress sensors, nanoindentation, and synchrotron X-ray diffraction. Regarding the plasma properties, it was found that the average energy within the plasma is nearly constant for the frequency variation. In contrast, the metal to gas ion flux ratio is changed from JM/JG = 0.51 to JM/JG = 0.10 for increasing frequency. Regarding the coating properties, a structure refinement as well as lower residual stresses, higher universal hardness, and a changing crystal orientation from (111) to (200) were observed at higher frequencies. By correlating the plasma and coating properties, it can be concluded that the change in the gas ion to metal ion flux ratio results in a competitive crystal growth of the film, which results in changing coating properties.

  4. [Analysis About Spatial and Temporal Distribution of SO2 and An Ambient SO2 Pollution Process in Beijing During 2000-2014].

    PubMed

    Cheng, Nian-liang; Zhang, Da-wei; Li, Yun-ting; Chen, Tian; Li, Jin-xiang; Dong, Xin; Sun, Rui-wen; Meng, Fan

    2015-11-01

    Spatial and temporal distribution of SO2 during 2000-2014 was all analyzed based on the SO2 monitoring data that Beijing Municipal Environmental Monitoring Center released and the formation mechanism of a typical air pollution episode in January 2014 was also investigated by combining numerical model CAM(x). Analysis results showed that mass concentration of ρ(SO2) in Beijing in 2014 decreased 69% compared to that in 2000 with an annual gradient from 2000 to 2014 of - 3.5 μg x (m3 x a)(-1). Monthly average concentration of SO2 changed in a U shape curve and from the lowest to the highest, and seasonal variations of SO2 concentrations were as follows: winter > spring > autumn > summer; concentration of SO2 in heating season was significantly higher than that in non heating season. Annual average concentration of SO2 was lower in northern and western regions while higher in six city area and southern area. Concentrations of SO2 at Shijingshan, Dongsi, Tongzhou monitoring sites were significantly decreased related to SO2 emission reduction measures. During a heavy air pollution process in January 14 - 18th 2014 there was obviously SO2 regional transportation and model simulation analysis based on PAST showed that the contribution of SO2 regional transport to Beijing was 83% with elevated power plants surrounding Beijing accounting for 21% and the four major Beijing power plants contributing about 3.5% to the SO2 concentration during this heavy air pollution process.

  5. Point-ahead limitation on reciprocity tracking. [in earth-space optical link

    NASA Technical Reports Server (NTRS)

    Shapiro, J. H.

    1975-01-01

    The average power received at a spacecraft from a reciprocity-tracking transmitter is shown to be the free-space diffraction-limited result times a gain-reduction factor that is due to the point-ahead requirement. For a constant-power transmitter, the gain-reduction factor is approximately equal to the appropriate spherical-wave mutual-coherence function. For a constant-average-power transmitter, an exact expression is obtained for the gain-reduction factor.

  6. 47 CFR 15.403 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or below its maximum level. (p) Pulse. A pulse is a continuous transmission of a sequence of... bridge in a peer-to-peer connection or as a connector between the wired and wireless segments of the... the presence of a radar. (c) Average Symbol Envelope Power. The average symbol envelope power is the...

  7. Nonimaging concentrators for diode-pumped slab lasers

    NASA Astrophysics Data System (ADS)

    Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland

    1991-10-01

    Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.

  8. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    NASA Astrophysics Data System (ADS)

    Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.

    2016-11-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.

  9. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    PubMed

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  10. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared countermeasures for protecting aircraft from MANPADS, testing of infrared countermeasures, MWIR and LWIR lasers for identify-friend-or-foe (IFF) personnel beacons, infrared target illuminators and designators and tunable QCL applications including in-situ and standoff detection of chemical warfare agents (CWAs) and explosives. The last of these applications addresses a very important and timely need for detection of improvised explosive devices (IEDs) in combat environments like Iraq and Afghanistan.

  11. Thermal-Mechanical Study of 3.9 GHz CW Coupler and Cavity for LCLS-II Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonin, Ivan; Harms, Elvin; Khabiboulline, Timergali

    2017-05-01

    Third harmonic system was originally developed by Fermilab for FLASH facility at DESY and then was adopted and modified by INFN for the XFEL project [1-3]. In contrast to XFEL project, all cryomodules in LCLS-II project will operate in CW regime with higher RF average power for 1.3 GHz and 3.9 GHz cavities and couplers. Design of the cavity and fundamental power coupler has been modified to satisfy LCLS-II requirements. In this paper we discuss the results of COMSOL thermal and mechanical analysis of the 3.9 GHz coupler and cavity to verify proposed modifica-tion of the design. For the dressedmore » cavity we present simulations of Lorentz force detuning, helium pressure sensitivity df/dP and major mechanical resonances.« less

  12. Analysis of Ideal Towers for Tall Wind Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  13. Analysis of Ideal Towers for Tall Wind Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  14. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy

    PubMed Central

    Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P.; Xu, Chris

    2018-01-01

    Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz. PMID:29760989

  15. High-power picosecond laser with 400W average power for large scale applications

    NASA Astrophysics Data System (ADS)

    Du, Keming; Brüning, Stephan; Gillner, Arnold

    2012-03-01

    Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.

  16. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations.

    PubMed

    Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi

    2016-08-10

    A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8  mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.

  17. Comparison of hecter fuel with export aviation gasoline

    NASA Technical Reports Server (NTRS)

    Dickinson, H C; Gage, V R; Sparrow, S W

    1921-01-01

    Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)

  18. High resolution light microscopic evaluation of boar semen quality sperm cytoplasmic droplet retention in relationship with boar fertility parameters.

    PubMed

    Lovercamp, K W; Safranski, T J; Fischer, K A; Manandhar, G; Sutovsky, M; Herring, W; Sutovsky, P

    2007-01-01

    The purpose of this study was to investigate the relationship between fertility and quantitative measures of boar semen quality, including various patterns of sperm cytoplasmic droplet (CD) retention, as determined by high power differential interference contrast (DIC) microscopy. A total of 116 ejaculates were collected from a nucleus herd of 18 Large White boars over an eight month period. Semen quality parameters were analyzed for each ejaculate by calculating the percentage of normal spermatozoa, spermatozoa possessing a CD in the proximal, distal, or distal midpiece reflex position, total spermatozoa with an attached cytoplasmic droplet, spermatozoa with non-CD related aberrations and total spermatozoa with abnormalities. Of the 116 ejaculates received, 71 ejaculates from 13 boars had corresponding fertility data from single-sire inseminations of multiparous sows. The fertility data included farrowing rate (FR) and total number born (TNB). The monthly FR encompassed one month before and one month after the date of semen collection. Detection of differences for fertility and semen quality parameters was performed by separating the boars into either an above-average or below-average group based on the mean FR (74.01 +/- 1.43%) or TNB (12.34 +/- 0.17) for the study. For FR, the boars in the below-average group had a significantly lower percentage of normal spermatozoa and significantly higher percentage of spermatozoa possessing distal CDs, total attached CDs and total abnormalities compared to the boars in the above-average group. Conversely, for TNB there were no significant differences between the above- and below-average groups for the semen quality parameters. These data suggest that the attached CD may negatively affect FR, but not TNB. The detection of relationships between the boar fertility parameters and the retention of the sperm CD after ejaculation, document the advantage of high power DIC microscopy in conventional semen evaluation.

  19. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    NASA Technical Reports Server (NTRS)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  20. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2010-04-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95-97% of each aromatic species, 72-85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx and higher for VOCs. For NOx, the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.

  1. The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Watts, Anna L.

    2006-01-01

    We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements

  2. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level.

    PubMed

    Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Ahmed, Marwan Abdou; Graf, Thomas

    2018-02-19

    We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG* 01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M 2 -value of 2.16 which is close to the theoretical value for the LG* 01 doughnut mode were measured.

  3. Diamond Raman laser emitting at 1194, 1419, and 597 nm

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Konov, V. I.

    2018-03-01

    A Raman laser based on a synthetic diamond crystal pumped by nanosecond pulses of a 1030-nm Yb : YAG laser and emitting in the IR region at the first and second Stokes wavelengths of 1194 and 1419 nm, respectively, was developed. The conversion efficiency was 34% with a slope efficiency of 50% and an average power of 1.1 W at a wavelength of 1194 nm; the average power at 1419 nm was 0.52 W. Frequency doubling of the first Stokes component in a nonlinear BBO crystal resulted in orange (597.3 nm) radiation with a pulse energy of 0.15 mJ, an average power of 0.22 W, and a maximum efficiency of 20%.

  4. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    NASA Astrophysics Data System (ADS)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  5. Environmentally Powered Yarn Arrays that Sense, Actuate, Harvest, and Store Energy (NBIT III)

    DTIC Science & Technology

    2016-11-15

    than the gravimetric power generation capability of a cars combustion engine and (2) functioned as a torsional artificial muscle to rotate a heavy...rotor to over 90,000 rpm. By driving this torsional actuation using 19.6C fluctuations in air temperature, we obtained an average output electrical ...rpm. By driving this torsional actuation using 19.6°C fluctuations in air temperature, we obtained an average output electrical power of 124 W per

  6. Wind Power Potential at Abandoned Mines in Korea

    NASA Astrophysics Data System (ADS)

    jang, M.; Choi, Y.; Park, H.; Go, W.

    2013-12-01

    This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.

  7. Road to the Olympics: physical fitness of medalists of the Canoe Sprint Junior European and World Championship events over the past 20 years.

    PubMed

    Bielik, Viktor; Lendvorský, Leonard; Lengvarský, Lukáš; Lopata, Peter; Petriska, Róbert; Pelikánová, Jana

    2018-06-01

    In this article we aimed to find out whether there is a difference in physiological, anthropometric and power variables between medalists in junior international Championship events (MJCH) and the remaining members of the national team (NT) in flat water canoe sprint. Sixty male junior kayakers from Slovak NT were tested annually between years 1995 and 2016. Sixteen of them won at least one medal (gold, silver or bronze) at junior international Championship. Exercise capacity assessment on treadmill running (TR) and kayak ergometer (KE), anthropometric and muscle power measurements were performed between years 1995 and 2016. MJCH were on average by 10% better in TR speed and KE power output at VO2max than the rest of NT (19.72±0.8 vs. 18±1.0 km.h-1, P<0.01, ES=1.84; 206.6±21.5 vs. 182.3±25.5 W, P<0.01, ES=0.99, respectively). Similarly mean maximal power in bench press and bench pull was higher in MJCH (522.9±72.0 vs. 464.3±69.0 W, P<0.01; ES=0.84; 629.15±63.3 vs. 571.6±58.7 W, P<0.01; ES=0.96, respectively). These data show that an athlete has to be on average by 10% better in physical fitness than the rest of NT to take podium position at canoe sprint junior international Championship. Prosperous juniors are further successful at senior Championship events and Olympics. We assume that high level of physical fitness in junior age is not a guarantee but a prerequisite for a successful future career.

  8. Holmium:YAG (lambda=2120nm) vs. Thulium fiber (lambda=1908nm) laser for high-power vaporization of canine prostate tissue

    NASA Astrophysics Data System (ADS)

    Casperson, Andrew L.; Barton, Robert A.; Scott, Nicholas J.; Fried, Nathaniel M.

    2008-02-01

    Direct studies comparing different lasers for treatment of BPH are lacking. This preliminary study compares continuous-wave (CW) vs. pulsed prostate tissue vaporization for the Thulium fiber laser and Holmium:YAG laser, both operating near the 1940 nm water absorption peak in tissue. A 50-W Thulium fiber laser (λ= 1908 nm) delivered CW laser radiation through a 600-μm silica fiber in non-contact mode with a 5-mm-diameter spot at the tissue surface. A Holmium:YAG laser (λ= 2120 nm) operated with an energy of 2 J, pulse rate of 25 Hz, and average power of 50 W, and delivered pulsed laser radiation through a 600-μm silica fiber with a 5-mm-diameter laser spot to achieve similar irradiances at the tissue surface. Tissue vaporization was performed in air with the prostate kept hydrated in saline. Tissue vaporization efficiency of both lasers was compared (n = 10 canine prostates for each laser group). Mean vaporization efficiency measured 5.30 +/- 0.48 kJ/g vs. 4.13 +/- 0.46 kJ/g for Thulium fiber and Holmium lasers (P < 0.05). Tissue vaporization rates measured 0.57 +/- 0.05 g/min vs. 0.73 +/- 0.07 g/min (P < 0.05). The Holmium:YAG laser vaporizes prostate tissue at a higher rate than the Thulium fiber laser, for the same average power delivered to the tissue. Both the Thulium fiber laser and Holmium:YAG lasers are capable of vaporizing prostate tissue at a rate > 1 g/min if operated at the high powers (100-W) typically used in the clinic.

  9. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    PubMed

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (<3 μVrms 700 Hz-7 kHz), thereby requiring a baseline noise of less than 1 μVrms for a useful signal-to-noise ratio (SNR). Flat interface nerve electrode (FINE) contacts alone generate thermal noise of at least 0.5 μVrms therefore the amplifier should add as little noise as possible. Since mainstream neural amplifiers have a baseline noise of 2 μVrms or higher, novel designs are required. Here we apply the concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating <1.5 μVrms total recording baseline noise when connected to a FINE placed on the sciatic nerve of an awake animal. An algorithm was introduced to find the value of N that can minimize both the power consumption and the noise in order to design a miniaturized ultralow-noise neural amplifier. These results demonstrate the efficacy of hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  10. 76 FR 65616 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... measure the energy efficiency, energy use or estimated annual operating cost of a covered product over an... the June 2010 NOPR would be used to determine the average power consumption of a residential central... residential central air conditioners, the unit's average power consumption during the heating season...

  11. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  12. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2013-12-01

    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

  13. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vauzour, B.; Laboratoire d'Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau; Debayle, A.

    2014-03-15

    We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub α} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, 〈j{submore » h}〉∼8×10{sup 10} A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5 keV/μm and 0.8 keV/μm, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1 keV/μm and 0.6 keV/μm. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}∼10{sup 12} A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14} A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ∼1 keV/μm.« less

  14. Numerical calculations of non-inductive current driven by microwaves in JET

    NASA Astrophysics Data System (ADS)

    Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET

    2016-12-01

    Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.

  15. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    NASA Astrophysics Data System (ADS)

    Strugalska-Gola, Elzbieta; Bielewicz, Marcin; Kilim, Stanislaw; Szuta, Marcin; Tyutyunnikov, Sergey

    2017-03-01

    This work was performed within the international project "Energy plus Transmutation of Radioactive Wastes" (E&T - RAW) for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89) samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  16. An efficient micro control unit with a reconfigurable filter design for wireless body sensor networks (WBSNs).

    PubMed

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing

    2012-11-22

    In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.

  17. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less

  18. Research of biofuels on performance, emission and noise of diesel engine under high-altitude area

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Huang, Hua

    2018-05-01

    At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).

  19. Temporal Variation of Phthalic Acid Esters (PAEs) in Ambient Atmosphere of Delhi.

    PubMed

    Gupta, Sarika; Gadi, Ranu

    2018-04-26

    Phthalic acid esters (PAEs) are a group of chemical species, ubiquitously present in the environment and pose a serious risk to humans. In the present study, the average concentrations of PAEs in PM 10 (particulate matter ≤ 10 µm) are reported at a densely populated site in Delhi. The average concentration of PAEs was reported to be 703.1 ± 36.2 ng m -3 with slightly higher concentrations in winter than in summer; suggesting that sources are relatively stable over the whole year. The average concentration of PAEs was 35.7 ± 30.5 ng m -3 in winter, 35.4 ± 27.0 ng m -3 in summer, 3.4 ± 1.5 ng m -3 in monsoon and 7.5 ± 5.2 ng m -3 in post-monsoon. Principal component analysis was performed, which suggested that emissions were mainly due to plasticizers, cosmetics and personal care products, municipal solid waste, thermal power stations, industrial wastewater, cement plants and coke ovens.

  20. High-power highly stable passively Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu

    2018-03-01

    We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.

  1. Assessment of air quality benefits from the national pollution control policy of thermal power plants in China: A numerical simulation

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun

    2015-04-01

    In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be reduced by 17.2% and 14.7%, respectively. The new standard could reduce nitrogen deposition pollution in China. By 2020, for S2, the area with a nitrogen deposition concentration >2.0 tons·km-2 and the total nitrogen deposition in China would be reduced by 28.6% and 16.8%, respectively. The new standards could reduce sulfur deposition pollution in China. By 2020, for S2, the area with a sulfur deposition >1.5 tons·km-2 and the total sulfur deposition in China would be reduced by 55.3% and 21.0%, respectively.

  2. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  3. Test techniques for model development of repetitive service energy storage capacitors

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Mauldin, G. H.

    1984-03-01

    The performance of the Sandia perfluorocarbon family of energy storage capacitors was evaluated. The capacitors have a much lower charge noise signature creating new instrumentation performance goals. Thermal response to power loading and the importance of average and spot heating in the bulk regions require technical advancements in real time temperature measurements. Reduction and interpretation of thermal data are crucial to the accurate development of an intelligent thermal transport model. The thermal model is of prime interest in the high repetition rate, high average power applications of power conditioning capacitors. The accurate identification of device parasitic parameters has ramifications in both the average power loss mechanisms and peak current delivery. Methods to determine the parasitic characteristics and their nonlinearities and terminal effects are considered. Meaningful interpretations for model development, performance history, facility development, instrumentation, plans for the future, and present data are discussed.

  4. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence.

    PubMed

    Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua

    2013-07-01

    We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.

  5. Environmental effects of interstate power trading on electricity consumption mixes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Marriott; H. Scott Matthews

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity usemore » in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.« less

  6. Study of the effect of electromagnetic fields on indoor and outdoor radon concentrations

    NASA Astrophysics Data System (ADS)

    Haider, Lina M.; Shareef, N. R.; Darwoysh, H. H.; Mansour, H. L.

    2018-05-01

    In the present work, the effect of electromagnetic fields produced by high voltage power lines(132kV) and indoor equipments on the indoor and outdoor average radon concentrations in Al-Kazaliya and Hay Al-Adil regions in Baghdad city were studied using CR-39 track detectors and a gauss-meter.Results of measurements of the present study, have shown that the highest value for the indoor average radon concentration (76.56± 8.44 Bq / m3) was recorded for sample A1(Hay Al-Adel) at a distance of (20 m) from the high voltage power lines, while the lowest value for the indoor average radon concentration (30.46 ± 8.44 Bq / m3) was recorded for sample A3 (Hay Al-Adil) at a distance of (50 m) from the high voltage power lines. The indoor gaussmeter measurements were found to be ranged from (30.2 mG) to (38.5 mG). The higest value for outdoor average radon concentration and the highest gaussmeter measurements were found for sample (1), with values (92.63 ±11.2 Bq / m3) and (87.24 ± 2.85 mG), directly under the high voltage power lines respectively, while the lowest outdoor average radon concentration and the lowest gaussmeter measurements were found in sample (4),with values (34.19 ± 6.33 Bq / m3) and (1.16 ± 0.14 Bq / m3),), at a distance of (120 m) from the high voltage power lines respectively. The results of the present work have shown that there might be an influence of the electromagnetic field on radon concentrations in areas which were close to high voltage power lines and houses which have used many electric equipment for a long period of time.

  7. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  8. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  9. Topography and Higher Order Corneal Aberrations of the Fellow Eye in Unilateral Keratoconus.

    PubMed

    Aksoy, Sibel; Akkaya, Sezen; Özkurt, Yelda; Kurna, Sevda; Açıkalın, Banu; Şengör, Tomris

    2017-10-01

    Comparison of topography and corneal higher order aberrations (HOA) data of fellow normal eyes of unilateral keratoconus patients with keratoconus eyes and control group. The records of 196 patients with keratoconus were reviewed. Twenty patients were identified as unilateral keratoconus. The best corrected visual acuity (BCVA), topography and aberration data of the unilateral keratoconus patients' normal eyes were compared with their contralateral keratoconus eyes and with control group eyes. For statistical analysis, flat and steep keratometry values, average corneal power, cylindrical power, surface regularity index (SRI), surface asymmetry index (SAI), inferior-superior ratio (I-S), keratoconus prediction index, and elevation-depression power (EDP) and diameter (EDD) topography indices were selected. Mean age of the unilateral keratoconus patients was 26.05±4.73 years and that of the control group was 23.6±8.53 years (p>0.05). There was no statistical difference in BCVA between normal and control eyes (p=0.108), whereas BCVA values were significantly lower in eyes with keratoconus (p=0.001). Comparison of quantitative topographic indices between the groups showed that all indices except the I-S ratio were significantly higher in the normal group than in the control group (p<0.05). The most obvious differences were in the SRI, SAI, EDP, and EDD values. All topographic indices were higher in the keratoconus eyes compared to the normal fellow eyes. There was no difference between normal eyes and the control group in terms of spherical aberration, while coma, trefoil, irregular astigmatism, and total HOA values were higher in the normal eyes of unilateral keratoconus patients (p<0.05). All HOA values were higher in keratoconus eyes than in the control group. According to our study, SRI, SAI, EDP, EDD values, and HOA other than spherical aberration were higher in the clinically and topographically normal fellow eyes of unilateral keratoconus patients when compared to a control group. This finding may be due to the mild asymmetric and morphologic changes in the subclinical stage of keratoconus leading to deterioration in the indicators of corneal irregularity and elevation changes. Therefore, these eyes may be exhibiting the early form of the disease.

  10. Strength Training Using Elastic Bands: Improvement of Muscle Power and Throwing Performance in Young Female Handball Players.

    PubMed

    Mascarin, Naryana Cristina; de Lira, Claudio Andre Barbosa; Vancini, Rodrigo Luiz; de Castro Pochini, Alberto; da Silva, Antonio Carlos; Dos Santos Andrade, Marilia

    2017-05-01

    Imbalance in shoulder-rotator muscles has been considered a risk factor for injuries in handball. Strength training programs (STPs) may play an important preventive role. To verify the effects of an STP using elastic bands on shoulder muscles and ball-throwing speed. Randomized and prospective controlled trial. Exercise physiology laboratory. Thirty-nine female handball players were randomly assigned to an experimental (EG, n = 21, 15.3 ± 1.1 y) or a control (CG, n = 18, 15.0 ± 0.8 y) group. The EG performed the STP with elastic-band progressive exercises for 6 wk before regular handball training, and the CG underwent only their regular training. Before and after the STP, both groups underwent a ball-throwing-speed test and isokinetic test to assess shoulder internal- (IR) and external-rotator muscle performance. Average power values for IR muscles presented a significant group-vs-time interaction effect (F = 3.9, P = .05); EG presented significantly higher values after the STP (P = .03). Ball speed presented higher values in EG after the STP in standing (P = .04) and jumping (P = .03) throws. IR peak-torque values and balance in shoulder-rotator muscles presented no group-vs-time interaction effect. STP using elastic bands performed for 6 wk was effective to improve muscle power and ball speed for young female handball players.

  11. High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.

    2009-10-01

    High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).

  12. Hydrodynamic Trails Produced by Daphnia: Size and Energetics

    PubMed Central

    Wickramarathna, Lalith N.; Noss, Christian; Lorke, Andreas

    2014-01-01

    This study focuses on quantifying hydrodynamic trails produced by freely swimming zooplankton. We combined volumetric tracking of swimming trajectories with planar observations of the flow field induced by Daphnia of different size and swimming in different patterns. Spatial extension of the planar flow field along the trajectories was used to interrogate the dimensions (length and volume) and energetics (dissipation rate of kinetic energy and total dissipated power) of the trails. Our findings demonstrate that neither swimming pattern nor size of the organisms affect the trail width or the dissipation rate. However, we found that the trail volume increases with increasing organism size and swimming velocity, more precisely the trail volume is proportional to the third power of Reynolds number. This increase furthermore results in significantly enhanced total dissipated power at higher Reynolds number. The biggest trail volume observed corresponds to about 500 times the body volume of the largest daphnids. Trail-averaged viscous dissipation rate of the swimming daphnids vary in the range of to and the observed magnitudes of total dissipated power between and , respectively. Among other zooplankton species, daphnids display the highest total dissipated power in their trails. These findings are discussed in the context of fluid mixing and transport by organisms swimming at intermediate Reynolds numbers. PMID:24671019

  13. High Output Piezo/Triboelectric Hybrid Generator

    PubMed Central

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  14. Measurement accuracy of a stressed contact lens during its relaxation period

    NASA Astrophysics Data System (ADS)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  15. Network topology and resilience analysis of South Korean power grid

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwan; Eisenberg, Daniel A.; Chun, Yeong Han; Park, Jeryang

    2017-01-01

    In this work, we present topological and resilience analyses of the South Korean power grid (KPG) with a broad voltage level. While topological analysis of KPG only with high-voltage infrastructure shows an exponential degree distribution, providing another empirical evidence of power grid topology, the inclusion of low voltage components generates a distribution with a larger variance and a smaller average degree. This result suggests that the topology of a power grid may converge to a highly skewed degree distribution if more low-voltage data is considered. Moreover, when compared to ER random and BA scale-free networks, the KPG has a lower efficiency and a higher clustering coefficient, implying that highly clustered structure does not necessarily guarantee a functional efficiency of a network. Error and attack tolerance analysis, evaluated with efficiency, indicate that the KPG is more vulnerable to random or degree-based attacks than betweenness-based intentional attack. Cascading failure analysis with recovery mechanism demonstrates that resilience of the network depends on both tolerance capacity and recovery initiation time. Also, when the two factors are fixed, the KPG is most vulnerable among the three networks. Based on our analysis, we propose that the topology of power grids should be designed so the loads are homogeneously distributed, or functional hubs and their neighbors have high tolerance capacity to enhance resilience.

  16. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.

    PubMed

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-10-12

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.

  17. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic

    PubMed Central

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-01-01

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency. PMID:27754315

  18. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    DTIC Science & Technology

    2012-06-30

    time window ),[ tWt DT : vave, vmax, vmin, ac, vst and vend, where the first four parameters are, respectively, the average speed, maximum speed...minimum speed and average acceleration, during the time period ),[ tWt DT , vst is the vehicle speed at )( DTWt  , and vend is the vehicle

  19. Performance of a 14.9-kW laminated-frame dc series motor with chopper controller

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.

    1979-01-01

    Traction motor using two types of excitation: ripple free dc from a motor generator set for baseline data and chopped dc as supplied by a battery and chopper controller was tested. For the same average values of input voltage and current, the power output was independent of the type of excitation. At the same speeds, motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points less on chopped dc than on ripple-free dc. This illustrates that for chopped waveforms, it is incorrect to calculate input power as the product of average voltage and average current. Locked-rotor torque, no load losses, and magnetic saturation data were so determined.

  20. Real-world fuel use and gaseous emission rates for flex fuel vehicles operated on E85 versus gasoline.

    PubMed

    Delavarrafiee, Maryam; Frey, H Christopher

    2018-03-01

    Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NO x ) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NO x . Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is -23% for NO x , -30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NO x emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NO x emissions are higher because the NO x emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NO x emissions and differences in HC speciation on ozone formation should be further evaluated. Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NO x ) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NO x -limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.

  1. A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Capo-Chichi, M.; Leprince-Wang, Y.; Basset, P.

    2018-01-01

    This paper reports a paper-based electrostatic kinetic energy harvester (e-KEH) implementing multilayered electret films based on electrospun nanofibrous material. It is the first time that a fully flexible electret-based e-KEH is reported. The proposed electret, PVDF-PTFD nanofibrous covered by Parylene C, has a faster stabilization of surface potential than a planar thin film of Parylene C, and a higher stability of charge storage. With a maximum force of 0.5 N and a 3-layer electret, the device capacitance increases from 25 to 100 pF during a pressing operation. Working with the optimal resistive load of 16 MΩ, the device pressed manually delivers a peak instantaneous power up to 45.6 μW and an average energy of 54 nJ/stroke, corresponding to a peak instantaneous power density of 7.3 μW cm-2 and an average energy density of 8.6 nJ cm-2/stroke. Within 450 manual strokes, a 10 nF capacitor is charged up to 8.5 V by the prototype through a full-wave diode bridge. On a 1 μF capacitor, the energy delivery of 9.9 nJ/stroke has been obtained with a 10 Hz pressing movement excited by a vibrator with a maximum force of 0.5 N.

  2. On blockage effects for a marine hydrokinetic turbine in free surface proximity

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Kolekar, N.

    2016-12-01

    Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.

  3. Reduction of air pollutant concentrations in an indoor ice-skating rink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Yanagisawa, Yukio; Spengler, J.D.

    1994-01-01

    High carbon monoxide and nitrogen dioxide concentrations were measured in an indoor ice-skating rink with fuel-powered ice-resurfacing equipment. In 22% to 33% of the measurements over 90-min segments, CO concentrations exceeded 20 [mu]L/L as a 90-min average in the absence of rink ventilation. Average NO[sub 2] concentrations over 14 h were higher than 600 nL/L. Reduction of air pollutant concentrations in the ice-skating rink is necessary to prevent air-pollutant-exposure-related health incidents. Various methods for reducing air pollutants in an ice-skating rink were evaluated by simultaneously measuring CO and NO[sub 2] concentrations. Single pollution reduction attempts, such as extension of themore » exhaust pipe, reduction in the number of resurfacer operations, or use of an air recirculation system, did not significantly reduce air pollutant concentrations in the rink. Full operation of the mechanical ventilation system combined with reduced resurfacer operation was required to keep the air pollutant levels in the skating rink below the recommended guidelines. This investigation showed that management of clean air quality in an ice-skating rink is practically difficult as long as fuel-powered resurfacing equipment is used. 16 refs., 3 figs., 5 tabs.« less

  4. A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing

    PubMed Central

    Tolstosheeva, Elena; Gordillo-González, Víctor; Biefeld, Volker; Kempen, Ludger; Mandon, Sunita; Kreiter, Andreas K.; Lang, Walter

    2015-01-01

    High-density electrocortical (ECoG) microelectrode arrays are promising signal-acquisition platforms for brain-computer interfaces envisioned, e.g., as high-performance communication solutions for paralyzed persons. We propose a multi-channel microelectrode array capable of recording ECoG field potentials with high spatial resolution. The proposed array is of a 150 mm2 total recording area; it has 124 circular electrodes (100, 300 and 500 μm in diameter) situated on the edges of concentric hexagons (min. 0.8 mm interdistance) and a skull-facing reference electrode (2.5 mm2 surface area). The array is processed as a free-standing device to enable monolithic integration of a rigid interposer, designed for soldering of fine-pitch SMD-connectors on a minimal assembly area. Electrochemical characterization revealed distinct impedance spectral bands for the 100, 300 and 500 μm-type electrodes, and for the array's own reference. Epidural recordings from the primary visual cortex (V1) of an awake Rhesus macaque showed natural electrophysiological signals and clear responses to standard visual stimulation. The ECoG electrodes of larger surface area recorded signals with greater spectral power in the gamma band, while the skull-facing reference electrode provided higher average gamma power spectral density (γPSD) than the common average referencing technique. PMID:25569757

  5. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  6. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    NASA Technical Reports Server (NTRS)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS surface will be added that can exhibit pseudocapacitance. This pseudocapacitance exhibits faradaic (charge transfer) properties that can further increase the overall relative and volumetric capacitance of the material. A process is also proposed to use GNF as a precursor material to fabricate GNS that will be used as EC electrodes. This results in much better electrical conductivity than activated carbon. This is advantageous for high-pulsed-power applications to reduce parasitic heating. Larger average pore size allows more complete electrolyte wetting (faster charge transfer kinetics). These properties contribute to a lowered equivalent series resistance (ESR), increased specific power, shorter charging times, and decreased parasitic heating. The high density of basal plane edges provides nucleation sites for activation (addition of hydrophilic functional groups) that facilitate electrolyte wetting, and will contribute to pseudocapacitance.

  7. PQScal (Power Quality Score Calculation for Distribution Systems with DER Integration)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power Quality is of great importance to evaluate the “health” of a distribution system, especially when the distributed energy resource (DER) penetration becomes more significant. The individual components that make up power quality, such as voltage magnitude and unbalance, can be measured in simulations or in the field, however, a comprehensive method to incorporate all of these values into a single score doesn't exist. As a result, we propose a methodology to quantify the power quality health using the single number value, named as Power Quality Score (PQS). The PQS is dependent on six metrics that are developed based onmore » both components that directly impact power quality and those are often reference in the context of power quality. These six metrics are named as System Average Voltage Magnitude Violation Index (SAVMVI), System Average Voltage Fluctuation Index (SAVFI), System Average Voltage Unbalance Index (SAVUI), System Control Device Operation Index (SCDOI), System Reactive Power Demand Index (SRPDI) and System Energy Loss Index (SELI). This software tool, PQScal, is developed based on this novel PQS methodology. Besides of traditional distribution systems, PQScal can also measure the power quality for distribution systems with various DER penetrations. PQScal has been tested on two utility distribution feeders with distinct model characteristics and its effectiveness has been proved. In sum, PQScal can help utilities or other parties to measure the power quality of distribution systems with DER integration easily and effectively.« less

  8. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummon, M.; Weekley, A.; Searight, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less

  9. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummon, M.; Weekley, A.; Searight, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.

    Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less

  11. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Sho

    2014-06-15

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ∼10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stablemore » output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.« less

  12. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis.

    PubMed

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene

    2015-02-01

    To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.

  13. Ultrastable laser array at 633 nm for real-time dimensional metrology

    NASA Astrophysics Data System (ADS)

    Lawall, John; Pedulla, J. Marc; Le Coq, Yann

    2001-07-01

    We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.

  14. Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Xiangyin

    2010-01-01

    Normalized intensity distribution, the complex degree of coherence and power in the bucket for partially coherent controllable dark hollow beams (DHBs) with various symmetries propagating in atmospheric turbulence are derived using tensor method and investigated in detail. Analytical results show that, after sufficient propagation distance, partially coherent DHBs with various symmetries eventually become circular Gaussian beam (without dark hollow) in turbulent atmosphere, which is different from its propagation properties in free space. The partially coherent DHBs return to a circular Gaussian beam rapidly for stronger turbulence, higher coherence, lower beam order, smaller p or smaller beam waist width. Another interesting observation is that the profile of the complex degree of coherence attains a similar profile to that of the average intensity of the related beam propagating in a turbulent atmosphere. Besides the laser power focusablity of DHBs are better than that of Gaussian beam propagating in turbulent atmosphere.

  15. Development of gait segmentation methods for wearable foot pressure sensors.

    PubMed

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  16. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy.more » Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.« less

  17. Spatiotemporal and spectral characteristics of X-ray radiation emitted by the Z-pinch during the current implosion of quasispherical multiwire arrays

    NASA Astrophysics Data System (ADS)

    Gritsuk, A. N.

    2017-12-01

    For the first time, a quasi-spherical current implosion has been experimentally realized on a multimegaampere facility with the peak current of up to 4 MA and a soft X-ray source has been created with high radiation power density on its surface of up to 3 TW/cm2. An increase in the energy density at the centre of the source of soft X-ray radiation (SXR) was experimentally observed upon compression of quasi-spherical arrays with the linear-mass profiling. In this case, the average power density on the surface of the SXR source is three times higher than for implosions of cylindrical arrays of the same mass and close values of the discharge current. Obtained experimental data are compared with the results of modelling the current implosion of multi-wire arrays performed with the help of a three-dimensional radiation-magneto-hydrodynamic code.

  18. High Spectral Resolution Lidar for atmospheric temperature profiling.

    NASA Astrophysics Data System (ADS)

    Razenkov, I.; Eloranta, E. W.

    2017-12-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison is equipped with two iodine absorption filters with different line widths (1.8 GHz and 2.85 GHz). The filters are implemented to discriminate between Mie and Rayleigh backscattering and to resolve temperature sensitive changes in Rayleigh spectrum for atmospheric temperature profile measurements. This measurement capability makes the instrument intrinsically and absolutely calibrated. HSRL has a shared transmitter-receiver telescope and operates in the eye-safe mode with the product of laser average power and telescope aperture less than 0.025 𝑊𝑚2 at 532 nm. With this low-power prototype instrument we have achieved temperature profile measurements extending above tropopause with a time resolution of several hours. Further instrument optimizations will reduce systematic measurement errors and will improve a signal-to-noise ratio providing temperature data comparable to a standard radiosonde with higher time resolution.

  19. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident.

    PubMed

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-08-01

    Sweden received about 5 % of the total release of (137)Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of (137)Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of (137)Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of (137)Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest incidence of cancer before the accident coincidentally had the lowest fallout of (137)Cs. Increasing the geographical resolution of exposure from nine county averages to 612 parish averages resulted in a two to three times higher value of variance in the regression model. There was a secular trend with an increase in age-standardized incidence of cancer in both genders from 1980 to 2009, but significant only in females. This trend was stronger and statistically significant for both genders in the general Swedish population compared to the nine counties. In conclusion, using both high quality cancer registry data and high resolution exposure maps of (137)Cs deposition, it was not possible to distinguish an effect of (137)Cs on cancer incidence after the Chernobyl nuclear power plant accident in Sweden.

  20. Adaptations to a new physical training program in the combat controller training pipeline.

    PubMed

    Walker, Thomas B; Lennemann, Lynette M; Anderson, Vint; Lyons, William; Zupan, Michael F

    2011-01-01

    The United States Air Force combat controller (CCT) training pipeline is extremely arduous and historically has a high attrition rate of 70 to 80%. The primary objective of this study was to evaluate the impact of incorporating a 711 Human Performance Wing (HPW) / Biobehavior, Bioassessment, and Biosurveillance Branch (RHPF)-developed physical fitness-training program into the combat controller (CCT) 5-level training physical fitness program. One-hundred-nine CCT trainees were tested and trained during their initial eight weeks at the 720th Special Tactics Training Squadron (STTS) at Hurlburt Field. Modifications to their physical training program were principally aimed at reducing overtraining and overuse injury, educating trainees and cadre on how to train smarter, and transitioning from traditional to "functional" PT. A battery of physiological measurements and a psychological test were administered prior to and immediately after trainees undertook an 8-week modified physical fitness training program designed to reduce overtraining and injury and improve performance. We performed multiple physical tests for cardiovascular endurance (VO₂max and running economy), "anaerobic" capacity (Wingate power and loaded running tests), body composition (skinfolds), power (Wingate and vertical jump), and reaction time (Makoto eye-hand test). We used the Mental Toughness Questionnaire 48 (MTQ-48) for the psychological test. We observed several significant improvements in physical and physiological performance over the eight weeks of training. Body composition improved by 16.2% (p < 0.05). VO₂max, time-to-exhaustion, and ventilatory threshold were all significantly higher after implementation of the new program than before it. We observed strong trends towards improvement in work accomplished during loaded running (p = 0.07) and in average power per body mass during lower body Wingate (p = 0.08). Other measures of lower body power did not change significantly over the training period, but did show mild trends towards improvement. Upper body average and peak power per kilogram of body mass both improved significantly by 5.8% and 8.1%, respectively. Reaction time was significantly better posttraining as demonstrated by a 7% improvement during the reactive test. Reactive accuracy also improved significantly with the post test accuracy percentage jumping from 61% to 76%. Furthermore, overuse injuries, a major source of attrition fell by a dramatic 67%. The modifications resulted in significant improvement in trainees? graduation rate. In the eight classes prior to implementation of these changes, average CCT graduating class size was nine trainees. For the eight classes following the changes, average CCT graduating class rose to 16.5 trainees, an increase of 83%. Due to its success, STTS leadership expanded the modifications from the eight weeks prior to CDS to include the entire second year of the pipeline. 2011.

  1. High power solar array switching regulation

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Cassinelli, J.; Valgora, M.

    1981-01-01

    It is pointed out that spacecraft utilization projections for the 1980s and beyond show a trend toward extended lifetimes and larger electric power systems. The need for improved power management and energy transfer arising in connection with this trend has resulted in the conduction of a Solar Array Switching Power Management study. A description is presented of initial development work performed in the study, taking into account the characteristics for three mission classes. Attention is given to the manned LEO platform (250-kW average load), the unmanned GEO platform (50-kW average load), and an ion propulsion orbit transfer vehicle (50- to 250 kW load).

  2. Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)

    NASA Astrophysics Data System (ADS)

    Wadsworth, William J.; Coutts, David W.; Webb, Colin E.

    1999-11-01

    High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.

  3. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    PubMed

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  4. Assessment of natural radioactivity levels in soil samples from some areas in Assiut, Egypt.

    PubMed

    El-Gamal, Hany; Farid, M El-Azab; Abdel Mageed, A I; Hasabelnaby, M; Hassanien, Hassanien M

    2013-12-01

    The natural radioactivity of soil samples from Assiut city, Egypt, was studied. The activity concentrations of 28 samples were measured with a NaI(Tl) detector. The radioactivity concentrations of (226)Ra, (232)Th, and (40)K showed large variations, so the results were classified into two groups (A and B) to facilitate the interpretation of the results. Group A represents samples collected from different locations in Assiut and characterized by low activity concentrations with average values of 46.15 ± 9.69, 30.57 ± 4.90, and 553.14 ± 23.19 for (226)Ra, (232)Th, and (40)K, respectively. Group B represents samples mainly collected from the area around Assiut Thermal Power Plant and characterized by very high activity concentrations with average values of 3,803 ± 145, 1,782 ± 98, and 1,377 ± 78 for (226)Ra, (232)Th, and (40)K, respectively. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity (Raeq), the absorbed dose rate (D), the annual effective dose rate (E), the external hazard index (H ex), and the annual gonadal dose equivalent (AGDE) have been calculated and compared with the internationally approved values. For group A, the calculated averages of these parameters are in good agreement with the international recommended values except for the absorbed dose rate and the AGDE values which are slightly higher than the international recommended values. However, for group B, all obtained averages of these parameters are much higher by several orders of magnitude than the international recommended values. The present work provides a background of radioactivity concentrations in the soil of Assiut.

  5. Retinal specializations and visual ecology in an animal with an extremely elaborate pupil shape: The Little skate Leucoraja (Raja) erinacea Mitchell, 1825.

    PubMed

    Jinson, S Terrell; Liebich, Jan; Senft, Stephen L; Mäthger, Lydia M

    2018-05-14

    Investigating retinal specializations offers insights into eye functionality. Using retinal wholemount techniques, we investigated the distribution of retinal ganglion cells in the Little skate Leucoraja erinacea by (1) dye-backfilling into the optic nerve prior to retinal wholemounting; (2) Nissl-staining of retinal wholemounts. Retinas were examined for regional specializations (higher numbers) of ganglion cells that would indicate higher visual acuity in those areas. Total ganglion cell number were low compared to other elasmobranchs (backfilled: average 49,713 total ganglion cells, average peak cell density 1,315 ganglion cells mm -2 ; Nissl-stained: average 47,791 total ganglion cells, average peak cell density 1,319 ganglion cells mm -2 ). Ganglion cells fit into three size categories: small (5-20µm); medium (20-30µm); large: (≥ 30µm), and they were not homogeneously distributed across the retina. There was a dorsally located horizontal visual streak with increased ganglion cell density; additionally, there were approximately 3 local maxima in ganglion cell distribution (potential areae centrales) within this streak in which densities were highest. Using computerized tomography (CT) and micro-CT, geometrical dimensions of the eye were obtained. Combined with ganglion cell distributions, spatial resolving power was determined to be between 1.21 to 1.37 cycles per degree. Additionally, photoreceptor sizes across different retinal areas varied; photoreceptors were longest within the horizontal visual streak. Variations in the locations of retinal specializations appear to be related to the animal's anatomy: shape of the head and eyes, position of eyes, location of tapetum, and shape of pupil, as well as the visual demands associated with lifestyle and habitat type. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  6. Metabolic power demands of rugby league match play.

    PubMed

    Kempton, Tom; Sirotic, Anita Claire; Rampinini, Ermanno; Coutts, Aaron James

    2015-01-01

    To describe the metabolic demands of rugby league match play for positional groups and compare match distances obtained from high-speed-running classifications with those derived from high metabolic power. Global positioning system (GPS) data were collected from 25 players from a team competing in the National Rugby League competition over 39 matches. Players were classified into positional groups (adjustables, outside backs, hit-up forwards, and wide-running forwards). The GPS devices provided instantaneous raw velocity data at 5 Hz, which were exported to a customized spreadsheet. The spreadsheet provided calculations for speed-based distances (eg, total distance; high-speed running, >14.4 km/h; and very-high-speed running, >18.1 km/h) and metabolic-power variables (eg, energy expenditure; average metabolic power; and high-power distance, >20 W/kg). The data show that speed-based distances and metabolic power varied between positional groups, although this was largely related to differences in time spent on field. The distance covered at high running speed was lower than that obtained from high-power thresholds for all positional groups; however, the difference between the 2 methods was greatest for hit-up forwards and adjustables. Positional differences existed for all metabolic parameters, although these are at least partially related to time spent on the field. Higher-speed running may underestimate the demands of match play when compared with high-power distance-although the degree of difference between the measures varied by position. The analysis of metabolic power may complement traditional speed-based classifications and improve our understanding of the demands of rugby league match play.

  7. Extending solid state laser performance

    NASA Astrophysics Data System (ADS)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  8. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  9. Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications

    DOE PAGES

    Gao, Zhiming; Daw, C. Stuart; Smith, David E.; ...

    2016-08-01

    The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less

  10. Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C. Stuart; Smith, David E.

    The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less

  11. Green Power Equivalency Calculator

    EPA Pesticide Factsheets

    Use this calculator to translate your green power use from kilowatt-hours to more understandable terms, such as the equivalent number of average American homes it could power or miles an electric car could drive.

  12. Compact and efficient 2μm Tm:YAP lasers with mechanical or passive Q-switching

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Goldberg, Lew

    2017-02-01

    We describe compact and efficient Q-switched diode-pumped, Tm:YAP lasers operating at 1.94μm. Laser CW and Q-switched performance is compared, using both compact mechanical as well as passive Q-switching. For passive Q-switching using a Cr:ZnS saturable absorber (unsaturated transmission of 95%), the laser produced 0.5mJ pulses with an average power of 4.4W and 6.5kW peak power, and had an optical efficiency of 30%. A resonant mirror mechanical Q-switch resulted in a 4 kHz PRF pulse train, with an optical slope efficiency of 52% and an optical-to-optical conversion efficiency of 41%. The laser generated 1.5 mJ, 45 ns FWHM, 33kW peak power pulses, and 6.2W of average output. A second mechanically Q-switched laser operating at 10 kHz PRF produced 1mJ, 35kW peak power pulses, generating 11W average power with an optical efficiency of 46%, and a beam quality of 1.4x diffraction limit.

  13. Arcjet power supply and start circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P. (Inventor)

    1988-01-01

    A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.

  14. The trapped-particle instability in the Boeing 1kW FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, L.; Blau, J.; Colson, W.B.

    1995-12-31

    The new design for the Boeing High Average Power Free Electron Laser will operate at 1KW average power (0.63 {mu}m) with a peak current of 132A. Simulations are used to investigate the trapped-particle instability and diffraction effects. Incorporating large desynchronism may prove to be a useful method of controlling the trapped-particle instability.

  15. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine.

    PubMed

    Sampaio, Luis Rafael L; Borges, Lucas T N; Silva, Joyse M F; de Andrade, Francisca Roselin O; Barbosa, Talita M; Oliveira, Tatiana Q; Macedo, Danielle; Lima, Ricardo F; Dantas, Leonardo P; Patrocinio, Manoel Cláudio A; do Vale, Otoni C; Vasconcelos, Silvânia M M

    2018-02-01

    The use of ketamine (Ket) as a pharmacological model of schizophrenia is an important tool for understanding the main mechanisms of glutamatergic regulated neural oscillations. Thus, the aim of the current study was to evaluate Ket-induced changes in the average spectral power using the hippocampal quantitative electroencephalography (QEEG). To this end, male Wistar rats were submitted to a stereotactic surgery for the implantation of an electrode in the right hippocampus. After three days, the animals were divided into four groups that were treated for 10 consecutive days with Ket (10, 50, or 100 mg/kg). Brainwaves were captured on the 1st or 10th day, respectively, to acute or repeated treatments. The administration of Ket (10, 50, or 100 mg/kg), compared with controls, induced changes in the hippocampal average spectral power of delta, theta, alpha, gamma low or high waves, after acute or repeated treatments. Therefore, based on the alterations in the average spectral power of hippocampal waves induced by Ket, our findings might provide a basis for the use of hippocampal QEEG in animal models of schizophrenia. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  16. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  17. Characteristic correlation study of UV disinfection performance for ballast water treatment

    NASA Astrophysics Data System (ADS)

    Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei

    2016-11-01

    Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.

  18. Particle distributions in approximately 10(13) - 10(16) eV air shower cores at mountain altitude and comparison with Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Ash, A. G.

    1985-01-01

    Photographs of 521 shower cores in an array of current-limited spark (discharge) chambers at Sacramento Peak (2900m above sea level, 730 g /sq cm.), New Mexico, U.S.A., have been analyzed and the results compared with similar data from Leeds (80m above sea level, 1020 g sq cm.). It was found that the central density differential spectrum is consistent with a power law index of -2 up to approx. 1500/sq m where it steepens, and that shower cores become flatter on average with increasing size. Scaling model predictions for proton primaries with a approx E sup -2.71 energy spectrum account well for the altitude dependence of the data at lower densities. However, deviations at higher densities indicate a change in hadron interaction characteristics between approx few x 10 to the 14th power and 10 to the 15th power eV primary energy causing particles close to the shower axis to be spread further out.

  19. The design and performance of a 2.5-GHz telecommand link for wireless biomedical monitoring.

    PubMed

    Crumley, G C; Evans, N E; Scanlon, W G; Burns, J B; Trouton, T G

    2000-12-01

    This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active, duplex RF biomedical transponder. A 50-ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a (CMOS baseband amplifier consuming 20 microA from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit. For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

  20. Hybrid thermionic-photovoltaic converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datas, A.

    2016-04-04

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligiblemore » electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.« less

  1. “Slimming” of power-law tails by increasing market returns

    NASA Astrophysics Data System (ADS)

    Sornette, D.

    2002-06-01

    We introduce a simple generalization of rational bubble models which removes the fundamental problem discovered by Lux and Sornette (J. Money, Credit and Banking, preprint at http://xxx.lanl.gov/abs/cond-mat/9910141) that the distribution of returns is a power law with exponent <1, in contradiction with empirical data. The idea is that the price fluctuations associated with bubbles must on average grow with the mean market return r. When r is larger than the discount rate rδ, the distribution of returns of the observable price, sum of the bubble component and of the fundamental price, exhibits an intermediate tail with an exponent which can be larger than 1. This regime r> rδ corresponds to a generalization of the rational bubble model in which the fundamental price is no more given by the discounted value of future dividends. We explain how this is possible. Our model predicts that, the higher is the market remuneration r above the discount rate, the larger is the power-law exponent and thus the thinner is the tail of the distribution of price returns.

  2. Dithienogermole as a fused electron donor in bulk heterojunction solar cells.

    PubMed

    Amb, Chad M; Chen, Song; Graham, Kenneth R; Subbiah, Jegadesan; Small, Cephas E; So, Franky; Reynolds, John R

    2011-07-06

    We report the synthesis and bulk heterojunction photovoltaic performance of the first dithienogermole (DTG)-containing conjugated polymer. Stille polycondensation of a distannyl-DTG derivative with 1,3-dibromo-N-octyl-thienopyrrolodione (TPD) results in an alternating copolymer which displays light absorption extending to 735 nm, and a higher HOMO level than the analogous copolymer containing the commonly utilized dithienosilole (DTS) heterocycle. When polyDTG-TPD:PC(70)BM blends are utilized in inverted bulk heterojunction solar cells, the cells display average power conversion efficiencies of 7.3%, compared to 6.6% for the DTS-containing cells prepared in parallel under identical conditions. The performance enhancement is a result of a higher short-circuit current and fill factor in the DTG-containing cells, which comes at the cost of a slightly lower open circuit voltage than for the DTS-based cells.

  3. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    PubMed

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  4. Driver development of IFE power plant in Japan Collaborative process with industry and industrial applications

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.

    2006-06-01

    The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.

  5. Air quality impact of the coal-fired power plants in the northern passageway of the China West-East Power Transmission Project.

    PubMed

    Xue, Zhigang; Hao, Jiming; Chai, Fahe; Duan, Ning; Chen, Yizhen; Li, Jindan; Chen, Fu; Liu, Simei; Pu, Wenqing

    2005-12-01

    This paper analyzes the air quality impacts of coal-fired power plants in the northern passageway of the West-East Power Transmission Project in China. A three-layer Lagrangian model called ATMOS, was used to simulate the spatial distribution of incremental sulfur dioxide (SO2) and coarse particulate matter (PM10) concentrations under different emission control scenarios. In the year 2005, the emissions from planned power plants mainly affected the air quality of Shanxi, Shaanxi, the common boundary of Inner Mongolia and Shanxi, and the area around the boundary between Inner Mongolia and Ningxia. In these areas, the annually averaged incremental SO2 and PM10 concentrations exceed 2 and 2.5 microg/m3, respectively. The maximum increases of the annually averaged SO2 and PM10 concentrations are 8.3 and 7.2 microg/m3, respectively, which occur around Hancheng city, near the boundary of the Shaanxi and Shanxi provinces. After integrated control measures are considered, the maximum increases of annually averaged SO2 and PM10 concentrations fall to 4.9 and 4 microg/m3, respectively. In the year 2010, the areas affected by planned power plants are mainly North Shaanxi, North Ningxia, and Northwest Shanxi. The maximum increases of the annually averaged SO2 and PM10, concentrations are, respectively, 6.3 and 5.6 microg/m3, occurring in Northwest Shanxi, which decline to 4.4 and 4.1 microg/m3 after the control measures are implemented. The results showed that the proposed power plants mainly affect the air quality of the region where the power plants are built, with little impact on East China where the electricity will be used. The influences of planned power plants on air quality will be decreased greatly by implementing integrated control measures.

  6. Development of a High Average Current Thermionic Injector for Free-Electron Lasers

    DTIC Science & Technology

    2013-02-11

    high   average   power   FEL   should   produce   high ...The  cathode  heater   is   powered  by  a  60  Hz  AC   feed  that  floats  on  the   high  voltage  pulse... high -­‐voltage   power  supply  for  the  IOT  gun  is  a  70  kV  Rockwell  hard  tube   modulator   with  

  7. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohsen, O.; Gonin, I.; Kephart, R.

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less

  8. Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares

    NASA Astrophysics Data System (ADS)

    Hinterreiter, J.; Veronig, A. M.; Thalmann, J. K.; Tschernitz, J.; Pötzi, W.

    2018-03-01

    A statistical study of the chromospheric ribbon evolution in Hα two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s-1). The local reconnection electric field of confined (cc=0.50 ±0.02) and eruptive (cc=0.77 ±0.03) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.

  9. Microwave hyperthermia-induced blood-brain barrier alterations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.C.; Lin, M.F.

    We have studied the interaction of microwaves with the blood-brain barrier in Wistar rats. Indwelling catheters were placed in the femoral vein. Evans blue in isotonic saline was used as a visual indicator of barrier permeation. Irradiation with pulsed 2450-MHz microwaves for 20 min at average power densities of 0.5 to 2600 mW/cm/sup 2/, which resulted in average specific absorption rages (SARs) of 0.04 to 200 mW/g in the brain, did not produce staining, except in regions that normally are highly permeable. When the incident power density was increased to 3000 mW/cm/sup 2/ (SAR of 240 mW/g), extravasation of Evansmore » blue could be seen in the cortex, hippocampus, and midbrain. The rectal temperature, as monitored by a copper-constantan thermocouple, showed a maximum increase of less than 1.0/sup o/C. the brain temperature recorded in a similar group of animals using a non-field-perturbing thermistor exceeded 43/sup o/C. At the higher power density the extravasation depended on the irradition and euthanization times. In one series of experiments, rats were irradiated at 3000 mW/cm/sup 2/ for 5, 10, 15, and 20 min. Immediately after irradiation all except the 5-min animals exhibited increased permeability in some regions of the brain. Brains of rats euthanized 30 min after irradiation were free of Evans blue, while those euthanized 10 and 20 min postirradiation showed significant dye staining but with less intensity than those euthanized immediately after irradiation.« less

  10. Plasma characteristics of long-pulse discharges heated by neutral beam injection in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.

    2000-02-01

    Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.

  11. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.

    1991-01-01

    To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOxmore » at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.« less

  12. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  13. Electroencephalographic prodromal markers of dementia across conscious states in Parkinson’s disease

    PubMed Central

    Latreille, Véronique; Gaudet-Fex, Benjamin; Rodrigues-Brazète, Jessica; Panisset, Michel; Chouinard, Sylvain; Postuma, Ronald B.

    2016-01-01

    Abstract In Parkinson’s disease, electroencephalographic abnormalities during wakefulness and non-rapid eye movement sleep (spindles) were found to be predictive biomarkers of dementia. Because rapid eye movement sleep is regulated by the cholinergic system, which shows early degeneration in Parkinson’s disease with cognitive impairment, anomalies during this sleep stage might mirror dementia development. In this prospective study, we examined baseline electroencephalographic absolute spectral power across three states of consciousness (non-rapid eye movement sleep, rapid eye movement sleep, and wakefulness) in 68 non-demented patients with Parkinson’s disease and 44 healthy controls. All participants underwent baseline polysomnographic recordings and a comprehensive neuropsychological assessment. Power spectral analyses were performed on standard frequency bands. Dominant occipital frequency during wakefulness and ratios of slow-to-fast frequencies during rapid eye movement sleep and wakefulness were also computed. At follow-up (an average 4.5 years after baseline), 18 patients with Parkinson’s disease had developed dementia and 50 patients remained dementia-free. In rapid eye movement sleep, patients with Parkinson’s disease who later developed dementia showed, at baseline, higher absolute power in delta and theta bands and a higher slowing ratio, especially in temporal, parietal, and occipital regions, compared to patients who remained dementia-free and controls. In non-rapid eye movement sleep, lower baseline sigma power in parietal cortical regions also predicted development of dementia. During wakefulness, patients with Parkinson’s disease who later developed dementia showed lower dominant occipital frequency as well as higher delta and slowing ratio compared to patients who remained dementia-free and controls. At baseline, higher slowing ratios in temporo-occipital regions during rapid eye movement sleep were associated with poor performance on visuospatial tests in patients with Parkinson’s disease. Using receiver operating characteristic curves, we found that best predictors of dementia in Parkinson’s disease were rapid eye movement sleep slowing ratios in posterior regions, wakefulness slowing ratios in temporal areas, and lower dominant occipital frequency. These results suggest that electroencephalographic slowing during sleep is a new promising predictive biomarker for Parkinson’s disease dementia, perhaps as a marker of cholinergic denervation. PMID:26912643

  14. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2009-12-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are responsible for 97% of mobile source emissions of CO, 22% of NOx, 95-97% of aromatics, 72-85% of carbonyls, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction. Nevertheless, the fuel-based inventory suggests that mobile source emissions of CO and NOx are overstated in the official inventory while emissions of VOCs may be understated. For NOx, the fuel-based inventory is lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory.

  15. Comparison of Newer IOL Power Calculation Methods for Eyes With Previous Radial Keratotomy

    PubMed Central

    Ma, Jack X.; Tang, Maolong; Wang, Li; Weikert, Mitchell P.; Huang, David; Koch, Douglas D.

    2016-01-01

    Purpose To evaluate the accuracy of the optical coherence tomography–based (OCT formula) and Barrett True K (True K) intraocular lens (IOL) calculation formulas in eyes with previous radial keratotomy (RK). Methods In 95 eyes of 65 patients, using the actual refraction following cataract surgery as target refraction, the predicted IOL power for each method was calculated. The IOL prediction error (PE) was obtained by subtracting the predicted IOL power from the implanted IOL power. The arithmetic IOL PE and median refractive PE were calculated and compared. Results All formulas except the True K produced hyperopic IOL PEs at 1 month, which decreased at ≥4 months (all P < 0.05). For the double-K Holladay 1, OCT formula, True K, and average of these three formulas (Average), the median absolute refractive PEs were, respectively, 0.78 diopters (D), 0.74 D, 0.60 D, and 0.59 D at 1 month; 0.69 D, 0.77 D, 0.77 D, and 0.61 D at 2 to 3 months; and 0.34 D, 0.65 D, 0.69 D, and 0.46 D at ≥4 months. The Average produced significantly smaller refractive PE than did the double-K Holladay 1 at 1 month (P < 0.05). There were no significant differences in refractive PEs among formulas at 4 months. Conclusions The OCT formula and True K were comparable to the double-K Holladay 1 method on the ASCRS (American Society of Cataract and Refractive Surgery) calculator. The Average IOL power on the ASCRS calculator may be considered when selecting the IOL power. Further improvements in the accuracy of IOL power calculation in RK eyes are desirable. PMID:27409468

  16. Characterization of plasma parameters in shaped PBX-M discharges

    NASA Astrophysics Data System (ADS)

    England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.

    1997-09-01

    The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.

  17. The Role Of Contact Force In Atrial Fibrillation Ablation.

    PubMed

    Nakagawa, Hiroshi; Jackman, Warren M

    2014-01-01

    During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These studies confirm that CF is a major determinant of RF lesion size and future systems combining CF, RF power and application time may provide real-time assessment of lesion formation.

  18. Estimated metabolic and mechanical demands during different small-sided games in elite soccer players.

    PubMed

    Gaudino, Paolo; Alberti, Giampietro; Iaia, F Marcello

    2014-08-01

    The present study examined the extent to which game format (possession play, SSG-P and game with regular goals and goalkeepers, SSG-G) and the number of players (5, 7 and 10 a-side) influence the physical demands of small-sided soccer games (SSGs) in elite soccer players. Training data were collected during the in-season period from 26 English Premier League outfield players using global positioning system technology. Total distance covered, distance at different speed categories and maximal speed were calculated. In addition, we focused on changes in velocity by reporting the number of accelerations and decelerations carried out during the SSGs (divided in two categories: moderate and high) and the absolute maximal values of acceleration and deceleration achieved. By taking into account these parameters besides speed and distance values, estimated energy expenditure and average metabolic power and distance covered at different metabolic power categories were calculated. All variables were normalized by time (i.e., 4min). The main findings were that the total distance, distances run at high speed (>14.4kmh(-1)) as well as absolute maximum velocity, maximum acceleration and maximum deceleration increased with pitch size (10v10>7v7>5v5; p<.05). Furthermore, total distance, very high (19.8-25.2kmh(-1)) and maximal (>25.2kmh(-1)) speed distances, absolute maximal velocity and maximum acceleration and deceleration were higher in SSG-G than in SSG-P (p<.001). On the other hand, the number of moderate (2-3ms(-2)) accelerations and decelerations as well as the total number of changes in velocity were greater as the pitch dimensions decreased (i.e., 5v5>7v7>10v10; p<.001) in both SSG-G and SSG-P. In addition, predicted energy cost, average metabolic power and distance covered at every metabolic power categories were higher in SSG-P compared to SSG-G and in big than in small pitch areas (p<.05). A detailed analysis of these drills is pivotal in contemporary football as it enables an in depth understanding of the workload imposed on each player which consequently has practical implications for the prescription of the adequate type and amount of stimulus during exercise training. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Scale Dependence of Statistics of Spatially Averaged Rain Rate Seen in TOGA COARE Comparison with Predictions from a Stochastic Model

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.

  20. 47 CFR 74.534 - Power limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., transmitter output power shall not exceed 10 watts. (b) In no event shall the average equivalent isotropically..., order a change in the equivalent isotropically radiated power of this station. Frequency band (MHz..., subject to periodic renewal. (c) The EIRP of transmitters that use Automatic Transmitter Power Control...

  1. 47 CFR 74.534 - Power limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., transmitter output power shall not exceed 10 watts. (b) In no event shall the average equivalent isotropically..., order a change in the equivalent isotropically radiated power of this station. Frequency band (MHz..., subject to periodic renewal. (c) The EIRP of transmitters that use Automatic Transmitter Power Control...

  2. Parametric study of ion heating in a burnout device (HIP-1)

    NASA Technical Reports Server (NTRS)

    Sigman, D. R.; Reinmann, J. J.; Lauver, M. R.

    1974-01-01

    Results of further studies on the Lewis Research Center hot-ion plasma source (HIP-1) are reported. Changes have been made in both the electrode geometry and materials to produce higher ion temperatures. Ion temperature increased significantly with increased vacuum pumping speed. The best ion temperatures achieved, so far, for H(+), D(+), and He(+) plasmas are estimated to be equal to, or greater than 0.6, equal to, or greater than 0.9, and equal to, greater than 2.0 keV, respectively. Electrode pairs produced high ion temperatures whether on the magnetic axis or off it by 5.5 cm. Multiple sources, one on-axis and one off-axis, were run simultaneously from a single power supply by using independent gas feed rates. A momentum analyzer has been added to the charge-exchange neutral particle analyzer to identify particles according to mass, as well as energy. Under any given plasma condition, the higher mass ions have higher average energies but not by as much as the ratio of their respective masses.

  3. Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror.

    PubMed

    Yamazoe, Shogo; Katou, Masaki; Adachi, Takashi; Kasamatsu, Tadashi

    2010-03-01

    We report a palm-top-size femtosecond diode-pumped mode-locked Yb(+3):KY(WO(4))(2) solid-state laser with a semiconductor saturable absorber mirror utilizing soliton mode locking for shortening the cavity to 50 mm. An average output power of 680 mW and a pulse width of 162 fs were obtained at 1045 nm with a repetition rate of 2.8 GHz, which led to a peak power of 1.5 kW. Average power fluctuations of a modularized laser source were found to be +/-10% for the free-running 3000 h operation and +/-1% for the power-controlled 2000 h operation.

  4. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  5. A novel high-speed PLC communication modem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, K.C.; Roy, S.

    1992-10-01

    In this paper an innovative design for power line carrier (PLC) communication using digitally modulated signals is presented. The major contribution consists of a new signal coupler to the power line that achieves a stable transmission bandwidth of 4 KHz on distribution lines over long distances. Preliminary field tests achieved half-duplex operation at 1.2 Kbaud over a distribution power line to the 120V network and back with a symbol error rate of about 2% using less than about 10 W of average transmitted power, which is considerably superior to the present state-of-the-art PLC modems. Full-duplex operation over 120/240V intra-building wiringmore » has also been field tested at 9.6 Kbaud over distances of 3000 ft. using 1W of average transmitted power.« less

  6. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  7. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    NASA Astrophysics Data System (ADS)

    Meyer-Scott, Evan; Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-01

    Using tapered fibers of As2Se3 chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  8. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach.

    PubMed

    Yang, Liuhanzi; Zhang, Shaojun; Wu, Ye; Chen, Qizheng; Niu, Tianlin; Huang, Xu; Zhang, Shida; Zhang, Liangjun; Zhou, Yu; Hao, Jiming

    2016-11-01

    The challenge to mitigate real-world emissions from vehicles calls for powerful in-use compliance supervision. The remote on-board diagnostic (OBD) approach, with wireless data communications, is one of the promising next-generation monitoring methods. We collected second-by-second profiles of carbon dioxide (CO 2 ) and nitrogen oxides (NO X ) emissions, driving conditions and engine performance for three conventional diesel and three hybrid diesel buses participating in a remote OBD pilot program in Nanjing, China. Our results showed that the average CO 2 emissions for conventional diesel and hybrid diesel buses were 816 ± 83 g km -1 and 627 ± 54 g km -1 , respectively, under a typical driving pattern. An operating mode binning analysis indicated that CO 2 emissions reduction by series-parallel hybrid technology was largely because of the significant benefits of the technology under the modes of low speed and low power demand. However, significantly higher CO 2 emissions were observed for conventional diesel buses during rush hours, higher than 1200 g km -1 . The OBD data suggested no improvement in NO X emission reduction for hybrid buses compared with conventional buses; both were approximately 12 g km -1 because of poor performance of the selective catalyst reduction (SCR) systems in the real world. Speed-dependent functions for real-world CO 2 and NO X emissions were also constructed. The CO 2 emissions of hybrid buses were much less sensitive to the average speed than conventional buses. If the average speed decreased from 20 km h -1 to 10 km h -1 , the estimated CO 2 emission factor for conventional buses would be increased by 34%. Such a change in speed would increase NO X emissions for conventional and hybrid buses by 38% and 56%, respectively. This paper demonstrates the useful features of the remote OBD system and can inform policy makers how to take advantage of these features in monitoring in-use vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Keymore » economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.« less

  10. Large-Scale Simulation of Multi-Asset Ising Financial Markets

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2017-03-01

    We perform a large-scale simulation of an Ising-based financial market model that includes 300 asset time series. The financial system simulated by the model shows a fat-tailed return distribution and volatility clustering and exhibits unstable periods indicated by the volatility index measured as the average of absolute-returns. Moreover, we determine that the cumulative risk fraction, which measures the system risk, changes at high volatility periods. We also calculate the inverse participation ratio (IPR) and its higher-power version, IPR6, from the absolute-return cross-correlation matrix. Finally, we show that the IPR and IPR6 also change at high volatility periods.

  11. Japanese photovoltaic power generation for space application

    NASA Technical Reports Server (NTRS)

    Saga, T.; Kiyota, Y.; Matsutani, T.; Suzuki, A.; Kawasaki, O.; Hisamatsu, T.; Matsuda, S.

    1996-01-01

    This paper describes Japanese activities on mainly silicon solar cell research development and applications. The high efficiency thin silicon solar cells and the same kinds of solar cells with integrated bypass function (IBF cells) were developed and qualified for space applications. The most efficient cells (NRS/LBSF cells) showed average 18% at AMO and 28 C conditions. After electron irradiation, NRS/BSF cells showed higher efficiency than NRS/LBSF cells. The IBF cells do not suffer high reverse voltage and can survive from shadowing. The designs and characteristics of these solar cells are presented. In the last section, our future plan for the solar cell calibration is presented.

  12. The largest renewable, easily exploitable, and economically sustainable energy resource

    NASA Astrophysics Data System (ADS)

    Abbate, Giancarlo; Saraceno, Eugenio

    2018-02-01

    Sun, the ultimate energy resource of our planet, transfers energy to the Earth at an average power of 23,000 TW. Earth surface can be regarded as a huge panel transforming solar energy into a more convenient mechanical form, the wind. Since millennia wind is recognized as an exploitable form of energy and it is common knowledge that the higher you go, the stronger the winds flow. To go high is difficult; however Bill Gates cites high wind among possible energy miracles in the near future. Public awareness of this possible miracle is still missing, but today's technology is ready for it.

  13. On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.

    PubMed

    Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S

    2007-03-01

    Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.

  14. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  15. Metabolic power and energetic costs of professional Australian Football match-play.

    PubMed

    Coutts, Aaron J; Kempton, Thomas; Sullivan, Courtney; Bilsborough, Johann; Cordy, Justin; Rampinini, Ermanno

    2015-03-01

    To compare the metabolic power demands between positional groups, and examine temporal changes in these parameters during Australian Football match-play. Longitudinal observational study. Global positioning system data were collected from 39 Australian Football players from the same club during 19 Australian Football League competition games over two seasons. A total of 342 complete match samples were obtained for analysis. Players were categorised into one of six positional groups: tall backs, mobile backs, midfielders, tall forwards, mobile forwards and rucks. Instantaneous raw velocity data obtained from the global positioning system units was exported to a customised spreadsheet which provided estimations of both speed-based (e.g. total and high-speed running distance) and derived metabolic power and energy expenditure variables (e.g. average metabolic power, high-power distance, total energy expenditure). There were significant differences between positional groups for both speed-based and metabolic power indices, with midfielders covering more total and high-speed distance, as well as greater average and overall energy expenditure compared to other positions (all p<0.001). There were reductions in total, high-speed, and high-power distance, as well as average metabolic power throughout the match (all p<0.001). Positional differences exist for both metabolic power and traditional running based variables. Generally, midfielders, followed by mobile forwards and mobile backs had greater activity profiles compared to other position groups. We observed that the reductions in most metabolic power variables during the course of the match are comparable to traditional running based metrics. This study demonstrates that metabolic power data may contribute to our understanding of the physical demands of Australian Football. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. 47 CFR 73.614 - Power and antenna height requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...

  17. 47 CFR 73.614 - Power and antenna height requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...

  18. 47 CFR 73.614 - Power and antenna height requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...

  19. 47 CFR 73.614 - Power and antenna height requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...

  20. 47 CFR 73.614 - Power and antenna height requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...

Top