Variation in capture efficiency of a beach seine for small fishes
Parsley, M.J.; Palmer, D.E.; Burkhardt, R.W.
1989-01-01
We determined the capture efficiency of a beach seine as a means of improving abundance estimates of small fishes in littoral areas. Capture efficiency for 14 taxa (individual species or species groups) was determined by seining within an enclosure at night over fine and coarse substrates in the John Day Reservoir, Oregon–Washington. Mean efficiency ranged from 12% for prickly sculpin Cottus asper captured over coarse substrates to 96% for peamouth Mylocheilus caurinus captured over fine substrates. Mean capture efficiency for a taxon (genus or species) was generally higher over fine substrates than over coarse substrates, although mean capture efficiencies over fine substrates were significantly greater for only 3 of 10 taxa. Capture efficiency generally was not influenced by fish density or by water temperature (range, 8–26°C). Conclusions about the relative abundance of taxa captured by seining can change substantially after capture efficiencies are taken into account.
Räsänen, Janne V; Holopainen, Toini; Joutsensaari, Jorma; Ndam, Collins; Pasanen, Pertti; Rinnan, Åsmund; Kivimäenpää, Minna
2013-12-01
Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-01-01
Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590
Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul
2014-02-20
Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H 2 ), with and without carbon dioxide (CO 2 ) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO 2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO 2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO 2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO 2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H 2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency.
Effect of CuO on the efficiency of sulfur capture of Ca-based compounds during coal combustion.
Zheng, Li-Qing; Lu, Wen-Ying; Liu, Guo-Guang
2003-05-01
The efficiency of sulfur capture of CaO, Ca(OH)2 and CaCO3 as well as the effect of CuO on them were studied. Results showed that the efficiency of sulfur capture of Ca(OH)2 is the highest among these three compounds. When CuO was used with each of CaO, Ca(OH)2 and CaCO3 at the same time, the efficiency of all of them would rise, and that of Ca(OH)2 raise most. The efficiency of sulfur capture of Ca(OH)2 with CuO is 14.4% higher than that without CuO.
Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping
2009-04-15
Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).
The influence of seine capture efficiency on fish abundance estimates in the upper Mississippi River
Holland Bartels, L. E.; Dewey, M.R.
1997-01-01
The effects of season, presence of vegetation, and time of day on seine capture efficiency for fish were evaluated using test enclosures in the upper Mississippi River. Overall capture efficiency of the seine haul was 49% (53% during the day and 43% at night). During daytime tests, the efficiency ranged from 39% to 74% but did not differ statistically between sites or among dates. At night, the efficiency was higher at the vegetated than at the nonvegetated site (55% vs 32%) and declined through time from 56% in May to 28% in October. Although susceptibility to capture differed among taxa, we could not predict either total catch efficiency or efficiency within a given taxon for a given sample. Adjustment of catch data with various estimates of efficiency reduced the mean absolute error for all sampling dates from 51% to 24%, but the error of the adjusted data still ranged from -58% to +54% on any given sampling date. These results indicate that it is difficult to make accurate adjustment of catch data to compensate for gear bias in studies of seasonal habitat use.
NASA Astrophysics Data System (ADS)
Zhang, S.; Jing, X.
2017-12-01
Rainwater harvesting is now increasingly used to manage urban flood and alleviate water scarcity crisis. In this study, a computational tool based on water balance equation is developed to assess stormwater capture and water saving efficiency and economic viability of rainwater harvesting systems (RHS) in eight cities across four climatic zones of China. It requires daily rainfall, contributing area, runoff losses, first flush volume, storage capacity, daily water demand and economic parameters as inputs. Three non-potable water demand scenarios (i.e., toilet flushing, lawn irrigation, and combination of them) are considered. The water demand for lawn irrigation is estimated using the Cropwat 8.0 and Climwat 2.0. Results indicate that higher water saving efficiency and water supply time reliability can be achieved for RHS with larger storage capacities, for lower water demand scenarios and located in more humid regions, while higher stormwater capture efficiency is associated with larger storage capacity, higher water demand scenarios and less rainfall. For instance, a 40 m3 RHS in Shanghai (humid climate) for lawn irrigation can capture 17% of stormwater, while its water saving efficiency and time reliability can reach 96 % and 98%, respectively. The water saving efficiency and time reliability of a 20 m3 RHS in Xining (semi-arid climate) for toilet flushing are 19% and 16%, respectively, but it can capture 63% of stormwater. With the current values of economic parameters, economic viability of RHS can be achieved in humid and semi-humid regions for reasonably designed RHS; however, it is not financially viable to install RHS in arid regions as the benefit-cost ratio is much smaller than 1.0.
Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
Supekar, Sarang D; Skerlos, Steven J
2015-10-20
This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.
NASA Astrophysics Data System (ADS)
Shen, Ling; Shen, Yifeng; Li, Feng
2018-01-01
In pursuit of capturing more wave-guided luminescence for surface-printed bifacial GaAs μ-cells, the pyramid structure has been incorporated with specular back side reflector (BSR) to change the direction of photon propagation. Based on ray tracing model, the calculated photon capturing efficiency of GaAs μ-cells from back side via pyramid, dependent on the parameters of pyramid structure, achieve the largest 1.7× increase for dye absorption peak of 480 nm compared to the case without pyramid. More significantly, the short circuit current in experiment has been improved from original 16.5 mA/cm2 to 23.75 mA/cm2 for the AM 1.5G solar spectrum. Further experiment demonstrates that the optimized pyramid structure enables the integrated luminescent intensity to reach ∼3× increase in a smaller distance of optical transport, which means the advantages in photon capturing efficiency for cells with higher aspect ratio. The calculation further confirms that the cells with higher aspect ratio, among all cells with the same area, realize the higher concentration ratio for the same geometric gain. This provides a guideline for design of cell geometries to guarantee a higher power output in terms of cell modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Cao; Quan-Hai Wang; Jun Li
2009-04-15
Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gasmore » inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng
2018-02-01
Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.
Meka, Julie M.
2004-01-01
Owing to concerns about the high incidence of past hooking injuries in Alagnak River rainbow trout Oncorhynchus mykiss, fish were captured with spin- and fly-fishing gear with barbed and barbless circle and "J" hooks to determine gear types contributing to injury. Landing and hook removal times were measured for a portion of fish captured, and the anatomical hooking location, hooking scar locations, bleeding intensity, angler experience, and fish size were recorded for all captured fish. Approximately 62% of fish captured experienced at least one new hooking injury, and 29% of fish had at least one past hooking injury. Small fish sustained higher new injury and bleeding rates, but large fish had higher past injury rates. Injury rates were higher for barbed J hooks, barbed J hooks took longer to remove, and fish caught by spin-fishing were injured more frequently than fish caught by fly-fishing. Fewer fly-fishing-caught fish were injured using circle hooks, and circle hooks tended to hook fish in only one location, generally in the jaw. Barbed J hooks were more efficient at landing fish, and J hooks were more efficient at landing fish than circle hooks. Novice anglers injured proportionally more fish than experienced anglers, primarily during hook removal. Landing time was positively correlated with fish size, and experienced anglers took longer to land fish than novices because they captured larger fish. These results suggest that a reduction in hooking injuries may be achieved by using circle hooks as an alternative to J hooks and barbless J hooks to reduce injury and handling time, yet catch efficiency for both methods would be reduced. Although fish captured with barbless J hooks and circle hooks had fewer injuries, it is important to note that each hook type also caused significant injury, and angler education is recommended to promote proper hook removal techniques.
Evaluation of three elevated mist-net systems for sampling birds
Meyers, J.M.; Pardieck, K.L.
1993-01-01
Three light-weight, low-canopy mist-net systems were developed and tested in dry tropical scrub, mangrove and forest habitats. One plastic (polyvinyl chloride) and two aluminum pole systems (with and without pulleys) were used to support mist nets to heights of up to 7.3 m. Although the aluminum telescoping-pole system (without pulleys) was expensive initially ( 79-141/unit (US)), its use reduced capture of nontarget species and may have increased capture of target species when compared with ground-level netting. In one year, its use also reduced labor costs by 756, which completely offset the higher cost of the aluminum telescoping-pole system when compared to the plastic-pole system ( 19/unit). Unlike the plastic-pole system, the aluminum telescoping-pole system was adjustable to any height within its range of 1.8 to 7.3 m, was 1.5 m higher, was more efficient to operate in the field, and was easily moved to new locations. For capture of psittacines, the pulleys of the aluminum telescoping-pole system were not necessary, but their use may assist in efficiently retrieving large numbers of birds from the nets. The aluminum telescoping-pole system was efficient in capturing psittacines, columbids, passerines and possibly chiropterans in habitats with canopies lt 10 m or in the forest subcanopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.
2014-05-12
We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.
Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming
2016-09-01
Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.
Sourcing of Steam and Electricity for Carbon Capture Retrofits.
Supekar, Sarang D; Skerlos, Steven J
2017-11-07
This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.
Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe
2008-08-15
A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.
Sayari, Abdelhamid; Liu, Qing; Mishra, Prashant
2016-10-06
Until recently, carbon capture and sequestration (CCS) was regarded as the most promising technology to address the alarming increase in the concentration of anthropogenic CO 2 in the atmosphere. There is now an increasing interest in carbon capture and utilization (CCU). In this context, the capture of CO 2 from air is an ideal solution to supply pure CO 2 wherever it is needed. Here, we describe innovative materials for direct air capture (DAC) with unprecedented efficiency. Polyethylenimine (PEI) was supported on PME, which is an extra-large-pore silica (pore-expanded MCM-41) with its internal surfaces fully covered by a uniform layer of readily accessible C 16 chains from cetyltrimethylammonium (CTMA + ) cations. The CTMA + layer plays a key role in enhancing the amine efficiency toward dry or humid ultradilute CO 2 (400 ppm CO 2 /N 2 ) to unprecedented levels. At the same PEI content, the amine efficiency of PEI/PME was two to four times higher than that of the corresponding calcined mesoporous silica loaded with PEI or with different combinations of C 16 chains and PEI. Under humid conditions, the amine efficiency of 40 wt % PEI/PME reached 7.31 mmolCO2 /g PEI , the highest ever reported for any supported PEI in the presence of 400 ppm CO 2 . Thus, amine accessibility, which reflects both the state of PEI dispersion and the adsorption efficiency, is intimately associated with the molecular design of the adsorbent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering cholesterol-based fibers for antibody immobilization and cell capture
NASA Astrophysics Data System (ADS)
Cohn, Celine
In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing abilities of the CSS fibers were compared to that of hydrophobic polycaprolactone (PCL) fibers and hydrophilic plasma-treated PCL fibers. Electrospun CSS fibers were found to immobilize equivalent amounts of protein as hydrophobically immobilized proteins. However, these proteins captured 6 times more cells, indicative of retained protein function. The second key concept was the design and fabrication of a hybridized lipid fiber. Lipid fibers provide improved protein function but fabrication difficulties have limited their adoption. Thus, we sought to fabricate a lipid-polymer hybrid that is easily fabricated while maintaining protein function. The hybrid fiber consists of a PCL backbone with conjugated CSS. The hybrid lipid fibers showed improved protein function. In addition, higher lipid concentrations were directly correlated to higher cell capture efficiencies. The third key concept was on the development of dually functionalized lipid fibers and understanding the resulting cell capture efficiencies. Many platforms are unable to simultaneously search for heterogeneous populations of CTCs -- the ability to dually functionalize cell-capturing platforms would address this technological weakness. Studies indicated that dually functionalizing the lipid fibers did not compromise the platforms' abilities to capture the cells of interest. Such dually functionalized fibers allow for a single cell-capture platform to successfully detect heterogeneous populations of CTCs. The body of work encompassed herein describes the use of lipid fibers for antibody immobilization and cell capture. Data from various projects indicate that the use of cholesterol-based fibers produced from electrospun CSS are well suited for protein immobilization. The CSS fibers are able to immobilize equivalent amounts of protein as compared to other immobilization techniques. However, the benefit of these fibers is illustrated by the strong cell-capturing efficiencies, indicating that the immobilized proteins are able to retain their function and selectively target cells of interest. The successful immobilization of proteins and their retained function allows for the development of increasingly sensitive cancer diagnostic tools that are able to screen for CTCs early on in the cancer disease cycle.
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir
2014-03-01
Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous... efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations? (a) The capture efficiency of a wet-out area enclosure is assumed to be 100...
40 CFR 63.9322 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... capture system efficiency? 63.9322 Section 63.9322 Protection of Environment ENVIRONMENTAL PROTECTION... capture system efficiency? You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by § 63.9310. (a) Assuming 100 percent capture...
40 CFR 63.9322 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... capture system efficiency? 63.9322 Section 63.9322 Protection of Environment ENVIRONMENTAL PROTECTION... capture system efficiency? You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by § 63.9310. (a) Assuming 100 percent capture...
40 CFR 63.3554 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... system efficiency? 63.3554 Section 63.3554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements for the Control Efficiency/outlet Concentration Option § 63.3554 How do I determine the emission capture system efficiency? The capture efficiency of your emission capture system must be 100 percent to...
40 CFR 63.3554 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... system efficiency? 63.3554 Section 63.3554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements for the Control Efficiency/outlet Concentration Option § 63.3554 How do I determine the emission capture system efficiency? The capture efficiency of your emission capture system must be 100 percent to...
Nannini, M A; Wahl, D H; Philipp, D P; Cooke, S J
2011-10-01
Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Alkhabbaz, Mustafa A; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W
2014-09-24
The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropyl-functionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less efficient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.
Marvin, Glenn A; Davis, Kayla; Dawson, Jacob
2016-05-01
The low-temperature limit for feeding in some salamander species (Desmognathus, Plethodontidae) has been inferred from field studies of seasonal variation in salamander activity and gut contents, which could not determine whether feeding is more dependent on environmental conditions influencing salamander foraging behavior or prey availability and movement. We performed two controlled laboratory experiments to examine the effect of short-term (acute) low body temperature on predatory behavior and prey-capture efficiency in a semiaquatic plethodontid salamander (Desmognathus conanti). In the first experiment, we quantified variation in the feeding responses of cold salamanders (at 1, 3, 5 and 7°C) to a video recording of a walking, warm (15°C) cricket to determine the lower thermal limit for predatory behavior, independent of any temperature effect on movement of prey. Experimental-group salamanders exhibited vigorous feeding responses at 5 and 7°C, large variation in feeding responses both among and within individuals (over time) at 3°C, and little to no feeding response at 1°C. Feeding responses at both 1 and 3°C were significantly less than at each higher temperature, whereas responses of control-group individuals at 15°C did not vary over time. In the second experiment, we quantified feeding by cold salamanders (at 3, 5, 7 and 11°C) on live, warm crickets to examine thermal effects on prey-capture ability. The mean feeding response to live crickets was significantly less at 3°C than at higher temperatures; however, 50% of salamanders captured and ingested prey with high efficiency at this temperature. We conclude that many individuals stalk and capture prey at very low temperatures (down to 3°C). Our results support a growing body of data that indicate many plethodontid salamanders feed at temperatures only a few degrees above freezing. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.
2014-11-01
Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.
Evaluation strategy of regenerative braking energy for supercapacitor vehicle.
Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen
2015-03-01
In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Rao, Anand B; Rubin, Edward S
2002-10-15
Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.
Efficiency of insect capture by Sarracenia purpurea (Sarraceniaceae), the northern pitcher plant.
Newell, S; Nastase, A
1998-01-01
Pitcher plants (Sarracenia purpurea L.) attract insects to pitchers and then capture them in fluid-filled, pitfall traps, but how efficient are pitcher plants at capturing prey in their natural environment? We monitored insect activity by videotaping pitchers and analyzing videotapes for several variables including identity of each visitor and outcome of each visit (e.g., departure or capture). Efficiency of capture (i.e., number of captures per number of visits) was low. Overall efficiency of capture was 0.83-0.93%, depending on whether potential prey were broadly or narrowly defined. Ants constituted 74% of the potential prey. Efficiency of capture of ants was even lower at 0.37%. Potential prey were more likely to visit pitchers with greater red venation and less water in the pitcher. There was no correlation between number of potential prey visiting a pitcher and pitcher age, length, or mouth width. Also, number of potential prey visits did not correlate with plant size, air temperature, time of day or date of videotaping. While the overall efficiency of prey capture was very low, pitcher plants may still benefit from the additional nutrients. However, the relationship between ants and S. purpurea remains an enigma, since it is unclear whether the plants capture enough ants to compensate for nectar lost to ants.
NASA Astrophysics Data System (ADS)
Zhao, Haitao; Mu, Xueliang; Yang, Gang; Zheng, Chengheng; Sun, Chenggong; Gao, Xiang; Wu, Tao
2017-10-01
In recent years, significant effort has been made in the development of novel materials for the removal of mercury from coal-derived flue gas. In this research, microwave irradiation was adopted to induce the creation of additional active sites on the MoS2 surface. The results showed that Hg0 capture efficiency of the adsorbent containing MoS2 nanosheets being microwave treated was as high as 97%, while the sample prepared via conventional method only showed an efficiency of 94% in its first 180 min testing. After the adsorbent was treated by microwave irradiation for 3 more times, its mercury removal efficiency was still noticeably higher than that of the sample prepared via conventional method. Characterization of surface structure of the MoS2 containing material together with DFT study further revealed that the (001) basal planes of MoS2 crystal structure were cracked into (100) edge planes (with an angle of approximately 75°) under microwave treatment, which subsequently resulted in the formation of additional active edge sites on the MoS2 surface and led to the improved performance on Hg0 capture.
Microalgae bioprospecting at NREL
Elliott, Lee
2018-02-02
Prospecting for elusive fast-growing, oily microalgae is a soggy, muddy, rewarding job for NREL researcher Lee Elliott. Not only do algae grow in unlikely settings, but their ability to convert the light they receive into biomass has the potential to outperform that of land plants. Trees, grasses and shrubs typically are not very efficient in capturing and converting the sun's energy into biomass, but some algae are believed to be capable of much higher efficiencies, with some scientists thinking ideal strains may be able to approach the maximum theoretical photosynthetic efficiency under the right conditions.
Performance assessment of U.S. residential cooking exhaust hoods.
Delp, William W; Singer, Brett C
2012-06-05
This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from <15% to >98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE--exceeding 80% for oven and front burners--had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s(-1) (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.
Nelson, Jacob A; Bugbee, Bruce
2014-01-01
Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.
NASA Technical Reports Server (NTRS)
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
NASA Astrophysics Data System (ADS)
Li, Ke Sherry; Chu, Phillip Y.; Fourie-O'Donohue, Aimee; Srikumar, Neha; Kozak, Katherine R.; Liu, Yichin; Tran, John C.
2018-05-01
Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 μg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method.
Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping
2014-07-01
Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.
Experimental study of hydraulics and sediment capture efficiency in catchbasins.
Tang, Yangbo; Zhu, David Z; Rajaratnam, N; van Duin, Bert
2016-12-01
Catchbasins (also known as gully pot in the UK and Australia) are used to receive surface runoff and drain the stormwater into storm sewers. The recent interest in catchbasins is to improve their effectiveness in removing sediments in stormwater. An experimental study was conducted to examine the hydraulic features and sediment capture efficiency in catchbasins, with and without a bottom sump. A sump basin is found to increase the sediment capture efficiency significantly. The effect of inlet control devices, which are commonly used to control the amount of flow into the downstream storm sewer system, is also studied. These devices will increase the water depth in the catchbasin and increase the sediment capture efficiency. Equations are developed for predicting the sediment capture efficiency in catchbasins.
2012-01-01
Background Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection. Results Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P < 0.05) than the 2.8-μm diameter M-280 beads with both antibodies. The highest capture efficiency for MyOne-2D12 (49.2% for 105 CFU/mL) was significantly higher (P < 0.05) than that of MyOne-3F8 (16.6 %) and Dynabeads anti-Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results. Conclusions IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food. PMID:23176167
Thermal Propulsion Capture System Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Richard, Evan M.
2016-01-01
One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.
Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia
2017-12-01
Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 63.4361 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... from the web coating/printing operation surfaces they are applied to occurs within the capture system... system efficiency? 63.4361 Section 63.4361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... emission capture system efficiency? You must use the procedures and test methods in this section to...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...
Price, A.; Peterson, James T.
2010-01-01
Stream fish managers often use fish sample data to inform management decisions affecting fish populations. Fish sample data, however, can be biased by the same factors affecting fish populations. To minimize the effect of sample biases on decision making, biologists need information on the effectiveness of fish sampling methods. We evaluated single-pass backpack electrofishing and seining combined with electrofishing by following a dual-gear, mark–recapture approach in 61 blocknetted sample units within first- to third-order streams. We also estimated fish movement out of unblocked units during sampling. Capture efficiency and fish abundances were modeled for 50 fish species by use of conditional multinomial capture–recapture models. The best-approximating models indicated that capture efficiencies were generally low and differed among species groups based on family or genus. Efficiencies of single-pass electrofishing and seining combined with electrofishing were greatest for Catostomidae and lowest for Ictaluridae. Fish body length and stream habitat characteristics (mean cross-sectional area, wood density, mean current velocity, and turbidity) also were related to capture efficiency of both methods, but the effects differed among species groups. We estimated that, on average, 23% of fish left the unblocked sample units, but net movement varied among species. Our results suggest that (1) common warmwater stream fish sampling methods have low capture efficiency and (2) failure to adjust for incomplete capture may bias estimates of fish abundance. We suggest that managers minimize bias from incomplete capture by adjusting data for site- and species-specific capture efficiency and by choosing sampling gear that provide estimates with minimal bias and variance. Furthermore, if block nets are not used, we recommend that managers adjust the data based on unconditional capture efficiency.
Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.
Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin
2016-11-01
Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.
Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN
Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa
2016-01-01
Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860
Local trophic specialisation in a cosmopolitan spider (Araneae).
Líznarová, Eva; Sentenská, Lenka; García, Luis Fernando; Pekár, Stano; Viera, Carmen
2013-02-01
Trophic specialisation can be observed in species with long-term constant exploitation of a certain prey in all populations or in a population of a species with short-term exploitation of a certain prey. While in the former case the species would evolve stereotyped or specialised trophic adaptations, the trophic traits of the latter should be versatile or generalised. Here, we studied the predatory behavioural adaptations of a presumed myrmecophagous spider, Oecobius navus. We chose two distinct populations, one in Portugal and the other in Uruguay. We analysed the actual prey of both populations and found that the Portuguese population feeds mainly on dipterans, while the Uruguayan population feeds mainly on ants. Indeed, dipterans and springtails in Portugal, and ants in Uruguay were the most abundant potential prey. In laboratory trials O. navus spiders recognised and captured a wide variety of prey. The capture efficiency of the Portuguese population measured as components of the handling time was higher for flies than for ants, while that of the Uruguayan population was higher for ants. We found phenotypic plasticity in behavioural traits that lead to increased capture efficiency with respect to the locally abundant prey, but it remains to be determined whether the traits of the two populations are genetically fixed. We conclude that O. navus is a euryphagous generalist predator which shows local specialisation on the locally abundant prey. Copyright © 2012 Elsevier GmbH. All rights reserved.
Amine coupling versus biotin capture for the assessment of sulfonamide as ligands of hCA isoforms.
Rogez-Florent, Tiphaine; Goossens, Laurence; Drucbert, Anne-Sophie; Duban-Deweer, Sophie; Six, Perrine; Depreux, Patrick; Danzé, Pierre-Marie; Goossens, Jean-François; Foulon, Catherine
2016-10-15
This work was dedicated to the development of a reliable SPR method allowing the simultaneous and quick determination of the affinity and selectivity of designed sulfonamide derivatives for hCAIX and hCAXII versus hCAII, in order to provide an efficient tool to discover drugs for anticancer therapy of solid tumors. We performed for the first time a comparison of two immobilization approaches of hCA isoforms. First one relies on the use of an amine coupling strategy, using a CM7 chip to obtain higher immobilization levels than with a CM5 chip and consequently the affinity with an higher precision (CV% < 10%). The second corresponds to a capture of proteins on a streptavidin chip, named CAP chip, after optimization of biotinylation conditions (amine versus carboxyl coupling, biotin to protein ratio). Thanks to the amine coupling approach, only hCAII and hCAXII isoforms were efficiently biotinylated to reach relevant immobilization (3000 RU and 2700 RU, respectively) to perform affinity studies. For hCAIX, despite a successful biotinylation, capture on the CAP chip was a failure. Finally, concordance between affinities obtained for the three derivatives to CAs isozymes on both chips has allowed to valid the approaches for a further screening of new derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.
Pre-capture multiplexing improves efficiency and cost-effectiveness of targeted genomic enrichment.
Shearer, A Eliot; Hildebrand, Michael S; Ravi, Harini; Joshi, Swati; Guiffre, Angelica C; Novak, Barbara; Happe, Scott; LeProust, Emily M; Smith, Richard J H
2012-11-14
Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.
Tang, Man; Wen, Cong-Ying; Wu, Ling-Ling; Hong, Shao-Li; Hu, Jiao; Xu, Chun-Miao; Pang, Dai-Wen; Zhang, Zhi-Ling
2016-04-07
The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.
Why are prices in wild catch and aquaculture industries so different?
Villasante, Sebastián; Rodríguez-González, David; Antelo, Manel; Rivero-Rodríguez, Susana; Lebrancón-Nieto, Joseba
2013-12-01
Through a comparative analysis of prices in capture fisheries and aquaculture sectors, the objectives of this paper are a) to investigate three the trends in prices of forage catches to feed the aquaculture species, b) to analyze the amount of fish species need to feed aquaculture species in order to assess the level of efficiency in resource use, and c) to examine the degree of economic concentration either in wild-catch industry and aquaculture sectors. The results show that prices of cultivated species are higher than prices of the same species when harvested from the sea. We explain this fact by the interplay of three forces. First, the amount of wild fish to feed aquaculture species continues to improve over time. Second, the pressure of fishing activities has not been reduced since catches of most forage fishes are declining, which induce higher prices of capture species that feed aquaculture production. Third, the level of seafood market concentration is significantly higher in aquaculture than in wild catches, which generates higher prices in aquaculture.
Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli
2016-04-06
Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.
A two-magnet strategy for improved mixing and capture from biofluids
Doyle, Andrew B.; Haselton, Frederick R.
2016-01-01
Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs. PMID:27158286
Ca-Embedded C2N: an efficient adsorbent for CO2 capture.
Liu, Yuzhen; Meng, Zhaoshun; Guo, Xiaojian; Xu, Genjian; Rao, Dewei; Wang, Yuhui; Deng, Kaiming; Lu, Ruifeng
2017-10-25
Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO 2 , it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C 2 N) nanosheets for CO 2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C 2 N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO 2 molecules with strong physisorption showed that Ca-embedded C 2 N monolayer is the most promising CO 2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO 2 adsorbed on Ca-embedded C 2 N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO 2 capture and utilization.
Dowell, N Mac; Fajardy, M
2016-10-20
In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO 2 , with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO 2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJ heat per t CO 2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.
Lunnoo, Thodsaphon; Puangmali, Theerapong
2015-12-01
The primary limitation of magnetic drug targeting (MDT) relates to the strength of an external magnetic field which decreases with increasing distance. Small nanoparticles (NPs) displaying superparamagnetic behaviour are also required in order to reduce embolization in the blood vessel. The small NPs, however, make it difficult to vector NPs and keep them in the desired location. The aims of this work were to investigate parameters influencing the capture efficiency of the drug carriers in mimicked arterial flow. In this work, we computationally modelled and evaluated capture efficiency in MDT with COMSOL Multiphysics 4.4. The studied parameters were (i) magnetic nanoparticle size, (ii) three classes of magnetic cores (Fe3O4, Fe2O3, and Fe), and (iii) the thickness of biocompatible coating materials (Au, SiO2, and PEG). It was found that the capture efficiency of small particles decreased with decreasing size and was less than 5 % for magnetic particles in the superparamagnetic regime. The thickness of non-magnetic coating materials did not significantly influence the capture efficiency of MDT. It was difficult to capture small drug carriers (D<200 nm) in the arterial flow. We suggest that the MDT with high-capture efficiency can be obtained in small vessels and low-blood velocities such as micro-capillary vessels.
40 CFR 63.3965 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
...; coating solvent flash-off, curing, and drying occurs within the capture system; and the removal or... spray booth and a curing oven. (b) Measuring capture efficiency. If the capture system does not meet... surface preparation activities and drying and curing time. (c) Liquid-to-uncaptured-gas protocol using a...
An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids
James T. Peterson; Russell F. Thurow; John W. Guzevich
2004-01-01
Failure to estimate capture efficiency, defined as the probability of capturing individual fish, can introduce a systematic error or bias into estimates of fish abundance. We evaluated the efficacy of multipass electrofishing removal methods for estimating fish abundance by comparing estimates of capture efficiency from multipass removal estimates to capture...
Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk
2018-03-23
Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.
Time and financial costs of programs for live trapping feral cats.
Nutter, Felicia B; Stoskopf, Michael K; Levine, Jay F
2004-11-01
To determine the time and financial costs of programs for live trapping feral cats and determine whether allowing cats to become acclimated to the traps improved trapping effectiveness. Prospective cohort study. 107 feral cats in 9 colonies. 15 traps were set at each colony for 5 consecutive nights, and 5 traps were then set per night until trapping was complete. In 4 colonies, traps were immediately baited and set; in the remaining 5 colonies, traps were left open and cats were fed in the traps for 3 days prior to the initiation of trapping. Costs for bait and labor were calculated, and trapping effort and efficiency were assessed. Mean +/- SD overall trapping effort (ie, number of trap-nights until at least 90% of the cats in the colony had been captured or until no more than 1 cat remained untrapped) was 8.9 +/- 3.9 trap-nights per cat captured. Mean overall trapping efficiency (ie, percentage of cats captured per colony) was 98.0 +/- 4.0%. There were no significant differences in trapping effort or efficiency between colonies that were provided an acclimation period and colonies that were not. Overall trapping costs were significantly higher for colonies provided an acclimation period. Results suggest that these live-trapping protocols were effective. Feeding cats their regular diets in the traps for 3 days prior to the initiation of trapping did not have a significant effect on trapping effort or efficiency in the present study but was associated with significant increases in trapping costs.
Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV
2012-03-06
A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.
Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases.
Cao, Tiantian; Li, Zhen; Xiong, Yong; Yang, Yue; Xu, Shengming; Bisson, Teresa; Gupta, Rajender; Xu, Zhenghe
2017-10-17
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg 0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg 0 by the Ag-Hg 0 amalgamation mechanism. An Hg 0 capture capacity as high as 13.2 mg·g -1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg 0 removal efficiency as high as 91.6% with a Hg 0 capture capacity of 457.3 μg·g -1 . More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg 0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg 0 capture from coal-fired flue gases.
Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro
2015-01-01
Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.
O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.
2017-10-31
A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.
Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey
2018-04-03
Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.
Nie, Liju; Li, Fulai; Huang, Xiaolin; Aguilar, Zoraida P; Wang, Yongqiang Andrew; Xiong, Yonghua; Fu, Fen; Xu, Hengyi
2018-04-25
Studies regarding circulating tumor cells (CTCs) have great significance for cancer prognosis, treatment monitoring, and metastasis diagnosis. However, due to their extremely low concentration in peripheral blood, isolation and enrichment of CTCs are the key steps for early detection. To this end, targeting the folic acid receptors (FRs) on the CTC surface for capture with folic acid (FA) using bovine serum albumin (BSA)-tether for multibiotin enhancement in combination with streptavidin-coated magnetic nanoparticles (MNPs-SA) was developed for ovarian cancer CTC isolation. The streptavidin-biotin-system-mediated two-step binding strategy was shown to capture CTCs from whole blood efficiently without the need for a pretreatment process. The optimized parameters for this system exhibited an average capture efficiency of 80%, which was 25% higher than that of FA-decorated magnetic nanoparticles based on the one-step CTC separation method. Moreover, the isolated cells remained highly viable and were cultured directly without detachment from the MNPs-SA-biotin-CTC complex. Furthermore, when the system was applied for the isolation and detection of CTCs in ovarian cancer patients' peripheral blood samples, it exhibited an 80% correlation with clinical diagnostic criteria. The results indicated that FA targeting, in combination with BSA-based multibiotin enhancement magnetic nanoparticle separation, is a promising tool for CTC enrichment and detection of early-stage ovarian cancer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lamination/casting operations? 63.5875 Section 63.5875 Protection of Environment ENVIRONMENTAL PROTECTION... lamination/casting operations? (a) The capture efficiency of a wet-out area enclosure is assumed to be 100...
Application of halloysite nanotubes for carbon dioxide capture
NASA Astrophysics Data System (ADS)
Kim, Jinsoo; Rubino, Ilaria; Lee, Joo-Youp; Choi, Hyo-Jick
2016-04-01
Halloysite is a naturally occurring clay, with physical structure represented by halloysite nanotubes (HNTs). We investigated the potential applicability of HNTs for carbon dioxide (CO2) capture, using two amine-functionalized HNTs: (3-aminopropyl) triethoxysilane (APTES)-grafted HNTs and polyethylenimine (PEI)-impregnated HNTs. APTES-HNTs and PEI-HNTs resulted in 5.6 and 30 wt. % (in sorbent) in functionalization onto HNTs, respectively. Capture efficiency was higher in APTES-HNTs at lower temperatures, while it was maximum in PEI-HNTs at 70°C-75 °C. At 75 °C, adsorption/desorption tests showed that 95% of the two reactions occurred within 30 min, and exhibited 0.15 and 0.21 millimole of CO2 adsorption capacity per millimole of amine group for APTES-HNTs and PEI-HNTs, respectively. During 10 cycles of CO2 adsorption/desorption, there was no significant decrease in sorbent weight and adsorption capacity in both HNTs. These results show that inherent structural features of HNTs can be easily tailored for the development of operational condition-specific CO2 capture system.
Bauer, Ulrike; Willmes, Christoph; Federle, Walter
2009-06-01
Nepenthes pitchers are sophisticated traps that employ a variety of mechanisms to attract, capture and retain prey. The underlying morphological structures and physiological processes are subject to change over the lifetime of a pitcher. Here an investigation was carried out on how pitcher properties and capture efficiency change over the first 2 weeks after pitcher opening. Prey capture, trapping efficiency, extrafloral nectar secretion, pitcher odour, as well as pH and viscoelasticity of the digestive fluid in N. rafflesiana pitchers were monitored in the natural habitat from pitcher opening up to an age of 2 weeks. Pitchers not only increased their attractiveness over this period by becoming more fragrant and secreting more nectar, but also gained mechanical trapping efficiency via an enhanced wettability of the upper pitcher rim (peristome). Consistently, natural prey capture was initially low and increased 3-6 d after opening. It was, however, highly variable within and among pitchers. At the same time, the pH and viscoelasticity of the digestive fluid decreased, suggesting that the latter is not essential for effective prey capture. Prey capture and attraction by Nepenthes are dynamic processes strongly influenced by the changing properties of the pitcher. The results confirm insect aquaplaning on the peristome as the main capture mechanism in N. rafflesiana.
Xu, Hongwei; Dong, Biao; Xiao, Qiaoqin; Sun, Xueke; Zhang, Xinran; Lyu, Jiekai; Yang, Yudan; Xu, Lin; Bai, Xue; Zhang, Shuang; Song, Hongwei
2017-09-13
Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO 2 inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic Fe 3 O 4 @C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO 2 can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA). The improvement of CTCs capture efficiency reaches a surprising factor of 20 for the IOPC interface compared to that on flat glass, suggesting that the IOPCs are responsible for the dramatic enhancement of the capture efficiency of MCF-7 cells. IOPC substrate with pore size of 415 nm leads to the optimal CTCs capture efficiency of 92% with 1 mL/h. Besides the cell affinity, IOPCs also have the advantage of light scattering property which can enhance the excitation and emission light of fluorescence labels, facilitating the real-time monitoring of CTCs capture. The IOPC-based platform demonstrates excellent performance in CTCs capture, which will take an important step toward specific recognition of disease-related rare cells.
Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash trees.
McCullough, Deborah G; Poland, Therese M; Anulewicz, Andrea C; Cappaert, David
2009-12-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash (Fraxinus sp.) trees in North America since its discovery in Michigan in 2002. Efficient methods to detect low-density A. planipennis populations remain a critical priority for regulatory and resource management agencies. We compared the density of adult A. planipennis captured on sticky bands and larval density among ash trees that were girdled for 1 or 2 yr, wounded, exposed to the stress-elicitor methyl jasmonate, baited with Manuka oil lures, or left untreated. Studies were conducted at four sites in 2006 and 2007, where A. planipennis densities on untreated trees ranged from very low to moderate. In 2006, 1-yr girdled trees captured significantly more adult A. planipennis and had higher larval densities than untreated control trees or trees treated with methyl jasmonate or Manuka oil. Open-grown trees captured significantly more A. planipennis beetles than partially or fully shaded trees. In 2007, A. planipennis population levels and captures of adult A. planipennis were substantially higher than in 2006. The density of adults captured on sticky bands did not differ significantly among canopy exposure classes or treatments in 2007. Larval density was significantly higher in untreated, wounded, and 1-yr girdled trees (girdled in 2007) than in 2-yr girdled trees (girdled in 2006), where most phloem was consumed by A. planipennis larvae the previous year. A total of 36 trees (32 in 2006, 4 in 2007) caught no beetles, but 16 of those trees (13 in 2006, 3 in 2007) had A. planipennis larvae. In 2006, there was a positive linear relationship between the density of adults captured on sticky bands and larval density in trees. Our results show that freshly girdled and open grown trees were most attractive to A. planipennis, especially at low-density sites. If girdled trees are used for A. planipennis detection or survey, debarking trees to locate larval galleries is crucial.
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...
Spencer, J.; Schwarzacher, W.
2016-01-01
ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. PMID:27060124
Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M
2016-06-15
In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. Copyright © 2016 Correia Carreira et al.
Stability control of a flexible maneuverable tethered space net robot
NASA Astrophysics Data System (ADS)
Zhang, Fan; Huang, Panfeng
2018-04-01
As a promising solution for active space debris capture and removal, a maneuverable Tethered Space Net Robot (TSNR) is proposed as an improved Space Tethered Net (TSN). In addition to the advantages inherit to the TSN, the TSNR's maneuverability expands the capture's potential. However, oscillations caused by the TSNR's flexibility and elasticity of make higher requests of the control scheme. Based on the dynamics model, a modified adaptive super-twisting sliding mode control scheme is proposed in this paper for TSNR stability control. The proposed continuous control force can effectively suppress oscillations. Theoretical verification and numerical simulations demonstrate that the desired trajectory can be tracked steadily and efficiently by employing the proposed control scheme.
Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng; Leperi, Karson T.; Deria, Pravas; Zhang, Hongda; Vermeulen, Nicolaas A.; Stoddart, J. Fraser; You, Fengqi; Hupp, Joseph T.; Farha, Omar K.; Snurr, Randall Q.
2016-01-01
Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here. PMID:27757420
NASA Astrophysics Data System (ADS)
Li, Helen; Lee, Robben; Lee, Tyzy; Xue, Teddy; Liu, Hermes; Wu, Hall; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang
2018-03-01
As technology advances, escalating layout design complexity and chip size make defect inspection becomes more challenging than ever before. The YE (Yield Enhancement) engineers are seeking for an efficient strategy to ensure accuracy without suffering running time. A smart way is to set different resolutions for different pattern structures, for examples, logic pattern areas have a higher scan resolution while the dummy areas have a lower resolution, SRAM area may have another different resolution. This can significantly reduce the scan processing time meanwhile the accuracy does not suffer. Due to the limitation of the inspection equipment, the layout must be processed in order to output the Care Area marker in line with the requirement of the equipment, for instance, the marker shapes must be rectangle and the number of the rectangle shapes should be as small as possible. The challenge is how to select the different Care Areas by pattern structures, merge the areas efficiently and then partition them into pieces of rectangle shapes. This paper presents a solution based on Calibre DRC and Pattern Matching. Calibre equation-based DRC is a powerful layout processing engine and Calibre Pattern Matching's automated visual capture capability enables designers to define these geometries as layout patterns and store them in libraries which can be re-used in multiple design layouts. Pattern Matching simplifies the description of very complex relationships between pattern shapes efficiently and accurately. Pattern matching's true power is on display when it is integrated with normal DRC deck. In this application of defects inspection, we first run Calibre DRC to get rule based Care Area then use Calibre Pattern Matching's automated pattern capture capability to capture Care Area shapes which need a higher scan resolution with a tune able pattern halo. In the pattern matching step, when the patterns are matched, a bounding box marker will be output to identify the high resolution area. The equation-based DRC and Pattern Matching effectively work together for different scan phases.
Huang, Rong Fung; Chen, Jia-Kun; Lin, Jyun-Hua
2015-01-01
The flow and spillage characteristics of an inclined quad-vortex (IQV) range hood subject to the influence of drafts from various directions were studied. The laser-assisted smoke flow visualization technique was used to reveal the flow characteristics, and the tracer-gas (sulfur hexafluoride) concentration detection method was used to indicate the quantitative values of the capture efficiency of the hood. It was found that the leakage mechanisms of the IQV range hood are closely related to the flow characteristics. A critical draft velocity of about 0.5 m/s and a critical face velocity of about 0.25 m/s for the IQV range hood were found. When the IQV range hood was influenced by a draft with a velocity larger than the critical draft velocity, the spillage of pollutants became significant and the pollutant spillage rate increased with increasing draft velocity. At draft velocities less than or equal to the critical value, no containment leakages induced by the turbulence diffusion, reverse flow, or boundary-layer separation were observed, and the capture efficiency was about 100%. The IQV range hood exhibited a high ability to resist the influences of lateral and frontal drafts. The capture efficiency of the IQV range hood operated at the suction flow rate 5 to 9 m(3)/min is higher than that of the conventional range hood operated at 11 to 15 m(3)/min.
NASA Astrophysics Data System (ADS)
Qasaimeh, Mohammad A.; Wu, Yichao C.; Bose, Suman; Menachery, Anoop; Talluri, Srikanth; Gonzalez, Gabriel; Fulciniti, Mariateresa; Karp, Jeffrey M.; Prabhala, Rao H.; Karnik, Rohit
2017-04-01
The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40-70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2-5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20-24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45-184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration.
Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture
NASA Astrophysics Data System (ADS)
Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh
2015-01-01
We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.
A wind tunnel test of newly developed personal bioaerosol samplers.
Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung
2012-07-01
In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.
García, Luis Fernando; Viera, Carmen; Pekár, Stano
2018-04-02
Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.
High Power Orbit Transfer Vehicle
2003-07-01
multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted
Trends in Department of Defense hospital efficiency.
Ozcan, Y A; Bannick, R R
1994-04-01
This study employs a simple cross sectional design using longitudinal data to explore the underlying factors associated with differences in hospital technical efficiency using data envelopment analysis (DEA) in the Department of Defense (DOD) sector across three service components, the Army, Air Force and Navy. The results suggest that the services do not differ significantly in hospital efficiency. Nor does hospital efficiency appear to differ over time. With respect to the efficient use of input resources, the services experienced a general decline in excessive usage of various inputs over the three years. Analysis of the returns to scale captures opportunities for planners of changing the relative mix of output to input slacks for increasing a hospital's efficiency. That is, policy makers would get more immediate "bang per buck" with emphasis on improving the efficiencies of hospitals with higher returns to scale than other hospitals. Findings also suggest a significant degree of comparability between the DEA measure and these measures often used to indicate efficiency.
Bartoń, Kamil A.; Scott, Beth E.; Travis, Justin M.J.
2014-01-01
Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m) created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m) however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator–prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment. PMID:25250211
Effects of the number of people on efficient capture and sample collection: a lion case study.
Ferreira, Sam M; Maruping, Nkabeng T; Schoultz, Darius; Smit, Travis R
2013-05-24
Certain carnivore research projects and approaches depend on successful capture of individuals of interest. The number of people present at a capture site may determine success of a capture. In this study 36 lion capture cases in the Kruger National Park were used to evaluate whether the number of people present at a capture site influenced lion response rates and whether the number of people at a sampling site influenced the time it took to process the collected samples. The analyses suggest that when nine or fewer people were present, lions appeared faster at a call-up locality compared with when there were more than nine people. The number of people, however, did not influence the time it took to process the lions. It is proposed that efficient lion capturing should spatially separate capture and processing sites and minimise the number of people at a capture site.
Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.
Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf
2016-01-01
One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.
Simultaneous high efficiency capture of CO.sub.2 and H.sub.2S from pressurized gas
Gal, Eli; Krishnan, Gopala N.; Jayaweera, Indira S.
2016-10-11
Low-cost and energy-efficient CO.sub.2 and H.sub.2S capture is provided obtaining greater than 99.9% capture efficiency from pressurized gas. The acid species are captured in an ammonia solution, which is then regenerated by stripping the absorbed species. The solution can capture as much as 330 grams of CO.sub.2 and H.sub.2S per 1000 gram of water and when regenerated it produces pure pressurized acid gas containing more than 99.7% CO.sub.2 and H2S. The absorption of the acid species is accomplished in two absorbers in-series, each having multiple stages. More than 95% of the acid species are captured in the first absorber and the balance is captured in the second absorber to below 10 ppm concentration in the outlet gas. The two absorbers operate at temperatures ranging from 20-70 degrees Celsius. The two absorbers and the main stripper of the alkaline solution operate at similar pressures ranging from 5-200 bara.
Bauer, Ulrike; Bohn, Holger F; Federle, Walter
2007-01-01
The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by ‘aquaplaning’ on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture. PMID:18048280
Bauer, Ulrike; Bohn, Holger F; Federle, Walter
2008-02-07
The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-04-01
This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.
Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei
2015-09-01
An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.
Cui, Haijun; Wang, Binshuai; Wang, Wenshuo; Hao, Yuwei; Liu, Chuanyong; Song, Kai; Zhang, Shudong; Wang, Shutao
2018-06-13
Developing low-cost and highly efficient nanobiochips are important for liquid biopsies, real-time monitoring, and precision medicine. By in situ growth of silica nanowires on a commercial frosted slide, we develop a biochip for effective circulating tumor cells (CTCs) detection after modifying epithelial cell adhesion molecule antibody (anti-EpCAM). The biochip shows the specificity and high capture efficiency of 85.4 ± 8.3% for prostate cancer cell line (PC-3). The microsized frosted slides and silica nanowires allow enhanced efficiency in capture EpCAM positive cells by synergistic topographic interactions. And the capture efficiency of biochip increased with the increase of silica nanowires length on frosted slide. The biochip shows that micro/nanocomposite structures improve the capture efficiency of PC-3 more than 70% toward plain slide. Furthermore, the nanobiochip has been successfully applied to identify CTCs from whole blood specimens of prostate cancer patients. Thus, this frosted slide-based biochip may provide a cheap and effective way of clinical monitoring of CTCs.
Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.
Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R
2001-01-01
Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.
Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes
Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo
2009-01-01
In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3 (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description. PMID:22454590
Catch of channel catfish with tandem-set hoop nets and gill nets in lentic systems of Nebraska
Richters, Lindsey K.; Pope, Kevin L.
2011-01-01
Twenty-six Nebraska water bodies representing two ecosystem types (small standing waters and large standing waters) were surveyed during 2008 and 2009 with tandem-set hoop nets and experimental gill nets to determine if similar trends existed in catch rates and size structures of channel catfish Ictalurus punctatus captured with these gears. Gear efficiency was assessed as the number of sets (nets) that would be required to capture 100 channel catfish given observed catch per unit effort (CPUE). Efficiency of gill nets was not correlated with efficiency of hoop nets for capturing channel catfish. Small sample sizes prohibited estimation of proportional size distributions in most surveys; in the four surveys for which sample size was sufficient to quantify length-frequency distributions of captured channel catfish, distributions differed between gears. The CPUE of channel catfish did not differ between small and large water bodies for either gear. While catch rates of hoop nets were lower than rates recorded in previous studies, this gear was more efficient than gill nets at capturing channel catfish. However, comparisons of size structure between gears may be problematic.
Ma, Shaohua; Zhan, Xiaohui; Yang, Minggang; Lan, Fang; Wu, Yao; Gu, Zhongwei
2018-04-01
Circulating tumor cells (CTCs) played a significant role in early diagnosis and prognosis of carcinomas, and efficient capture of CTCs was highly desired to provide important and reliable evidence for clinical diagnosis. In present work, we successfully synthesized functional magnetic Fe3O4/P(MMA-AA) composite nanoparticles (FCNPs) inspired by a counterbalance concept for recognition and capture of CTCs. This counterbalance, composed of polyethylene glycol (PEG) suppressing cell adhesion and anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody targeting tumor cells, could both enhance the specific capture of tumor cells and reduce unspecific adhesion of normal cells. The study showed that the PEG density on the surface of the FCNPs affected the specificity of the materials, and a density of ca. 15% was efficient for reducing the unspecific adhesion. After incubation with the mixture of HepG2 cells and Jurkat T cells, the FCNPs reached a capture efficiency as high as about 86.5% of the cancer cells, suggesting great potential on detection of CTCs in the diagnoses and prognoses of cancer metastasis.
A novel electron gun for inline MRI-linac configurations.
Constantin, Dragoş E; Holloway, Lois; Keall, Paul J; Fahrig, Rebecca
2014-02-01
This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Simple electron gun geometry modifications of a Varian 600 C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600 C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ± 15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600 C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.
A novel electron gun for inline MRI-linac configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois
2014-02-15
Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less
A novel electron gun for inline MRI-linac configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois
Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less
The influence of mixed tree plantations on the nutrition of individual species: a review.
Richards, Anna E; Forrester, David I; Bauhus, Jürgen; Scherer-Lorenzen, Michael
2010-09-01
Productivity of tree plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. Species interactions in mixed-species stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given species can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within species, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N₂ fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-species studies report a shift to greater above-ground nutrient content of species grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given species in a mixture containing N₂-fixing species, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given species, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of species in a mixture. We recommend that future research focus on individual species' changes, particularly with respect to resource-use efficiency (including nutrients, water and light), when trees are grown in mixtures compared to monocultures. A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.
Li, Peng; Gao, Yan; Pappas, Dimitri
2012-10-02
The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.
Kendra, Paul E; Epsky, Nancy D; Heath, Robert R
2010-04-01
Release-recapture studies were conducted with both feral and sterile females of the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae), to determine sampling range for a liquid protein bait (torula yeast/borax) and for a two-component synthetic lure (ammonium acetate and putrescine). Tests were done in a guava, Psidium guajava L., grove and involved releasing flies at a central point and recording the numbers captured after 7 h and 1, 2, 3, and 6 d in an array of 25 Multilure traps located 9-46 m from the release point. In all tests, highest rate of recapture occurred within the first day of release, so estimations of sampling range were based on a 24-h period. Trap distances were grouped into four categories (<10, 10-20, 20-30, and >30 m from release point) and relative trapping efficiency (percentage of capture) was determined for each distance group. Effective sampling range was defined as the maximum distance at which relative trapping efficiency was > or = 25%. This corresponded to the area in which 90% of the recaptures occured. Contour analysis was also performed to document spatial distribution of fly dispersal. In tests with sterile flies, immature females dispersed farther and were recovered in higher numbers than mature females, regardless of attractant, and recapture of both cohorts was higher with torula yeast. For mature feral flies, range of the synthetic lure was determined to be 30 m. With sterile females, effective range of both attractants was 20 m. Contour maps indicated that wind direction had a strong influence on the active space of attractants, as reflected by distribution of captured flies.
Li, Yiji; Su, Xinghua; Zhou, Guofa; Zhang, Hong; Puthiyakunnon, Santhosh; Shuai, Shufen; Cai, Songwu; Gu, Jinbao; Zhou, Xiaohong; Yan, Guiyun; Chen, Xiao-Guang
2016-08-12
The surveillance of vector mosquitoes is important for the control of mosquito-borne diseases. To identify a suitable surveillance tool for the adult dengue vector Aedes albopictus, the efficacy of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap (MOT) on the capture of vector mosquitoes were comparatively evaluated in this study. The capture efficiencies of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for common vector mosquitoes were tested in a laboratory setting, through the release-recapture method, and at two field sites of Guangzhou, China from June 2013 to May 2014. The captured mosquitoes were counted, species identified and compared among the three traps on the basis of species. In the release-recapture experiments in a laboratory setting, the BG-Sentinel trap caught significantly more Aedes albopictus and Culex quinquefasciatus than the CDC light trap and Mosquito-ovitrap, except for Anopheles sinensis. The BG-Sentinel trap had a higher efficacy in capturing female rather than male Ae. albopictus and Cx. quinquefasciatus, but the capture in CDC light traps displayed no significant differences. In the field trial, BG-Sentinel traps collected more Aedes albopictus than CDC light traps and MOTs collected in both urban and suburban areas. The BG-Sentinel trap was more sensitive for monitoring the population density of Aedes albopictus than the CDC light trap and MOT during the peak months of the year 2013. However, on an average, CDC light traps captured significantly more Cx. quinquefasciatus than BG-Sentinel traps. The population dynamics of Cx. quinquefasciatus displayed a significant seasonal variation, with the lowest numbers in the middle of the year. This study indicates that the BG-Sentinel trap is more effective than the commonly used CDC light trap and MOT in sampling adult Aedes albopictus and Culex quinquefasciatus. We recommend its use in the surveillance of dengue vector mosquitoes in China.
Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble
2016-06-17
Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for many species, our improved sampling design and analysis could provide significant improvements in density and abundance estimation.
Use of Lecture Capture in Higher Education--Lessons from the Trenches
ERIC Educational Resources Information Center
Newton, Genevieve; Tucker, Trent; Dawson, John; Currie, Elliott
2014-01-01
Lecture capture, defined here as the capturing of some or all elements of a live lecture in digital format, is becoming increasingly popular in higher education. Despite this increase in popularity, fewer than 10% of institutes of higher education globally have adopted comprehensive lecture capture systems. So, the majority of instructors wanting…
NASA Astrophysics Data System (ADS)
Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E.; Chen, Yong
2014-08-01
Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Lai, Canhai; Marcy, Peter William
2017-05-01
A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less
Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors
NASA Astrophysics Data System (ADS)
Wang, Shunqiang; Wan, Yuan; Liu, Yaling
2014-10-01
While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f
Xue, Peng; Wu, Yafeng; Guo, Jinhong; Kang, Yuejun
2015-04-01
Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80% on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4% on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.
Egri, Á; Blahó, M; Száz, D; Kriska, G; Majer, J; Herczeg, T; Gyurkovszky, M; Farkas, R; Horváth, G
2013-12-01
Host-seeking female tabanid flies, that need mammalian blood for the development of their eggs, can be captured by the classic canopy trap with an elevated shiny black sphere as a luring visual target. The design of more efficient tabanid traps is important for stock-breeders to control tabanids, since these blood-sucking insects can cause severe problems for livestock, especially for horse- and cattle-keepers: reduced meat/milk production in cattle farms, horses cannot be ridden, decreased quality of hides due to biting scars. We show here that male and female tabanids can be caught by a novel, weather-proof liquid-filled black tray laid on the ground, because the strongly and horizontally polarized light reflected from the black liquid surface attracts water-seeking polarotactic tabanids. We performed field experiments to reveal the ideal elevation of the liquid trap and to compare the tabanid-capturing efficiency of three different traps: (1) the classic canopy trap, (2) the new polarization liquid trap, and (3) the combination of the two traps. In field tests, we showed that the combined trap captures 2.4-8.2 times more tabanids than the canopy trap alone. The reason for the larger efficiency of the combined trap is that it captures simultaneously the host-seeking female and the water-seeking male and female tabanids. We suggest supplementing the traditional canopy trap with the new liquid trap in order to enhance the tabanid-capturing efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tande, Brian; Seames, Wayne; Benson, Steve
The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO 2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO 2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO 2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be ablemore » to strip CO 2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO 2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO 2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO 2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.« less
High efficiency carbon nanotube thread antennas
NASA Astrophysics Data System (ADS)
Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo
2017-10-01
Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.
Jadhav, Dipak A; Jain, Sumat C; Ghangrekar, Makarand M
2017-11-01
Performance of microbial carbon capture cells (MCCs), having a low-cost clayware separator, was evaluated in terms of wastewater treatment and electricity generation using algae Chlorella pyrenoidosa in MCC-1 and Anabaena ambigua in MCC-2 and without algae in a cathodic chamber of MCC-3. Higher power production was achieved in MCC-1 (6.4 W/m 3 ) compared to MCC-2 (4.29 W/m 3 ) and MCC-3 (3.29 W/m 3 ). Higher coulombic efficiency (15.23 ± 1.30%) and biomass production (66.4 ± 4.7 mg/(L*day)) in MCC-1 indicated the superiority of Chlorella over Anabaena algae for carbon capture and oxygen production to facilitate the cathodic reduction. Algal biofilm formation on the cathode surface of MCC-1 increased dissolved oxygen in the catholyte and decreased the cathodic charge transfer resistance with increase in reduction current. Electrochemical analyses revealed slow cathodic reactions and increase in internal resistance in MCC-2 (55 Ω) than MCC-1 (30 Ω), due to lower oxygen produced by Anabaena algae. Thus, biomass production in conjunction with wastewater treatment, CO 2 sequestration and electricity generation can be achieved using Chlorella algal biocathode in MCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
40 CFR 52.320 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Group II VOC sources were submitted on January 6, 1981, and the supplemental information received... Gasoline Transfer at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum... recent EPA capture efficiency protocols, and the commitment to adopt federal capture efficiency test...
40 CFR 52.320 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of Group II VOC sources were submitted on January 6, 1981, and the supplemental information received... at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum Testing of... recent EPA capture efficiency protocols, and the commitment to adopt federal capture efficiency test...
40 CFR 52.320 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Group II VOC sources were submitted on January 6, 1981, and the supplemental information received... at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum Testing of... recent EPA capture efficiency protocols, and the commitment to adopt federal capture efficiency test...
A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon
2012-03-01
We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d
Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.
Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G
2018-01-11
We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.
Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas
2016-01-05
Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.
Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars
NASA Astrophysics Data System (ADS)
Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.
2016-06-01
Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.
COMPARISON OF MERCURY CAPTURE EFFICIENCIES OF THREE DIFFERENT IN SITU GENERATED SORBENTS
Three different sorbent materials (Ti, Si and Ca based) were compared for their mercury capture efficiencies in an entrained flow reactor. Agglomerated particles with a high specific surface area were generated in situ by injecting gas phase sorbent precursors into a high tempera...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...
Feng, Yu-Long; Fu, Gai-Lan; Zheng, Yu-Long
2008-08-01
Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.
Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.
2011-01-01
Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.
Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H
2008-01-01
Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Shyamapada; Collins, Sean; Chakraborty, Debanjan
2017-01-25
Metal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO 2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO 2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)(2)center dot DMF], that has the lowest PE for postcombustion CO, capture reported to date. We calculate a PE of 655 kJ/kg CO 2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further,more » 1 exhibits exceptional hydrolytic stability with the CO 2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO 2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO 2 capacity under humid conditions.« less
Zhang, Zhiwen; Fang, Xiaoling; Hao, Junguo; Li, Yajuan; Sha, Xianyi
2011-01-01
We proposed to develop a polycation lipid nanocarrier (PLN) with higher transfection efficiency than our previously described polycation nanostrucutred lipid nanocarrier (PNLC). PLN was composed of triolein, cetylated low-molecular-weight polyethylenimine, and dioleoyl phosphatidylethanolamine. The physicochemical properties of PLN and the PLN/DNA complexes (PDC) were characterized. The in vitro transfection was performed in human lung adenocarcinoma (SPC-A1) cells, and the intracellular mechanism was investigated as well. The measurements indicated that PLN and PDC are homogenous nanometer-sized particles with a positive charge. The transfection efficiency of PDC significantly increased with the content of triolein and was higher than that of PNLC and commercial Lipofectamine™ 2000. In particular, the transfection of PLN in the presence of 10% serum was more effective than that in its absence. With the help of specific inhibitors of chlorpromazine and filipin, the clathrin-dependent endocytosis pathway was determined to be the main contributor to the successful transfection mediated by PLN in SPC-A1 cells. The captured images verified that the fluorescent PDC was localized in the lysosomes and nuclei after endocytosis. Thus, PLN represents a novel efficient nonviral gene delivery vector. PMID:22114487
Zhang, Zhiwen; Fang, Xiaoling; Hao, Junguo; Li, Yajuan; Sha, Xianyi
2011-01-01
We proposed to develop a polycation lipid nanocarrier (PLN) with higher transfection efficiency than our previously described polycation nanostrucutred lipid nanocarrier (PNLC). PLN was composed of triolein, cetylated low-molecular-weight polyethylenimine, and dioleoyl phosphatidylethanolamine. The physicochemical properties of PLN and the PLN/DNA complexes (PDC) were characterized. The in vitro transfection was performed in human lung adenocarcinoma (SPC-A1) cells, and the intracellular mechanism was investigated as well. The measurements indicated that PLN and PDC are homogenous nanometer-sized particles with a positive charge. The transfection efficiency of PDC significantly increased with the content of triolein and was higher than that of PNLC and commercial Lipofectamine 2000. In particular, the transfection of PLN in the presence of 10% serum was more effective than that in its absence. With the help of specific inhibitors of chlorpromazine and filipin, the clathrin-dependent endocytosis pathway was determined to be the main contributor to the successful transfection mediated by PLN in SPC-A1 cells. The captured images verified that the fluorescent PDC was localized in the lysosomes and nuclei after endocytosis. Thus, PLN represents a novel efficient nonviral gene delivery vector.
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental...
Naik, B.; Guddemane, D. K.; Bhat, P.; Wilson, N.; Sreenivas, A. N.; Lauritsen, J. M.; Rieder, H. L.
2013-01-01
Ensuring quality of data during electronic data capture has been one of the most neglected components of operational research. Multicentre studies are also challenged with issues about logistics of travel, training, supervision, monitoring and troubleshooting support. Allocating resources to these issues can pose a significant bottleneck for operational research in resource-limited settings. In this article, we describe an innovative and efficient way of coordinating data capture in multicentre operational research using a combination of three open access technologies—EpiData for data capture, Dropbox for sharing files and TeamViewer for providing remote support. PMID:26392997
Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.
Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862
Líznarová, Eva; Pekár, Stano
2016-10-01
Trophic specialists are expected to possess adaptations that increase the efficiency of handling preferred prey. Such adaptations may constrain the ability to utilise alternative prey. Here we tested whether the ant-eating spider Euryopis episinoides possesses metabolic specialisations with increased efficiency in utilising preferred prey and decreased efficiency in utilising alternative prey. In addition, we investigated the contribution of genetic variation via maternal effects. We reared E. episinoides spiders from the first instar on two different diets, either ants (preferred prey) or fruit flies (alternative prey). Spider survival rate and increases in body mass were significantly higher on the ant diet. The total development time did not differ between diet groups, nor did the number of egg sacs per female or the incubation period. However, the number of eggs per egg sac and hatching success were higher on the ant diet. There was a genetic variation in several offspring traits. Our data support the hypothesis that stenophagous ant-eating E. episinoides have a metabolic specialisation on ant utilisation indicated by higher efficiency in utilising ants than fruit flies. While most individuals of E. episinoides were able to capture fruit flies, only very few spiders were able to develop and reproduce on a pure fruit fly diet, suggesting the existence of within-species genetic variation regarding the tolerance to alternative prey. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Qi, D.; Majda, A.
2017-12-01
A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina
The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less
Pilot testing of a membrane system for postcombustion CO 2 capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim; Kniep, Jay; Wei, Xiaotong
2015-09-30
This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO 2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO 2 capture system to treat coal-derived flue gas containing 20 tonnes CO 2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), andmore » the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO 2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the viability of CO 2 recycle to the boiler as envisioned in the MTR process design. The impact of this CO 2 recycle on boiler efficiency was quantified and incorporated into a TEA of the membrane capture process applied to a full-scale power plant. As with previous studies, the TEA showed the membrane process to be lower cost than the conventional solvent capture process even at 90% CO 2capture. A sensitivity study indicates that the membrane capture cost decreases significantly if the 90% capture requirement is relaxed. Depending on the process design, a minimum capture cost is achieved at 30-60% capture, values that would meet proposed CO 2 emission regulations for coal-fired power plants. In summary, this project has successfully advanced the MTR membrane capture process through small pilot testing (technology readiness level 6). The technology is ready for future scale-up to the 10 MWe size.« less
Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...
2014-12-31
Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less
A Broadband High Dynamic Range Digital Receiving System for Electromagnetic Signals
2010-08-26
dB. [0014] In Steinbrecher (United States Patent No. 7,250,920), an air interface metasurface is described that efficiently captures incident...broadband electromagnetic energy and provides a method for segmenting the total metasurface capture area into a plurality of smaller capture areas...such that the sum of the capture areas is equal to the total capture area of the metasurface . The segmentation of the electromagnetic capture area is
Eiras, Alvaro E; Buhagiar, Tamara S; Ritchie, Scott A
2014-01-01
Monitoring dengue vector control by sampling adult Aedes aegypti (L.) recently has been used to replace both larval and pupal surveys. We have developed and evaluated the Gravid Aedes Trap (GAT) through a sequential behavioral study. The GAT does not require electricity to function, and trapped mosquitoes are identified easily during trap inspections. The GAT concept relies on visual and olfactory cues to lure gravid Ae. aegypti and an insecticide to kill trapped mosquitoes. Gravid mosquitoes are lured to a black bucket base containing oviposition attractant (infusion) and are trapped in a translucent chamber impregnated with a pyrethroid insecticide where they are killed within 3-15 min. In semifield observations, the GAT captured a significantly higher proportion of gravid mosquitoes than the double sticky ovitrap. We also demonstrated that the visual cues of the prototype GAT-LgBF (large black base bucket with a black funnel at the top of the translucent chamber) captured a significantly higher proportion of gravid mosquitoes than the other prototypes. The visual contrast created by the addition of a white lid to the top of the black funnel significantly increased the number of captured gravid mosquitoes when compared with the GAT-LgBF in semifield trials. We conclude that the GAT is more efficient in recapturing gravid Ae. aegypti when compared with sticky ovitraps. The GAT is an effective, practical, low cost, and easily transportable trap, features that are essential in large-scale monitoring programs, particularly in areas where funding is limited.
40 CFR 63.4361 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... determine the mass fraction of TVH liquid input from each regulated material used in the web coating.../printing or dyeing/finishing operation during the capture efficiency test run, kg. TVHi = Mass fraction of... enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in...
Spatial and temporal variation in efficiency of the Moore egg collector
Worthington, Thomas A.; Brewer, Shannon K.; Farless, Nicole
2013-01-01
The Moore egg collector (MEC) was developed for quantitative and nondestructive capture of semibuoyant fish eggs. Previous studies have indicated that capture efficiency of the MEC was low and the use of one device did not adequately represent the spatial distribution within the water column of egg surrogates (gellan beads) of pelagic broadcast-spawning cyprinids. The objective of this study was to assess whether use of multiple MECs showed differences in spatial and temporal distribution of bead catches. Capture efficiency of three MECs was tested at four 500-m sites on the South Canadian River, a Great Plains river in Oklahoma. For each trial, approximately 100,000 beads were released and mean capture efficiency was 0.47–2.16%. Kolmogorov–Smirnov tests indicated the spatial distributions of bead catches were different among multiple MECs at three of four sites. Temporal variability in timing of peak catches of gellan beads was also evident between MECs. We concluded that the use of multiple MECs is necessary to properly sample eggs of pelagic broadcast-spawning cyprinids.
Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang
2018-03-09
Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Awais, Muhammad; Wajid, Aftab; Bashir, Muhammad Usman; Habib-Ur-Rahman, Muhammad; Raza, Muhammad Aown Sammar; Ahmad, Ashfaq; Saleem, Muhammad Farrukh; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Saeed, Umer; Arshad, Muhammad Naveed; Fahad, Shah; Nasim, Wajid
2017-07-01
The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha -1 ) and N rates (90, 120, and 150 kg ha -1 ) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha -1 ), and 97% with higher N application (150 kg ha -1 ) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha -1 with 150 kg N ha -1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2 = 0.99 in both years), PAR (R 2 = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2 = 0.97 in 2012 and 0.91 in 2013), AY (R 2 = 0.95 in both years), RUE for TDM (RUE TDM ) (R 2 = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUE AY ) (R 2 = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2 = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2 = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of sunflower. High temperature during the flowering stage in 2013 shortened the crop maturity duration, which reduced the LAI, leaf area duration (LAD), crop growth rate (CGR), TDM, AY, Fi, Sa, and RUE of sunflower. Our results clearly revealed that RUE was enhanced as plant population and N application rates were increased and biomass assimilation in semi-arid environments varied with radiation capture capacity of sunflower.
Bacteriophage-based nanoprobes for rapid bacteria separation
NASA Astrophysics Data System (ADS)
Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.
2015-10-01
The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03779d
Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L
2014-04-15
Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cimo, Giulia; Haller, Andreas; Spokas, Kurt; Novak, Jeff; Ippolito, Jim; Löhnertz, Otmar; Kammann, Claudia
2017-04-01
Biochar use in soils is assumed to increase soil fertility and the efficiency of nutrient use, particularly nitrogen. It was demonstrated recently that biochar is able to capture considerable amounts of the mobile anion nitrate which was observed in co-composted as well as field aged biochar1,2. Moreover the nitrate was not sufficiently extractable with standard methods from biochar particles; extractions had to be repeated to effectively remove the nitrate1. Subsequently the co-composted nitrate-enriched biochar stimulated plant growth due to N supply to the plants2. However, in a field study in sandy soil in Germany, a different biochar also captured nitrate, increasing the topsoil nitrate concentration and likely reducing nitrate leaching to subsoils1. This was particularly seen after a dry year in the re-picked and analysed particles. However, in the field experiment this aged, nitrate-enriched biochar did not improve crop yields3. To better understand the way biochar interacts with nitrate we undertook several laboratory experiments with 13 well characterized biochars produced from cypress, pine and grapewood at 350, 500, 700 and 900 °C including one Kon-Tiki produced grapewood biochar (600-700°C). Our results showed that (1) pure, pristine (not post-treated) biochar captured more nitrate when they were air-moist and not totally dry; that (2) letting biochar particles dry in nitrate solution forces more nitrate into biochar particles than incubating them in the solution, but (3) that shaking during drying nevertheless caused a higher nitrate uptake into biochar particles; that(4) the counter ion K+ in nitrate solution was more effective than Na+ for N-loading of biochar; (5)that drying a soil-biochar mix in nitrate solution produced a higher nitrate loading of the mixture (i.e. the biochar) than drying both components separately in the same solution; (6)that a higher biochar production temperature caused higher nitrate capture up to 700-900°C. Furthermore we found (7)that this captured nitrate was well protected against leaching, (8)that repeated drying-wetting cycles increased nitrate capture, with the amount protected against leaching remaining more or less constant; and (9) that an organic "coating" (or application of the nitrate in an organic solution, here: black tea) increased biochars' capability of nitrate capture. Our results thus underline that the phenomenon of nitrate capture is not purely due to ionic mechanisms but may partly rely on physical interactions and the pore structure of the biochar. Acknowledgement: JC acknowledges funding by the COST action TD1107 (short term scientific mission), CK acknowledges the financial support of DFG grant no. Ka3442/1-1 and of the HMWK Hessia funded OptiChar4EcoVin project. 1-Haider, G., Steffens, D., Müller, C. & Kammann, C. I. Standard extraction methods may underestimate nitrate stocks captured by field aged biochar. J. Environ. Qual. 45, 1196-1204 (2016). 2-Kammann, C. I. et al. Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports 5, doi: 10.1038/srep11080 (2015). 3-Haider, G., Steffens, D., Moser, G., Müller, C. & Kammann, C. I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agri. Ecosys. Environ. 237, 80-94 (2017).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sandham, N. D.; Djomehri, M. J.
1998-01-01
An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.
Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sandham, N. D.; Djomehri, M. J.
1998-01-01
An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.
Rocha, C F D; Van Sluys, M; Hatano, F H; Boquimpani-Freitas, L; Marra, R V; Marques, R V
2004-11-01
Studies on anurans in restinga habitats are few and, as a result, there is little information on which methods are more efficient for sampling them in this environment. Ten methods are usually used for sampling anuran communities in tropical and sub-tropical areas. In this study we evaluate which methods are more appropriate for this purpose in the restinga environment of Parque Nacional da Restinga de Jurubatiba. We analyzed six methods among those usually used for anuran samplings. For each method, we recorded the total amount of time spent (in min.), the number of researchers involved, and the number of species captured. We calculated a capture efficiency index (time necessary for a researcher to capture an individual frog) in order to make comparable the data obtained. Of the methods analyzed, the species inventory (9.7 min/searcher /ind.- MSI; richness = 6; abundance = 23) and the breeding site survey (9.5 MSI; richness = 4; abundance = 22) were the most efficient. The visual encounter inventory (45.0 MSI) and patch sampling (65.0 MSI) methods were of comparatively lower efficiency restinga, whereas the plot sampling and the pit-fall traps with drift-fence methods resulted in no frog capture. We conclude that there is a considerable difference in efficiency of methods used in the restinga environment and that the complete species inventory method is highly efficient for sampling frogs in the restinga studied and may be so in other restinga environments. Methods that are usually efficient in forested areas seem to be of little value in open restinga habitats.
Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, Nick; Kowalczyk, Joseph
In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less
40 CFR 63.4964 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...
40 CFR 63.3544 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...
40 CFR 63.4964 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...
40 CFR 63.4165 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and... operation during the capture efficiency test run, kg. TVHi = mass fraction of TVH in coating, thinner, or... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...
40 CFR 63.4964 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... determine the mass fraction, kg TVH per kg material, of TVH liquid input from each coating, thinner, and... capture efficiency test run, lb. TVHi = Mass fraction of TVH in coating, thinner, or cleaning material, i... enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the...
40 CFR 63.3544 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...
40 CFR 63.4165 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and... operation during the capture efficiency test run, kg. TVHi = mass fraction of TVH in coating, thinner, or... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...
40 CFR 63.3544 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...
40 CFR 63.4964 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...
40 CFR 63.4981 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in an air stream by... add-on air pollution control device. Capture efficiency or capture system efficiency means the portion...
The mechanisms of filter feeding on oil droplets: Theoretical considerations.
Mehrabian, Sasan; Letendre, Francis; Cameron, Christopher B
2018-04-01
Filter feeding animals capture food particles and oil droplets from the fluid environment using cilia or appendages composed of arrays of fibers. Here we review the theoretical models that have provided a foundation for observations on the efficiency of particle capture. We then provide the mathematical theoretical framework to characterize the efficient filtration of oil droplets. In the aquatic and marine environments oil droplets are released from the decay of organisms or as hydrocarbons. Droplet size and flow velocity, oil-to-water viscosity ratio, oil-water interfacial tension, oil and water density difference, and the surface wettability, or surface texture, of the filter fiber are the key parameters for oil droplet capture. Following capture, capillary force maintains the droplet at its location due to the oil-water interfacial tension. If the oil-coated fiber is subject to any external force such as viscous or gravitational forces, it may deform and separate from the fiber and re-enter the fluid stream. We show oil droplet capture in Daphnia and the barnacle Balanus glandula, and outline some of the ecological unknowns regarding oil capture in the oceans. Awareness of these mechanisms and their interrelationships will provide a foundation for investigations into the efficiency of various modes of filter feeding on oil droplets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimizing Sampling Design to Deal with Mist-Net Avoidance in Amazonian Birds and Bats
Marques, João Tiago; Ramos Pereira, Maria J.; Marques, Tiago A.; Santos, Carlos David; Santana, Joana; Beja, Pedro; Palmeirim, Jorge M.
2013-01-01
Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas. PMID:24058579
Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinrauch, Ingrid; Savchenko, Ievgeniia L.; Denysenko, D.
The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol -1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gasmore » phase. Large difference in adsorption enthalpy of 2.5 kJ mol -1 between D 2 and H 2 results in D 2-over-H 2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H 2/D 2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.« less
Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites
Weinrauch, Ingrid; Savchenko, Ievgeniia L.; Denysenko, D.; ...
2017-03-06
The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol -1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gasmore » phase. Large difference in adsorption enthalpy of 2.5 kJ mol -1 between D 2 and H 2 results in D 2-over-H 2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H 2/D 2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.« less
Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.
2015-01-01
Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.
Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose
2017-03-01
This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
High-sensitivity HLA typing by Saturated Tiling Capture Sequencing (STC-Seq).
Jiao, Yang; Li, Ran; Wu, Chao; Ding, Yibin; Liu, Yanning; Jia, Danmei; Wang, Lifeng; Xu, Xiang; Zhu, Jing; Zheng, Min; Jia, Junling
2018-01-15
Highly polymorphic human leukocyte antigen (HLA) genes are responsible for fine-tuning the adaptive immune system. High-resolution HLA typing is important for the treatment of autoimmune and infectious diseases. Additionally, it is routinely performed for identifying matched donors in transplantation medicine. Although many HLA typing approaches have been developed, the complexity, low-efficiency and high-cost of current HLA-typing assays limit their application in population-based high-throughput HLA typing for donors, which is required for creating large-scale databases for transplantation and precision medicine. Here, we present a cost-efficient Saturated Tiling Capture Sequencing (STC-Seq) approach to capturing 14 HLA class I and II genes. The highly efficient capture (an approximately 23,000-fold enrichment) of these genes allows for simplified allele calling. Tests on five genes (HLA-A/B/C/DRB1/DQB1) from 31 human samples and 351 datasets using STC-Seq showed results that were 98% consistent with the known two sets of digitals (field1 and field2) genotypes. Additionally, STC can capture genomic DNA fragments longer than 3 kb from HLA loci, making the library compatible with the third-generation sequencing. STC-Seq is a highly accurate and cost-efficient method for HLA typing which can be used to facilitate the establishment of population-based HLA databases for the precision and transplantation medicine.
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-09-01
An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.
Holewinski, Adam; Sakwa-Novak, Miles A.; Jones, Christopher W.
2015-08-26
Composites of poly(ethylenimine) (PEI) and mesoporous silica are effective, reversible adsorbents for CO 2, both from flue gas and in direct air-capture applications. The morphology of the PEI within the silica can strongly impact the overall carbon capture efficiency and rate of saturation. Here, we directly probe the spatial distribution of the supported polymer through small-angle neutron scattering (SANS). Combined with textural characterization from physisorption analysis, the data indicate that PEI first forms a thin conformal coating on the pore walls, but all additional polymer aggregates into plug(s) that grow along the pore axis. This model is consistent with observedmore » trends in amine-efficiency (CO 2/N binding ratio) and pore size distributions, and points to a trade-off between achieving high chemical accessibility of the amine binding sites, which are inaccessible when they strongly interact with the silica, and high accessibility for mass transport, which can be hampered by diffusion through PEI plugs. In conclusion, we illustrate this design principle by demonstrating higher CO 2 capacity and uptake rate for PEI supported in a hydrophobically modified silica, which exhibits repulsive interactions with the PEI, freeing up binding sites.« less
Characterization of the Gamma Response of a Cadmium Capture-gated Neutron Spectrometer
NASA Astrophysics Data System (ADS)
Hogan, Nathaniel; Rees, Lawrence; Czirr, Bart; Bastola, Suraj
2010-10-01
We have studied the gamma response of a newly developed capture-gated neutron spectrometer. Such spectrometers detect a dual signal from incoming neutrons, allowing for differentiation between other particles, such as gamma rays. The neutron provides a primary light pulse in either plastic or liquid scintillator through neutron-proton collisions. A capture material then delivers a second pulse as the moderated neutron captures in the intended material, which then de-excites with the release of gamma energy. The presented spectrometer alternates one centimeter thick plastic scintillators with sheets of cadmium inserted in between for neutron capture. The neutron capture in cadmium offers a release of gamma energy ˜ 9 MeV. To verify that the interaction was caused by a neutron, the response functions of both events must be well known. Due to the prior existence of many capture-gated neutron spectrometers, the proton recoil pulse has already been studied, but the capture pulse is unique to each spectrometer and must be measured. Experimental results agree with theoretical Monte-Carlo code, both suggesting that the optics and geometry of the spectrometer play a large role in its efficiency. Results prove promising for the efficiency of the spectrometer.
Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.
Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren
2016-03-01
Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.
40 CFR 63.4165 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...
40 CFR 63.4165 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...
40 CFR 63.4361 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... the capture efficiency test run, kg. TVHi = Mass fraction of TVH in regulated material, i, that is... protocol compares the mass of liquid TVH in regulated materials applied in the web coating/printing or...
40 CFR 63.4361 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... the capture efficiency test run, kg. TVHi = Mass fraction of TVH in regulated material, i, that is... protocol compares the mass of liquid TVH in regulated materials applied in the web coating/printing or...
Wierer, Jonathan; Tsao, Jeffrey Y.
2014-09-01
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less
Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin
This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less
Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk
2016-01-01
The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149
Energy efficient solvent regeneration process for carbon dioxide capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang
A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.
Wang, Jiacheng; Liu, Qian
2014-04-21
A series of microporous carbons (MPCs) were successfully prepared by an efficient one-step condensation and activation strategy using commercially available dialdehyde and diamine as carbon sources. The resulting MPCs have large surface areas (up to 1881 m(2) g(-1)), micropore volumes (up to 0.78 cm(3) g(-1)), and narrow micropore size distributions (0.7-1.1 nm). The CO₂ uptakes of the MPCs prepared at high temperatures (700-750 °C) are higher than those prepared under mild conditions (600-650 °C), because the former samples possess optimal micropore sizes (0.7-0.8 nm) that are highly suitable for CO₂ capture due to enhanced adsorbate-adsorbent interactions. At 1 bar, MPC-750 prepared at 750 °C demonstrates the best CO₂ capture performance and can efficiently adsorb CO₂ molecules at 2.86 mmol g(-1) and 4.92 mmol g(-1) at 25 and 0 °C, respectively. In particular, the MPCs with optimal micropore sizes (0.7-0.8 nm) have extremely high CO₂/N₂ adsorption ratios (47 and 52 at 25 and 0 °C, respectively) at 1 bar, and initial CO₂/N₂ adsorption selectivities of up to 81 and 119 at 25 °C and 0 °C, respectively, which are far superior to previously reported values for various porous solids. These excellent results, combined with good adsorption capacities and efficient regeneration/recyclability, make these carbons amongst the most promising sorbents reported so far for selective CO₂ adsorption in practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianping; Wang, Li; Zhang, Yu
The quality of wheel is especially important for the safety of high speed railway. In this paper, a new ultrasonic array inspection method, the Full Matrix Capture (FMC) has been studied and applied to the high speed railway wheel inspection, especially in the wheel web from the tread. Firstly, the principle of FMC and TFM algorithm is discussed, and then the new optimization is applied to the standard FMC; Secondly the fundamentals of optimization is described in detail and the performance is analyzed. Finally, the experiment has been built with a standard phased array block and railway wheel, and thenmore » the testing results are discussed and analyzed. It is demonstrated that this change for the ultrasonic data acquisition and image reconstruction has higher efficiency and lower cost comparing to the FMC's procedure.« less
40 CFR 63.3544 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of TVH in... the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not... 40 CFR part 51. (2) Use Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass...
Code of Federal Regulations, 2013 CFR
2013-07-01
... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...
Code of Federal Regulations, 2010 CFR
2010-07-01
... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the LCL approach follows: 4.3A source conducts an initial series of at least three runs. The owner... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...
Code of Federal Regulations, 2012 CFR
2012-07-01
... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...
Sampling designs matching species biology produce accurate and affordable abundance indices
Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff
2013-01-01
Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which raised capture probabilities. The grid design was least biased (−10.5%), but imprecise (CV 21.2%), and used most effort (16,100 trap-nights). The targeted configuration was more biased (−17.3%), but most precise (CV 12.3%), with least effort (7,000 trap-nights). Targeted sampling generated encounter rates four times higher, and capture and recapture probabilities 11% and 60% higher than grid sampling, in a sampling frame 88% smaller. Bears had unequal probability of capture with both sampling designs, partly because some bears never had traps available to sample them. Hence, grid and targeted sampling generated abundance indices, not estimates. Overall, targeted sampling provided the most accurate and affordable design to index abundance. Targeted sampling may offer an alternative method to index the abundance of other species inhabiting expansive and inaccessible landscapes elsewhere, provided their attraction to resource concentrations. PMID:24392290
Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee
2018-06-05
Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity.
Redding, David W; Mooers, Arne O
2015-01-01
The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort.
Guidobaldi, F; Guerenstein, P G
2016-07-01
Triatomines, vectors of Chagas Disease, are hematophagous insects. Efforts have been made to develop synthetic attractants based on vertebrate odor-to lure them into traps. However, because those lures are not practical or have low capture efficiency, they are not in use in control programs. Therefore, more work is needed to reach a practical and efficient odor lure. Recently, a three-component, CO 2 -free, synthetic blend of vertebrate odor (consisting of ammonia, l-(+)-lactic acid, and hexanoic acid), known as Sweetscent (Biogents AG, Regensburg, Germany), was shown to attract and capture triatomines in the laboratory. In this study, using a trap olfactometer and an odor blend with constituents similar to those of Sweetscent (delivered from low-density polyethylene sachets) we found that the odorant ratios of the mixtures have a strong effect in the capture of triatomines. The blend with the most efficient combination of odorant ratios evoked ca. 81% capture in two relevant triatomine species. In the case of the most effective odor mixtures, we measured the odor mass emission for the three components of the mixture and therefore were able to estimate the odorant ratios emitted that were responsible for such a high capture performance. Thus, in those mixtures, pentanoic acid was the main component (ca. 65 %) followed by ammonia (ca. 28%) and, l(+)-lactic acid (ca. 7 %). Our results are encouraging as efficient, practical, and cheap odor baits to trap triatomines in the field would be within reach. The odor-delivery system used should be improved to increase stability of odor emission. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.
2017-09-01
Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.
Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering.
Bardhan, Neelkanth M; Kumar, Priyank V; Li, Zeyang; Ploegh, Hidde L; Grossman, Jeffrey C; Belcher, Angela M; Chen, Guan-Yu
2017-02-28
With the global rise in incidence of cancer and infectious diseases, there is a need for the development of techniques to diagnose, treat, and monitor these conditions. The ability to efficiently capture and isolate cells and other biomolecules from peripheral whole blood for downstream analyses is a necessary requirement. Graphene oxide (GO) is an attractive template nanomaterial for such biosensing applications. Favorable properties include its two-dimensional architecture and wide range of functionalization chemistries, offering significant potential to tailor affinity toward aromatic functional groups expressed in biomolecules of interest. However, a limitation of current techniques is that as-synthesized GO nanosheets are used directly in sensing applications, and the benefits of their structural modification on the device performance have remained unexplored. Here, we report a microfluidic-free, sensitive, planar device on treated GO substrates to enable quick and efficient capture of Class-II MHC-positive cells from murine whole blood. We achieve this by using a mild thermal annealing treatment on the GO substrates, which drives a phase transformation through oxygen clustering. Using a combination of experimental observations and MD simulations, we demonstrate that this process leads to improved reactivity and density of functionalization of cell capture agents, resulting in an enhanced cell capture efficiency of 92 ± 7% at room temperature, almost double the efficiency afforded by devices made using as-synthesized GO (54 ± 3%). Our work highlights a scalable, cost-effective, general approach to improve the functionalization of GO, which creates diverse opportunities for various next-generation device applications.
Hirst, Deborah V.L.; Dunn, Kevin H.; Shulman, Stanley A.; Hammond, Duane R.; Sestito, Nicholas
2015-01-01
Exposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap. Tracer gas tests were performed to evaluate quantitative capture efficiency for each hood. A perforated copper coil was used to simulate an area source within the 1.2-meter diameter mixing tank. Capture efficiencies were measured at four hood exhaust flow rates (2.83, 5.66, 11.3, and 17.0 cubic meters per minute) and three cross draft velocities (0, 30, and 60 meters per minute). All hoods evaluated performed well with capture efficiencies above 90% for most combinations of exhaust volume and cross drafts. The standard hinged lid was the least expensive to manufacture and had the best average capture efficiency (over 99%) in the closed configuration for all exhaust flow rates and cross drafts. The hinged lid-slotted hood had some of the lowest capture efficiencies at the low exhaust flow rates compared to the other hood designs. The standard hinged lid performed well, even in the open position, and it provided a flexible approach to controlling emissions from mixing tanks. The dome hood gave results comparable to the standard hinged lid but it is more expensive to manufacture. The results of the study indicate that emissions from mixing tanks used in the production of flavorings can be controlled using simple inexpensive exhaust hoods. PMID:24649880
Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells.
Wang, Wenshuo; Yang, Gao; Cui, Haijun; Meng, Jingxin; Wang, Shutao; Jiang, Lei
2017-08-01
The efficient recognition and isolation of rare cancer cells holds great promise for cancer diagnosis and prognosis. In nature, pollens exploit spiky structures to realize recognition and adhesion to stigma. Herein, a bioinspired pollen-like hierarchical surface is developed by replicating the assembly of pollen grains, and efficient and specific recognition to target cancer cells is achieved. The pollen-like surface is fabricated by combining filtering-assisted assembly and soft lithography-based replication of pollen grains of wild chrysanthemum. After modification with a capture agent specific to cancer cells, the pollen-like surface enables the capture of target cancer cells with high efficiency and specificity. In addition, the pollen-like surface not only assures high viability of captured cells but also performs well in cell mixture system and at low cell density. This study represents a good example of constructing cell recognition biointerfaces inspired by pollen-stigma adhesion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hun Joo; Cho, Hyeon-Yeol; Oh, Jin Ho; Namkoong, Kak; Lee, Jeong Gun; Park, Jong-Myeon; Lee, Soo Suk; Huh, Nam; Choi, Jeong-Woo
2013-09-15
Using hybrid nanoparticles (HNPs), we demonstrate simultaneous capture, in situ protein expression analysis, and cellular phenotype identification of circulating tumor cells (CTCs). Each HNP consists of three parts: (i) antibodies that bind specifically to a known biomarker for CTCs, (ii) a quantum dot that emits fluorescence signals, and (iii) biotinylated DNA that allows capture and release of CTC-HNP complex to an in-house developed capture & recovery chip (CRC). To evaluate our approach, cells representative of different breast cancer subtypes (MCF-7: luminal; SK-BR-3: HER2; and MDA-MB-231: basal-like) were captured onto CRC and expressions of EpCAM, HER2, and EGFR were detected concurrently. The average capture efficiency of CTCs was 87.5% with identification accuracy of 92.4%. Subsequently, by cleaving the DNA portion with restriction enzymes, captured cells were released at efficiencies of 86.1%. Further studies showed that these recovered cells are viable and can proliferate in vitro. Using HNPs, it is possible to count, analyze in situ protein expression, and culture CTCs, all from the same set of cells, enabling a wide range of molecular- and cellular-based studies using CTCs. Copyright © 2013 Elsevier B.V. All rights reserved.
2017-01-01
Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO2 to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO2. The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO2 capture of ∼2.3 mmol g–1. This is on par with the best solution-phase amine chemical capture technologies available today. PMID:28378994
A Learning Theory Conceptual Foundation for Using Capture Technology in Teaching
ERIC Educational Resources Information Center
Berardi, Victor; Blundell, Greg
2014-01-01
Lecture capture technologies are increasingly being used by instructors, programs, and institutions to deliver online lectures and courses. This lecture capture movement is important as it increases access to education opportunities that were not possible before, it can improve efficiency, and it can increase student engagement. However, this is…
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a... capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a... capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices...
Code of Federal Regulations, 2014 CFR
2014-07-01
....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...
Code of Federal Regulations, 2010 CFR
2010-07-01
....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...
Code of Federal Regulations, 2013 CFR
2013-07-01
....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...
Code of Federal Regulations, 2011 CFR
2011-07-01
....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...
Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby
Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less
Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing
Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby; ...
2016-02-12
Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less
Simulation of mercury capture by sorbent injection using a simplified model.
Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping
2009-10-30
Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.
Wang, Yueliang; Fang, Lingling; Chen, Gaoli; Song, Lei; Deng, Zhaoxiang
2018-02-01
Despite the versatile forms of colloidal aggregates, these spontaneously formed structures are often hard to find a suitable application in nanotechnology and materials science. A determinate reason is the lack of a suitable method to capture the transiently formed and quickly evolving colloidal structures in solution. To address this challenge, a simple but highly efficient strategy is herein reported to capture the dynamic and metastable colloidal assemblies formed in an aqueous or nonaqueous solution. This process takes advantage of a recently developed Ag ion soldering reaction to realize a rapid fixation of as-formed metastable assemblies. This method works efficiently for both solid (3D) nanoparticle aggregates and weakly bonded fractal nanoparticle chains (1D). In both cases, very high capturing speed and close to 100% efficiency are achieved to fully retain a quickly growing structure. The soldered nanochains further enable a fabrication of discrete, uniform, and functionalizable nanoparticle clusters with enriched linear conformation by mechanical shearing, which would otherwise be difficult to make. The captured products are water dispersible and mechanically robust, favoring an exploration of their properties toward possible applications. The work paves a way to previously untouched aspects of colloidal science and thus would create new chances in nanotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1998-01-01
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.
Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.
Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{submore » m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.« less
Belcher, C.N.; Jennings, Cecil A.
2009-01-01
We investigated the utility of a fishery-independent trawl survey for assessing a potential multispecies shark nursery in Georgia's nearshore and inshore waters. A total of 234 subadult sharks from six species were captured during 85 of 216 trawls. Catch rates and size distributions for subadult sharks and the ratio of neonates to juveniles were consistent among areas. The highest concentrations of subadult sharks occurred in creeks and sounds. Species composition varied among areas. The Atlantic sharpnose shark Rhizoprionodon terraenovae was the most abundant species in sound and nearshore stations, whereas the bonnethead Sphyrna tiburo was the most abundant species in creeks. The aggregate of other species occurred with higher frequency in the sounds and nearshore. Sampling characteristics of the trawl survey were compared with those from a fishery-independent longline survey of subadult sharks to assess the similarity of the two gears. A total of 193 subadult sharks from seven species were captured during 57 of 96 longline sets, whereas 52 subadults from four species were captured during 20 of 48 trawls. Selectivity and efficiency differed between the two gears. The trawl had lower catch rates, caught smaller sharks, and encountered a different suite of species than the longline. General seasonal trends in relative abundance also differed between the two gears; the longline showed an increasing trend in abundance, whereas the trawl showed a stable trend. Although trawls were not found to be efficient for sampling subadult sharks from most species, they can be a useful source of supplemental data.
Fast and precise dense grid size measurement method based on coaxial dual optical imaging system
NASA Astrophysics Data System (ADS)
Guo, Jiping; Peng, Xiang; Yu, Jiping; Hao, Jian; Diao, Yan; Song, Tao; Li, Ameng; Lu, Xiaowei
2015-10-01
Test sieves with dense grid structure are widely used in many fields, accurate gird size calibration is rather critical for success of grading analysis and test sieving. But traditional calibration methods suffer from the disadvantages of low measurement efficiency and shortage of sampling number of grids which could lead to quality judgment risk. Here, a fast and precise test sieve inspection method is presented. Firstly, a coaxial imaging system with low and high optical magnification probe is designed to capture the grid images of the test sieve. Then, a scaling ratio between low and high magnification probes can be obtained by the corresponding grids in captured images. With this, all grid dimensions in low magnification image can be obtained by measuring few corresponding grids in high magnification image with high accuracy. Finally, by scanning the stage of the tri-axis platform of the measuring apparatus, whole surface of the test sieve can be quickly inspected. Experiment results show that the proposed method can measure the test sieves with higher efficiency compare to traditional methods, which can measure 0.15 million grids (gird size 0.1mm) within only 60 seconds, and it can measure grid size range from 20μm to 5mm precisely. In a word, the presented method can calibrate the grid size of test sieve automatically with high efficiency and accuracy. By which, surface evaluation based on statistical method can be effectively implemented, and the quality judgment will be more reasonable.
Magnetically Actuated Cilia for Microfluidic Manipulation
NASA Astrophysics Data System (ADS)
Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration
2015-11-01
We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.
A surface-associated activity trap for capturing water surface and aquatic invertebrates in wetlands
Hanson, Mark A.; Roy, Christiane C.; Euliss, Ned H.; Zimmer, Kyle D.; Riggs, Michael R.; Butler, Malcolm G.
2000-01-01
We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.
A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands
Hanson, M.A.; Roy, C.C.; Euliss, N.H.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.
2000-01-01
We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.
Rare Cell Capture in Microfluidic Devices
Pratt, Erica D.; Huang, Chao; Hawkins, Benjamin G.; Gleghorn, Jason P.; Kirby, Brian J.
2010-01-01
This article reviews existing methods for the isolation, fractionation, or capture of rare cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining the efficiency standard of traditional bulk separation methods such as flow cytometers and immunomagnetic separators while requiring very high purity of the target cell population, which is typically already at very low starting concentrations. Two major classifications of rare cell capture approaches are covered: (1) non-electrokinetic methods (e.g., immobilization via antibody or aptamer chemistry, size-based sorting, and sheath flow and streamline sorting) are discussed for applications using blood cells, cancer cells, and other mammalian cells, and (2) electrokinetic (primarily dielectrophoretic) methods using both electrode-based and insulative geometries are presented with a view towards pathogen detection, blood fractionation, and cancer cell isolation. The included methods were evaluated based on performance criteria including cell type modeled and used, number of steps/stages, cell viability, and enrichment, efficiency, and/or purity. Major areas for improvement are increasing viability and capture efficiency/purity of directly processed biological samples, as a majority of current studies only process spiked cell lines or pre-diluted/lysed samples. Despite these current challenges, multiple advances have been made in the development of devices for rare cell capture and the subsequent elucidation of new biological phenomena; this article serves to highlight this progress as well as the electrokinetic and non-electrokinetic methods that can potentially be combined to improve performance in future studies. PMID:21532971
Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.
Bonthoux, Francis
2016-07-01
Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Simulation of Light Collection for Neutron Electrical Dipole Moment measurement
NASA Astrophysics Data System (ADS)
Ji, Pan; nEDM Collaboration
2017-09-01
nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.
Semantic Likelihood Models for Bayesian Inference in Human-Robot Interaction
NASA Astrophysics Data System (ADS)
Sweet, Nicholas
Autonomous systems, particularly unmanned aerial systems (UAS), remain limited in au- tonomous capabilities largely due to a poor understanding of their environment. Current sensors simply do not match human perceptive capabilities, impeding progress towards full autonomy. Recent work has shown the value of humans as sources of information within a human-robot team; in target applications, communicating human-generated 'soft data' to autonomous systems enables higher levels of autonomy through large, efficient information gains. This requires development of a 'human sensor model' that allows soft data fusion through Bayesian inference to update the probabilistic belief representations maintained by autonomous systems. Current human sensor models that capture linguistic inputs as semantic information are limited in their ability to generalize likelihood functions for semantic statements: they may be learned from dense data; they do not exploit the contextual information embedded within groundings; and they often limit human input to restrictive and simplistic interfaces. This work provides mechanisms to synthesize human sensor models from constraints based on easily attainable a priori knowledge, develops compression techniques to capture information-dense semantics, and investigates the problem of capturing and fusing semantic information contained within unstructured natural language. A robotic experimental testbed is also developed to validate the above contributions.
Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habegger, L. J.; Fernandez, L. E.; Engle, M.
2008-06-30
Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less
A comparison of lead lengths for mini-fyke nets to sample age-0 gar species
Long, James M.; Snow, Richard A.; Patterson, Chas P.
2016-01-01
Mini-fyke nets are often used to sample small-bodied fishes in shallow (<1 m depth) water, especially in vegetated shoreline habitats where seines are ineffective. Recent interest in gar (Lepisosteidae) ecology and conservation led us to explore the use of mini-fyke nets to capture age-0 gar and specifically how capture is affected by lead length of the fyke net. In the summers of 2012, 2013, and 2015, mini-fyke nets with two different lead lengths (4.57 m and 9.14 m) were set at random sites in backwaters and coves of the Red River arm of Lake Texoma, Oklahoma. Mean CPUE (catch-per-unit-effort; number per net night) was significantly lower for mini-fyke nets with short leads (0.52) compared to those with long leads (1.51). Additionally, Spotted Gar (Lepisosteus oculatus) were captured at a higher rate than the other three gar species present in Lake Texoma, although this could have been an artifact of sampling location. We found that differences in length-frequency of captured gar between gear types were nearly significant, with total length ranging from 47mm to 590mm. Mini-fyke nets with longer leads increased the efficiency of sampling for age-0 gar by increasing catch rate without affecting estimates of other population parameters and appear to be useful for this purpose.
Glovebox stripper system tritium capture efficiency-literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, D. W.; Poore, A. S.
2015-09-28
Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.
40 CFR 63.4165 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... system; coating solvent flash-off and coating, curing, and drying occurs within the capture system and... when being moved between a spray booth and a curing oven. (b) If the capture system does not meet both... surface preparation activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroeve, Pieter; Faller, Roland
The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel. We achieved synthesis, characterization and detailed modeling of themore » materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.« less
Yu, Shujun; Wang, Xiangxue; Chen, Zhongshan; Wang, Jian; Wang, Suhua; Hayat, Tasawar; Wang, Xiangke
2017-01-05
Aniline is toxic and hard to be degraded, and thereby causes the environmental pollution seriously. Herein, a practical and green hydrothermal method was applied to fabricate terephthalic acid and pyromellitic acid intercalated layered double hydroxides (LDH) (named as TAL and PAL) for aniline efficient removal. The sorption of aniline on LDH-based materials were investigated at different experimental conditions, and the results indicated that aniline sorption on LDH, TAL and PAL were strongly dependent on pH and independent of ionic strength. The maximum sorption capacities of aniline on TAL and PAL at pH 5.0 and 293K were 90.4 and 130.0mg/g, respectively, which were significantly higher than that of aniline on LDH (52.6mg/g). Based on the BET, FTIR and XPS analysis, the higher sorption capacities of TAL and PAL were mainly due to high surface area and basal spacing as well as the abundant functional groups (e.g. -COO - ). The interactions of aniline with TAL and PAL were mainly dominated by hydrogen bonds and electrostatic interactions. Such a facile synthesis method, efficient removal performance and superior reusability indicated that the aromatic acid modified LDH materials had potential application for efficient treatment of organic pollutants in environmental pollution cleanup. Copyright © 2016 Elsevier B.V. All rights reserved.
Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture. Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancu, Dan; Wood, Benjamin; Genovese, Sarah
GE Global Research has developed, over the last 8 years, a platform of cost effective CO 2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in a previous funded DOE project (DE-FE0007502), the GAP-1m solvent has increased CO 2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. The current report describes the cooperative program between GE Global Research (GE GRC), and the National Carbon Capture Center (NCCC) to design, construct, and operate a pilot-scale process using GAP-1m solvent to demonstrate its performance at 0.5 MWe. (i) Performance of the GAP-1m solvent was demonstratedmore » in a 0.5 MWe pilot with real flue gas for over 900 hrs. of operation using two alternative desorption designs: a Continuous Stirred Tank Reactor (CSTR), and a Steam Stripper Column (SSC). The CSTR is a one-stage separation unit with reduced space requirements, and capital cost. The alternative is a multi-stage separation column, with improved desorption efficiency. Testing the two desorber options allowed us to identify the most cost effective, and space efficient desorber solution. (ii) CSTR Campaign: The CSTR desorber unit was designed, fabricated and integrated with the pilot solvent test unit (PSTU), replacing the PSTU Steam Stripper Column at NCCC. Solvent management and waste water special procedures were implemented to accommodate operation of the non-aqueous solvent in the PSTU. Performance of the GAP-1m solvent with the CSTR was demonstrated for over 500 hrs. while varying temperature of the desorption (230 – 265 oF), solvent circulation rate (GAP-1m : CO 2 (molar) = 1.5 – 4), and flue gas flow rates (0.2 – 0.5 MWe). Solvent carry-over in the CO 2 product was minimized by maintaining water content below 5 wt.%, and desorption pressure at 7 psig. CO 2 capture efficiency achieved was 95% at 0.25 MWe (GAP-1m : CO 2 = 4 (molar), 230 oF desorption), and 65% at 0.5 MWe (GAP-1m : CO 2 (molar) = 1.5, 248 oF). Solvent loss was dominated by thermal degradation of the rich solvent. (iii) Steam Stripper Column Campaign: Higher expected cost of the solvent vs. aqueous amines makes solvent management a top priority to maintain the low cost for the process. During the testing of the GAP-1m solvent with the CSTR, thermal degradation of the rich solvent was found to be the main mechanism in solvent loss. Small amounts of water in the working solution were found to be an effective way to enable steam stripping, thereby lowering desorption temperature, and hence reducing thermal degradation. Steam stripping also increased working capacity by 30% due to a more efficient desorption. The concept was first tested in a glass stripping column (lab scale, GE GRC), optimized in a continuous bench scale system (2 kWe, GE GRC), and demonstrated in a 0.5 MWe PSTU at NCCC. No special system modifications were required to the PSTU to accommodate the testing of the non-aqueous GAP-1 solvent with the regenerator column. SSC was found to be more robust towards solvent entrainment (H 2O < 35 wt.%). 90 – 95% CO 2 capture efficiency was achieved under stoichiometric conditions at 0.5 MWe (235 oF desorption, 2 psig and 19 wt. % H 2O). Both CO 2 capture efficiency and specific duty reached optimum conditions at 18 wt.% H 2O. Low amine degradation (< 0.05 wt.%/day) was recorded over 350 hrs. of operation. Controlled water addition to GAP-1m solvent decreased the desorption temperature, thermal degradation, and improved the CO 2 working capacity due to more efficient absorption and desorption processes. Under these conditions, the GAP-1m solvent exhibited a 25% increased working capacity, and 10% reduction in specific steam duty vs. MEA, at 10 oF lower desorption temperature. (iv) Techno-economic Analysis: The pilot-scale PSTU engineering data were used to update the capture system process models, and the techno-economic analysis was performed for a 550 MW coal fired power plant. The 1st year CO 2 removal cost for the aminosilicone-based carbon-capture process was evaluated at $48/ton CO 2 using the steam stripper column. This is a 20% reduction compared to MEA, primarily due to lower overall capital cost. CO 2 cost using the CSTR desorber is dominated by the economics of the solvent make-up. The steam stripper desorber is the preferred unit operation due to a more efficient desorption, and reduced solvent make-up rate. Further reduction in CO 2 capture cost is expected by lowering the manufacturing cost of the solvent, implementing flowsheet optimization and/or implementing the next generation aminosilicone solvent with improved stability and increased CO 2 working capacity.« less
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
Carbonated Science Cleans Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, Roger; Heldebrant, David; Glezakou, Vand
Similar to the properties of soda, liquid solvents can efficiently capture and convert carbon dioxide from coal power plants. Researchers at PNNL explain this process and how this method can turn captured carbon into plastic or fuel.
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-08-01
Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.
Near-Zero Emissions Oxy-Combustion Flue Gas Purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minish Shah; Nich Degenstein; Monica Zanfir
2012-06-30
The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plantsmore » burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions, produce high purity CO{sub 2} relatively free of trace impurities and achieve ~99% CO{sub 2} capture rate while lowering the CO{sub 2} capture costs.« less
A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations
NASA Astrophysics Data System (ADS)
Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing
2017-09-01
A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.
Decoy trapping and rocket-netting for northern pintails in spring
Grand, James B.; Fondell, Thomas F.
1994-01-01
Decoy traps and rocket-nets were compared for capturing Northern Pintails (Anas acuta: hereafter pintails) during May 1991 on the Yukon Flats, Alaska. Males were captured at similar rates using both methods (1.38 vs. 1.07 males/trap d, respectively), but baited rocket-nets were more efficient than decoy traps for capturing females (0.52 vs. 0.12 females/trap d). There were no significant differences in masses of pintails captured by each method.
Active chemisorption sites in functionalized ionic liquids for carbon capture.
Cui, Guokai; Wang, Jianji; Zhang, Suojiang
2016-07-25
Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.
Peptide-Mediated Platelet Capture at Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2016-11-30
Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.
Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.
Davids, Jeffrey C; Mehl, Steffen W
2015-01-01
Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.
2017-08-01
The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro- and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.
NASA Astrophysics Data System (ADS)
Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration
2017-02-01
Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.
Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esch, E.-I.; Bond, E.M.; Bredeweg, T. A.
2005-05-24
Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmutermore » system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,{gamma}) measurements using the recently commissioned DANCE array.« less
Huang, Qinqin; Cai, Bo; Chen, Bolei; Rao, Lang; He, Zhaobo; He, Rongxiang; Guo, Feng; Zhao, Libo; Kondamareddy, Kiran Kumar; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong
2016-07-01
Microfluidics-based circulating tumor cell (CTC) isolation is achieved by using gelatin-coated silica microbeads conjugated to CTC-specific antibodies. Bead-binding selectively enlarges target cell size, providing efficient high-purity capture. CTCs captured can be further released non-invasively. This stratagem enables high-performance CTC isolation for subsequent studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids
Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron
2015-11-02
We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less
Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron
We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less
Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.
Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René
2015-03-01
Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficiency and economic benefits of skipjack pole and line (huhate) in central Moluccas, Indonesia
NASA Astrophysics Data System (ADS)
Siahainenia, Stevanus M.; Hiariey, Johanis; Baskoro, Mulyono S.; Waeleruny, Wellem
2017-10-01
Excess fishing capacity is a crucial problem in marine capture fisheries. This phenomenon needed to be investigated regarding sustainability and development of the fishery. This research was aimed at analyzing technical efficiency (TE) and computing financial aspects of the skipjack pole and line. Primary data were collected from the owners of the fishing units at the different size of gross boat tonnage (GT), while secondary data were gathered from official publications relating to this research. Data envelopment analysis (DEA) approach was applied to estimate technical efficiency whereas a selected financial analysis was utilized to calculate economic benefits of the skipjack pole and line business. The fishing units with a size of 26-30 GT provided a higher TE value, and also achieved larger economic benefit values than that of the other fishing units. The empirical results indicate that skipjack pole and line in the size of 26-30 GT is a good fishing gear for the business development in central Moluccas.
NASA Astrophysics Data System (ADS)
Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.
2014-07-01
The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.
Wang, Congmin; Zheng, Junjie; Cui, Guokai; Luo, Xiaoyan; Guo, Yan; Li, Haoran
2013-02-11
A strategy to improve SO(2) capture through tuning the electronegativity of the interaction site in ILs has been presented. Two types of imidazolium ionic liquids that include less electronegative sulfur or carbon sites were used for the capture of SO(2), which exhibit extremely highly available capacity, rapid absorption rate and excellent reversibility.
NASA Astrophysics Data System (ADS)
Wu, Yanpeng; Jin, Rendong; Zhang, Wenming; Liu, Li; Zou, Dachao
2009-11-01
Experimental investigations on three different sunlight captures with diameter 150mm, 212mm, 300mm were carried out under different conditions such as sunny conditions, cloudy conditions and overcast conditions and the two different size solar light pipes with diameter 360mm and 160mm under sunny conditions. The illuminance in the middle of the sunlight capture have relationship with its size, but not linear. To improve the efficiency of the solar light pipes, the structure and the performance of the sunlight capture must be enhanced. For example, University of Science and Technology Beijing Gymnasium, Beijing 2008 Olympic events of Judo and Taekwondo, 148 solar light pipes were installed with the diameter 530mm for each light pipe. Two sunlight captures with different shape were installed and tested. From the measuring results of the illuminance on the work plane of the gymnasium, the improvement sunlight captures have better effects with the size of augmenting and the machining of the internal surface at the same time, so that the refraction increased and the efficiency of solar light pipes improved. The better effects of supplementary lighting for the gymnasium have been achieved.
Technique for Very High Order Nonlinear Simulation and Validation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2001-01-01
Finding the sources of sound in large nonlinear fields via direct simulation currently requires excessive computational cost. This paper describes a simple technique for efficiently solving the multidimensional nonlinear Euler equations that significantly reduces this cost and demonstrates a useful approach for validating high order nonlinear methods. Up to 15th order accuracy in space and time methods were compared and it is shown that an algorithm with a fixed design accuracy approaches its maximal utility and then its usefulness exponentially decays unless higher accuracy is used. It is concluded that at least a 7th order method is required to efficiently propagate a harmonic wave using the nonlinear Euler equations to a distance of 5 wavelengths while maintaining an overall error tolerance that is low enough to capture both the mean flow and the acoustics.
Algae from the arid southwestern United States: an annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, W.H.; Gaines, S.R.
Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas aremore » attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.« less
Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes.
Vanotti, M B; Dube, P J; Szogi, A A; García-González, M C
2017-04-01
Gas-permeable membrane technology is useful to recover ammonia (NH 3 ) from liquid manures. In this study, phosphorus (P) recovery via MgCl 2 precipitation was enhanced by combining it with NH 3 recovery through gas-permeable membranes. Anaerobically digested swine wastewater containing approximately 2300 mg NH 4 + -N L -1 and 450 mg P L -1 was treated using submerged membranes plus low-rate aeration to recover the NH 3 from within the liquid and MgCl 2 to precipitate the P. The experiments included a first configuration where N and P were recovered sequentially and a second configuration with simultaneous recovery. The low-rate aeration reduced the natural carbonate, increased pH and accelerated NH 3 uptake by the gas-permeable membrane system, which in turn benefited P recovery. Phosphorus removal efficiency was >90% and P recovery efficiency was about 100%. With higher NH 3 capture, the recovered P contained higher P 2 O 5 content (37-46%, >98% available), similar to the composition of the biomineral newberyite (MgHPO 4 ·3H 2 O). Published by Elsevier Ltd.
[Fluorine removal efficiency of organic-calcium during coal combustion].
Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa
2006-08-01
Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.
Strategies for optimizing algal biology for enhanced biomass production
Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.
2015-02-02
One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less
Transformation of general binary MRF minimization to the first-order case.
Ishikawa, Hiroshi
2011-06-01
We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.
CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.
González, A; Moreno, N; Navia, R
2014-12-01
Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Metamaterial-Inspired Approach to RF Energy Harvesting
NASA Astrophysics Data System (ADS)
Fowler, Clayton; Zhou, Jiangfeng
2016-03-01
We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits a high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.
A Metamaterial-Inspired Approach to RF Energy Harvesting
NASA Astrophysics Data System (ADS)
Fowler, Clayton; Zhou, Jiangfeng
We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.
Louisiana SIP: LAC 33:III Ch 61 Subchap A, §6121 to § 6131--Method 43 - Capture Efficiency Test Procedures; SIP effective 1994-06-06 (LAc60) to to 2011-08-03 (LAd34 - Moved to Chap 21 Subchap N §§ 2155-2160 and revised)
Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture.
Yang, Shubin; Zhan, Liang; Xu, Xiaoyue; Wang, Yanli; Ling, Licheng; Feng, Xinliang
2013-04-18
It is demonstrated that graphene-based porous silica sheets can serve as an efficient carrier support for PEI via a simple nanocasting technology. The resulting materials possess thin nature, high PEI loading content and high thermal-conductivity. Such features are favorable for the efficient diffusion and adsorption of CO2 as well as the rapid thermal transfer during the CO2 capture process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial cue reliability drives frequency tuning in the barn Owl's midbrain
Cazettes, Fanny; Fischer, Brian J; Pena, Jose L
2014-01-01
The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067
Siddiqui, Niyamat A.; Rabidas, Vidya N.; Sinha, Sanjay K.; Verma, Rakesh B.; Pandey, Krishna; Singh, Vijay P.; Ranjan, Alok; Topno, Roshan K.; Lal, Chandra S.; Kumar, Vijay; Sahoo, Ganesh C.; Sridhar, Srikantaih; Pandey, Arvind; Das, Pradeep
2016-01-01
Background Visceral Leishmaniasis, commonly known as kala-azar, is widely prevalent in Bihar. The National Kala-azar Control Program has applied house-to-house survey approach several times for estimating Kala-azar incidence in the past. However, this approach includes huge logistics and operational cost, as occurrence of kala-azar is clustered in nature. The present study aims to compare efficiency, cost and feasibility of snowball sampling approach to house-to-house survey approach in capturing kala-azar cases in two endemic districts of Bihar, India. Methodology/Principal findings A community based cross-sectional study was conducted in two highly endemic Primary Health Centre (PHC) areas, each from two endemic districts of Bihar, India. Snowball technique (used to locate potential subjects with help of key informants where subjects are hard to locate) and house-to-house survey technique were applied to detect all the new cases of Kala-azar during a defined reference period of one year i.e. June, 2010 to May, 2011. The study covered a total of 105,035 households with 537,153 populations. Out of total 561 cases and 17 deaths probably due to kala-azar, identified by the study, snowball sampling approach captured only 221 cases and 13 deaths, whereas 489 cases and 17 deaths were detected by house-to-house survey approach. Higher value of McNemar’s χ² statistics (64; p<0.0001) for house-to-house survey approach than snowball sampling and relative difference (>1) indicates that most of the kala-azar cases missed by snowball sampling were captured by house-to-house approach with 13% of omission. Conclusion/Significance Snowball sampling was not found sensitive enough as it captured only about 50% of VL cases. However, it captured about 77% of the deaths probably due to kala-azar and was found more cost-effective than house-to-house approach. Standardization of snowball approach with improved procedure, training and logistics may enhance the sensitivity of snowball sampling and its application in national Kala-azar elimination programme as cost-effective approach for estimation of kala-azar burden. PMID:27681709
Siddiqui, Niyamat A; Rabidas, Vidya N; Sinha, Sanjay K; Verma, Rakesh B; Pandey, Krishna; Singh, Vijay P; Ranjan, Alok; Topno, Roshan K; Lal, Chandra S; Kumar, Vijay; Sahoo, Ganesh C; Sridhar, Srikantaih; Pandey, Arvind; Das, Pradeep
2016-09-01
Visceral Leishmaniasis, commonly known as kala-azar, is widely prevalent in Bihar. The National Kala-azar Control Program has applied house-to-house survey approach several times for estimating Kala-azar incidence in the past. However, this approach includes huge logistics and operational cost, as occurrence of kala-azar is clustered in nature. The present study aims to compare efficiency, cost and feasibility of snowball sampling approach to house-to-house survey approach in capturing kala-azar cases in two endemic districts of Bihar, India. A community based cross-sectional study was conducted in two highly endemic Primary Health Centre (PHC) areas, each from two endemic districts of Bihar, India. Snowball technique (used to locate potential subjects with help of key informants where subjects are hard to locate) and house-to-house survey technique were applied to detect all the new cases of Kala-azar during a defined reference period of one year i.e. June, 2010 to May, 2011. The study covered a total of 105,035 households with 537,153 populations. Out of total 561 cases and 17 deaths probably due to kala-azar, identified by the study, snowball sampling approach captured only 221 cases and 13 deaths, whereas 489 cases and 17 deaths were detected by house-to-house survey approach. Higher value of McNemar's χ² statistics (64; p<0.0001) for house-to-house survey approach than snowball sampling and relative difference (>1) indicates that most of the kala-azar cases missed by snowball sampling were captured by house-to-house approach with 13% of omission. Snowball sampling was not found sensitive enough as it captured only about 50% of VL cases. However, it captured about 77% of the deaths probably due to kala-azar and was found more cost-effective than house-to-house approach. Standardization of snowball approach with improved procedure, training and logistics may enhance the sensitivity of snowball sampling and its application in national Kala-azar elimination programme as cost-effective approach for estimation of kala-azar burden.
Temporal Control and Hand Movement Efficiency in Skilled Music Performance
Goebl, Werner; Palmer, Caroline
2013-01-01
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946
Lee, Ya-Fu; Kuo, Yen-Min; Chu, Wen-Chen; Lin, Yu-Hsiu; Chang, Hsing-Yi; Chen, Wei-Ming
2012-02-01
We investigated the wing morphology and foraging distributions of sympatric Rhinolophus and Hipposideros species by acoustic sampling, measuring wing parameters, and observing bats in different settings of tropical East Asian forests, to evaluate their flexibility in habitat use and edge sensitivity. R. formosae and H. terasensis were more abundant at edges/in open habitats and shared the highest overlap, with R. formosae displaying the greatest breadth in habitat use, whereas R. monoceros had a higher abundance and feeding efficiency in forest interiors with a continuous canopy. H. terasensis was significantly larger and had higher wing loading and aspect ratio than R. formosae and R. monoceros, while R. formosae had higher wing loading but a lower aspect ratio than the smaller-sized R. monoceros. Shrubs and herbs were higher at sites where bats were captured than at those without bat captures, and R. monoceros and R. formosae were associated with greater canopy and ground coverage, respectively. R. monoceros always foraged while flying at lower heights close to the herb/shrub layers, while H. terasensis and R. formosae used perching to different extents, with R. formosae preferably using fly-catching techniques and appearing farther from the path in open forests rather than in forest interiors. Our results indicate that differences in wing parameters account for the different degrees of flexibility in habitat use, yet the deviations of call frequency from the expected values in R. formosae and H. terasensis suggest additional adaptations accounting for their flexibility in exploring habitats. Copyright © 2012 Elsevier GmbH. All rights reserved.
Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin
2014-12-31
This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol requiredmore » selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
A versatile technique for capturing urban gulls during winter
Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen
2014-01-01
The capture of birds is a common part of many avian studies but often requires large investments of time and resources. We developed a novel technique for capturing gulls during the non-breeding season using a net launcher that was effective and efficient. The technique can be used in a variety of habitats and situations, including urban areas. Using this technique, we captured 1,326 gulls in 125 capture events from 2008 to 2012 in Massachusetts, USA. On average, 10 ring-billed gulls (Larus delawarensis; range = 1–37) were captured per trapping event. Capture rate (the number of birds captured per trapping event) was influenced by the type of bait used and also the time of the year (greatest in autumn, lowest in winter). Our capture technique could be adapted to catch a variety of urban or suburban birds and mammals that are attracted to bait.
Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger
2015-06-22
Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Witton, Gemma
2017-01-01
Lecture Capture technologies are becoming widespread in UK Higher Education with many institutions adopting a capture-all approach. Installations of capture devices in all teaching rooms and lecture theatres, scheduled recordings through integration with timetabling and automated distribution through virtual learning environments are swiftly…
Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin
2016-01-01
Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255
Huang, Wanfeng; Chang, Chun-Li; Brault, Norman D; Gur, Onur; Wang, Zhe; Jalal, Shadia I; Low, Philip S; Ratliff, Timothy L; Pili, Roberto; Savran, Cagri A
2017-01-31
Current efforts for the detection of prostate cancer using only prostate specific antigen are not ideal and indicate a need to develop new assays - using multiple targets - that can more accurately stratify disease states. We previously introduced a device capable of the concurrent detection of cellular and molecular markers from a single sample fluid. Here, an improved design, which achieves affinity as well as size-based separation of captured targets using antibody-conjugated magnetic beads and a silicon chip containing micro-apertures, is presented. Upon injection of the sample, the integration of magnetic attraction with the micro-aperture chip permits larger cell-bead complexes to be isolated in an upper chamber with the smaller protein-bead complexes and remaining beads passing through the micro-apertures into the lower chamber. This enhances captured cell purity for on chip quantification, allows the separate retrieval of captured cells and proteins for downstream analysis, and enables higher bead concentrations for improved multiplexed ligand targeting. Using LNCaP cells and prostate specific membrane antigen (PSMA) to model prostate cancer, the device was able to detect 34 pM of spiked PSMA and achieve a cell capture efficiency of 93% from culture media. LNCaP cells and PSMA were then spiked into diluted healthy human blood to mimic a cancer patient. The device enabled the detection of spiked PSMA (relative to endogenous PSMA) while recovering 85-90% of LNCaP cells which illustrated the potential of new assays for the diagnosis of prostate cancer.
USDA-ARS?s Scientific Manuscript database
Particulate matter emitted from tunnel-ventilated animal feeding operations (AFOs) is known to transport malodorous compounds. As a mitigation strategy, vegetative environmental buffers (VEBs) are often installed surrounding AFOs to capture particulates and induce lofting and dispersion. Currently, ...
Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung
2016-02-01
A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.
Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubimov, Artem Y.; Stanford University, Stanford, CA 94305; Stanford University, Stanford, CA 94305
A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressablemore » points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less
Barzagli, Francesco; Mani, Fabrizio; Peruzzini, Maurizio
2016-07-05
The neat secondary amines 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(isopropylamino)ethanol, 2-(benzylamino)ethanol and 2-(butylamino)ethanol react with CO2 at 50-60 °C and room pressure yielding liquid carbonated species without their dilution with any additional solvent. These single-component absorbents have the theoretical CO2 capture capacity of 0.50 (mol CO2/mol amine) due to the formation of the corresponding amine carbamates and protonated amines that were identified by the (13)C NMR analysis. These single-component absorbents were used for CO2 capture (15% and 40% v/v in air) in two series of different procedures: (1) batch experiments aimed at investigating the efficiency and the rate of CO2 capture; (2) continuous cycles of absorption-desorption carried out in packed columns with absorption temperatures brought at 50-60 °C and desorption temperatures at 100-120 °C at room pressure. A number of different amines and experimental setups gave CO2 capture efficiency greater than 90%. For comparison purposes, 30 wt % aqueous MEA was used for CO2 capture under the same operational conditions described for the solvent-free amines. The potential advantages of solvent-free alkanolamines over aqueous MEA in the CO2 capture process were discussed.
40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Collection Efficiencies of Anaerobic..., Table JJ-6 Table JJ-6 to Subpart JJ of Part 98—Collection Efficiencies of Anaerobic Digesters Anaerobic digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank to...
Information technology in the foxhole.
Eyestone, S M
1995-08-01
The importance of digital data capture at the point of health care service within the military environment is highlighted. Current paper-based data capture does not allow for efficient data reuse throughout the medical support information domain. A simple, high-level process and data flow model is used to demonstrate the importance of data capture at point of service. The Department of Defense is developing a personal digital assistant, called MEDTAG, that accomplishes point of service data capture in the field using a prototype smart card as a data store in austere environments.
The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.
Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos
2014-10-21
Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.
Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.
Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter
2015-02-22
Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.
Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F
2017-03-01
Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superparamagnetic nano-immunobeads toward food safety insurance
NASA Astrophysics Data System (ADS)
Liu, Xuefeng; Zhang, Lei; Zeng, Jing; Gao, Yan; Tang, Zhiyong
2013-07-01
In this work, superparamagnetic nano-immunobeads (SPM-NIBs) based on conjugation of superparamagnetic Fe3O4 nanoparticles with specific antibodies have been developed toward food safety insurance. The resultant SPM-NIBs exhibits excellent colloidal stability and reversible magnetic response. Vibrio parahaemolyticus, which is a main foodborne pathogenes from contaminated seafood, can be separated specifically and efficiently by the resultant SPM-NIBs. The results of bacteria separation demonstrate that the SPM-NIBs have a higher specific activity and sensitivity toward V. parahaemolyticus. About 80 % of V. parahaemolyticus cells can be captured when the concentration of the broth reaches 103 CFU/mL. Thus, the SPM-NIBs can effectively enhance the efficiency for target bacteria inspections by shortening the period of culture time. This work holds the promise of development of general technique to prepare effective SPM-NIBs toward food safety inspections and other bio-related applications for target analyte separation and collection.
Measuring diversity of music tastes in online musical society
NASA Astrophysics Data System (ADS)
Li, Hao; Han, Xiao-Pu; Lü, Linyuan; Pan, Zhigeng
The diversity of people’s musical tastes is one of the significant parts which helps people to better understand the behavior trends and cultural preferences of people. In this paper, based on Hill-type true diversity, we propose an improved diversity metric that fairly captures the diversity of musical tastes. This diversity efficiently considers all the three aspects of diversity definitions: variety, balance, and disparity, and keeps higher discriminatory power. Using this diversity metric, one can analyze users’ music tastes on Xiami.com, one of the largest social music media in China; we explore the association between the diversity and various variables which represent users’ personal traits, as well as the difference between different genre levels and map the cultural pattern of difference genres. Our findings dig out many efficient factors that deeply impact users’ music tastes, and provide the global pattern of musical cultural structure on the Chinese online music society.
Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.
2011-10-01
A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that themore » three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.« less
A low-noise current-sensitive amplifier-discriminator system for beta particle counting.
Sephton, J P; Johansson, L C; Williams, J M
2008-01-01
NPL has developed a low-noise current amplifier/discriminator system for radionuclides that emit low-energy electrons and X-rays. The new beta amplifier is based on the low-noise Amptek A-250 operational amplifier. The design has been configured for optimum signal to noise ratio. The new amplifier is described and results obtained using primarily electron-capture decaying radionuclides are presented. The new amplifier gives rise to higher particle detection efficiency than the previously used Atomic Energy of Canada Limited-designed amplifier. This is shown by measurements of (54)Mn and (65)Zn. The counting plateaux are significantly longer and have reduced gradients.
Sheng, Weian; Ogunwobi, Olorunseun O.; Chen, Tao; Zhang, Jinling; George, Thomas J.; Liu, Chen; Fan, Z. Hugh
2013-01-01
Circulating tumor cells (CTCs) from peripheral blood hold important information for cancer diagnosis and disease monitoring. Analysis of this “liquid biopsy” holds the promise to usher in a new era of personalized therapeutic treatments and real-time monitoring for cancer patients. But the extreme rarity of CTCs in blood makes their isolation and characterization technologically challenging. This paper reports the development of a geometrically enhanced mixing (GEM) chip for high-efficiency and high-purity tumor cell capture. We also successfully demonstrated the release and culture of the captured tumor cells, as well as the isolation of CTCs from cancer patients. The high-performance microchip is based on geometrically optimized micromixer structures, which enhance the transverse flow and flow folding, maximizing the interaction between CTCs and antibody-coated surfaces. With the optimized channel geometry and flow rate, the capture efficiency reached >90% with a purity of >84% when capturing spiked tumor cells in buffer. The system was further validated by isolating a wide range of spiked tumor cells (50–50,000) in 1 mL of lysed blood and whole blood. With the combination of trypsinization and high flow rate washing, captured tumor cells were efficiently released. The released cells were viable and able to proliferate, and showed no difference compared with intact cells that were not subjected to the capture and release process. Furthermore, we applied the device for detecting CTCs from metastatic pancreatic cancer patients’ blood; and CTCs were found from 17 out of 18 samples (>94%). We also tested the potential utility of the device in monitoring the response to anti-cancer drug treatment in pancreatic cancer patients, and the CTC numbers correlated with the clinical computed tomograms (CT scans) of tumors. The presented technology shows great promise for accurate CTC enumeration, biological studies of CTCs and cancer metastasis, as well as for cancer diagnosis and treatment monitoring. PMID:24220648
A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas.
Hall, William J; Williams, Paul T
2006-08-01
The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.
Analysis of Phase-Type Stochastic Petri Nets With Discrete and Continuous Timing
NASA Technical Reports Server (NTRS)
Jones, Robert L.; Goode, Plesent W. (Technical Monitor)
2000-01-01
The Petri net formalism is useful in studying many discrete-state, discrete-event systems exhibiting concurrency, synchronization, and other complex behavior. As a bipartite graph, the net can conveniently capture salient aspects of the system. As a mathematical tool, the net can specify an analyzable state space. Indeed, one can reason about certain qualitative properties (from state occupancies) and how they arise (the sequence of events leading there). By introducing deterministic or random delays, the model is forced to sojourn in states some amount of time, giving rise to an underlying stochastic process, one that can be specified in a compact way and capable of providing quantitative, probabilistic measures. We formalize a new non-Markovian extension to the Petri net that captures both discrete and continuous timing in the same model. The approach affords efficient, stationary analysis in most cases and efficient transient analysis under certain restrictions. Moreover, this new formalism has the added benefit in modeling fidelity stemming from the simultaneous capture of discrete- and continuous-time events (as opposed to capturing only one and approximating the other). We show how the underlying stochastic process, which is non-Markovian, can be resolved into simpler Markovian problems that enjoy efficient solutions. Solution algorithms are provided that can be easily programmed.
Clearing muddied waters: Capture of environmental DNA from turbid waters.
Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J
2017-01-01
Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.
Clearing muddied waters: Capture of environmental DNA from turbid waters
Huyvaert, Kathryn P.; Piaggio, Antoinette J.
2017-01-01
Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest. PMID:28686659
van Kuijk, Marijke; Anten, N P R; Oomen, R J; van Bentum, D W; Werger, M J A
2008-08-01
It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.
A microfluidic device for label-free, physical capture of circulating tumor cell-clusters
Sarioglu, A. Fatih; Aceto, Nicola; Kojic, Nikola; Donaldson, Maria C.; Zeinali, Mahnaz; Hamza, Bashar; Engstrom, Amanda; Zhu, Huili; Sundaresan, Tilak K.; Miyamoto, David T.; Luo, Xi; Bardia, Aditya; Wittner, Ben S.; Ramaswamy, Sridhar; Shioda, Toshi; Ting, David T.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet
2015-01-01
Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC-clusters). Existing technologies for CTC enrichment are designed primarily to isolate single CTCs, and while CTC-clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here, we developed a microchip technology (Cluster-Chip) specifically designed to capture CTC-clusters independent of tumor-specific markers from unprocessed blood. CTC-clusters are isolated through specialized bifurcating traps under low shear-stress conditions that preserve their integrity and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identify CTC-clusters in 30–40% of patients with metastatic cancers of the breast, prostate and melanoma. RNA sequencing of CTC-clusters confirms their tumor origin and identifies leukocytes within the clusters as tissue-derived macrophages. Together, the development of a device for efficient capture of CTC-clusters will enable detailed characterization of their biological properties and role in cancer metastasis. PMID:25984697
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang
2006-12-15
Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.
Flow characteristics of an inclined air-curtain range hood in a draft
CHEN, Jia-Kun
2015-01-01
The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445
Murlidhar, Vasudha; Zeinali, Mina; Grabauskiene, Svetlana; Ghannad-Rezaie, Mostafa; Wicha, Max S; Simeone, Diane M; Ramnath, Nithya; Reddy, Rishindra M; Nagrath, Sunitha
2014-12-10
Circulating tumor cells (CTCs) are believed to play an important role in metastasis, a process responsible for the majority of cancer-related deaths. But their rarity in the bloodstream makes microfluidic isolation complex and time-consuming. Additionally the low processing speeds can be a hindrance to obtaining higher yields of CTCs, limiting their potential use as biomarkers for early diagnosis. Here, a high throughput microfluidic technology, the OncoBean Chip, is reported. It employs radial flow that introduces a varying shear profile across the device, enabling efficient cell capture by affinity at high flow rates. The recovery from whole blood is validated with cancer cell lines H1650 and MCF7, achieving a mean efficiency >80% at a throughput of 10 mL h(-1) in contrast to a flow rate of 1 mL h(-1) standardly reported with other microfluidic devices. Cells are recovered with a viability rate of 93% at these high speeds, increasing the ability to use captured CTCs for downstream analysis. Broad clinical application is demonstrated using comparable flow rates from blood specimens obtained from breast, pancreatic, and lung cancer patients. Comparable CTC numbers are recovered in all the samples at the two flow rates, demonstrating the ability of the technology to perform at high throughputs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flow characteristics of an inclined air-curtain range hood in a draft.
Chen, Jia-Kun
2015-01-01
The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.
Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient.
Perillo, Lucas Neves; Neves, Frederico de Siqueira; Antonini, Yasmine; Martins, Rogério Parentoni
2017-01-01
Climate conditions tend to differ along an altitudinal gradient, resulting in some species groups' patterns of lower species richness with increasing altitude. While this pattern is well understood for tropical mountains, studies investigating possible determinants of variation in beta-diversity at its different altitudes are scarce. We sampled bee and wasp communities (Hymenoptera: Aculeata) along an altitudinal gradient (1,000-2,000 m.a.s.l.) in a tropical mountainous region of Brazil. Trap nests and Moericke traps were established at six sampling points, with 200 m difference in altitude between each point. We obtained average climate data (1970-2000) from Worldclim v2 for altitudes at each sampling site. Nest traps captured 17 bee and wasp species from six families, and Moericke traps captured 124 morphospecies from 13 families. We found a negative correlation between altitude and species richness and abundance. Temperature, precipitation, water vapor pressure, and wind speed influenced species richness and abundance, and were correlated with altitude. β-diversity was primarily determined by species turnover as opposed to nestedness, and Aculeate community similarity was higher for more similar altitudinal ranges. Moericke traps seem to be more efficient for altitudinal surveys compared to nest traps. We found high occurrence of singleton and doubleton species at all altitudes, highlighting the need for long-term studies to efficiently assess hymenopteran diversity in these environments.
Studies in Pressurized Oxy-Combustion: Process Development and Control of Radiative Heat Transfer
NASA Astrophysics Data System (ADS)
Gopan, Akshay
Fossil fuels supply over 80% of the world's primary energy and more than two-thirds of the world's electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide--a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would allow the utilization of vast and widespread fuel resources (coal, oil, gas and biomass) that are capable of delivering power on demand, while mitigating the potentially harmful impact of CO2. Support for carbon capture, utilization and sequestration (CCUS) for power plants is, however, limited due to the high cost of electricity associated with the currently available technologies. The ultimate requirement of high pressure CO2 for either sequestration or utilization has led to the investigation of pressurized oxy-combustion technologies. Since at higher pressure, the dew point of the flue gas is higher than at atmospheric pressure, pressurized oxy-combustion can be utilized to extract the latent heat of condensation of the flue gas moisture, leading to an increase in plant efficiency. A new staged, pressurized oxy-combustion (SPOC) process for power generation with carbon capture is presented in the first part of this dissertation. The proposed staged, pressurized oxy-combustion process not only extracts the latent heat of condensation of the flue gas moisture, but unlike first generation oxy-combustion or even other pressurized oxy-combustion processes, it also minimizes the recycle of flue gas. The net plant efficiency of this proposed process is more than 25% higher than that of first generation oxy-combustion. A detailed analysis of the capital and operating costs shows that the cost of electricity generated from this process would meet the U.S. Dept. of Energy target for power generation with carbon capture. The design of a low-recycle oxy-combustion boiler is not trivial. A number of designs have been proposed, but were deemed unfit for the utility industry due to much higher heat flux than could be safely tolerated by the boiler tubes. In the second part of this dissertation, a new burner and boiler design is proposed that could be utilized in the low-recycle SPOC process. The proposed burner/boiler design 1) accommodates low flue gas recycle without exceeding wall heat flux limits, 2) increases the share of radiative over convective heat transfer in the boiler, 3) significantly reduces ash fouling and slagging, and 4) is flexible in that it is able to operate under various thermal loads. The proposed burner design would also lead to reduced soot, as compared to a normal burner. These aspects of the burner/boiler design are investigated in the dissertation.
High-efficiency power production from natural gas with carbon capture
NASA Astrophysics Data System (ADS)
Adams, Thomas A.; Barton, Paul I.
A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.
NASA Astrophysics Data System (ADS)
Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.
2011-04-01
This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.
Bontems, Franck; Baerlocher, Loic; Mehenni, Sabrina; Bahechar, Ilham; Farinelli, Laurent; Dosch, Roland
2011-02-18
Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Jinguo
2018-07-01
Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.
Tuning anion-functionalized ionic liquids for improved SO2 capture.
Cui, Guokai; Zheng, Junjie; Luo, Xiaoyan; Lin, Wenjun; Ding, Fang; Li, Haoran; Wang, Congmin
2013-09-27
You can have your cake and eat it too: A "dual-tuning" strategy for improving the capture of SO2 was developed by introducing electron-withdrawing sites on the anions to produce several kinds of functionalized ionic liquids. Those functionalized with a halogen group exhibited improved performance over their non-halogenated counterparts, leading to highly efficient and reversible capture. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan
2014-09-01
Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.
Licht, S
2011-12-15
STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tolfree, Kathryne; Wyse, R. F.
2014-01-01
Radial migration is a way to rearrange the orbital angular momentum of stars in an spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta in a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially given certain conditions. In order for a star in a spiral disk to migrate radially, it must first be “captured" in a family of resonant orbits near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for stars on non-circular orbits in a disk galaxy. We then use our analytically derived capture criteria to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve as well as the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation (|Φs|CR). We find that the captured fraction goes as Exp[-σR2/|Φs|CR].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan; Jayaraman, Ambalavanan; Dietz, Steven
In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO 2 from the flue gas. The sorbent exhibits a much higher affinity for CO 2 than N 2, H 2O or O 2, enabling effective CO 2 separation from the flue gas. We also carried out a detailed process design and analysis ofmore » the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO 2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO 2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO 2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO 2 captured for TDA’s VSA based system is $38.90 and $39.71 per tonne compared to $65.46 and $66.56 per tonne for amine based system on 2011 $ basis, providing 40% lower cost of CO 2 captured. In this analysis we have used a sorbent life of 4 years. If a longer sorbent life can be maintained (which is not unreasonable for fixed bed commercial PSA systems), this would lower the cost of CO 2 captured by $0.05 per tonne (e.g., to $38.85 and $39.66 per tonne at 5 years sorbent replacement). These system analysis results suggest that TDA’s VSA-based post-combustion capture technology can substantially improve the power plant’s thermal performance while achieving near zero emissions, including greater than 90% carbon capture. The higher net plant efficiency and lower capital and operating costs results in a substantial reduction in the cost of carbon capture and cost of electricity for the power plant equipped with TDA’s technology.« less
Neutron Capture Gamma-Ray Libraries for Nuclear Applications
NASA Astrophysics Data System (ADS)
Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.
2011-06-01
The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.
Flock Foraging Efficiency in Relation to Food Sensing Ability and Distribution: a Simulation Study
NASA Astrophysics Data System (ADS)
Lee, Sang-Hee
2013-08-01
Flocking may be an advantageous strategy for acquiring food resources. The degree of advantage is related to two factors: the ability of flock members to detect food resources and patterns of food distribution in the environment. To understand foraging efficiency as a function of these factors, I constructed a two-dimensional (2D) flocking model incorporating the two factors. At the start of the simulation, food particles were heterogeneously distributed. The heterogeneity, H, was characterized as a value ranging from 0.0 to 1.0. For each flock member, food sensing ability was defined by two variables: sensing distance, R and sensing angle, θ. Foraging efficiency of a flock was defined as the time, τ, required for a flock to consume all the available food resources. Simulation results showed that flock foraging is most efficient when individuals had an intermediate sensing ability (R = 60), but decreased for low (R < 60) and high (R > 60) sensing ability. When R > 60, patterns in foraging efficiency with increasing sensing distance and food resource aggregation were less consistent. This inconsistency was due to instability of the flock and a higher rate of individuals failing to capture target food resources. In addition, I briefly discuss the benefits obtained by foraging in flocks from an evolutionary perspective.
Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong
2017-01-01
There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157
de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-06-12
Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.
USDA-ARS?s Scientific Manuscript database
Wheat genotypes that efficiently capture and convert available soil nitrogen into harvested grain protein are key to sustainably meeting the rising global demand for grain protein. The purposes of this study were to characterize the genetic variation for nitrogen use efficiency (NUE) traits within ...
40 CFR 63.3981 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., activators, accelerators). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before... directing those emissions into an add-on air pollution control device. Capture efficiency or capture system...
Robinson, Ronald A; Herbertson, Luke H; Das, Srilekha Sarkar; Malinauskas, Richard A; Pritchard, William F; Grossman, Laurence W
2013-01-01
The purpose of this study was first to evaluate the clot capture efficiency and capture location of six currently-marketed vena cava filters in a physiological venous flow loop, using synthetic polyacrylamide hydrogel clots, which were intended to simulate actual blood clots. After observing a measured anomaly for one of the test filters, we redirected the focus of the study to identify the cause of poor clot capture performance for large synthetic hydrogel clots. We hypothesized that the uncharacteristic low clot capture efficiency observed when testing the outlying filter can be attributed to the inadvertent use of dense, stiff synthetic hydrogel clots, and not as a result of the filter design or filter orientation. To study this issue, sheep blood clots and polyacrylamide (PA) synthetic clots were injected into a mock venous flow loop containing a clinical inferior vena cava (IVC) filter, and their captures were observed. Testing was performed with clots of various diameters (3.2, 4.8, and 6.4 mm), length-to-diameter ratios (1:1, 3:1, 10:1), and stiffness. By adjusting the chemical formulation, PA clots were fabricated to be soft, moderately stiff, or stiff with elastic moduli of 805 ± 2, 1696 ± 10 and 3295 ± 37 Pa, respectively. In comparison, the elastic moduli for freshly prepared sheep blood clots were 1690 ± 360 Pa. The outlying filter had a design that was characterized by peripheral gaps (up to 14 mm) between its wire struts. While a low clot capture rate was observed using large, stiff synthetic clots, the filter effectively captured similarly sized sheep blood clots and soft PA clots. Because the stiffer synthetic clots remained straight when approaching the filter in the IVC model flow loop, they were more likely to pass between the peripheral filter struts, while the softer, physiological clots tended to fold and were captured by the filter. These experiments demonstrated that if synthetic clots are used as a surrogate for animal or human blood clots for in vitro evaluation of vena cava filters, the material properties (eg, elastic modulus) and dynamic behavior of the surrogate should first be assessed to ensure that they accurately mimic an actual blood clot within the body. PMID:23690701
Robinson, Ronald A; Herbertson, Luke H; Sarkar Das, Srilekha; Malinauskas, Richard A; Pritchard, William F; Grossman, Laurence W
2013-01-01
The purpose of this study was first to evaluate the clot capture efficiency and capture location of six currently-marketed vena cava filters in a physiological venous flow loop, using synthetic polyacrylamide hydrogel clots, which were intended to simulate actual blood clots. After observing a measured anomaly for one of the test filters, we redirected the focus of the study to identify the cause of poor clot capture performance for large synthetic hydrogel clots. We hypothesized that the uncharacteristic low clot capture efficiency observed when testing the outlying filter can be attributed to the inadvertent use of dense, stiff synthetic hydrogel clots, and not as a result of the filter design or filter orientation. To study this issue, sheep blood clots and polyacrylamide (PA) synthetic clots were injected into a mock venous flow loop containing a clinical inferior vena cava (IVC) filter, and their captures were observed. Testing was performed with clots of various diameters (3.2, 4.8, and 6.4 mm), length-to-diameter ratios (1:1, 3:1, 10:1), and stiffness. By adjusting the chemical formulation, PA clots were fabricated to be soft, moderately stiff, or stiff with elastic moduli of 805 ± 2, 1696 ± 10 and 3295 ± 37 Pa, respectively. In comparison, the elastic moduli for freshly prepared sheep blood clots were 1690 ± 360 Pa. The outlying filter had a design that was characterized by peripheral gaps (up to 14 mm) between its wire struts. While a low clot capture rate was observed using large, stiff synthetic clots, the filter effectively captured similarly sized sheep blood clots and soft PA clots. Because the stiffer synthetic clots remained straight when approaching the filter in the IVC model flow loop, they were more likely to pass between the peripheral filter struts, while the softer, physiological clots tended to fold and were captured by the filter. These experiments demonstrated that if synthetic clots are used as a surrogate for animal or human blood clots for in vitro evaluation of vena cava filters, the material properties (eg, elastic modulus) and dynamic behavior of the surrogate should first be assessed to ensure that they accurately mimic an actual blood clot within the body.
Closed flume inlet efficiency : [summary].
DOT National Transportation Integrated Search
2014-04-01
The storm drain is an inconspicuous but critical : part of the roadway, especially in Florida. Drains : look deceptively simple, but they must capture : water as efficiently as possible. To help assure : the performance of storm drains, the Florida :...
An innovative permanent total enclosure for blast cleaning and painting ships in drydock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, C.; Lukey, M.
1997-12-31
This paper describes a new innovative Permanent Total Enclosure, or CAPE system, which encloses and captures emissions from blast cleaning and painting ship hulls in drydock. A description of the modular enclosure towers with unique seals is shown with several figures. The support barge with its environmental control equipment which includes a dust collector, VOC thermal oxidizer, dehumidifier, boiler, heating coils, air flow fans and, system controls is also described. Data measurements from the first two applications rate this system at 100 percent capture efficiency, 99 percent VOC destruction efficiency and 99.9 percent dust collection efficiency. Ships can be blastmore » cleaned and painted using noncompliant paints and meet all state and federal standards for air emissions.« less
Qomariyah, Siti Nurul; Braunholtz, David; Achadi, Endang L; Witten, Karen H; Pambudi, Eko Setyo; Anggondowati, Trisari; Latief, Kamaluddin; Graham, Wendy J
2010-11-17
The maternal mortality ratio (MMR) remains high in most developing countries. Local, recent estimates of MMR are needed to motivate policymakers and evaluate interventions. But, estimating MMR, in the absence of vital registration systems, is difficult. This paper describes an efficient approach using village informant networks to capture maternal death cases (Maternal Deaths from Informants/Maternal Death Follow on Review or MADE-IN/MADE-FOR) developed to address this gap, and examines its validity and efficiency. MADE-IN used two village informant networks - heads of neighbourhood units (RTs) and health volunteers (Kaders). Informants were invited to attend separate network meetings - through the village head (for the RT) and through health centre for the kaders. Attached to the letter was a form with written instructions requesting informants list deaths of women of reproductive age (WRA) in the village during the previous two years. At a 'listing meeting' the informants' understanding on the form was checked, informants could correct their forms, and then collectively agreed a consolidated list. MADE-FOR consisted of visits relatives of likely pregnancy related deaths (PRDs) identified from MADE-IN, to confirm the PRD status and gather information about the cause of death. Capture-recapture (CRC) analysis enabled estimation of coverage rates of the two networks, and of total PRDs. The RT network identified a higher proportion of PRDs than the kaders (estimated 0.85 vs. 0.71), but the latter was easier and cheaper to access. Assigned PRD status amongst identified WRA deaths was more accurate for the kader network, and seemingly for more recent deaths, and for deaths from rural areas. Assuming information on live births from an existing source to calculate the MMR, MADE-IN/MADE-FOR cost only $0.1 (US) per women-year risk of exposure, substantially cheaper than alternatives. This study shows that reliable local, recent estimates of MMR can be obtained relatively cheaply using two independent informant networks to identify cases. Neither network captured all PRDs, but capture-recapture analysis allowed self-calibration. However, it requires careful avoidance of false-positives, and matching of cases identified by both networks, which was achieved by the home visit.
2011-01-01
To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop. PMID:22148158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lao, D. B.; Galan, B. R.; Linehan, J. C.
2016-08-10
Combining carbon capture and reduction is an efficient strategy to alleviate the high energy requirements for seperation, compression, and storage of CO2 prior to reduction. Recent studies have shown that catalytic hydrogenations of CO2 can be performed without added pressure of CO2 using switchable ionic liquids. It’s ambiguous whether the alkylcarbonate (captured CO2) is reduced as it is in dynamic equilibrium with neutral CO2 in solution. New studies are presented to elucidate the reactivity of CO2 and CO2 captured in solution.
Micromotors to capture and destroy anthrax simulant spores.
Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph
2015-03-07
Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.
NASA Technical Reports Server (NTRS)
Fitzgerald, Howard J.; Yano, Hajime
1995-01-01
Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.
Adams, André A; Okagbare, Paul I; Feng, Juan; Hupert, Matuesz L; Patterson, Don; Göttert, Jost; McCarley, Robin L; Nikitopoulos, Dimitris; Murphy, Michael C; Soper, Steven A
2008-07-09
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.
Adams, André A.; Okagbare, Paul I.; Feng, Juan; Hupert, Matuesz L.; Patterson, Don; Göttert, Jost; McCarley, Robin L.; Nikitopoulos, Dimitris; Murphy, Michael C.; Soper, Steven A.
2008-01-01
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 μm width × 150 μm depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. PMID:18557614
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
NASA Astrophysics Data System (ADS)
Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei
2013-03-01
We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a
Improvement of automatic fish feeder machine design
NASA Astrophysics Data System (ADS)
Chui Wei, How; Salleh, S. M.; Ezree, Abdullah Mohd; Zaman, I.; Hatta, M. H.; Zain, B. A. Md; Mahzan, S.; Rahman, M. N. A.; Mahmud, W. A. W.
2017-10-01
Nation Plan of action for management of fishing is target to achieve an efficient, equitable and transparent management of fishing capacity in marine capture fisheries by 2018. However, several factors influence the fishery production and efficiency of marine system such as automatic fish feeder machine could be taken in consideration. Two latest fish feeder machines have been chosen as the reference for this study. Based on the observation, it has found that the both machine was made with heavy structure, low water and temperature resistance materials. This research’s objective is to develop the automatic feeder machine to increase the efficiency of fish feeding. The experiment has conducted to testing the new design of machine. The new machine with maximum storage of 5 kg and functioning with two DC motors. This machine able to distribute 500 grams of pellets within 90 seconds and longest distance of 4.7 meter. The higher speed could reduce time needed and increase the distance as well. The minimum speed range for both motor is 110 and 120 with same full speed range of 255.
Lyu, Lai; Yu, Guangfei; Zhang, Lili; Hu, Chun; Sun, Yong
2018-01-16
Metal-containing Fenton catalysts have been widely investigated. Here, we report for the first time a highly effective stable metal-free Fenton-like catalyst with dual reaction centers consisting of 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets (POP-rGO NSs) prepared through surface complexation and copolymerization. Experimental and theoretical studies verified that dual reaction centers are formed on the C-O-C bridge of POP-rGO NSs. The electron-rich center around O is responsible for the efficient reduction of H 2 O 2 to • OH, while the electron-poor center around C captures electrons from the adsorbed pollutants and diverts them to the electron-rich area via the C-O-C bridge. By these processes, pollutants are degraded and mineralized quickly in a wide pH range, and a higher H 2 O 2 utilization efficiency is achieved. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts using organic polymers for different fields.
Inefficient power generation as an optimal route to negative emissions via BECCS?
NASA Astrophysics Data System (ADS)
Mac Dowell, Niall; Fajardy, Mathilde
2017-04-01
Current ambitions to limit climate change to no more than 1.5 °C-2 °C by the end of the 21st century rely heavily on the availability of negative emissions technologies (NETs)—bioenergy with CO2 capture and storage (BECCS) and direct air capture in particular. In this context, these NETs are providing a specific service by removing CO2 from the atmosphere, and therefore investors would expect an appropriate risk-adjusted rate of return, varying as a function of the quantity of public money involved. Uniquely, BECCS facilities have the possibility to generate both low carbon power and remove CO2 from the atmosphere, but in an energy system characterised by high penetration of intermittent renewable energy such as wind and solar power plants, the dispatch load factor of such BECCS facilities may be small relative to their capacity. This has the potential to significantly under utilise these assets for their primary purpose of removing CO2 from the atmosphere. In this study, we present a techno-economic environmental evaluation of BECCS plants with a range of operating efficiencies, considering their full- and part-load operation relative to a national-scale annual CO2 removal target. We find that in all cases, a lower capital cost, lower efficiency BECCS plant is superior to a higher cost, higher efficiency facility from both environmental and economic perspectives. We show that it may be preferable to operate the BECCS facility in base-load fashion, constantly removing CO2 from the atmosphere and dispatching electricity on an as-needed basis. We show that the use of this ‘spare capacity’ to produce hydrogen for, e.g. injection to a natural gas system for the provision of low carbon heating can add to the overall environmental and economic benefit of such a system. The only point where this hypothesis appears to break down is where the CO2 emissions associated with the biomass supply chain are sufficiently large so as to eliminate the service of CO2 removal.
Huang, Tianhong; Yang, Guilin; Dang, Xiao; Ao, Feijian; Li, Jiankang; He, Yizhou; Tang, Qiyuan; He, Qing
2017-11-01
Alagille syndrome (AGS) is a highly variable, autosomal dominant disease that affects multiple structures including the liver, heart, eyes, bones and face. Targeted region capture sequencing focuses on a panel of known pathogenic genes and provides a rapid, cost‑effective and accurate method for molecular diagnosis. In a Chinese family, this method was used on the proband and Sanger sequencing was applied to validate the candidate mutation. A de novo heterozygous mutation (c.3254_3255insT p.Leu1085PhefsX24) of the jagged 1 gene was identified as the potential disease‑causing gene mutation. In conclusion, the present study suggested that target region capture sequencing is an efficient, reliable and accurate approach for the clinical diagnosis of AGS. Furthermore, these results expand on the understanding of the pathogenesis of AGS.
Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.
Lee, Hsu-Yi; Voldman, Joel
2007-03-01
We present an investigation into optimizing micromixer design for enhancing dielectrophoretic (DEP) microconcentrator performance. DEP-based microconcentrators use the dielectrophoretic force to collect particles on electrodes. Because the DEP force generated by electrodes decays rapidly away from the electrodes, DEP-based microconcentrators are only effective at capturing particles from a limited cross section of the input liquid stream. Adding a mixer can circulate the input liquid, increasing the probability that particles will drift near the electrodes for capture. Because mixers for DEP-based microconcentrators aim to circulate particles, rather than mix two species, design specifications for such mixers may be significantly different from that for conventional mixers. Here we investigated the performance of patterned-groove micromixers on particle trapping efficiency in DEP-based microconcentrators numerically and experimentally. We used modeling software to simulate the particle motion due to various forces on the particle (DEP, hydrodynamic, etc.), allowing us to predict trapping efficiency. We also conducted trapping experiments and measured the capture efficiency of different micromixer configurations, including the slanted groove, staggered herringbone, and herringbone mixers. Finally, we used these analyses to illustrate the design principles of mixers for DEP-based concentrators.
Roiz, David; Roussel, Marion; Muñoz, Joaquin; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi
2012-01-01
Surveillance, research, and control of mosquito-borne diseases such as West Nile virus require efficient methods for sampling mosquitoes. We compared the efficacy of BG-Sentinel and Centers for Disease Control and Prevention (CDC)-CO2 traps in terms of the abundances of host-seeking and blood-fed female mosquitoes and the origin of mosquito bloodmeals. Our results indicate that BG-Sentinel traps that use CO2 and attractants are as effective as CDC-CO2 traps for Culex mosquito species, Ochlerotatus caspius, and they are also highly efficient at capturing Anopheles atroparvus host-seeking and blood-fed females with or without CO2. The CDC-CO2 trap is the least efficient method for capturing blood-fed females. BG-Sentinel traps with attractants and CO2 were significantly better at capturing mosquitoes that had fed on mammals than the unbaited BG-Sentinel and CDC-CO2 traps in the cases of An. atroparvus and Cx. theileri. These results may help researchers to optimize trapping methods by obtaining greater sample sizes and saving time and money. PMID:22492149
Quasi-model free control for the post-capture operation of a non-cooperative target
NASA Astrophysics Data System (ADS)
She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting
2018-06-01
This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774
Meier, Matt E; Kane, Michael J
2015-11-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in complex geometries with good accuracy.
Local ventilation solution for large, warm emission sources.
Kulmala, Ilpo; Hynynen, Pasi; Welling, Irma; Säämänen, Arto
2007-01-01
In a foundry casting line, contaminants are released from a large area. Casting fumes include both volatile and particulate compounds. The volatile fraction contains hydrocarbons, whereas the particulate fraction mostly comprises a mixture of vaporized metal fumes. Casting fumes lower the air quality in foundries. The design of local ventilation for the casting area is a challenging task, because of the large casting area and convection plumes from warm moulds. A local ventilation solution for the mould casting area was designed and dimensioned with the aid of computational fluid dynamic (CFD) calculations. According to the calculations, the most efficient solution was a push-pull ventilation system. The prototype of the push-pull system was built and tested in actual operation at the foundry. The push flow was generated by a free plane jet that blew across the 10 m wide casting area towards an exhaust hood on the opposite side of the casting lines. The capture efficiency of the prototype was determined by the tracer gas method. The measured capture efficiencies with push jet varied between 40 and 80%, depending on the distance between the source and the exhaust. With the aid of the push flow, the average capture efficiency was increased from 40 (without jet) to 60%.
Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R
2014-01-01
Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants.
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1998-01-01
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.
Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin
2017-12-19
A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.
Lundy, Mark E.; Parrella, Michael P.
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026
Lundy, Mark E; Parrella, Michael P
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.
Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.
Matthé, Maximilian; Sannolo, Marco; Winiarski, Kristopher; Spitzen-van der Sluijs, Annemarieke; Goedbloed, Daniel; Steinfartz, Sebastian; Stachow, Ulrich
2017-08-01
Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.
Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro
2017-01-01
Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.
2017-01-01
Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4–5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds. PMID:28158320
Jiang, G.M.
2013-01-01
The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure. PMID:23378379
de Santos, Eloína Maria Mendonça; de Melo-Santos, Maria Alice Varjal; de Oliveira, Claudia Maria Fontes; Correia, Juliana Cavalcanti; de Albuquerque, Cleide Maria Ribeiro
2012-09-07
Dengue virus, which is transmitted by Aedes aegypti mosquitoes is the most important emerging viral disease, infecting more than 50 million people annually. Currently used sticky traps are useful tools for monitoring and control of A. aegypti, despite differences in efficiency, labor requirements and cost. In the present work, a field assay was carried out to evaluate the performance of a sticky trap (AedesTrap), produced using disposable material, in capturing gravid Aedes spp. females. Additionally, conditions necessary for the improved performance of the device, such as number of traps per site and location (indoors or outdoors) were evaluated. During a one year period, traps were placed in a dengue endemic area in 28 day cycles. The trap, named AedesTrap, consisted of a disposable plastic soda bottle coated inside with colophony resin, which served as a sticky substrate. Disposable bottles were donated by restaurants, and traps were made by laboratory staff, reducing the cost of the sticky trap (less than U$3). Mosquito capture in indoor and outdoor areas was compared by placing the traps in laundry room, kitchen or bedroom (indoors) and front or back yard (outdoors). The relationship between the number of AedesTraps and quantity of captured mosquitoes was investigated by utilizing one or three traps/site. During a 28 day cycle, a single AedesTrap was capable of capturing up to 15 A. aegypti in a house, with a mean capture of 0.5 to 2.63 females per premise. The AedesTrap collected three times more outdoors versus indoors. Similarly, the capability of detecting Aedes spp. infestation, and of capturing females, was three times higher when using three AedesTraps per house, compared with one trap per house. AedesTrap was shown to be capable of capturing A. aegypti and other culicidae, providing information on the adult mosquito population, and allowing the identification of areas critically infested by mosquitoes. Low requirements for skilled labor together with easy maintenance and low cost are additional advantages of using this sticky trap.
2012-01-01
Background Dengue virus, which is transmitted by Aedes aegypti mosquitoes is the most important emerging viral disease, infecting more than 50 million people annually. Currently used sticky traps are useful tools for monitoring and control of A. aegypti, despite differences in efficiency, labor requirements and cost. In the present work, a field assay was carried out to evaluate the performance of a sticky trap (AedesTrap), produced using disposable material, in capturing gravid Aedes spp. females. Additionally, conditions necessary for the improved performance of the device, such as number of traps per site and location (indoors or outdoors) were evaluated. Methods During a one year period, traps were placed in a dengue endemic area in 28 day cycles. The trap, named AedesTrap, consisted of a disposable plastic soda bottle coated inside with colophony resin, which served as a sticky substrate. Disposable bottles were donated by restaurants, and traps were made by laboratory staff, reducing the cost of the sticky trap (less than U$3). Mosquito capture in indoor and outdoor areas was compared by placing the traps in laundry room, kitchen or bedroom (indoors) and front or back yard (outdoors). The relationship between the number of AedesTraps and quantity of captured mosquitoes was investigated by utilizing one or three traps/site. Results During a 28 day cycle, a single AedesTrap was capable of capturing up to 15 A. aegypti in a house, with a mean capture of 0.5 to 2.63 females per premise. The AedesTrap collected three times more outdoors versus indoors. Similarly, the capability of detecting Aedes spp. infestation, and of capturing females, was three times higher when using three AedesTraps per house, compared with one trap per house. Conclusions AedesTrap was shown to be capable of capturing A. aegypti and other culicidae, providing information on the adult mosquito population, and allowing the identification of areas critically infested by mosquitoes. Low requirements for skilled labor together with easy maintenance and low cost are additional advantages of using this sticky trap. PMID:22958376
Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.
Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín
2017-12-01
Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.
A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency
NASA Astrophysics Data System (ADS)
Duan, Xin; Chen, Xing; Zhou, Lin
2016-12-01
A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.
The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...
USDA-ARS?s Scientific Manuscript database
Magnetic separation has great advantages over traditional bioseparation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor in allowing efficient capture of t...
40 CFR 63.4981 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in... those emissions into an add-on air pollution control device. Capture efficiency or capture system...
40 CFR 63.4981 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in... those emissions into an add-on air pollution control device. Capture efficiency or capture system...
40 CFR 63.4981 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in... those emissions into an add-on air pollution control device. Capture efficiency or capture system...
40 CFR 63.4964 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation are applied within the capture system; coating solvent flash-off and coating, curing, and drying... parts enter the open shop environment when being moved between a spray booth and a curing oven. (b... from the beginning to the end of production, which includes surface preparation activities and drying...
Comparing Energy Use and Efficiency in Central Iowa Agroecosystems
ERIC Educational Resources Information Center
Cox, Rachael; Wiedenhoeft, Mary
2009-01-01
Energy is relevant to all areas of human life; energy sustains us through food, drives our transportation, warms and cools our buildings, and powers our electrical gadgets. In nature, ecosystems function by capturing and transforming energy. Agroecosystems are formed when humans manipulate the capture and flow of energy for food, fiber, and fuel…
Zhou, Fanglei; Tien, Huynh Ngoc; Xu, Weiwei L; Chen, Jung-Tsai; Liu, Qiuli; Hicks, Ethan; Fathizadeh, Mahdi; Li, Shiguang; Yu, Miao
2017-12-13
Among the current CO 2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO 2 permeance and high CO 2 /N 2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO 2 -philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO 2 /N 2 separation under wet conditions. Piperazine, as an effective CO 2 -philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO 2 permeance of 1,020 GPU and CO 2 /N 2 selectivity as high as 680, demonstrating its potential for CO 2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO 2 capture.
Methanol from CO2 by organo-cocatalysis: CO2 capture and hydrogenation in one process step.
Reller, Christian; Pöge, Matthias; Lißner, Andreas; Mertens, Florian O R L
2014-12-16
Carbon dioxide chemically bound to alcohol-amines was hydrogenated to methanol under retrieval of these industrially used CO2 capturing reagents. The energetics of the process can be seen as a partial cancellation of the exothermic heat of reaction of the hydrogenation with the endothermic one of the CO2 release from the capturing reagent. The process provides a means to significantly improve the energy efficiency of CO2 to methanol conversions.
Safferling, Kai; Sütterlin, Thomas; Westphal, Kathi; Ernst, Claudia; Breuhahn, Kai; James, Merlin; Jäger, Dirk; Halama, Niels
2013-01-01
Wound healing is a complex process in which a tissue’s individual cells have to be orchestrated in an efficient and robust way. We integrated multiplex protein analysis, immunohistochemical analysis, and whole-slide imaging into a novel medium-throughput platform for quantitatively capturing proliferation, differentiation, and migration in large numbers of organotypic skin cultures comprising epidermis and dermis. Using fluorescent time-lag staining, we were able to infer source and final destination of keratinocytes in the healing epidermis. This resulted in a novel extending shield reepithelialization mechanism, which we confirmed by computational multicellular modeling and perturbation of tongue extension. This work provides a consistent experimental and theoretical model for epidermal wound closure in 3D, negating the previously proposed concepts of epidermal tongue extension and highlighting the so far underestimated role of the surrounding tissue. Based on our findings, epidermal wound closure is a process in which cell behavior is orchestrated by a higher level of tissue control that 2D monolayer assays are not able to capture. PMID:24385489
Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams
NASA Astrophysics Data System (ADS)
Berg, G. P. A.; Couder, M.; Moran, M. T.; Smith, K.; Wiescher, M.; Schatz, H.; Hager, U.; Wrede, C.; Montes, F.; Perdikakis, G.; Wu, X.; Zeller, A.; Smith, M. S.; Bardayan, D. W.; Chipps, K. A.; Pain, S. D.; Blackmon, J.; Greife, U.; Rehm, K. E.; Janssens, R. V. F.
2018-01-01
A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p , γ) and (α , γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolving power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. The present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.
Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams
Berg, G. P. A.; Couder, M.; Moran, M. T.; ...
2017-09-25
A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p,γ) and (α,γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolvingmore » power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. Furthermore, the present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.« less
Johnson, Nicholas S.; Siefkes, Michael J.; Wagner, C. Michael; Dawson, Heather; Wang, Huiyong; Steeves, Todd; Twohey, Michael; Li, Weiming
2013-01-01
Application of chemical cues to manipulate adult sea lamprey (Petromyzon marinus) behavior is among the options considered for new sea lamprey control techniques in the Laurentian Great Lakes. A male mating pheromone component, 7a,12a,24-trihydroxy-3-one-5a-cholan-24-sulfate (3kPZS), lures ovulated female sea lamprey upstream into baited traps in experimental contexts with no odorant competition. A critical knowledge gap is whether this single pheromone component influences adult sea lamprey behavior in management contexts containing free-ranging sea lampreys. A solution of 3kPZS to reach a final in-stream concentration of 10-12 mol·L-1 was applied to eight Michigan streams at existing sea lamprey traps over 3 years, and catch rates were compared between paired 3kPZS-baited and unbaited traps. 3kPZS-baited traps captured significantly more sexually immature and mature sea lampreys, and overall yearly trapping efficiency within a stream averaged 10% higher during years when 3kPZS was applied. Video analysis of a trap funnel showed that the likelihood of sea lamprey trap entry after trap encounter was higher when the trap was 3kPZS baited. Our approach serves as a model for the development of similar control tools for sea lamprey and other aquatic invaders.
Automated software development workstation
NASA Technical Reports Server (NTRS)
Prouty, Dale A.; Klahr, Philip
1988-01-01
A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.
NASA Technical Reports Server (NTRS)
1990-01-01
West Coast Netting, Inc.'s net of Hyperester twine, is made of three strands of fiber twisted together by a company-invented sophisticated twisting machine and process that maintain precisely the same tension on each strand. The resulting twine offers higher strength and improved abrasion resistance. The technology that created the Hyperester supertwine has found spinoff applications, first as an extra-efficient seine for tuna fishing, then as a capture net for law enforcement agencies. The newest one is as a deck for racing catamarans. Hyperester twine net has been used on most of the high performance racing catamarans of recent years, including the America's Cup Challenge boats. They are tough and hold up well in the continual exposure to sunlight and saltwater.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Wind speed affects prey-catching behaviour in an orb web spider.
Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas
2011-12-01
Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.
Wind speed affects prey-catching behaviour in an orb web spider
NASA Astrophysics Data System (ADS)
Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas
2011-12-01
Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.
Flow Distribution Measurement Feasibility in Supercritical CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Blake
2017-12-01
Supercritical CO 2 (sCO 2) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO 2 emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO 2 concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO 2 atmore » similar but reduced temperature and pressure conditions.« less
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozanich, Rich M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.
2007-09-15
Automated devices and methods for biological sample preparation often utilize surface functionalized microbeads (superparamagnetic or non-magnetic) to allow capture, purification and pre-concentration of trace amounts of proteins, cells, or nucleic acids (DNA/RNA) from complex samples. We have developed unique methods and hardware for trapping either magnetic or non-magnetic functionalized beads that allow samples and reagents to be efficiently perfused over a micro-column of beads. This approach yields enhanced mass transport and up to 5-fold improvements in assay sensitivity or speed, dramatically improving assay capability relative to assays conducted in more traditional “batch modes” (i.e., in tubes or microplate wells). Summarymore » results are given that highlight the analytical performance improvements obtained for automated microbead processing systems utilizing novel microbead trap/flow-cells for various applications, including: 1) simultaneous capture of multiple cytokines using an antibody-coupled polystyrene bead assay with subsequent flow cytometry detection; 2) capture of nucleic acids using oligonucleotide coupled polystyrene beads with flow cytometry detection; and 3) capture of Escherichia coli 0157:H7 (E. coli) from 50 mL sample volumes using antibody-coupled superparamagnetic microbeads with subsequent culturing to assess capture efficiency.« less
NASA Astrophysics Data System (ADS)
Hsu, Chiao-Peng; Lin, Yu-Min; Chen, Po-Yu
2015-04-01
Carnivorous pitcher plants of the genus Nepenthes have evolved specialized leaves fulfilling the multi-functions of attracting, capturing, retaining and digesting the prey, mostly arthropods. Different capturing mechanisms have been proposed and discussed in previous works. The most important capture mechanism is the unique super-hydrophilic surface properties of the peristome. The combination of a hierarchical surface structure and nectar secretions results in an exceptional water-lubricated trapping system. Anisotropic and unidirectional wettability is attributed to the ridge-like surface and epidermal folding. The three-dimensional plate-like wax crystals in the hydrophobic waxy zone can further prevent the prey from escaping. The captured prey are then digested in the hydrophilic digestive zone. The hybrid species Nepenthes × Miranda was investigated in this study. The surface morphology and hierarchical microstructure were characterized by scanning electron microscope. Contact angle measurement and wetting efficiency tests were performed to determine the wettability of the peristome under fresh, nectar-free and sucrose-coated conditions with controlled temperature and humidity. The results showed that sucrose-coated peristome surfaces possess the best wetting efficiency. The structure-property-function relationship and the capturing mechanism of Nepenthes were elucidated, which could further lead to the design and synthesis of novel bio-inspired surfaces and potential applications.
Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage
NASA Astrophysics Data System (ADS)
Yang, Jae Hwan; Cho, Yong-Jun; Shin, Jin Myeong; Yim, Man-Sung
2015-10-01
Efficient capture and stable storage of the long-lived iodine-129 (129I), released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi2S3 within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities (up to 540 mg-I/g-sorbent), which benefitted from high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI3 compound. Iodine physisorption was effectively suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement. Furthermore, a chemically durable iodine-bearing material was made with a facile post-sorption process, during which the iodine-incorporated phase was changed from BiI3 to chemically durable Bi5O7I. Thus, our results showed that both efficient capture and stabilization of 129I would be possible with the bismuth-embedded SBA-15, in contrast to other sorbents mainly focused on iodine capture.
NASA Astrophysics Data System (ADS)
Balakin, V. V.; Vorobev, N. S.; Berkaev, D. V.; Glukhov, S. A.; Gornostaev, P. B.; Dorokhov, V. L.; Chao, Ma Xiao; Meshkov, O. I.; Nikiforov, D. A.; Shashkov, E. V.; Emanov, F. A.; Astrelina, K. V.; Blinov, M. F.; Borin, V. M.
2018-03-01
The efficiency of injection from a linear accelerator into the damping ring of the BINP injection complex has been experimentally studied. The estimations of the injection efficiency are in good agreement with the experimental results. Our method of increasing the capture efficiency can enhance the productivity of the injection complex by a factor of 1.5-2.
ERIC Educational Resources Information Center
Woods, Charlotte
2012-01-01
This article presents an original application of Q methodology in investigating the challenging arena of emotion in the Higher Education (HE) workplace. Q's strength lies in capturing holistic, subjective accounts of complex and contested phenomena but is unusual in employing a statistical procedure within an interpretivist framework. Here Q is…
CliniProteus: A flexible clinical trials information management system
Mathura, Venkatarajan S; Rangareddy, Mahendiranath; Gupta, Pankaj; Mullan, Michael
2007-01-01
Clinical trials involve multi-site heterogeneous data generation with complex data input-formats and forms. The data should be captured and queried in an integrated fashion to facilitate further analysis. Electronic case-report forms (eCRF) are gaining popularity since it allows capture of clinical information in a rapid manner. We have designed and developed an XML based flexible clinical trials data management framework in .NET environment that can be used for efficient design and deployment of eCRFs to efficiently collate data and analyze information from multi-site clinical trials. The main components of our system include an XML form designer, a Patient registration eForm, reusable eForms, multiple-visit data capture and consolidated reports. A unique id is used for tracking the trial, site of occurrence, the patient and the year of recruitment. Availability http://www.rfdn.org/bioinfo/CTMS/ctms.html. PMID:21670796
Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO2 Capture.
Yuan, Jianwei; Zhu, Haipeng; Sun, Jiajia; Mao, Yangyang; Liu, Gongping; Jin, Wanqin
2017-11-08
Because of the high separation performance and easy preparation, mixed-matrix membranes (MMMs) consisting of metal-organic frameworks have received much attention. In this article, we report a novel ZIF-300/PEBA MMM consisting of zeolite imidazolate framework (ZIF-300) crystals and polyether block amide (PEBA) matrix. The ZIF-300 crystal size was effectively reduced by optimizing the hydrothermal reaction condition from ∼15 to ∼1 μm. The morphology and physicochemical and sorption properties of the synthesized ZIF-300 crystals and as-prepared ZIF-300/PEBA MMMs were systematically studied. The results showed that ZIF-300 crystals with a size of ∼1 μm maintained excellent preferential CO 2 sorption over N 2 without degradation of the crystal structure in the MMMs. As a result, uniformly incorporated ZIF-300 crystals highly enhanced both the CO 2 permeability and the CO 2 /N 2 selectivity of pure PEBA membrane. The optimized ZIF-300-PEBA MMMs with a ZIF-300 loading of 30 wt % exhibited a high and stable CO 2 permeability of 83 Barrer and CO 2 /N 2 selectivity of 84, which are 59.2% and 53.5% higher than pure PEBA membrane, respectively. The obtained performance surpassed the upper bound of state-of-the-art membranes for CO 2 /N 2 separation. This work demonstrated that the proposed ZIF-300/PEBA MMM could be a potential candidate for an efficient CO 2 capture process.
Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2
NASA Astrophysics Data System (ADS)
Liu, Chongming; Nishshanka, Upul; Attygalle, Athula B.
2016-05-01
The anilide anion ( m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion ( m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion ( m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective "cooling" gas and reduces the internal energy of reactant ions.
Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency
NASA Astrophysics Data System (ADS)
Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.
2011-05-01
This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.
Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Caraher, Joel; Chen, Wei
2015-03-31
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhili; Chen, Shihua; Li, Yonghe
2014-09-15
Sodium ions of TNWs were exchanged with hydrogen ions, and this protocol was very suitable for capturing high density of cobalt ions. Meanwhile, the fabricated Co{sub 3}O{sub 4}/TNWs nano-material presented a highly catalytic and stable activity for dye degradation. - Highlights: • Co{sub 3}O{sub 4} nanoparticles were deposited on the pretreated TNWs surface. • The TNWs treated by hydrogen ions captures higher density of cobalt ions. • The Co{sub 3}O{sub 4}/TNWs catalyst possesses highly efficiency for dyes degradation with oxone. - Abstract: In this paper, we reported a recyclable and highly active porous catalyst of titanate nanowires (TNWs) coated withmore » well-distributed Co{sub 3}O{sub 4} nanoparticles (NPs) (Co{sub 3}O{sub 4}/TNWs). Sodium ions of TNWs were exchanged with hydrogen ions in the dilute nitric acid, and this protocol was very suitable for capturing cobalt ions. X-ray diffraction (XRD) demonstrated the existence of Co{sub 3}O{sub 4} phase with unique lattice planes, such as (2 2 0), (3 1 1) and (5 1 1). Electron microscopes (FE-SEM and TEM) indicated that the Co{sub 3}O{sub 4} NPs with an average diameter of 22 ± 3 nm were coated uniformly on TNWs surface (average diameter: 37 ± 5.5 nm), and the Co{sub 3}O{sub 4} NPs mainly exposed their (2 2 0) and (2 2 2) active planes. XPS analysis confirms the formation of Co{sub 3}O{sub 4} phase by the presence of Co 2p peaks at 780.1 eV (2p 3/2) and 795.5 eV (2p 1/2). Methylene blue (MB) and other organic dyes (rhodamine B (RhB) and methyl orange (MO)) were chosen as target compounds for catalytic degradation under indoor scattering light. Compared to the original Co{sub 3}O{sub 4}/TNWs catalyst, the catalytic efficiency of nanoscaled catalyst with oxone for MB was about 15 times higher, and the MB solution (10 mg L{sup −1}) was completely degraded within 8 min. The catalytic activity of recycled catalyst used in the sixth run still remained very active, and the degradation time for MB was only 16 min. The nanosized catalyst also had a high activity for dyes of RhB (10 mg L{sup −1}) and MO (10 mg L{sup −1}), as the degradation efficiencies of RhB and MO after 10 min of contact time were about 90.2% and 92.6%, respectively.« less
Peterson, James T.; Scheerer, Paul D.; Clements, Shaun
2015-01-01
Desert springs are sensitive aquatic ecosystems that pose unique challenges to natural resource managers and researchers. Among the most important of these is the need to accurately quantify population parameters for resident fish, particularly when the species are of special conservation concern. We evaluated the efficiency of baited minnow traps for estimating the abundance of two at-risk species, Foskett Speckled Dace Rhinichthys osculus ssp. and Borax Lake Chub Gila boraxobius, in desert spring systems in southeastern Oregon. We evaluated alternative sample designs using simulation and found that capture–recapture designs with four capture occasions would maximize the accuracy of estimates and minimize fish handling. We implemented the design and estimated capture and recapture probabilities using the Huggins closed-capture estimator. Trap capture probabilities averaged 23% and 26% for Foskett Speckled Dace and Borax Lake Chub, respectively, but differed substantially among sample locations, through time, and nonlinearly with fish body size. Recapture probabilities for Foskett Speckled Dace were, on average, 1.6 times greater than (first) capture probabilities, suggesting “trap-happy” behavior. Comparison of population estimates from the Huggins model with the commonly used Lincoln–Petersen estimator indicated that the latter underestimated Foskett Speckled Dace and Borax Lake Chub population size by 48% and by 20%, respectively. These biases were due to variability in capture and recapture probabilities. Simulation of fish monitoring that included the range of capture and recapture probabilities observed indicated that variability in capture and recapture probabilities in time negatively affected the ability to detect annual decreases by up to 20% in fish population size. Failure to account for variability in capture and recapture probabilities can lead to poor quality data and study inferences. Therefore, we recommend that fishery researchers and managers employ sample designs and estimators that can account for this variability.
NASA Astrophysics Data System (ADS)
Tolfree, K. J. D.; Wyse, R. F. G.
2014-03-01
Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.
Pang, Simon H; Lively, Ryan P; Jones, Christopher W
2018-05-29
Aminopolymer-based solid sorbents have been widely investigated for CO2 capture from dilute streams such as flue gas or ambient air. However, the oxidative stability of the most well-studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here we demonstrate the use of linear poly(propylenimine) (PPI), synthesized via a simple cationic ring-opening polymerization, as a more oxidatively-stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites is investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the trade-off between adsorption capacity and sorption site accessibility, which may be expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites are more efficient at CO2 capture and retain 65-83% of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40% retention for linear PEI. Additionally, we demonstrate long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable, solid adsorbents in commercial applications for CO2 capture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...
40 CFR 63.3544 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... system, and coating solvent flash-off, curing, and drying occurs within the capture system. For example, the criterion is not met if parts enter the open shop environment when being moved between a spray... time required for a single part to go from the beginning to the end of production, and includes drying...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... solvent flash-off, curing, and drying occurs within the capture system; and the removal or evaporation of..., this criterion is not met if parts enter the open shop environment when being moved between a spray... surface preparation activities and drying and curing time. (c) Liquid-to-uncaptured-gas protocol using a...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... coating, curing, and drying occurs within the capture system; and the removal or evaporation of cleaning... criterion is not met if parts enter the open shop environment when being moved between a spray booth and a... activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a temporary total enclosure...
Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...
USDA-ARS?s Scientific Manuscript database
Attractant-based traps are a cornerstone of detection, delimitation and eradication programs for tephritid fruit flies and other pests. The ideal trap and lure combination has high attraction (it brings pest tephritids to the trap from a distance) and high capture efficiency (it has a high probabili...
Guedes, Elizângela; de Azevedo Prata, Márcia Cristina; dos Reis, Eder Sebastião; Cançado, Paulo Henrique Duarte; Leite, Romário Cerqueira
2012-12-01
Traps using carbon dioxide (CO(2)) as a chemical attractant are known to be effective when capturing nymphs and adults of some free-living tick species such as Amblyomma cajennense and Amblyomma parvum. Despite the fact that the main source of CO(2) is dry ice, the chemical trap which uses 20 % lactic acid (C(3)H(6)O(3)) and calcium carbonate (CaCO(3)) has been tested as an alternative source of CO(2) whenever it is difficult to obtain dry ice. The objective of this paper was to test and compare the efficiency of these two models of traps during the study of population dynamics of A. cajennense and Amblyomma dubitatum in Coronel Pacheco, Minas Gerais, Brazil. Within the period comprising May 2006 to April 2008, eight CO(2) traps, of which four were dry ice and four chemical, were put in the pasture every 14 days at preestablished areas over a 1.0-m(2) white cotton flannel cloth with a capture dispositive which constituted of double-sided adhesive tapes fixed onto the four corners of the flannels. On every collection day, a cotton flannel without any chemical attractant was placed in the same area of the pasture to become an instrument to control the traps' capture efficiency. After 1 h, the white flannels were collected and placed in plastic bags for later identification and counting of the ticks. A total of 2,133 nymphs of Amblyomma sp., 328 adults of A. cajennense, and 292 adults of A. dubitatum were collected. Out of this total, the dry ice traps captured 1,087 nymphs (51 %), 188 A. cajennense (58.2 %), and 151 A. dubitatum (53 %), while the chemical traps captured 1,016 nymphs (47.6 %), 133 A. cajennense (41 %), and 133 A. dubitatum (46.5 %); 30 nymphs (1.4 %), 7 A. cajennense (0.8 %), and 8 A. dubitatum (0.5 %) were found on the control flannel. The capture potentials of ticks, nymphs, and adults, by the two models of traps tested, were statistically similar (p > 0.05). These results confirm the efficiency of the chemical trap enabling its use in areas of either difficult access or too distant from a dry ice supplier as is the case of forest areas where studies about ixodological fauna are generally carried out.
Encapsulated liquid sorbents for carbon dioxide capture
NASA Astrophysics Data System (ADS)
Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.
2015-02-01
Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.
Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications
NASA Astrophysics Data System (ADS)
Keyrouz, Shady; Visser, Huib
2013-12-01
This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT
NASA Technical Reports Server (NTRS)
Jain, Bobby; Morris, Jill; Sharpe, Kelly
2004-01-01
Johnson Space Center's (JSC's) indentured parts list (IPL) maintenance and parts assembly capture tool (IMPACT) is an easy-to-use graphical interface for viewing and maintaining the complex assembly hierarchies of large databases. IMPACT, already in use at JSC to support the International Space Station (ISS), queries, updates, modifies, and views data in IPL and associated resource data, functions that it can also perform, with modification, for any large commercial database. By enabling its users to efficiently view and manipulate IPL hierarchical data, IMPACT performs a function unlike that of any other tool. Through IMPACT, users will achieve results quickly, efficiently, and cost effectively.
Search for Neutrinos from the Sun
DOE R&D Accomplishments Database
Davis, Raymond Jr.
1968-09-01
A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.
Kumar, Anoop; Gupta, S K; Kale, S R
2007-04-01
Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nicholas Ray; Watson, Tony Leroy
Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outletmore » gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.« less
Wang, Jidong; Lu, Wenjing; Tang, Chuanhao; Liu, Yi; Sun, Jiashu; Mu, Xuan; Zhang, Lin; Dai, Bo; Li, Xiaoyan; Zhuo, Hailong; Jiang, Xingyu
2015-12-01
We develop an inertial-based microfluidic cell sorter combined with an integrated membrane filter, allowing for size-based, label-free, and high-efficiency separation and enrichment of circulating tumor cells (CTCs) in whole blood. The cell sorter is composed of a double spiral microchannel that hydrodynamically focuses and separates large CTCs from small blood cells. The focused CTCs with the equilibrium position around the midline of microchannel are further captured and enriched by a membrane filter (pore size of 8 μm) attached at the middle outlet. This integrated microfluidic device can process 1 mL of whole blood containing spiked tumor cells (A549, human lung adenocarcinoma epithelial cell line) within 15 min, with the capture efficiency of 74.4% at the concentration as low as tens of A549 cells per mL of whole blood. This microfluidic cell sorter is further adopted for isolation of CTCs from peripheral blood samples of patients with metastatic lung cancer. The immunostaining and CK-19 mRNA detection are applied for identification of captured CTCs, showing that our method can detect 90% of metastatic lung cancer patients before therapy, whereas the commercially used system can only detect 40% of the same patients. We also use the expression of CK-19 mRNA from captured CTCs as an indicator for monitoring the therapeutic efficiency, which correlates well with X-ray computed tomography (CT) assessment of the disease.
Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions
NASA Astrophysics Data System (ADS)
Itin, A. P.; Katsnelson, M. I.
2018-05-01
Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.
Variability in clubhead presentation characteristics and ball impact location for golfers' drives.
Betzler, Nils F; Monk, Stuart A; Wallace, Eric S; Otto, Steve R
2012-01-01
The purpose of the present study was to analyse the variability in clubhead presentation to the ball and the resulting ball impact location on the club face for a range of golfers of different ability. A total of 285 male and female participants hit multiple shots using one of four proprietary drivers. Self-reported handicap was used to quantify a participant's golfing ability. A bespoke motion capture system and user-written algorithms was used to track the clubhead just before and at impact, measuring clubhead speed, clubhead orientation, and impact location. A Doppler radar was used to measure golf ball speed. Generally, golfers of higher skill (lower handicap) generated increased clubhead speed and increased efficiency (ratio of ball speed to clubhead speed). Non-parametric statistical tests showed that low-handicap golfers exhibit significantly lower variability from shot to shot in clubhead speed, efficiency, impact location, attack angle, club path, and face angle compared with high-handicap golfers.
Development of Uav Photogrammetry Method by Using Small Number of Vertical Images
NASA Astrophysics Data System (ADS)
Kunii, Y.
2018-05-01
This new and efficient photogrammetric method for unmanned aerial vehicles (UAVs) requires only a few images taken in the vertical direction at different altitudes. The method includes an original relative orientation procedure which can be applied to images captured along the vertical direction. The final orientation determines the absolute orientation for every parameter and is used for calculating the 3D coordinates of every measurement point. The measurement accuracy was checked at the UAV test site of the Japan Society for Photogrammetry and Remote Sensing. Five vertical images were taken at 70 to 90 m altitude. The 3D coordinates of the measurement points were calculated. The plane and height accuracies were ±0.093 m and ±0.166 m, respectively. These values are of higher accuracy than the results of the traditional photogrammetric method. The proposed method can measure 3D positions efficiently and would be a useful tool for construction and disaster sites and for other field surveying purposes.
Scintillating Quantum Dots for Imaging X-Rays (SQDIX) for Aircraft Inspection
NASA Technical Reports Server (NTRS)
Burke, E. R.; DeHaven, S. L.; Williams, P. A.
2015-01-01
Scintillation is the process currently employed by conventional X-ray detectors to create X-ray images. Scintillating quantum dots (StQDs) or nano-crystals are novel, nanometer-scale materials that upon excitation by X-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmentally friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread X-ray imaging. Initial work on the scintillating quantum dots for imaging X-rays (SQDIX) system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency of a StQDs based imaging sensor.
Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection
NASA Technical Reports Server (NTRS)
Burke, Eric (Principal Investigator); Williams, Phillip (Principal Investigator); Dehaven, Stan
2015-01-01
Scintillation is the process currently employed by conventional x-ray detectors to create x-ray images. Scintillating quantum dots or nano-crystals (StQDs) are a novel, nanometer-scale material that upon excitation by x-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmental friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread x-ray imaging. Initial work on the SQDIX system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency a StQDs based imaging sensor.
NASA Astrophysics Data System (ADS)
Monavarian, M.; Rashidi, A.; Aragon, A. A.; Nami, M.; Oh, S. H.; DenBaars, S. P.; Feezell, D.
2018-05-01
InGaN/GaN light-emitting diodes (LEDs) with large modulation bandwidths are desirable for visible-light communication. Along with modulation speed, the consideration of the internal quantum efficiency (IQE) under operating conditions is also important. Here, we report the modulation characteristics of semipolar (20 2 ¯ 1 ¯ ) InGaN/GaN (LEDs) with single-quantum well (SQW) and multiple-quantum-well (MQW) active regions grown on free-standing semipolar GaN substrates with peak internal quantum efficiencies (IQEs) of 0.93 and 0.73, respectively. The MQW LEDs exhibit on average about 40-80% higher modulation bandwidth, reaching 1.5 GHz at 13 kA/cm2, but about 27% lower peak IQE than the SQW LEDs. We extract the differential carrier lifetimes (DLTs), RC parasitics, and carrier escape lifetimes and discuss their role in the bandwidth and IQE characteristics. A coulomb-enhanced capture process is shown to rapidly reduce the DLT of the MQW LED at high current densities. Auger recombination is also shown to play little role in increasing the speed of the LEDs. Finally, we investigate the trade-offs between the bandwidth and efficiency and introduce the bandwidth-IQE product as a potential figure of merit for optimizing speed and efficiency in InGaN/GaN LEDs.
Role of Pectoral Fin Flexibility in Robotic Fish Performance
NASA Astrophysics Data System (ADS)
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.
Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture
NASA Astrophysics Data System (ADS)
Chen, Chao; Kim, Su-Sung; Cho, Won-Seung; Ahn, Wha-Seung
2015-03-01
X-type zeolite with mesoporosity (Meso-13X) was prepared by using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride as a mesopore-generating agent, and then modified with polyethylenimine (PEI) through a physical impregnation method to form a hybrid material (Meso-13X-PEI). Meso-13X with and without PEI was characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption isotherm at 77 K, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Meso-13X-PEI exhibited higher CO2 capture capacity than PEI-modified zeolite 13X owing to its larger pore volume that accommodates more amine species inside the pore structure, and the mesoporosity also can facilitate dispersion of PEI molecules inside the pore channels. Compared to zeolite 13X, Meso-13X-PEI showed much higher CO2 capture selectivity (against N2) as well as higher CO2 capture capacity at relatively high temperature (e.g. 100 °C) and dilute CO2 concentration relevant to post-combustion conditions.
New objects do not capture attention without a sensory transient.
Hollingworth, Andrew; Simons, Daniel J; Franconeri, Steven L
2010-07-01
Attention capture occurs when a stimulus event involuntarily recruits attention. The abrupt appearance of a new object is perhaps the most well-studied attention-capturing event, yet there is debate over the root cause of this capture. Does a new object capture attention because it involves the creation of a new object representation or because its appearance creates a characteristic luminance transient? The present study sought to resolve this question by introducing a new object into a search display, either with or without a unique luminance transient. Contrary to the results of a recent study (Davoli, Suszko, & Abrams, 2007), when the new object's transient was masked by a brief interstimulus interval introduced between the placeholder and search arrays, a new object did not capture attention. Moreover, when a new object's transient was masked, participants could not locate a new object efficiently even when that was their explicit goal. Together, these data suggest that luminance transient signals are necessary for attention capture by new objects.
Numerical study on air turbines with enhanced techniques for OWC wave energy conversion
NASA Astrophysics Data System (ADS)
Cui, Ying; Hyun, Beom-Soo; Kim, Kilwon
2017-10-01
In recent years, the oscillating water column (OWC) wave energy converter, which can capture wave energy from the ocean, has been widely applied all over the world. As the essential part of the OWC system, the impulse and Wells turbines are capable of converting the low pressure pneumatic energy into the mechanical shaft power. As an enhanced technique, the design of endplate or ring attached to the blade tip is investigated numerically in this paper. 3D numerical models based on a CFD-software FLUENT 12.0 are established and validated by the corresponding experimental results from the reports of Setoguchi et al. (2004) and Takao et al. (2001). Then the flow fields and non-dimensional evaluating coefficients are calculated and analyzed under steady conditions. Results show that the efficiency of impulse turbine with ring can reach up to 0.49 when ϕ=1, which is 4% higher than that in the cases for the endplate-type and the original one. And the ring-type Wells turbine with fixed guide vanes shows the best performance with the maximal efficiency of 0.55, which is 22% higher than that of the original one. In addition, the quasi-steady analysis is used to calculate the mean efficiency and output-work of a wave cycle under sinusoidal flow condition. Taking all together, this study provides support for structural optimization of impulse turbine and Wells turbine in the future.
Coffey, Jacob W; Meliga, Stefano C; Corrie, Simon R; Kendall, Mark A F
2016-04-01
Surface modified microprojection arrays are a needle-free alternative to capture circulating biomarkers from the skin in vivo for diagnosis. The concentration and turnover of biomarkers in the interstitial fluid, however, may limit the amount of biomarker that can be accessed by microprojection arrays and ultimately their capture efficiency. Here we report that microprojection array insertion induces protein extravasation from blood vessels and increases the concentration of biomarkers in skin, which can synergistically improve biomarker capture. Regions of blood vessels in skin were identified in the upper dermis and subcutaneous tissue by multi-photon microscopy. Insertion of microprojection array designs with varying projection length (40-190 μm), density (5000-20,408 proj.cm(-2)) and array size (4-36 mm(2)) did not affect the degree of extravasation. Furthermore, the location of extravasated protein did not correlate with projection penetration to these highly vascularised regions, suggesting extravasation was not caused by direct puncture of blood vessels. Biomarker extravasation was also induced by dynamic application of flat control surfaces, and varied with the impact velocity, further supporting this conclusion. The extravasated protein distribution correlated well with regions of high mechanical stress generated during insertion, quantified by finite element models. Using this approach to induce extravasation prior to microprojection array-based biomarker capture, anti-influenza IgG was captured within a 2 min application time, demonstrating that extravasation can lead to rapid biomarker sampling and significantly improved microprojection array capture efficiency. These results have broad implications for the development of transdermal devices that deliver to and sample from the skin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Source Update Capture in Information Agents
NASA Technical Reports Server (NTRS)
Ashish, Naveen; Kulkarni, Deepak; Wang, Yao
2003-01-01
In this paper we present strategies for successfully capturing updates at Web sources. Web-based information agents provide integrated access to autonomous Web sources that can get updated. For many information agent applications we are interested in knowing when a Web source to which the application provides access, has been updated. We may also be interested in capturing all the updates at a Web source over a period of time i.e., detecting the updates and, for each update retrieving and storing the new version of data. Previous work on update and change detection by polling does not adequately address this problem. We present strategies for intelligently polling a Web source for efficiently capturing changes at the source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...
Code of Federal Regulations, 2014 CFR
2014-07-01
... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...
Code of Federal Regulations, 2011 CFR
2011-07-01
... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...
Code of Federal Regulations, 2010 CFR
2010-07-01
... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...
From Förster resonance energy transfer to coherent resonance energy transfer and back
NASA Astrophysics Data System (ADS)
Clegg, Robert M.; Sener, Melih; Govindjee, .
2010-02-01
Photosynthesis converts solar energy into chemical energy. It provides food and oxygen; and, in the future, it could directly provide bioenergy or renewable energy sources, such as bio-alcohol or hydrogen. To exploit such a highly efficient capture of energy requires an understanding of the fundamental physics. The process is initiated by photon absorption, followed by highly efficient and extremely rapid transfer and trapping of the excitation energy. We first review early fluorescence experiments on in vivo energy transfer, which were undertaken to understand the mechanism of such efficient energy capture. A historical synopsis is given of experiments and interpretations by others that dealt with the question of how energy is transferred from the original location of photon absorption in the photosynthetic antenna system into the reaction centers, where it is converted into useful chemical energy. We conclude by examining the physical basis of some current models concerning the roles of coherent excitons and incoherent hopping in the exceptionally efficient transfer of energy into the reaction center.
See, Ya Hui Michelle; Petty, Richard E; Fabrigar, Leandre R
2013-08-01
We proposed that (a) processing interest for affective over cognitive information is captured by meta-bases (i.e., the extent to which people subjectively perceive themselves to rely on affect or cognition in their attitudes) and (b) processing efficiency for affective over cognitive information is captured by structural bases (i.e., the extent to which attitudes are more evaluatively congruent with affect or cognition). Because processing speed can disentangle interest from efficiency by being manifest as longer or shorter reading times, we hypothesized and found that more affective meta-bases predicted longer affective than cognitive reading time when processing efficiency was held constant (Study 1). In contrast, more affective structural bases predicted shorter affective than cognitive reading time when participants were constrained in their ability to allocate resources deliberatively (Study 2). When deliberation was neither encouraged nor constrained, effects for meta-bases and structural bases emerged (Study 3). Implications for affective-cognitive processing and other attitudes-relevant constructs are discussed.
Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode
NASA Astrophysics Data System (ADS)
Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik
2016-05-01
Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.
Capture of irregular satellites at Jupiter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio
The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encountersmore » with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.« less
A comparative analysis of exome capture.
Parla, Jennifer S; Iossifov, Ivan; Grabill, Ian; Spector, Mona S; Kramer, Melissa; McCombie, W Richard
2011-09-29
Human exome resequencing using commercial target capture kits has been and is being used for sequencing large numbers of individuals to search for variants associated with various human diseases. We rigorously evaluated the capabilities of two solution exome capture kits. These analyses help clarify the strengths and limitations of those data as well as systematically identify variables that should be considered in the use of those data. Each exome kit performed well at capturing the targets they were designed to capture, which mainly corresponds to the consensus coding sequences (CCDS) annotations of the human genome. In addition, based on their respective targets, each capture kit coupled with high coverage Illumina sequencing produced highly accurate nucleotide calls. However, other databases, such as the Reference Sequence collection (RefSeq), define the exome more broadly, and so not surprisingly, the exome kits did not capture these additional regions. Commercial exome capture kits provide a very efficient way to sequence select areas of the genome at very high accuracy. Here we provide the data to help guide critical analyses of sequencing data derived from these products.
USDA-ARS?s Scientific Manuscript database
Continued improvements in feed efficiency are essential for a thriving and sustainable dairy industry. Gross efficiency (GrEff) is defined as the energy captured in milk and body tissues as a percentage of gross energy intake. Our objective was to characterize the relationships among component tra...
Binary video codec for data reduction in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias
2013-02-01
Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.
Durand, Leilani Z; Goldstein, Guillermo
2001-02-01
Photosynthetic gas exchange, chlorophyll fluorescence, nitrogen use efficiency, and related leaf traits of native Hawaiian tree ferns in the genus Cibotium were compared with those of the invasive Australian tree fern Sphaeropteris cooperi in an attempt to explain the higher growth rates of S. cooperi in Hawaii. Comparisons were made between mature sporophytes growing in the sun (gap or forest edge) and in shady understories at four sites at three different elevations. The invasive tree fern had 12-13 cm greater height increase per year and approximately 5 times larger total leaf surface area per plant compared to the native tree ferns. The maximum rates of photosynthesis of S. cooperi in the sun and shade were significantly higher than those of the native Cibotium spp (for example, 11.2 and 7.1 µmol m -2 s -1 , and 5.8 and 3.6 µmol m -2 s -1 respectively for the invasive and natives at low elevation). The instantaneous photosynthetic nitrogen use efficiency of the invasive tree fern was significantly higher than that of the native tree ferns, but when integrated over the life span of the frond the differences were not significant. The fronds of the invasive tree fern species had a significantly shorter life span than the native tree ferns (approximately 6 months and 12 months, respectively), and significantly higher nitrogen content per unit leaf mass. The native tree ferns growing in both sun and shade exhibited greater photoinhibition than the invasive tree fern after being experimentally subjected to high light levels. The native tree ferns recovered only 78% of their dark-acclimated quantum yield (F v /F m ), while the invasive tree fern recovered 90% and 86% of its dark-acclimated F v /F m when growing in sun and shade, respectively. Overall, the invasive tree fern appears to be more efficient at capturing and utilizing light than the native Cibotium species, particularly in high-light environments such as those associated with high levels of disturbance.
40 CFR 63.3965 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not captured by the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... Control Efficiency/outlet Concentration Option § 63.3556 How do I establish the emission capture system...
Cui, Guokai; Wang, Congmin; Zheng, Junjie; Guo, Yan; Luo, Xiaoyan; Li, Haoran
2012-03-07
Two kinds of dual functionalized ionic liquids with ether-functionalized cations and tetrazolate anions were designed, prepared, and used for SO(2) capture, which exhibit an extremely high SO(2) capacity and excellent reversibility through a combination of chemical and physical absorption. This journal is © The Royal Society of Chemistry 2012
Reversible capture of SO2 through functionalized ionic liquids.
Yang, Dezhong; Hou, Minqiang; Ning, Hui; Ma, Jun; Kang, Xinchen; Zhang, Jianling; Han, Buxing
2013-07-01
Emission of SO2 in flue gas from the combustion of fossil fuels leads to severe environmental problems. Exploration of green and efficient methods to capture SO2 is an interesting topic, especially at lower SO2 partial pressures. In this work, ionic liquids (ILs) 1-(2-diethylaminoethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Et2 NEMim][Tf2 N]) and 1-(2-diethylaminoethyl)-3-methylimidazolium tetrazolate ([Et2 NEMim][Tetz]) were synthesized. The performances of the two ILs to capture SO2 were studied under different conditions. It was demonstrated that the ILs were very efficient for SO2 absorption. The [Et2 NEMim][Tetz] IL designed in this work could absorb 0.47 g(SO2)g(IL)(-1) at 0.0101 MPa SO2 partial pressure, which is the highest capacity reported to date under the same conditions. The main reason for the large capacity was that both the cation and the anion could capture SO2 chemically. In addition, the IL could easily be regenerated, and the very high absorption capacity and rapid absorption/desorption rates were not changed over five repeated cycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.
2016-01-01
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...
2016-12-05
Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less
NASA Astrophysics Data System (ADS)
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.
2016-12-01
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A
2016-12-20
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Kamalakshakurup, Gopakumar; Lee, Abraham P
2017-12-05
Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.
A general moment expansion method for stochastic kinetic models
NASA Astrophysics Data System (ADS)
Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.
2013-05-01
Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.
What makes a competent clinical teacher?
Wealthall, Stephen; Henning, Marcus
2012-01-01
Background Clinical teaching competency is a professional necessity ensuring that clinicians’ knowledge, skills and attitudes are effectively transmitted from experts to novices. The aim of this paper is to consider how clinical skills are transmitted from a historical and reflective perspective and to link these ideas with student and teacher perceptions of competence in clinical teaching. Methods The reflections are informed by a Delphi process and professional development survey designed to capture students’ and clinicians’ ideas about the attributes of a competent clinical teacher. In addition, the survey process obtained information on the importance and ‘teachability’ of these characteristics. Results Four key characteristics of the competent teacher emerged from the Delphi process: clinically competent, efficient organizer, group communicator and person–centred. In a subsequent survey, students were found to be more optimistic about the ‘teachability’ of these characteristics than clinicians and scored the attribute of person-centredness higher than clinicians. Clinicians, on the other hand, ascribed higher levels of importance to clinical competency, efficient organization and group communication than students. Conclusions The Delphi process created a non-threatening system for gathering student and clinician expectations of teachers and created a foundation for developing methods for evaluating clinical competency. This provided insights into differences between teachers’ and students’ expectations, their importance, and professional development. PMID:26451184
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
Electrofuels: A New Paradigm for Renewable Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrado, Robert J.; Haynes, Chad A.; Haendler, Brenda E.
2013-01-01
Biofuels are by now a well-established component of the liquid fuels market and will continue to grow in importance for both economic and environmental reasons. To date, all commercial approaches to biofuels involve photosynthetic capture of solar radiation and conversion to reduced carbon; however, the low efficiency inherent to photosynthetic systems presents significant challenges to scaling. In 2009, the US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) created the Electrofuels program to explore the potential of nonphotosynthetic autotrophic organisms for the conversion of durable forms of energy to energy-dense, infrastructure-compatible liquid fuels. The Electrofuels approach expands the boundariesmore » of traditional biofuels and could offer dramatically higher conversion efficiencies while providing significant reductions in requirements for both arable land and water relative to photosynthetic approaches. The projects funded under the Electrofuels program tap the enormous and largely unexplored diversity of the natural world, and may offer routes to advanced biofuels that are significantly more efficient, scalable and feedstock-flexible than routes based on photosynthesis. Here, we describe the rationale for the creation of the Electrofuels program, and outline the challenges and opportunities afforded by chemolithoautotrophic approaches to liquid fuels.« less
Chumwangwapee, Sasiwimon; Chingsungnoen, Artit; Siri, Sineenat
2016-11-01
In forensic DNA analyses, biological specimens are collected and stored for subsequent recovery and analysis of DNA. A cost-effective and efficient DNA recovery approach is therefore a need. This study aims to produce a plasma modified cellulose-chitosan membrane (pCE-CS) that efficiently binds and retains DNA as a potential DNA collecting card. The pCE-CS membrane was produced by a phase separation of ionic liquid dissolving CE and CS in water with subsequent surface-modification by a two-step exposure of argon plasma and nitrogen gas. Through plasma modification, the pCE-CS membrane demonstrated better DNA retention after a washing process and higher rate of DNA recovery as compared with the original CE-CS membrane and the commercial FTA card. In addition, the pCE-CS membrane exhibited anti-bacterial properties against both Escherichia coli and Staphylococcus aureus. The results of this work suggest a potential function of the pCE-CS membrane as a DNA collecting card with a high recovery rate of captured DNA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Optical cell monitoring system for underwater targets
NASA Astrophysics Data System (ADS)
Moon, SangJun; Manzur, Fahim; Manzur, Tariq; Demirci, Utkan
2008-10-01
We demonstrate a cell based detection system that could be used for monitoring an underwater target volume and environment using a microfluidic chip and charge-coupled-device (CCD). This technique allows us to capture specific cells and enumerate these cells on a large area on a microchip. The microfluidic chip and a lens-less imaging platform were then merged to monitor cell populations and morphologies as a system that may find use in distributed sensor networks. The chip, featuring surface chemistry and automatic cell imaging, was fabricated from a cover glass slide, double sided adhesive film and a transparent Polymethlymetacrylate (PMMA) slab. The optically clear chip allows detecting cells with a CCD sensor. These chips were fabricated with a laser cutter without the use of photolithography. We utilized CD4+ cells that are captured on the floor of a microfluidic chip due to the ability to address specific target cells using antibody-antigen binding. Captured CD4+ cells were imaged with a fluorescence microscope to verify the chip specificity and efficiency. We achieved 70.2 +/- 6.5% capturing efficiency and 88.8 +/- 5.4% specificity for CD4+ T lymphocytes (n = 9 devices). Bright field images of the captured cells in the 24 mm × 4 mm × 50 μm microfluidic chip were obtained with the CCD sensor in one second. We achieved an inexpensive system that rapidly captures cells and images them using a lens-less CCD system. This microfluidic device can be modified for use in single cell detection utilizing a cheap light-emitting diode (LED) chip instead of a wide range CCD system.
Magnetic bead-quantum dot assay for detection of a biomarker for traumatic brain injury
NASA Astrophysics Data System (ADS)
Kim, Chloe; Searson, Peter C.
2015-10-01
Current diagnostic methods for traumatic brain injury (TBI), which accounts for 15% of all emergency room visits, are limited to neuroimaging modalities. The challenges of accurate diagnosis and monitoring of TBI have created the need for a simple and sensitive blood test to detect brain-specific biomarkers. Here we report on an assay for detection of S100B, a putative biomarker for TBI, using antibody-conjugated magnetic beads for capture of the protein, and antibody-conjugated quantum dots for optical detection. From Western Blot, we show efficient antigen capture and concentration by the magnetic beads. Using magnetic bead capture and quantum dot detection in serum samples, we show a wide detection range and detection limit below the clinical cut-off level.Current diagnostic methods for traumatic brain injury (TBI), which accounts for 15% of all emergency room visits, are limited to neuroimaging modalities. The challenges of accurate diagnosis and monitoring of TBI have created the need for a simple and sensitive blood test to detect brain-specific biomarkers. Here we report on an assay for detection of S100B, a putative biomarker for TBI, using antibody-conjugated magnetic beads for capture of the protein, and antibody-conjugated quantum dots for optical detection. From Western Blot, we show efficient antigen capture and concentration by the magnetic beads. Using magnetic bead capture and quantum dot detection in serum samples, we show a wide detection range and detection limit below the clinical cut-off level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05608j
USDA-ARS?s Scientific Manuscript database
Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but system...
This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...
Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture
Stolaroff, Joshuah K.; Bourcier, William L.
2014-01-01
Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less
Vortex lattices and defect-mediated viscosity reduction in active liquids
NASA Astrophysics Data System (ADS)
Slomka, Jonasz; Dunkel, Jorn
2016-11-01
Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.
Geometry-dependent viscosity reduction in sheared active fluids
NASA Astrophysics Data System (ADS)
Słomka, Jonasz; Dunkel, Jörn
2017-04-01
We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.
5-(Halomethyl)uridine derivatives as potential antitumor radiosensitizers: A DFT study
NASA Astrophysics Data System (ADS)
Wang, Shoushan; Zhang, Min; Liu, Peng; Xie, Shilei; Cheng, Faliang; Wang, Lishi
2018-01-01
Considering the fact that the efficiency of the uridine-5-methyl radical in producing cytotoxic DNA intrastrand cross-link lesions is greatly higher than that of the uridine-5-yl radical, the radiosensitizing action of 5-(halomethyl)uridines (5-XCH2U, X = F, Cl, or Br) is studied in the present work. It is found that 5-XCH2U has sufficient electron affinity to capture a pre-hydrated or a hydrated electron, and electron attachment leads to significantly facile X- elimination forming the uridine-5-methyl radical. All these three halogenated uridine derivatives are shown to be potential radiosensitizers, with their radiosensitizing abilities increased in an order 5-FCH2U < 5-ClCH2U ≈ 5-BrCH2U.
Liquefied Bleed for Stability and Efficiency of High Speed Inlets
NASA Technical Reports Server (NTRS)
Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.
2014-01-01
A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.
Policies to Enhance Prescribing Efficiency in Europe: Findings and Future Implications
Godman, Brian; Shrank, William; Andersen, Morten; Berg, Christian; Bishop, Iain; Burkhardt, Thomas; Garuoliene, Kristina; Herholz, Harald; Joppi, Roberta; Kalaba, Marija; Laius, Ott; Lonsdale, Julie; Malmström, Rickard E.; Martikainen, Jaana E.; Samaluk, Vita; Sermet, Catherine; Schwabe, Ulrich; Teixeira, Inês; Tilson, Lesley; Tulunay, F. Cankat; Vlahović-Palčevski, Vera; Wendykowska, Kamila; Wettermark, Bjorn; Zara, Corinne; Gustafsson, Lars L.
2010-01-01
Introduction: European countries need to learn from each other to address unsustainable increases in pharmaceutical expenditures. Objective: To assess the influence of the many supply and demand-side initiatives introduced across Europe to enhance prescribing efficiency in ambulatory care. As a result provide future guidance to countries. Methods: Cross national retrospective observational study of utilization (DDDs – defined daily doses) and expenditure (Euros and local currency) of proton pump inhibitors (PPIs) and statins among 19 European countries and regions principally from 2001 to 2007. Demand-side measures categorized under the “4Es” – education engineering, economics, and enforcement. Results: Instigating supply side initiatives to lower the price of generics combined with demand-side measures to enhance their prescribing is important to maximize prescribing efficiency. Just addressing one component will limit potential efficiency gains. The influence of demand-side reforms appears additive, with multiple initiatives typically having a greater influence on increasing prescribing efficiency than single measures apart from potentially “enforcement.” There are also appreciable differences in expenditure (€/1000 inhabitants/year) between countries. Countries that have not introduced multiple demand side measures to counteract commercial pressures to enhance the prescribing of generics have seen considerably higher expenditures than those that have instigated a range of measures. Conclusions: There are considerable opportunities for European countries to enhance their prescribing efficiency, with countries already learning from each other. The 4E methodology allows European countries to concisely capture the range of current demand-side measures and plan for the future knowing that initiatives can be additive to further enhance their prescribing efficiency. PMID:21833180
Bitome Essono, Paul Yannick; Dechaume-Moncharmont, François-Xavier; Mavoungou, Jacques; Obiang Mba, Régis; Duvallet, Gérard; Bretagnolle, François
2015-01-01
In order to minimize risks of pathogen transmission with the development of ecotourism in Gabon, a seasonal inventory has been performed in five contrasted biotopes in Ivindo (INP) and Moukalaba-Doudou (MDNP) National Parks. A total of 10,033 hematophagous flies were captured. The Glossinidae, with six different species identified, was the most abundant group and constitutes about 60% of the captured flies compared to the Stomoxys (6 species also identified) and Tabanidae with 28% and 12%, respectively. The Glossinidae showed a higher rate of capture in primary forest and in research camps. In INP, the Stomoxys showed a higher rate of capture in secondary forest and at village borders, whereas in MDNP the Stomoxys were captured more in the savannah area. Thus, each fly group seemed to reach maximum abundance in different habitats. The Glossinidae were more abundant in primary forest and near research camps while Stomoxys were more abundant in secondary forest and savannah. The Tabanidae did not show a clear habitat preference. PMID:26187781
Hybrid photosynthesis-powering biocatalysts with solar energy captured by inorganic devices.
Zhang, Tian; Tremblay, Pier-Luc
2017-01-01
The biological reduction of CO 2 driven by sunlight via photosynthesis is a crucial process for life on earth. However, the conversion efficiency of solar energy to biomass by natural photosynthesis is low. This translates in bioproduction processes relying on natural photosynthesis that are inefficient energetically. Recently, hybrid photosynthetic technologies with the potential of significantly increasing the efficiency of solar energy conversion to products have been developed. In these systems, the reduction of CO 2 into biofuels or other chemicals of interest by biocatalysts is driven by solar energy captured with inorganic devices such as photovoltaic cells or photoelectrodes. Here, we explore hybrid photosynthesis and examine the strategies being deployed to improve this biotechnology.
The Use of Lecture Capture and Student Performance in Physiology
ERIC Educational Resources Information Center
Hadgu, Rim Mekonnen; Huynh, Sophia; Gopalan, Chaya
2016-01-01
Lecture capture technology is fairly new and has gained interest among higher institutions, faculty and students alike. Live-lecture (LL) is captured in real-time and this recording, LC, is made available for students to access for later use, whether it be for review purpose or to replace a missed class. Student performance was compared between…
Khashan, S. A.; Alazzam, A.; Furlani, E. P.
2014-01-01
A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437
Faulds, M C; Bauchmuller, K; Miller, D; Rosser, J H; Shuker, K; Wrench, I; Wilson, P; Mills, G H
2016-01-01
Large-scale audit and research projects demand robust, efficient systems for accurate data collection, handling and analysis. We utilised a multiplatform 'bring your own device' (BYOD) electronic data collection app to capture observational audit data on theatre efficiency across seven hospital Trusts in South Yorkshire in June-August 2013. None of the participating hospitals had a dedicated information governance policy for bring your own device. Data were collected by 17 investigators for 392 individual theatre lists, capturing 14,148 individual data points, 12, 852 (91%) of which were transmitted to a central database on the day of collection without any loss of data. BYOD technology enabled accurate collection of a large volume of secure data across multiple NHS organisations over a short period of time. Bring your own device technology provides a method for collecting real-time audit, research and quality improvement data within healthcare systems without compromising patient data protection. © 2015 The Association of Anaesthetists of Great Britain and Ireland.
Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa
2013-09-15
This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.
Breakthrough in Xenon Capture and Purification Using Adsorbent-Supported Silver Nanoparticles.
Deliere, Ludovic; Coasne, Benoit; Topin, Sylvain; Gréau, Claire; Moulin, Christophe; Farrusseng, David
2016-07-04
Rare gas capture and purification is a major challenge for energy, environment, and health applications. Of utmost importance for the nuclear industry, novel separation processes for Xe are urgently needed for spent nuclear fuel reprocessing and nuclear activity monitoring. The recovered, non-radioactive Xe is also of high economic value for lighting, surgical anesthetic, etc. Here, using adsorption and breakthrough experiments and statistical mechanics molecular simulation, we show the outstanding performance of zeolite-supported silver nanoparticles to capture/separate Xe at low concentrations (0.087-100 ppm). We also establish the efficiency of temperature swing adsorption based on such adsorbents for Xe separation from Kr/Xe mixtures and air streams corresponding to off-gases generated by nuclear reprocessing. This study paves the way for the development of novel, cost-efficient technologies relying on the large selectivity/capacity of adsorbent-supported silver nanoparticles which surpass all materials ever tested. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pollen, Alex A; Nowakowski, Tomasz J; Shuga, Joe; Wang, Xiaohui; Leyrat, Anne A; Lui, Jan H; Li, Nianzhen; Szpankowski, Lukasz; Fowler, Brian; Chen, Peilin; Ramalingam, Naveen; Sun, Gang; Thu, Myo; Norris, Michael; Lebofsky, Ronald; Toppani, Dominique; Kemp, Darnell W; Wong, Michael; Clerkson, Barry; Jones, Brittnee N; Wu, Shiquan; Knutsson, Lawrence; Alvarado, Beatriz; Wang, Jing; Weaver, Lesley S; May, Andrew P; Jones, Robert C; Unger, Marc A; Kriegstein, Arnold R; West, Jay A A
2014-10-01
Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.
Earhart, Christopher M.; Hughes, Casey E.; Gaster, Richard S.; Ooi, Chin Chun; Wilson, Robert J.; Zhou, Lisa Y.; Humke, Eric W.; Xu, Lingyun; Wong, Dawson J.; Willingham, Stephen B.; Schwartz, Erich J.; Weissman, Irving L.; Jeffrey, Stefanie S.; Neal, Joel W.; Rohatgi, Rajat; Wakelee, Heather A.; Wang, Shan X.
2014-01-01
Detection and characterization of circulating tumor cells (CTCs) may reveal insights into the diagnosis and treatment of malignant disease. Technologies for isolating CTCs developed thus far suffer from one or more limitations, such as low throughput, inability to release captured cells, and reliance on expensive instrumentation for enrichment or subsequent characterization. We report a continuing development of a magnetic separation device, the magnetic sifter, which is a miniature microfluidic chip with a dense array of magnetic pores. It offers high efficiency capture of tumor cells, labeled with magnetic nanoparticles, from whole blood with high throughput and efficient release of captured cells. For subsequent characterization of CTCs, an assay, using a protein chip with giant magnetoresistive nanosensors, has been implemented for mutational analysis of CTCs enriched with the magnetic sifter. The use of these magnetic technologies, which are separate devices, may lead the way to routine preparation and characterization of “liquid biopsies” from cancer patients. PMID:23969419
Filter Media Tests Under Simulated Martian Atmospheric Conditions
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2016-01-01
Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.
Ambulatory surgery centers best practices for the 90s.
Hoover, J A
1994-05-01
Outpatient surgery will be the driving force in the continued growth of ambulatory care in the 1990s. Providing efficient, high-quality ambulatory surgical services should therefore be a priority among healthcare providers. Arthur Andersen conducted a survey to discover best practices in ambulatory surgical service. General success characteristics of best performers were business-focused relationships with physicians, the use of clinical protocols, patient convenience, cost management, strong leadership, teamwork, streamlined processes and efficient design. Other important factors included scheduling to maximize OR room use; achieving surgical efficiencies through reduced case pack assembly errors and equipment availability; a focus on cost capture rather than charge capture; sound materiel management practices, such as standardization and vendor teaming; and the appropriate use of automated systems. It is important to evaluate whether the best practices are applicable to your environment and what specific changes to your current processes would be necessary to adopt them.
The influence of daily variation in foraging cost on the activity of small carnivores
William J. Zielinski
1988-01-01
The daily activity of some predators is correlated with the activity pattern of their prey. If capture efficiency varies as a function of prey activity, a predator that synchronizes its foraging activity with the time of day that prey are most vulnerable should capture more prey, and at lower cost, than a predator that initiates foraging at random. Mink, ...
Gasoline: The Achilles Heel of U.S. Energy Security
2010-03-01
reduce demand for petroleum, improve energy efficiency, and develop feasible alternative energy solutions to include emission capture technologies. The...United States remains the largest consumer of energy products in the world and is the second leading producer of green house gas (GHG) emissions ...energy solutions to include emission capture technologies. The United States remains the largest consumer of energy products in the world and is the
Rational construction of a stable Zn4O-based MOF for highly efficient CO2 capture and conversion.
Zhou, Hui-Fang; Liu, Bo; Hou, Lei; Zhang, Wen-Yan; Wang, Yao-Yu
2018-01-11
By employing a carboxylate ligand derived from benzene-1,4-dicarboxylate, a chemically stable Zn 4 O-based self-penetrating metal-organic framework has been rationally synthesized, which exhibits high CO 2 adsorption and efficient catalytic conversion for CO 2 cycloaddition.
USDA-ARS?s Scientific Manuscript database
Dryland crop production in the semi-arid Great Plains is limited by both the quantity and timing of precipitation. Sustainable dryland cropping systems maximize precipitation use efficiency by managing precipitation capture, storage, and use. Pest management approaches are also critical for efficie...
Constraints on the Efficiency of Radial Migration in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2015-01-01
A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential disk with a flat rotation curve where the initial fraction of stars trapped in horseshoe orbits falls with increasing velocity dispersion as exp[-σR^2].
Attention capture by contour onsets and offsets: no special role for onsets.
Watson, D G; Humphreys, G W
1995-07-01
In five experiments, we investigated the power of targets defined by the onset or offset of one of an object's parts (contour onsets and offsets) either to guide or to capture visual attention. In Experiment 1, search for a single contour onset target was compared with search for a single contour offset target against a static background of distractors; no difference was found between the efficiency with which each could be detected. In Experiment 2, onsets and offsets were compared for automatic attention capture, when both occurred simultaneously. Unlike in previous studies, the effects of overall luminance change, new-object creation, and number of onset and offset items were controlled. It was found that contour onset and offset items captured attention equally well. However, display size effects on both target types were also apparent. Such effects may have been due to competition for selection between multiple onset and offset stimuli. In Experiments 3 and 4, single onset and offset stimuli were presented simultaneously and pitted directly against one another among a background of static distractors. In Experiment 3, we examined "guided search," for a target that was formed either from an onset or from an offset among static items. In Experiment 4, the onsets and offsets were uncorrelated with the target location. Similar results occurred in both experiments: target onsets and offsets were detected more efficiently than static stimuli which needed serial search; there remained effects of display size on performance; but there was still no advantage for onsets. In Experiment 5, we examined automatic attention capture by single onset and offset stimuli presented individually among static distractors. Again, there was no advantage for onset over offset targets and a display size effect was also present. These results suggest that, both in isolation and in competition, onsets that do not form new objects neither guide nor gain automatic attention more efficiently than offsets. In addition, in contrast to previous studies in which onsets formed new objects, contour onsets and offsets did not reliably capture attention automatically.
[Seasonality and landscape use by Tabanidae species (Diptera) in the Central Amazon, Brazil].
Ferreira-Keppler, Ruth L; Rafael, José A; Guerrero, José C H
2010-01-01
Adults of Tabanidae may become serious pests wherever they occur due to their attack to humans and others animals. Tabanids were captured near ground, water surface and at 25 m high on primary forests and forest gaps of anthropogenic origin, to understand their abundance, seasonality, diversity and similarity on such environments. Collections were carried out in the Base II of the War Instruction Center in the Jungle (CIGS) located at 54 km from Manaus municipality, Amazonas state. Two Malaise flight interception traps and four attraction traps (two suspended at 25 m high and two above the water surface of igarapé) were installed in forest gap and primary forest, areas for 10 consecutive days, during 15 months. A total of 2,643 specimens of 66 species were captured. Diachlorini (35 species /11 genera) was the most abundant tribe, followed by Tabanini (19 species /three genera), Chrysopsini (seven species /one genus) and Scionini (five species /two genera). Seventeen species were captured only in the primary forest, 11 in the anthropic clearing, and 38 species were common to both environments. The most abundant species were Phorcotabanus cinereus (Wiedemann), Tabanus occidentalis L, Chrysops laetus Fabricius and Tabanus angustifrons Macquart. The greatest richness was found in drier months (September/October) in both areas. Theforest gap showed higher abundance of specimens (1,827) than the primary forest (816). Traps suspended above the water surface were the most efficient (1,723 specimens) probably due to the dispersion of horseflies over small streams.
Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui
2017-02-01
Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.
Electrospray Collection of Lunar Dust
NASA Technical Reports Server (NTRS)
Dziekan, Michael
2012-01-01
A report describes ElectroSpray Ionization based Electrostatic Precipitation (ESIEP) for collecting lunar dust particles. While some HEPA filtration processes may remove a higher fraction (>99.9 percent) of the particles, the high efficiency may not be appropriate from an overall system standpoint, especially in light of the relatively large power requirement that such systems demand. The new electrospray particle capture technology is described as a variant of electrostatic precipitation that eliminates the current drawbacks of electrostatic precipitation. The new approach replaces corona prone field with a mist of highly charged micro-droplets generated by electrospray ionization (ESI) as the mechanism by which incoming particles are attracted and captured. In electrospray, a miniscule flow rate (microliters/minute) of liquid (typically water and a small amount of salt to enhance conductivity) is fed from the tip of a needle held at a high voltage potential relative to an opposite counter electrode. At sufficient field strength, a sharp liquid meniscus forms , which emits a jet of highly charged droplets that drift through the surrounding gas and are collected on the walls of a conductive tube. Particles in the gas have a high probability of contact with the droplets either by adhering to the droplets or otherwise acquiring a high level of charge, causing them to be captured on the collecting electrode as well. The spray acts as a filtration material that is continuously introduced and removed from the gas flow, and thus can never become clogged.
Piazza, Alexander M; Binversie, Emily E; Baker, Lauren A; Nemke, Brett; Sample, Susannah J; Muir, Peter
2017-04-01
OBJECTIVE To determine whether walking at specific ranges of absolute and relative (V*) velocity would aid efficient capture of gait trial data with low ground reaction force (GRF) variance in a heterogeneous sample of dogs. ANIMALS 17 clinically normal dogs of various breeds, ages, and sexes. PROCEDURES Each dog was walked across a force platform at its preferred velocity, with controlled acceleration within 0.5 m/s 2 . Ranges in V* were created for height at the highest point of the shoulders (withers; WHV*). Variance effects from 8 walking absolute velocity ranges and associated WHV* ranges were examined by means of repeated-measures ANCOVA. RESULTS The individual dog effect provided the greatest contribution to variance. Narrow velocity ranges typically resulted in capture of a smaller percentage of valid trials and were not consistently associated with lower variance. The WHV* range of 0.33 to 0.46 allowed capture of valid trials efficiently, with no significant effects on peak vertical force and vertical impulse. CONCLUSIONS AND CLINICAL RELEVANCE Dogs with severe lameness may be unable to trot or may have a decline in mobility with gait trial repetition. Gait analysis involving evaluation of individual dogs at their preferred absolute velocity, such that dogs are evaluated at a similar V*, may facilitate efficient capture of valid trials without significant effects on GRF. Use of individual velocity ranges derived from a WHV* range of 0.33 to 0.46 can account for heterogeneity and appears suitable for use in clinical trials involving dogs at a walking gait.
A new dawn for industrial photosynthesis.
Robertson, Dan E; Jacobson, Stuart A; Morgan, Frederick; Berry, David; Church, George M; Afeyan, Noubar B
2011-03-01
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO(2) into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.
Analysis and Modeling of Ground Operations at Hub Airports
NASA Technical Reports Server (NTRS)
Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.
2000-01-01
Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.
Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.
2013-01-01
Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).
Jardine, Griffin J; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston D
2014-09-01
To improve accuracy and efficiency in quantifying the endothelial cell loss (ECL) in eye bank preparation of corneal endothelial grafts. Eight cadaveric corneas were subjected to Descemet Membrane Endothelial Keratoplasty (DMEK) preparation. The endothelial surfaces were stained with a viability stain, calcein AM dye (CAM) and then captured by a digital camera. The ECL rates were quantified in these images by three separate readers using trainable segmentation, a plug-in feature from the imaging software, Fiji. Images were also analyzed by Adobe Photoshop for comparison. Mean times required to process the images were measured between the two modalities. The mean ECL (with standard deviation) as analyzed by Fiji was 22.5% (6.5%) and Adobe was 18.7% (7.0%; p = 0.04). The mean time required to process the images through the two different imaging methods was 19.9 min (7.5) for Fiji and 23.4 min (12.9) for Adobe (p = 0.17). Establishing an accurate, efficient and reproducible means of quantifying ECL in graft preparation and surgical techniques can provide insight to the safety, long-term potential of the graft tissues as well as provide a quality control measure for eye banks and surgeons. Trainable segmentation in Fiji software using CAM is a novel approach to measuring ECL that captured a statistically significantly higher percentage of ECL comparable to Adobe and was more accurate in standardized testing. Interestingly, ECL as determined using both methods in eye bank-prepared DMEK grafts exceeded 18% on average.
Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting.
Al-Khayat, Omar; Hong, Jun Ki; Beck, David M; Minett, Andrew I; Neto, Chiara
2017-04-19
Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background. The size and density distribution of the hydrophilic bumps could be tuned widely by adjusting the initial thickness of the P4VP films: the diameter of the produced bumps and their height could be varied by almost 2 orders of magnitude (1-80 μm and 40-9000 nm, respectively), and their distribution density could be varied by 5 orders of magnitude. Under low subcooling conditions (3 °C), the highest rate of water condensation was measured on the largest (80 μm diameter) hydrophilic bumps and was found to be 57% higher than that on flat hydrophobic films. These subcooling conditions are achieved spontaneously in dew formation, by passive radiative cooling of a surface exposed to the night sky. In effect, the pattern would result in a larger number of dewy nights than a flat hydrophobic surface and therefore increases water capture efficiency. Our approach is suited to fabrication on a large scale, to enable the use of the patterned coatings for water collection with no external input of energy.
Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh
2015-08-18
Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.
Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.
Moreira, Diana; Pires, José C M
2016-09-01
Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lynam, Alfred E.
2015-04-01
Multiple-satellite-aided capture is a -efficient technique for capturing a spacecraft into orbit at Jupiter. However, finding the times when the Galilean moons of Jupiter align such that three or four of them can be encountered in a single pass is difficult using standard astrodynamics algorithms such as Lambert's problem. In this paper, we present simple but powerful techniques that simplify the dynamics and geometry of the Galilean satellites so that many of these triple- and quadruple-satellite-aided capture sequences can be found quickly over an extended 60-year time period from 2020 to 2080. The techniques find many low-fidelity trajectories that could be used as initial guesses for future high-fidelity optimization. Results indicate the existence of approximately 3,100 unique triple-satellite-aided capture trajectories and 6 unique quadruple-satellite-aided capture trajectories during the 60-year time period. The entire search takes less than one minute of computational time.
Link, William A; Barker, Richard J
2005-03-01
We present a hierarchical extension of the Cormack-Jolly-Seber (CJS) model for open population capture-recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis-Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Shinn, J. L.
1986-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.
Smart Camera Technology Increases Quality
NASA Technical Reports Server (NTRS)
2004-01-01
When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas
2013-01-01
Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213
Mammoth grazers on the ocean's minuteness: a review of selective feeding using mucous meshes
2018-01-01
Mucous-mesh grazers (pelagic tunicates and thecosome pteropods) are common in oceanic waters and efficiently capture, consume and repackage particles many orders of magnitude smaller than themselves. They feed using an adhesive mucous mesh to capture prey particles from ambient seawater. Historically, their grazing process has been characterized as non-selective, depending only on the size of the prey particle and the pore dimensions of the mesh. The purpose of this review is to reverse this assumption by reviewing recent evidence that shows mucous-mesh feeding can be selective. We focus on large planktonic microphages as a model of selective mucus feeding because of their important roles in the ocean food web: as bacterivores, prey for higher trophic levels, and exporters of carbon via mucous aggregates, faecal pellets and jelly-falls. We identify important functional variations in the filter mechanics and hydrodynamics of different taxa. We review evidence that shows this feeding strategy depends not only on the particle size and dimensions of the mesh pores, but also on particle shape and surface properties, filter mechanics, hydrodynamics and grazer behaviour. As many of these organisms remain critically understudied, we conclude by suggesting priorities for future research. PMID:29720410
Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.
Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622
Nutrient capture and recycling by periphyton attached to modified agrowaste carriers.
Wan, Juanjuan; Liu, Xuemei; Wu, Chenxi; Wu, Yonghong
2016-04-01
The reuse of periphytic biofilm from traditional wastewater treatment (i.e., active sludge process) is inefficient to recycle nutrients due to low accumulation of nutrients. Then, in this study, peanut shell (PS), rice husk (RH), decomposed peanut shell (DPS), acidified rice husks (ARH), and a commonly used carrier-ceramsite (C, as the control)-were used to support the growth of periphyton. Results showed that DPS and ARH supported significantly higher periphyton biomass and metabolic versatility than PS and RH, respectively, due to the increased presence of positive groups. The total nitrogen (TN) and total phosphorus (TP) captured by periphyton were enhanced by 600-657 and 833-3255 % for DPS, and 461-1808 and 21-308 % for ARH, respectively. The removal of nutrients from simulated eutrophic surface waters using periphyton attached to DPS was improved by 24-47 % for TP, 12-048 % for TN, and 15-78 % for nitrate compared to the control. The results indicate that the periphyton attached to modified agrowaste was capable of efficiently entrapping and storing N and P from eutrophic water. This study also implies that the mixture of periphyton and the modified agrowaste carriers are promising raw materials of biofertilizer.
Removal of malaria-infected red blood cells using magnetic cell separators: A computational study
Kim, Jeongho; Massoudi, Mehrdad; Antaki, James F.; Gandini, Alberto
2012-01-01
High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1st –5th order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs. PMID:22345827