Sample records for higher classification performance

  1. Training sample selection based on self-training for liver cirrhosis classification using ultrasound images

    NASA Astrophysics Data System (ADS)

    Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao

    2017-03-01

    Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.

  2. Application of Sensor Fusion to Improve Uav Image Classification

    NASA Astrophysics Data System (ADS)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  3. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy?

    PubMed Central

    Papageorgiou, Eirini; Nieuwenhuys, Angela; Desloovere, Kaat

    2017-01-01

    Background This study aimed to improve the automatic probabilistic classification of joint motion gait patterns in children with cerebral palsy by using the expert knowledge available via a recently developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and Logistic Regression classification with varying degrees of usage of the expert knowledge (expert-defined and discretized features). A database of 356 patients and 1719 gait trials was used to validate the classification performance of eleven joint motions. Hypotheses Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can be automatically classified following a probabilistic approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of clinical expert knowledge in the selection of relevant gait features and the discretization of continuous features increases the performance of automatic probabilistic joint motion classification. Findings This study provided objective evidence supporting the first hypothesis. Automatic probabilistic gait classification using the expert knowledge available from the Delphi-consensus study resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher accuracy than that obtained with non-expert raters (78%). Regarding the second hypothesis, this study demonstrated that the use of more advanced machine learning techniques such as automatic feature selection and discretization instead of expert-defined and discretized features can result in slightly higher joint motion classification performance. However, the increase in performance is limited and does not outweigh the additional computational cost and the higher risk of loss of clinical interpretability, which threatens the clinical acceptance and applicability. PMID:28570616

  4. A liver cirrhosis classification on B-mode ultrasound images by the use of higher order local autocorrelation features

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-02-01

    In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.

  5. Driver behavior profiling: An investigation with different smartphone sensors and machine learning

    PubMed Central

    Ferreira, Jair; Carvalho, Eduardo; Ferreira, Bruno V.; de Souza, Cleidson; Suhara, Yoshihiko; Pentland, Alex

    2017-01-01

    Driver behavior impacts traffic safety, fuel/energy consumption and gas emissions. Driver behavior profiling tries to understand and positively impact driver behavior. Usually driver behavior profiling tasks involve automated collection of driving data and application of computer models to generate a classification that characterizes the driver aggressiveness profile. Different sensors and classification methods have been employed in this task, however, low-cost solutions and high performance are still research targets. This paper presents an investigation with different Android smartphone sensors, and classification algorithms in order to assess which sensor/method assembly enables classification with higher performance. The results show that specific combinations of sensors and intelligent methods allow classification performance improvement. PMID:28394925

  6. Weight-elimination neural networks applied to coronary surgery mortality prediction.

    PubMed

    Ennett, Colleen M; Frize, Monique

    2003-06-01

    The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.

  7. [Implementation of cytology images classification--the Bethesda 2001 System--in a group of screened women from Podlaskie region--effect evaluation].

    PubMed

    Zbroch, Tomasz; Knapp, Paweł Grzegorz; Knapp, Piotr Andrzej

    2007-09-01

    Increasing knowledge concerning carcinogenesis within cervical epithelium has forced us to make continues modifications of cytology classification of the cervical smears. Eventually, new descriptions of the submicroscopic cytomorphological abnormalities have enabled the implementation of Bethesda System which was meant to take place of the former Papanicolaou classification although temporarily both are sometimes used simultaneously. The aim of this study was to compare results of these two classification systems in the aspect of diagnostic accuracy verified by further tests of the diagnostic algorithm for the cervical lesion evaluation. The study was conducted in the group of women selected from general population, the criteria being the place of living and cervical cancer age risk group, in the consecutive periods of mass screening in Podlaski region. The performed diagnostic tests have been based on the commonly used algorithm, as well as identical laboratory and methodological conditions. Performed assessment revealed comparable diagnostic accuracy of both analyzing classifications, verified by histological examination, although with marked higher specificity for dysplastic lesions with decreased number of HSIL results and increased diagnosis of LSILs. Higher number of performed colposcopies and biopsies were an additional consequence of TBS classification. Results based on Bethesda System made it possible to find the sources and reasons of abnormalities with much greater precision, which enabled causing agent treatment. Two evaluated cytology classification systems, although not much different, depicted higher potential of TBS and better, more effective communication between cytology laboratory and gynecologist, making reasonable implementation of The Bethesda System in the daily cytology screening work.

  8. Comparing performance of mothers using simplified mid-upper arm circumference (MUAC) classification devices with an improved MUAC insertion tape in Isiolo County, Kenya.

    PubMed

    Grant, Angeline; Njiru, James; Okoth, Edgar; Awino, Imelda; Briend, André; Murage, Samuel; Abdirahman, Saida; Myatt, Mark

    2018-01-01

    A novel approach for improving community case-detection of acute malnutrition involves mothers/caregivers screening their children for acute malnutrition using a mid-upper arm circumference (MUAC) insertion tape. The objective of this study was to test three simple MUAC classification devices to determine whether they improved the sensitivity of mothers/caregivers at detecting acute malnutrition. Prospective, non-randomised, partially-blinded, clinical diagnostic trial describing and comparing the performance of three "Click-MUAC" devices and a MUAC insertion tape. The study took place in twenty-one health facilities providing integrated management of acute malnutrition (IMAM) services in Isiolo County, Kenya. Mothers/caregivers classified their child ( n =1040), aged 6-59 months, using the "Click-MUAC" devices and a MUAC insertion tape. These classifications were compared to a "gold standard" classification (the mean of three measurements taken by a research assistant using the MUAC insertion tape). The sensitivity of mother/caregiver classifications was high for all devices (>93% for severe acute malnutrition (SAM), defined by MUAC < 115 mm, and > 90% for global acute malnutrition (GAM), defined by MUAC < 125 mm). Mother/caregiver sensitivity for SAM and GAM classification was higher using the MUAC insertion tape (100% sensitivity for SAM and 99% sensitivity for GAM) than using "Click-MUAC" devices. Younden's J for SAM classification, and sensitivity for GAM classification, were significantly higher for the MUAC insertion tape (99% and 99% respectively). Specificity was high for all devices (>96%) with no significant difference between the "Click-MUAC" devices and the MUAC insertion tape. The results of this study indicate that, although the "Click-MUAC" devices performed well, the MUAC insertion tape performed best. The results for sensitivity are higher than found in previous studies. The high sensitivity for both SAM and GAM classification by mothers/caregivers with the MUAC insertion tape could be due to the use of an improved MUAC tape design which has a number of new design features. The one-on-one demonstration provided to mothers/caregivers on the use of the devices may also have helped improve sensitivity. The results of this study provide evidence that mothers/caregivers can perform sensitive and specific classifications of their child's nutritional status using MUAC. Clinical trials registration number: NCT02833740.

  9. Computer-aided interpretation approach for optical tomographic images

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.

    2010-11-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

  10. The Future of Classification in Wheelchair Sports; Can Data Science and Technological Advancement Offer an Alternative Point of View?

    PubMed

    van der Slikke, Rienk M A; Bregman, Daan J J; Berger, Monique A M; de Witte, Annemarie M H; Veeger, Dirk-Jan H E J

    2017-11-01

    Classification is a defining factor for competition in wheelchair sports, but it is a delicate and time-consuming process with often questionable validity. 1 New inertial sensor based measurement methods applied in match play and field tests, allow for more precise and objective estimates of the impairment effect on wheelchair mobility performance. It was evaluated if these measures could offer an alternative point of view for classification. Six standard wheelchair mobility performance outcomes of different classification groups were measured in match play (n=29), as well as best possible performance in a field test (n=47). In match-results a clear relationship between classification and performance level is shown, with increased performance outcomes in each adjacent higher classification group. Three outcomes differed significantly between the low and mid-class groups, and one between the mid and high-class groups. In best performance (field test), a split between the low and mid-class groups shows (5 out of 6 outcomes differed significantly) but hardly any difference between the mid and high-class groups. This observed split was confirmed by cluster analysis, revealing the existence of only two performance based clusters. The use of inertial sensor technology to get objective measures of wheelchair mobility performance, combined with a standardized field-test, brought alternative views for evidence based classification. The results of this approach provided arguments for a reduced number of classes in wheelchair basketball. Future use of inertial sensors in match play and in field testing could enhance evaluation of classification guidelines as well as individual athlete performance.

  11. Cooperative Learning for Distributed In-Network Traffic Classification

    NASA Astrophysics Data System (ADS)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  12. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  13. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  14. Classification versus inference learning contrasted with real-world categories.

    PubMed

    Jones, Erin L; Ross, Brian H

    2011-07-01

    Categories are learned and used in a variety of ways, but the research focus has been on classification learning. Recent work contrasting classification with inference learning of categories found important later differences in category performance. However, theoretical accounts differ on whether this is due to an inherent difference between the tasks or to the implementation decisions. The inherent-difference explanation argues that inference learners focus on the internal structure of the categories--what each category is like--while classification learners focus on diagnostic information to predict category membership. In two experiments, using real-world categories and controlling for earlier methodological differences, inference learners learned more about what each category was like than did classification learners, as evidenced by higher performance on a novel classification test. These results suggest that there is an inherent difference between learning new categories by classifying an item versus inferring a feature.

  15. A classification system for characterization of physical and non-physical work factors.

    PubMed

    Genaidy, A; Karwowski, W; Succop, P; Kwon, Y G; Alhemoud, A; Goyal, D

    2000-01-01

    A comprehensive evaluation of work-related performance factors is a prerequisite to developing integrated and long-term solutions to workplace performance improvement. This paper describes a work-factor classification system that categorizes the entire domain of workplace factors impacting performance. A questionnaire-based instrument was developed to implement this classification system in industry. Fifty jobs were evaluated in 4 different service and manufacturing companies using the proposed questionnaire-based instrument. The reliability coefficients obtained from the analyzed jobs were considered good (0.589 to 0.862). In general, the physical work factors resulted in higher reliability coefficients (0.847 to 0.862) than non-physical work factors (0.589 to 0.768).

  16. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  17. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  18. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  19. Classifying four-category visual objects using multiple ERP components in single-trial ERP.

    PubMed

    Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin

    2016-08-01

    Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.

  20. Lenke and King classification systems for adolescent idiopathic scoliosis: interobserver agreement and postoperative results.

    PubMed

    Hosseinpour-Feizi, Hojjat; Soleimanpour, Jafar; Sales, Jafar Ganjpour; Arzroumchilar, Ali

    2011-01-01

    The aim of this study was to investigate the interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis, and to compare the results of surgery performed based on classification of the scoliosis according to each of these classification systems. The study was conducted in Shohada Hospital in Tabriz, Iran, between 2009 and 2010. First, a reliability assessment was undertaken to assess interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis. Second, postoperative efficacy and safety of surgery performed based on the Lenke and King classifications were compared. Kappa coefficients of agreement were calculated to assess the agreement. Outcomes were compared using bivariate tests and repeated measures analysis of variance. A low to moderate interobserver agreement was observed for the King classification; the Lenke classification yielded mostly high agreement coefficients. The outcome of surgery was not found to be substantially different between the two systems. Based on the results, the Lenke classification method seems advantageous. This takes into consideration the Lenke classification's priority in providing details of curvatures in different anatomical surfaces to explain precise intensity of scoliosis, that it has higher interobserver agreement scores, and also that it leads to noninferior postoperative results compared with the King classification method.

  1. Information analysis of a spatial database for ecological land classification

    NASA Technical Reports Server (NTRS)

    Davis, Frank W.; Dozier, Jeff

    1990-01-01

    An ecological land classification was developed for a complex region in southern California using geographic information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification was ecologically reasonable and performed well when tested with higher quality data from the region.

  2. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  3. Lenke and King classification systems for adolescent idiopathic scoliosis: interobserver agreement and postoperative results

    PubMed Central

    Hosseinpour-Feizi, Hojjat; Soleimanpour, Jafar; Sales, Jafar Ganjpour; Arzroumchilar, Ali

    2011-01-01

    Purpose The aim of this study was to investigate the interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis, and to compare the results of surgery performed based on classification of the scoliosis according to each of these classification systems. Methods The study was conducted in Shohada Hospital in Tabriz, Iran, between 2009 and 2010. First, a reliability assessment was undertaken to assess interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis. Second, postoperative efficacy and safety of surgery performed based on the Lenke and King classifications were compared. Kappa coefficients of agreement were calculated to assess the agreement. Outcomes were compared using bivariate tests and repeated measures analysis of variance. Results A low to moderate interobserver agreement was observed for the King classification; the Lenke classification yielded mostly high agreement coefficients. The outcome of surgery was not found to be substantially different between the two systems. Conclusion Based on the results, the Lenke classification method seems advantageous. This takes into consideration the Lenke classification’s priority in providing details of curvatures in different anatomical surfaces to explain precise intensity of scoliosis, that it has higher interobserver agreement scores, and also that it leads to noninferior postoperative results compared with the King classification method. PMID:22267934

  4. Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis

    NASA Astrophysics Data System (ADS)

    Itoh, Hayato; Mori, Yuichi; Misawa, Masashi; Oda, Masahiro; Kudo, Shin-ei; Mori, Kensaku

    2018-02-01

    This paper presents a new classification method for endocytoscopic images. Endocytoscopy is a new endoscope that enables us to perform conventional endoscopic observation and ultramagnified observation of cell level. This ultramagnified views (endocytoscopic images) make possible to perform pathological diagnosis only on endo-scopic views of polyps during colonoscopy. However, endocytoscopic image diagnosis requires higher experiences for physicians. An automated pathological diagnosis system is required to prevent the overlooking of neoplastic lesions in endocytoscopy. For this purpose, we propose a new automated endocytoscopic image classification method that classifies neoplastic and non-neoplastic endocytoscopic images. This method consists of two classification steps. At the first step, we classify an input image by support vector machine. We forward the image to the second step if the confidence of the first classification is low. At the second step, we classify the forwarded image by convolutional neural network. We reject the input image if the confidence of the second classification is also low. We experimentally evaluate the classification performance of the proposed method. In this experiment, we use about 16,000 and 4,000 colorectal endocytoscopic images as training and test data, respectively. The results show that the proposed method achieves high sensitivity 93.4% with small rejection rate 9.3% even for difficult test data.

  5. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    PubMed

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  6. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    PubMed

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  7. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  8. A higher order conditional random field model for simultaneous classification of land cover and land use

    NASA Astrophysics Data System (ADS)

    Albert, Lena; Rottensteiner, Franz; Heipke, Christian

    2017-08-01

    We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intra-layer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by inter-layer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the super-pixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas.

  9. Classification of electroencephalograph signals using time-frequency decomposition and linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Szuflitowska, B.; Orlowski, P.

    2017-08-01

    Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.

  10. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  11. Perinatal mortality classification: an analysis of 112 cases of stillbirth.

    PubMed

    Reis, Ana Paula; Rocha, Ana; Lebre, Andrea; Ramos, Umbelina; Cunha, Ana

    2017-10-01

    This was a retrospective cohort analysis of stillbirths that occurred from January 2004 to December 2013 in our institution. We compared Tulip and Wigglesworth classification systems on a cohort of stillbirths and analysed the main differences between these two classifications. In this period, there were 112 stillbirths of a total of 31,758 births (stillbirth rate of 3.5 per 1000 births). There were 99 antepartum deaths and 13 intrapartum deaths. Foetal autopsy was performed in 99 cases and placental histopathological examination in all of the cases. The Wigglesworth found 'unknown' causes in 47 cases and the Tulip classification allocated 33 of these. Fourteen cases remained in the group of 'unknown' causes. Therefore, the Wigglesworth classification of stillbirths results in a higher proportion of unexplained stillbirths. We suggest that the traditional Wigglesworth classification should be substituted by a classification that manages the available information.

  12. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  13. Analysis of swallowing sounds using hidden Markov models.

    PubMed

    Aboofazeli, Mohammad; Moussavi, Zahra

    2008-04-01

    In recent years, acoustical analysis of the swallowing mechanism has received considerable attention due to its diagnostic potentials. This paper presents a hidden Markov model (HMM) based method for the swallowing sound segmentation and classification. Swallowing sound signals of 15 healthy and 11 dysphagic subjects were studied. The signals were divided into sequences of 25 ms segments each of which were represented by seven features. The sequences of features were modeled by HMMs. Trained HMMs were used for segmentation of the swallowing sounds into three distinct phases, i.e., initial quiet period, initial discrete sounds (IDS) and bolus transit sounds (BTS). Among the seven features, accuracy of segmentation by the HMM based on multi-scale product of wavelet coefficients was higher than that of the other HMMs and the linear prediction coefficient (LPC)-based HMM showed the weakest performance. In addition, HMMs were used for classification of the swallowing sounds of healthy subjects and dysphagic patients. Classification accuracy of different HMM configurations was investigated. When we increased the number of states of the HMMs from 4 to 8, the classification error gradually decreased. In most cases, classification error for N=9 was higher than that of N=8. Among the seven features used, root mean square (RMS) and waveform fractal dimension (WFD) showed the best performance in the HMM-based classification of swallowing sounds. When the sequences of the features of IDS segment were modeled separately, the accuracy reached up to 85.5%. As a second stage classification, a screening algorithm was used which correctly classified all the subjects but one healthy subject when RMS was used as characteristic feature of the swallowing sounds and the number of states was set to N=8.

  14. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    PubMed

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Semi-supervised classification tool for DubaiSat-2 multispectral imagery

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, Saeed

    2015-10-01

    This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.

  16. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification.

    PubMed

    Zhou, Tao; Li, Zhaofu; Pan, Jianjun

    2018-01-27

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.

  17. Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu

    2017-11-01

    This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.

  18. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search

    PubMed Central

    Shi, Lei; Wan, Youchuan; Gao, Xianjun

    2018-01-01

    In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA) and tabu search (TS) is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy. PMID:29581721

  19. Improving mental task classification by adding high frequency band information.

    PubMed

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  20. Automated classification of cell morphology by coherence-controlled holographic microscopy

    NASA Astrophysics Data System (ADS)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  1. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    PubMed

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition.

    PubMed

    Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas

    2015-06-30

    We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Branch classification: A new mechanism for improving branch predictor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, P.Y.; Hao, E.; Patt, Y.

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less

  4. Performance Indicators and Rational Management Tools: A Comparative Assessment of Projects in North America and Europe. AIR 1993 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Nedwek, Brian P.; Neal, John E.

    This study developed a classification scheme to critically compare performance assessment projects at higher education universities in North America and Europe. Performance indicators and assessment initiatives were compared using nine basic dimensions: (1) locus of control, (2) degree of governmental involvement, (3) focus of performance…

  5. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  6. Further examination of embedded performance validity indicators for the Conners' Continuous Performance Test and Brief Test of Attention in a large outpatient clinical sample.

    PubMed

    Sharland, Michael J; Waring, Stephen C; Johnson, Brian P; Taran, Allise M; Rusin, Travis A; Pattock, Andrew M; Palcher, Jeanette A

    2018-01-01

    Assessing test performance validity is a standard clinical practice and although studies have examined the utility of cognitive/memory measures, few have examined attention measures as indicators of performance validity beyond the Reliable Digit Span. The current study further investigates the classification probability of embedded Performance Validity Tests (PVTs) within the Brief Test of Attention (BTA) and the Conners' Continuous Performance Test (CPT-II), in a large clinical sample. This was a retrospective study of 615 patients consecutively referred for comprehensive outpatient neuropsychological evaluation. Non-credible performance was defined two ways: failure on one or more PVTs and failure on two or more PVTs. Classification probability of the BTA and CPT-II into non-credible groups was assessed. Sensitivity, specificity, positive predictive value, and negative predictive value were derived to identify clinically relevant cut-off scores. When using failure on two or more PVTs as the indicator for non-credible responding compared to failure on one or more PVTs, highest classification probability, or area under the curve (AUC), was achieved by the BTA (AUC = .87 vs. .79). CPT-II Omission, Commission, and Total Errors exhibited higher classification probability as well. Overall, these findings corroborate previous findings, extending them to a large clinical sample. BTA and CPT-II are useful embedded performance validity indicators within a clinical battery but should not be used in isolation without other performance validity indicators.

  7. From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition.

    PubMed

    Porras-Alfaro, Andrea; Liu, Kuan-Liang; Kuske, Cheryl R; Xie, Gary

    2014-02-01

    We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5' section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets.

  8. From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition

    PubMed Central

    Liu, Kuan-Liang; Kuske, Cheryl R.

    2014-01-01

    We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5′ section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets. PMID:24242255

  9. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs

    NASA Astrophysics Data System (ADS)

    Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.

    2016-12-01

    Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.

  10. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  11. Effect of higher frequency on the classification of steady-state visual evoked potentials.

    PubMed

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  12. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    PubMed Central

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  13. From comparison to classification: a cortical tool for boosting perception.

    PubMed

    Nahum, Mor; Daikhin, Luba; Lubin, Yedida; Cohen, Yamit; Ahissar, Merav

    2010-01-20

    Humans are much better in relative than in absolute judgments. This common assertion is based on findings that discrimination thresholds are much lower when measured with methods that allow interstimuli comparisons than when measured with methods that require classification of one stimulus at a time and are hence sensitive to memory load. We now challenged this notion by measuring discrimination thresholds and evoked potentials while listeners performed a two-tone frequency discrimination task. We tested various protocols that differed in the pattern of cross-trial tone repetition. We found that best performance was achieved only when listeners effectively used cross-trial repetition to avoid interstimulus comparisons with the repeated reference tone. Instead, they classified one tone, the nonreference tone, as either high or low by comparing it with a recently formed internal reference. Listeners were not aware of the switch from interstimulus comparison to classification. Its successful use was revealed by the conjunction of improved behavioral performance and an event-related potential component (P3), indicating an implicit perceptual decision, which followed the nonreference tone in each trial. Interestingly, tone repetition itself did not suffice for the switch, implying that the bottleneck to discrimination does not reside at the lower, sensory stage. Rather, the temporal consistency of repetition was important, suggesting the involvement of higher-level mechanisms with longer time constants. These findings suggest that classification is based on more automatic and accurate mechanisms than interstimulus comparisons and that the ability to effectively use them depends on a dynamic interplay between higher- and lower-level cortical mechanisms.

  14. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China

    PubMed Central

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597

  15. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    PubMed

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  16. A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation.

    PubMed

    Cong, Rui; Li, Jing; Guo, Song

    2017-02-01

    To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color pattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in breast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.

  17. Active learning for clinical text classification: is it better than random sampling?

    PubMed

    Figueroa, Rosa L; Zeng-Treitler, Qing; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P

    2012-01-01

    This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty.

  18. Active learning for clinical text classification: is it better than random sampling?

    PubMed Central

    Figueroa, Rosa L; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P

    2012-01-01

    Objective This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Design Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Measurements Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. Results The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. Conclusion For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty. PMID:22707743

  19. School Grades, School Context and University Degree Performance: Evidence from an Elite Scottish Institution

    ERIC Educational Resources Information Center

    Lasselle, Laurence; McDougall-Bagnall, Jonathan; Smith, Ian

    2014-01-01

    This paper investigates degree classification outcomes for students with SQA Higher qualifications at an elite Scottish university. Students are characterised according to a new indicator based on their secondary school's academic performance relative to the national (Scottish) average. The results show that our school context indicator provides…

  20. Ethical Considerations in the Practical Application of the Unisa Socio-Critical Model of Student Success

    ERIC Educational Resources Information Center

    Fynn, Angelo

    2016-01-01

    The prediction and classification of student performance has always been a central concern within higher education institutions. It is therefore natural for higher education institutions to harvest and analyse student data to inform decisions on education provision in resource constrained South African environments. One of the drivers for the use…

  1. Comparative analysis of the 2016 ACR-EULAR and the 2002 AECG classification criteria for Sjögren's syndrome: Findings from the NIH cohort.

    PubMed

    Billings, M; Amin Hadavand, M; Alevizos, I

    2018-03-01

    The introduction of new classification criteria for Sjögren's syndrome, known as the 2016 American College of Rheumatology/European League against Rheumatism Classification Criteria (ACR-EULAR), created a need for the evaluation of its performance in an external cohort. The purpose of this study was to compare the performance of the 2016 ACR-EULAR classification set with the widely used American-European Consensus Group Classification criteria (AECG) in the cohort at the National Institutes of Health, USA, and to compare the performance of the sets in classifying both primary and secondary Sjögren's syndrome (pSS and sSS). The study cohort at the NIH (N = 1,303) was enrolled for clinical suspicion of SS. Participants were classified as SS, pSS, and sSS according to both classification sets. Performance of 2016 ACR-EULAR and AECG sets was compared holding each as gold standard to the other. Statistical analysis of test diagnostics and agreement between the two sets were undertaken. By the AECG set, 701 were classified as having SS (627 pSS, 74 sSS) and 714 were classified with SS (647 pSS, 67 sSS) by the 2016 ACR-EULAR set. Sensitivity and specificity of the two sets were comparable in classifying SS, pSS, and sSS. There was high agreement between the two sets for classifying SS (κ = 0.79), pSS (κ = 0.81), and sSS (κ = 0.87). The specificity of the 2016 ACR-EULAR set was significantly higher for classifying sSS than pSS, while the sensitivity was similar for the two disease groups. However, this pattern was also exhibited by the AECG set. There was high agreement between the two classification sets with comparable performance diagnostics. There was no evidence of superior performance value by the new 2016 ACR-EULAR set over the AECG set, and the two sets were found to be equivalent. Findings from our cohort indicate that 2016 ACR-EULAR classification could be extended to classification of sSS. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  2. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia

    PubMed Central

    Kim, Junghoe; Calhoun, Vince D.; Shim, Eunsoo; Lee, Jong-Hwan

    2015-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. PMID:25987366

  3. Towards a ternary NIRS-BCI: single-trial classification of verbal fluency task, Stroop task and unconstrained rest

    NASA Astrophysics Data System (ADS)

    Schudlo, Larissa C.; Chau, Tom

    2015-12-01

    Objective. The majority of near-infrared spectroscopy (NIRS) brain-computer interface (BCI) studies have investigated binary classification problems. Limited work has considered differentiation of more than two mental states, or multi-class differentiation of higher-level cognitive tasks using measurements outside of the anterior prefrontal cortex. Improvements in accuracies are needed to deliver effective communication with a multi-class NIRS system. We investigated the feasibility of a ternary NIRS-BCI that supports mental states corresponding to verbal fluency task (VFT) performance, Stroop task performance, and unconstrained rest using prefrontal and parietal measurements. Approach. Prefrontal and parietal NIRS signals were acquired from 11 able-bodied adults during rest and performance of the VFT or Stroop task. Classification was performed offline using bagging with a linear discriminant base classifier trained on a 10 dimensional feature set. Main results. VFT, Stroop task and rest were classified at an average accuracy of 71.7% ± 7.9%. The ternary classification system provided a statistically significant improvement in information transfer rate relative to a binary system controlled by either mental task (0.87 ± 0.35 bits/min versus 0.73 ± 0.24 bits/min). Significance. These results suggest that effective communication can be achieved with a ternary NIRS-BCI that supports VFT, Stroop task and rest via measurements from the frontal and parietal cortices. Further development of such a system is warranted. Accurate ternary classification can enhance communication rates offered by NIRS-BCIs, improving the practicality of this technology.

  4. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

    PubMed Central

    Pan, Jianjun

    2018-01-01

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073

  5. Automatic analysis and classification of surface electromyography.

    PubMed

    Abou-Chadi, F E; Nashar, A; Saad, M

    2001-01-01

    In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.

  6. Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional Fitts' Law test.

    PubMed

    Scheme, Erik J; Englehart, Kevin B

    2013-07-01

    When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.

  7. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  8. Classification bias in commercial business lists for retail food stores in the U.S.

    PubMed

    Han, Euna; Powell, Lisa M; Zenk, Shannon N; Rimkus, Leah; Ohri-Vachaspati, Punam; Chaloupka, Frank J

    2012-04-18

    Aspects of the food environment such as the availability of different types of food stores have recently emerged as key modifiable factors that may contribute to the increased prevalence of obesity. Given that many of these studies have derived their results based on secondary datasets and the relationship of food stores with individual weight outcomes has been reported to vary by store type, it is important to understand the extent to which often-used secondary data correctly classify food stores. We evaluated the classification bias of food stores in Dun & Bradstreet (D&B) and InfoUSA commercial business lists. We performed a full census in 274 randomly selected census tracts in the Chicago metropolitan area and collected detailed store attributes inside stores for classification. Store attributes were compared by classification match status and store type. Systematic classification bias by census tract characteristics was assessed in multivariate regression. D&B had a higher classification match rate than InfoUSA for supermarkets and grocery stores, while InfoUSA was higher for convenience stores. Both lists were more likely to correctly classify large supermarkets, grocery stores, and convenience stores with more cash registers and different types of service counters (supermarkets and grocery stores only). The likelihood of a correct classification match for supermarkets and grocery stores did not vary systemically by tract characteristics whereas convenience stores were more likely to be misclassified in predominately Black tracts. Researches can rely on classification of food stores in commercial datasets for supermarkets and grocery stores whereas classifications for convenience and specialty food stores are subject to some systematic bias by neighborhood racial/ethnic composition.

  9. Classification bias in commercial business lists for retail food stores in the U.S.

    PubMed Central

    2012-01-01

    Background Aspects of the food environment such as the availability of different types of food stores have recently emerged as key modifiable factors that may contribute to the increased prevalence of obesity. Given that many of these studies have derived their results based on secondary datasets and the relationship of food stores with individual weight outcomes has been reported to vary by store type, it is important to understand the extent to which often-used secondary data correctly classify food stores. We evaluated the classification bias of food stores in Dun & Bradstreet (D&B) and InfoUSA commercial business lists. Methods We performed a full census in 274 randomly selected census tracts in the Chicago metropolitan area and collected detailed store attributes inside stores for classification. Store attributes were compared by classification match status and store type. Systematic classification bias by census tract characteristics was assessed in multivariate regression. Results D&B had a higher classification match rate than InfoUSA for supermarkets and grocery stores, while InfoUSA was higher for convenience stores. Both lists were more likely to correctly classify large supermarkets, grocery stores, and convenience stores with more cash registers and different types of service counters (supermarkets and grocery stores only). The likelihood of a correct classification match for supermarkets and grocery stores did not vary systemically by tract characteristics whereas convenience stores were more likely to be misclassified in predominately Black tracts. Conclusion Researches can rely on classification of food stores in commercial datasets for supermarkets and grocery stores whereas classifications for convenience and specialty food stores are subject to some systematic bias by neighborhood racial/ethnic composition. PMID:22512874

  10. Performance of the 2012 Systemic Lupus International Collaborating Clinics classification criteria versus the 1997 American College of Rheumatology classification criteria in adult and juvenile systemic lupus erythematosus. A systematic review and meta-analysis.

    PubMed

    Hartman, Esther A R; van Royen-Kerkhof, Annet; Jacobs, Johannes W G; Welsing, Paco M J; Fritsch-Stork, Ruth D E

    2018-03-01

    To evaluate the performance in classifying systemic lupus erythematosus by the 2012 Systemic Lupus International Collaborating Clinics criteria (SLICC'12), versus the revised American College of Rheumatology criteria from 1997 (ACR'97) in adult and juvenile SLE patients. A systematic literature search was conducted in PubMed and Embase for studies comparing SLICC'12 and ACR'97 with clinical diagnosis. A meta-analysis was performed to estimate the sensitivity and specificity of SLICC'12 and ACR'97. To assess classification earlier in the disease by either set, sensitivity and specificity were compared for patients with disease duration <5years. Sensitivity and specificity of individual criteria items were also assessed. In adult SLE (nine studies: 5236 patients, 1313 controls), SLICC'12 has higher sensitivity (94.6% vs. 89.6%) and similar specificity (95.5% vs. 98.1%) compared to ACR'97. For juvenile SLE (four studies: 568 patients, 339 controls), SLICC'12 demonstrates higher sensitivity (99.9% vs. 84.3%) than ACR'97, but much lower specificity (82.0% vs. 94.1%). SLICC'12 classifies juvenile SLE patients earlier in disease course. Individual items contributing to diagnostic accuracy are low complement, anti-ds DNA and acute cutaneous lupus in SLICC'12, and the immunologic and hematologic disorder in ACR'97. Based on sensitivity and specificity SLICC'12 is best for adult SLE. Following the view that higher specificity, i.e. avoidance of false positives, is preferable, ACR'97 is best for juvenile SLE even if associated with lower sensitivity. Our results on the contribution of the individual items of SLICC'12 and ACR´97 may be of value in future efforts to update classification criteria. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less

  12. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  13. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.

    PubMed

    Li, Linyi; Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  14. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    PubMed Central

    Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440

  15. Proposed Core Competencies and Empirical Validation Procedure in Competency Modeling: Confirmation and Classification.

    PubMed

    Baczyńska, Anna K; Rowiński, Tomasz; Cybis, Natalia

    2016-01-01

    Competency models provide insight into key skills which are common to many positions in an organization. Moreover, there is a range of competencies that is used by many companies. Researchers have developed core competency terminology to underline their cross-organizational value. The article presents a theoretical model of core competencies consisting of two main higher-order competencies called performance and entrepreneurship. Each of them consists of three elements: the performance competency includes cooperation, organization of work and goal orientation, while entrepreneurship includes innovativeness, calculated risk-taking and pro-activeness. However, there is lack of empirical validation of competency concepts in organizations and this would seem crucial for obtaining reliable results from organizational research. We propose a two-step empirical validation procedure: (1) confirmation factor analysis, and (2) classification of employees. The sample consisted of 636 respondents (M = 44.5; SD = 15.1). Participants were administered a questionnaire developed for the study purpose. The reliability, measured by Cronbach's alpha, ranged from 0.60 to 0.83 for six scales. Next, we tested the model using a confirmatory factor analysis. The two separate, single models of performance and entrepreneurial orientations fit quite well to the data, while a complex model based on the two single concepts needs further research. In the classification of employees based on the two higher order competencies we obtained four main groups of employees. Their profiles relate to those found in the literature, including so-called niche finders and top performers. Some proposal for organizations is discussed.

  16. Understanding the local public health workforce: labels versus substance.

    PubMed

    Merrill, Jacqueline A; Keeling, Jonathan W

    2014-11-01

    The workforce is a key component of the nation's public health (PH) infrastructure, but little is known about the skills of local health department (LHD) workers to guide policy and planning. To profile a sample of LHD workers using classification schemes for PH work (the substance of what is done) and PH job titles (the labeling of what is done) to determine if work content is consistent with job classifications. A secondary analysis was conducted on data collected from 2,734 employees from 19 LHDs using a taxonomy of 151 essential tasks performed, knowledge possessed, and resources available. Each employee was classified by job title using a schema developed by PH experts. The inter-rater agreement was calculated within job classes and congruence on tasks, knowledge, and resources for five exemplar classes was examined. The average response rate was 89%. Overall, workers exhibited moderate agreement on tasks and poor agreement on knowledge and resources. Job classes with higher agreement included agency directors and community workers; those with lower agreement were mid-level managers such as program directors. Findings suggest that local PH workers within a job class perform similar tasks but vary in training and access to resources. Job classes that are specific and focused have higher agreement whereas job classes that perform in many roles show less agreement. The PH worker classification may not match employees' skill sets or how LHDs allocate resources, which may be a contributor to unexplained fluctuation in public health system performance. Copyright © 2014. Published by Elsevier Inc.

  17. Estimating workload using EEG spectral power and ERPs in the n-back task

    NASA Astrophysics Data System (ADS)

    Brouwer, Anne-Marie; Hogervorst, Maarten A.; van Erp, Jan B. F.; Heffelaar, Tobias; Zimmerman, Patrick H.; Oostenveld, Robert

    2012-08-01

    Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.

  18. Prognostic Performance and Reproducibility of the 1973 and 2004/2016 World Health Organization Grading Classification Systems in Non-muscle-invasive Bladder Cancer: A European Association of Urology Non-muscle Invasive Bladder Cancer Guidelines Panel Systematic Review.

    PubMed

    Soukup, Viktor; Čapoun, Otakar; Cohen, Daniel; Hernández, Virginia; Babjuk, Marek; Burger, Max; Compérat, Eva; Gontero, Paolo; Lam, Thomas; MacLennan, Steven; Mostafid, A Hugh; Palou, Joan; van Rhijn, Bas W G; Rouprêt, Morgan; Shariat, Shahrokh F; Sylvester, Richard; Yuan, Yuhong; Zigeuner, Richard

    2017-11-01

    Tumour grade is an important prognostic indicator in non-muscle-invasive bladder cancer (NMIBC). Histopathological classifications are limited by interobserver variability (reproducibility), which may have prognostic implications. European Association of Urology NMIBC guidelines suggest concurrent use of both 1973 and 2004/2016 World Health Organization (WHO) classifications. To compare the prognostic performance and reproducibility of the 1973 and 2004/2016 WHO grading systems for NMIBC. A systematic literature search was undertaken incorporating Medline, Embase, and the Cochrane Library. Studies were critically appraised for risk of bias (QUIPS). For prognosis, the primary outcome was progression to muscle-invasive or metastatic disease. Secondary outcomes were disease recurrence, and overall and cancer-specific survival. For reproducibility, the primary outcome was interobserver variability between pathologists. Secondary outcome was intraobserver variability (repeatability) by the same pathologist. Of 3593 articles identified, 20 were included in the prognostic review; three were eligible for the reproducibility review. Increasing tumour grade in both classifications was associated with higher disease progression and recurrence rates. Progression rates in grade 1 patients were similar to those in low-grade patients; progression rates in grade 3 patients were higher than those in high-grade patients. Survival data were limited. Reproducibility of the 2004/2016 system was marginally better than that of the 1973 system. Two studies on repeatability showed conflicting results. Most studies had a moderate to high risk of bias. Current grading classifications in NMIBC are suboptimal. The 1973 system identifies more aggressive tumours. Intra- and interobserver variability was slightly less in the 2004/2016 classification. We could not confirm that the 2004/2016 classification outperforms the 1973 classification in prediction of recurrence and progression. This article summarises the utility of two different grading systems for non-muscle-invasive bladder cancer. Both systems predict progression and recurrence, although pathologists vary in their reporting; suggestions for further improvements are made. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. The Carnegie Classification of Institutions of Higher Education. 2000 Edition. A Technical Report.

    ERIC Educational Resources Information Center

    Carnegie Foundation for the Advancement of Teaching, Menlo Park, CA.

    The Carnegie Classification of Institutions of Higher Education is the framework in which institutional diversity in United States higher education is commonly described. Developed in 1971, the Classification was designed to support research in higher education by identifying categories of colleges and universities that would be homogeneous with…

  20. A Study of the Impacts of Selected Products Developed by the National Center for Higher Education Management Systems.

    ERIC Educational Resources Information Center

    Rodgers, Kenneth W.; Rhodes, Isabelle N.

    The impact of NCHEMS (National Center for Higher Education Management Systems) products upon planning and management tasks is examined in this study performed at a sample of 126 institutions. The institutions have used one or more of the following NCHEMS products: Program Classification of Structure (PCS); Resource Requirements Prediction Model…

  1. Explaining Match Outcome During The Men’s Basketball Tournament at The Olympic Games

    PubMed Central

    Leicht, Anthony S.; Gómez, Miguel A.; Woods, Carl T.

    2017-01-01

    In preparation for the Olympics, there is a limited opportunity for coaches and athletes to interact regularly with team performance indicators providing important guidance to coaches for enhanced match success at the elite level. This study examined the relationship between match outcome and team performance indicators during men’s basketball tournaments at the Olympic Games. Twelve team performance indicators were collated from all men’s teams and matches during the basketball tournament of the 2004-2016 Olympic Games (n = 156). Linear and non-linear analyses examined the relationship between match outcome and team performance indicator characteristics; namely, binary logistic regression and a conditional interference (CI) classification tree. The most parsimonious logistic regression model retained ‘assists’, ‘defensive rebounds’, ‘field-goal percentage’, ‘fouls’, ‘fouls against’, ‘steals’ and ‘turnovers’ (delta AIC <0.01; Akaike weight = 0.28) with a classification accuracy of 85.5%. Conversely, four performance indicators were retained with the CI classification tree with an average classification accuracy of 81.4%. However, it was the combination of ‘field-goal percentage’ and ‘defensive rebounds’ that provided the greatest probability of winning (93.2%). Match outcome during the men’s basketball tournaments at the Olympic Games was identified by a unique combination of performance indicators. Despite the average model accuracy being marginally higher for the logistic regression analysis, the CI classification tree offered a greater practical utility for coaches through its resolution of non-linear phenomena to guide team success. Key points A unique combination of team performance indicators explained 93.2% of winning observations in men’s basketball at the Olympics. Monitoring of these team performance indicators may provide coaches with the capability to devise multiple game plans or strategies to enhance their likelihood of winning. Incorporation of machine learning techniques with team performance indicators may provide a valuable and strategic approach to explain patterns within multivariate datasets in sport science. PMID:29238245

  2. Using complex networks for text classification: Discriminating informative and imaginative documents

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-01-01

    Statistical methods have been widely employed in recent years to grasp many language properties. The application of such techniques have allowed an improvement of several linguistic applications, such as machine translation and document classification. In the latter, many approaches have emphasised the semantical content of texts, as is the case of bag-of-word language models. These approaches have certainly yielded reasonable performance. However, some potential features such as the structural organization of texts have been used only in a few studies. In this context, we probe how features derived from textual structure analysis can be effectively employed in a classification task. More specifically, we performed a supervised classification aiming at discriminating informative from imaginative documents. Using a networked model that describes the local topological/dynamical properties of function words, we achieved an accuracy rate of up to 95%, which is much higher than similar networked approaches. A systematic analysis of feature relevance revealed that symmetry and accessibility measurements are among the most prominent network measurements. Our results suggest that these measurements could be used in related language applications, as they play a complementary role in characterising texts.

  3. Optical diagnosis of cervical cancer by higher order spectra and boosting

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Barman, Ritwik; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-03-01

    In this contribution, we report the application of higher order statistical moments using decision tree and ensemble based learning methodology for the development of diagnostic algorithms for optical diagnosis of cancer. The classification results were compared to those obtained with an independent feature extractors like linear discriminant analysis (LDA). The performance and efficacy of these methodology using higher order statistics as a classifier using boosting has higher specificity and sensitivity while being much faster as compared to other time-frequency domain based methods.

  4. Discrimination of crop types with TerraSAR-X-derived information

    NASA Astrophysics Data System (ADS)

    Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki

    Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.

  5. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  6. Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines.

    PubMed

    Zhang, Ming-Huan; Ma, Jun-Shan; Shen, Ying; Chen, Ying

    2016-09-01

    This study aimed to investigate the optimal support vector machines (SVM)-based classifier of duchenne muscular dystrophy (DMD) magnetic resonance imaging (MRI) images. T1-weighted (T1W) and T2-weighted (T2W) images of the 15 boys with DMD and 15 normal controls were obtained. Textural features of the images were extracted and wavelet decomposed, and then, principal features were selected. Scale transform was then performed for MRI images. Afterward, SVM-based classifiers of MRI images were analyzed based on the radical basis function and decomposition levels. The cost (C) parameter and kernel parameter [Formula: see text] were used for classification. Then, the optimal SVM-based classifier, expressed as [Formula: see text]), was identified by performance evaluation (sensitivity, specificity and accuracy). Eight of 12 textural features were selected as principal features (eigenvalues [Formula: see text]). The 16 SVM-based classifiers were obtained using combination of (C, [Formula: see text]), and those with lower C and [Formula: see text] values showed higher performances, especially classifier of [Formula: see text]). The SVM-based classifiers of T1W images showed higher performance than T1W images at the same decomposition level. The T1W images in classifier of [Formula: see text]) at level 2 decomposition showed the highest performance of all, and its overall correct sensitivity, specificity, and accuracy reached 96.9, 97.3, and 97.1 %, respectively. The T1W images in SVM-based classifier [Formula: see text] at level 2 decomposition showed the highest performance of all, demonstrating that it was the optimal classification for the diagnosis of DMD.

  7. Classification of Partial Discharge Measured under Different Levels of Noise Contamination.

    PubMed

    Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.

  8. The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Kassomenos, P.; Philipp, A.

    2011-08-01

    In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights are derived and tested similarly. All results exploit a physical interpretation by adapting the environment-to-circulation approach, providing more detailed information on specific synoptic conditions prevailing on days with high surface ozone concentrations. This research does not intend to bring forward a favourite classification methodology or construct a statistical ozone forecasting tool but should be seen as an introduction to the possibilities of the cost733class software. It this respect, the results presented here can provide a basic user support for the cost733class software and the development of a more user- or application-specific CTC approach.

  9. Computational approaches for the classification of seed storage proteins.

    PubMed

    Radhika, V; Rao, V Sree Hari

    2015-07-01

    Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.

  10. Impact of oesophagitis classification in evaluating healing of erosive oesophagitis after therapy with proton pump inhibitors: a pooled analysis.

    PubMed

    Yaghoobi, Mohammad; Padol, Sara; Yuan, Yuhong; Hunt, Richard H

    2010-05-01

    The results of clinical trials with proton pump inhibitors (PPIs) are usually based on the Hetzel-Dent (HD), Savary-Miller (SM), or Los Angeles (LA) classifications to describe the severity and assess the healing of erosive oesophagitis. However, it is not known whether these classifications are comparable. The aim of this study was to review systematically the literature to compare the healing rates of erosive oesophagitis with PPIs in clinical trials assessed by the HD, SM, or LA classifications. A recursive, English language literature search in PubMed and Cochrane databases to December 2006 was performed. Double-blind randomized control trials comparing a PPI with another PPI, an H2-RA or placebo using endoscopic assessment of the healing of oesophagitis by the HD, SM or LA, or their modified classifications at 4 or 8 weeks, were included in the study. The healing rates on treatment with the same PPI(s), and same endoscopic grade(s) were pooled and compared between different classifications using Fisher's exact test or chi2 test where appropriate. Forty-seven studies from 965 potential citations met inclusion criteria. Seventy-eight PPI arms were identified, with 27 using HD, 29 using SM, and 22 using LA for five marketed PPIs. There was insufficient data for rabeprazole and esomeprazole (week 4 only) to compare because they were evaluated by only one classification. When data from all PPIs were pooled, regardless of baseline oesophagitis grades, the LA healing rate was significantly higher than SM and HD at both 4 and 8 weeks (74, 71, and 68% at 4 weeks and 89, 84, and 83% at 8 weeks, respectively). The distribution of different grades in study population was available only for pantoprazole where it was not significantly different between LA and SM subgroups. When analyzing data for PPI and dose, the LA classification showed a higher healing rate for omeprazole 20 mg/day and pantoprazole 40 mg/day (significant at 8 weeks), whereas healing by SM classification was significantly higher for omeprazole 40 mg/day (no data for LA) and lansoprazole 30 mg/day at 4 and 8 weeks. The healing rate by individual oesophagitis grade was not always available or robust enough for meaningful analysis. However, a difference between classifications remained. There is a significant, but not always consistent, difference in oesophagitis healing rates with the same PPI(s) reported by the LA, SM, or HD classifications. The possible difference between grading classifications should be considered when interpreting or comparing healing rates for oesophagitis from different studies.

  11. Visual word ambiguity.

    PubMed

    van Gemert, Jan C; Veenman, Cor J; Smeulders, Arnold W M; Geusebroek, Jan-Mark

    2010-07-01

    This paper studies automatic image classification by modeling soft assignment in the popular codebook model. The codebook model describes an image as a bag of discrete visual words selected from a vocabulary, where the frequency distributions of visual words in an image allow classification. One inherent component of the codebook model is the assignment of discrete visual words to continuous image features. Despite the clear mismatch of this hard assignment with the nature of continuous features, the approach has been successfully applied for some years. In this paper, we investigate four types of soft assignment of visual words to image features. We demonstrate that explicitly modeling visual word assignment ambiguity improves classification performance compared to the hard assignment of the traditional codebook model. The traditional codebook model is compared against our method for five well-known data sets: 15 natural scenes, Caltech-101, Caltech-256, and Pascal VOC 2007/2008. We demonstrate that large codebook vocabulary sizes completely deteriorate the performance of the traditional model, whereas the proposed model performs consistently. Moreover, we show that our method profits in high-dimensional feature spaces and reaps higher benefits when increasing the number of image categories.

  12. Exploration of Force Myography and surface Electromyography in hand gesture classification.

    PubMed

    Jiang, Xianta; Merhi, Lukas-Karim; Xiao, Zhen Gang; Menon, Carlo

    2017-03-01

    Whereas pressure sensors increasingly have received attention as a non-invasive interface for hand gesture recognition, their performance has not been comprehensively evaluated. This work examined the performance of hand gesture classification using Force Myography (FMG) and surface Electromyography (sEMG) technologies by performing 3 sets of 48 hand gestures using a prototyped FMG band and an array of commercial sEMG sensors worn both on the wrist and forearm simultaneously. The results show that the FMG band achieved classification accuracies as good as the high quality, commercially available, sEMG system on both wrist and forearm positions; specifically, by only using 8 Force Sensitive Resisters (FSRs), the FMG band achieved accuracies of 91.2% and 83.5% in classifying the 48 hand gestures in cross-validation and cross-trial evaluations, which were higher than those of sEMG (84.6% and 79.1%). By using all 16 FSRs on the band, our device achieved high accuracies of 96.7% and 89.4% in cross-validation and cross-trial evaluations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers

    PubMed Central

    2018-01-01

    Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said problem, we propose a fuzziness-based active learning framework (FALF), in which we implement the idea of selecting optimal training samples to enhance generalization performance for two different kinds of classifiers, discriminative and generative (e.g. SVM and KNN). The optimal samples are selected by first estimating the boundary of each class and then calculating the fuzziness-based distance between each sample and the estimated class boundaries. Those samples that are at smaller distances from the boundaries and have higher fuzziness are chosen as target candidates for the training set. Through detailed experimentation on three publically available datasets, we showed that when trained with the proposed sample selection framework, both classifiers achieved higher classification accuracy and lower processing time with the small amount of training data as opposed to the case where the training samples were selected randomly. Our experiments demonstrate the effectiveness of our proposed method, which equates favorably with the state-of-the-art methods. PMID:29304512

  14. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  15. Carnegie's New Community Engagement Classification: Affirming Higher Education's Role in Community

    ERIC Educational Resources Information Center

    Driscoll, Amy

    2009-01-01

    In 2005, the Carnegie Foundation for the Advancement of Teaching (CFAT) stirred the higher education world with the announcement of a new classification for institutions that engage with community. The classification, community engagement, is the first in a set of planned classification schemes resulting from the foundation's reexamination of the…

  16. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.

    PubMed

    Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan

    2016-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Proposed Core Competencies and Empirical Validation Procedure in Competency Modeling: Confirmation and Classification

    PubMed Central

    Baczyńska, Anna K.; Rowiński, Tomasz; Cybis, Natalia

    2016-01-01

    Competency models provide insight into key skills which are common to many positions in an organization. Moreover, there is a range of competencies that is used by many companies. Researchers have developed core competency terminology to underline their cross-organizational value. The article presents a theoretical model of core competencies consisting of two main higher-order competencies called performance and entrepreneurship. Each of them consists of three elements: the performance competency includes cooperation, organization of work and goal orientation, while entrepreneurship includes innovativeness, calculated risk-taking and pro-activeness. However, there is lack of empirical validation of competency concepts in organizations and this would seem crucial for obtaining reliable results from organizational research. We propose a two-step empirical validation procedure: (1) confirmation factor analysis, and (2) classification of employees. The sample consisted of 636 respondents (M = 44.5; SD = 15.1). Participants were administered a questionnaire developed for the study purpose. The reliability, measured by Cronbach’s alpha, ranged from 0.60 to 0.83 for six scales. Next, we tested the model using a confirmatory factor analysis. The two separate, single models of performance and entrepreneurial orientations fit quite well to the data, while a complex model based on the two single concepts needs further research. In the classification of employees based on the two higher order competencies we obtained four main groups of employees. Their profiles relate to those found in the literature, including so-called niche finders and top performers. Some proposal for organizations is discussed. PMID:27014111

  18. A discrete wavelet based feature extraction and hybrid classification technique for microarray data analysis.

    PubMed

    Bennet, Jaison; Ganaprakasam, Chilambuchelvan Arul; Arputharaj, Kannan

    2014-01-01

    Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN), naive Bayes, and support vector machine (SVM). Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT) and moving window technique (MWT) is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  19. Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease

    PubMed Central

    Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156

  20. How musical expertise shapes speech perception: evidence from auditory classification images.

    PubMed

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-09-24

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.

  1. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges.

    PubMed

    Cuevas, Francisco Julián; Moreno-Rojas, José Manuel; Ruiz-Moreno, María José

    2017-04-15

    A targeted approach using HS-SPME-GC-MS was performed to compare flavour compounds of 'Navelina' and 'Salustiana' orange cultivars from organic and conventional management systems. Both varieties of conventional oranges showed higher content of ester compounds. On the other hand, higher content of some compounds related with the geranyl-diphosphate pathway (neryl and geranyl acetates) and some terpenoids were found in the organic samples. Furthermore, the partial least square discriminant analysis (PLS-DA) achieved an effective classification for oranges based on the farming system using their volatile profiles (90 and 100% correct classification). To our knowledge, it is the first time that a comparative study dealing with farming systems and orange aroma profile has been performed. These new insights, taking into account local databases, cultivars and advanced analytical tools, highlight the potential of volatile composition for organic orange discrimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Global Stress Classification System for Materials Used in Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  3. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults.

    PubMed

    Habeck, C; Gazes, Y; Razlighi, Q; Steffener, J; Brickman, A; Barulli, D; Salthouse, T; Stern, Y

    2016-01-15

    Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which administers 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20-80 in order to derive unique neural networks underlying these 4 RAs and investigate how these networks may be affected by aging. We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64 younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining sample of 227 adults of age 31 and above in order to classify each subject-task map into one of the 4 possible reference domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80±0.18. Classification accuracy by RA domain was also good, but variable; memory: 0.72±0.32; reasoning: 0.75±0.35; speed: 0.79±0.31; vocabulary: 0.94±0.16. Classification accuracy was not associated with cross-sectional age, suggesting that these networks, and their specificity to the respective reference domain, might remain intact throughout the age range. Higher mean brain volume was correlated with increased overall classification accuracy; better overall performance on the tasks in the scanner was also associated with classification accuracy. For the RANN network scores, we observed for each RANN that a higher score was associated with a higher corresponding classification accuracy for that reference ability. Despite the absence of behavioral performance information in the derivation of these networks, we also observed some brain-behavioral correlations, notably for the fluid-reasoning network whose network score correlated with performance on the memory and fluid-reasoning tasks. While age did not influence the expression of this RANN, the slope of the association between network score and fluid-reasoning performance was negatively associated with higher ages. These results provide support for the hypothesis that a set of specific, age-invariant neural networks underlies these four RAs, and that these networks maintain their cognitive specificity and level of intensity across age. Activation common to all 12 tasks was identified as another activation pattern resulting from a mean-contrast Partial-Least-Squares technique. This common pattern did show associations with age and some subject demographics for some of the reference domains, lending support to the overall conclusion that aspects of neural processing that are specific to any cognitive reference ability stay constant across age, while aspects that are common to all reference abilities differ across age. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Impact of Strain Elastography on BI-RADS classification in small invasive lobular carcinoma.

    PubMed

    Chiorean, Angelica Rita; Szep, Mădălina Brîndușa; Feier, Diana Sorina; Duma, Magdalena; Chiorean, Marco Andrei; Strilciuc, Ștefan

    2018-05-02

    The purpose of this study was to determine the impact of strain elastography (SE) on the Breast Imaging Reporting Data System (BI-RADS) classification depending on invasive lobular carcinoma (ILC) lesion size. We performed a retrospective analysis on a sample of 152 female subjects examined between January 2010 - January 2017. SE was performed on all patients and ILC was subsequently diagnosed by surgical or ultrasound-guided biopsy. BI-RADS 1, 2, 6 and Tsukuba BGR cases were omitted. BI-RADS scores were recorded before and after the use of SE. The differences between scores were compared to the ILC tumor size using nonparametric tests and logistic binary regression. We controlled for age, focality, clinical assessment, heredo-collateral antecedents, B-mode and Doppler ultrasound examination. An ROC curve was used to identify the optimal cut-off point for size in relationship to BI-RADS classificationdifference using Youden's index. The histological subtypes of ILC lesions (n=180) included in the sample were luminal A (70%, n=126), luminal B (27.78%, n=50), triple negative (1.67%, n=3) and HER2+ (0.56%, n=1). The BI-RADS classification was higher when SE was performed (Z=- 6.629, p<0.000). The ROC curve identified a cut-off point of 13 mm for size in relationship to BI-RADS classification difference (J=0.670, p<0.000). Small ILC tumors were 17.92% more likely to influence BI-RADS classification (p<0.000). SE offers enhanced BI-RADS classification in small ILC tumors (<13 mm). Sonoelastography brings added value to B-mode breast ultrasound as an adjacent to mammography in breast cancer screening.

  5. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  6. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  7. Automatic Identification of Messages Related to Adverse Drug Reactions from Online User Reviews using Feature-based Classification.

    PubMed

    Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie

    2014-11-01

    User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.

  8. Classification of wet aged related macular degeneration using optical coherence tomographic images

    NASA Astrophysics Data System (ADS)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  9. Extended census transform histogram for land-use scene classification

    NASA Astrophysics Data System (ADS)

    Yuan, Baohua; Li, Shijin

    2017-04-01

    With the popular use of high-resolution satellite images, more and more research efforts have been focused on land-use scene classification. In scene classification, effective visual features can significantly boost the final performance. As a typical texture descriptor, the census transform histogram (CENTRIST) has emerged as a very powerful tool due to its effective representation ability. However, the most prominent limitation of CENTRIST is its small spatial support area, which may not necessarily be adept at capturing the key texture characteristics. We propose an extended CENTRIST (eCENTRIST), which is made up of three subschemes in a greater neighborhood scale. The proposed eCENTRIST not only inherits the advantages of CENTRIST but also encodes the more useful information of local structures. Meanwhile, multichannel eCENTRIST, which can capture the interactions from multichannel images, is developed to obtain higher categorization accuracy rates. Experimental results demonstrate that the proposed method can achieve competitive performance when compared to state-of-the-art methods.

  10. An integrated classifier for computer-aided diagnosis of colorectal polyps based on random forest and location index strategies

    NASA Astrophysics Data System (ADS)

    Hu, Yifan; Han, Hao; Zhu, Wei; Li, Lihong; Pickhardt, Perry J.; Liang, Zhengrong

    2016-03-01

    Feature classification plays an important role in differentiation or computer-aided diagnosis (CADx) of suspicious lesions. As a widely used ensemble learning algorithm for classification, random forest (RF) has a distinguished performance for CADx. Our recent study has shown that the location index (LI), which is derived from the well-known kNN (k nearest neighbor) and wkNN (weighted k nearest neighbor) classifier [1], has also a distinguished role in the classification for CADx. Therefore, in this paper, based on the property that the LI will achieve a very high accuracy, we design an algorithm to integrate the LI into RF for improved or higher value of AUC (area under the curve of receiver operating characteristics -- ROC). Experiments were performed by the use of a database of 153 lesions (polyps), including 116 neoplastic lesions and 37 hyperplastic lesions, with comparison to the existing classifiers of RF and wkNN, respectively. A noticeable gain by the proposed integrated classifier was quantified by the AUC measure.

  11. Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error.

    PubMed

    Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi

    2016-12-01

    This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification technique to the Global Ionospheric Map (GIM) TEC data which is provided by the NASA Jet Propulsion Laboratory (JPL), it will be shown that SVM can be a suitable learning method to detect the anomalies in Total Electron Content (TEC) variations. This study is supported by TUBITAK 114E541 project as a part of the Scientific and Technological Research Projects Funding Program (1001).

  13. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

    PubMed

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark

    2007-12-01

    To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

  14. Classification of Partial Discharge Measured under Different Levels of Noise Contamination

    PubMed Central

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953

  15. International Rankings and the Contest for University Hegemony

    ERIC Educational Resources Information Center

    Ordorika, Imanol; Lloyd, Marion

    2015-01-01

    In just a decade, the international university rankings have become dominant measures of institutional performance for policy-makers worldwide. Bolstered by the façade of scientific neutrality, these classification systems have reinforced the hegemonic model of higher education--that of the elite, Anglo-Saxon research university--on a global…

  16. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    PubMed

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  17. Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint.

    PubMed

    Saito, Priscila T M; Nakamura, Rodrigo Y M; Amorim, Willian P; Papa, João P; de Rezende, Pedro J; Falcão, Alexandre X

    2015-01-01

    Nowadays, large datasets are common and demand faster and more effective pattern analysis techniques. However, methodologies to compare classifiers usually do not take into account the learning-time constraints required by applications. This work presents a methodology to compare classifiers with respect to their ability to learn from classification errors on a large learning set, within a given time limit. Faster techniques may acquire more training samples, but only when they are more effective will they achieve higher performance on unseen testing sets. We demonstrate this result using several techniques, multiple datasets, and typical learning-time limits required by applications.

  18. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  19. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge. PMID:22007016

  20. Exploring the Impact of Target Eccentricity and Task Difficulty on Covert Visual Spatial Attention and Its Implications for Brain Computer Interfacing

    PubMed Central

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477

  1. Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing.

    PubMed

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.

  2. Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.

    PubMed

    Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita

    2018-03-01

    Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.

  3. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  4. Performance of the new ACR/EULAR classification criteria for systemic sclerosis in clinical practice.

    PubMed

    Jordan, Suzana; Maurer, Britta; Toniolo, Martin; Michel, Beat; Distler, Oliver

    2015-08-01

    The preliminary classification criteria for SSc lack sensitivity for mild/early SSc patients, therefore, the new ACR/EULAR classification criteria for SSc were developed. The objective of this study was to evaluate the performance of the new classification criteria for SSc in clinical practice in a cohort of mild/early patients. Consecutive patients with a clinical diagnosis of SSc, based on expert opinion, were prospectively recruited and assessed according to the EULAR Scleroderma Trials and Research group (EUSTAR) and very early diagnosis of SSc (VEDOSS) recommendations. In some patients, missing values were retrieved retrospectively from the patient's records. Patients were grouped into established SSc (fulfilling the old ACR criteria) and mild/early SSc (not fulfilling the old ACR criteria). The new ACR/EULAR criteria were applied to all patients. Of the 304 patients available for the final analysis, 162/304 (53.3%) had established SSc and 142/304 (46.7%) had mild/early SSc. All 162 established SSc patients fulfilled the new ACR/EULAR classification criteria. The remaining 142 patients had mild/early SSc. Eighty of these 142 patients (56.3%) fulfilled the new ACR/EULAR classification criteria. Patients with mild/early SSc not fulfilling the new classification criteria were most often suffering from RP, had SSc-characteristic autoantibodies and had an SSc pattern on nailfold capillaroscopy. Taken together, the sensitivity of the new ACR/EULAR classification criteria for the overall cohort was 242/304 (79.6%) compared with 162/304 (53.3%) for the ACR criteria. In this cohort with a focus on mild/early SSc, the new ACR/EULAR classification criteria showed higher sensitivity and classified more patients as definite SSc patients than the ACR criteria. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Evaluation of host and viral factors associated with severe dengue based on the 2009 WHO classification.

    PubMed

    Pozo-Aguilar, Jorge O; Monroy-Martínez, Verónica; Díaz, Daniel; Barrios-Palacios, Jacqueline; Ramos, Celso; Ulloa-García, Armando; García-Pillado, Janet; Ruiz-Ordaz, Blanca H

    2014-12-11

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease affecting humans. The World Health Organization (WHO) proposed a revised classification in 2009 to enable the more effective identification of cases of severe dengue (SD). This was designed primarily as a clinical tool, but it also enables cases of SD to be differentiated into three specific subcategories (severe vascular leakage, severe bleeding, and severe organ dysfunction). However, no study has addressed whether this classification has advantage in estimating factors associated with the progression of disease severity or dengue pathogenesis. We evaluate in a dengue outbreak associated risk factors that could contribute to the development of SD according to the 2009 WHO classification. A prospective cross-sectional study was performed during an epidemic of dengue in 2009 in Chiapas, Mexico. Data were analyzed for host and viral factors associated with dengue cases, using the 1997 and 2009 WHO classifications. The cost-benefit ratio (CBR) was also estimated. The sensitivity in the 1997 WHO classification for determining SD was 75%, and the specificity was 97.7%. For the 2009 scheme, these were 100% and 81.1%, respectively. The 2009 classification showed a higher benefit (537%) with a lower cost (10.2%) than the 1997 WHO scheme. A secondary antibody response was strongly associated with SD. Early viral load was higher in cases of SD than in those with DF. Logistic regression analysis identified predictive SD factors (secondary infection, disease phase, viral load) within the 2009 classification. However, within the 1997 scheme it was not possible to differentiate risk factors between DF and dengue hemorrhagic fever or dengue shock syndrome. The critical clinical stage for determining SD progression was the transition from fever to defervescence in which plasma leakage can occur. The clinical phenotype of SD is influenced by the host (secondary response) and viral factors (viral load). The 2009 WHO classification showed greater sensitivity to identify SD in real time. Timely identification of SD enables accurate early decisions, allowing proper management of health resources for the benefit of patients at risk for SD. This is possible based on the 2009 WHO classification.

  6. Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation

    PubMed Central

    Kauppi, Jukka-Pekka; Hahne, Janne; Müller, Klaus-Robert; Hyvärinen, Aapo

    2015-01-01

    Classifying multivariate electromyography (EMG) data is an important problem in prosthesis control as well as in neurophysiological studies and diagnosis. With modern high-density EMG sensor technology, it is possible to capture the rich spectrospatial structure of the myoelectric activity. We hypothesize that multi-way machine learning methods can efficiently utilize this structure in classification as well as reveal interesting patterns in it. To this end, we investigate the suitability of existing three-way classification methods to EMG-based hand movement classification in spectrospatial domain, as well as extend these methods by sparsification and regularization. We propose to use Fourier-domain independent component analysis as preprocessing to improve classification and interpretability of the results. In high-density EMG experiments on hand movements across 10 subjects, three-way classification yielded higher average performance compared with state-of-the art classification based on temporal features, suggesting that the three-way analysis approach can efficiently utilize detailed spectrospatial information of high-density EMG. Phase and amplitude patterns of features selected by the classifier in finger-movement data were found to be consistent with known physiology. Thus, our approach can accurately resolve hand and finger movements on the basis of detailed spectrospatial information, and at the same time allows for physiological interpretation of the results. PMID:26039100

  7. Variation in Men's Dietary Intake Between Occupations, Based on Data From the Japan Environment and Children's Study.

    PubMed

    Tanaka, Rie; Tsuji, Mayumi; Asakura, Keiko; Senju, Ayako; Shibata, Eiji; Kusuhara, Koichi; Morokuma, Seiichi; Sanefuji, Masafumi; Kawamoto, Toshihiro

    2018-06-01

    There has been increasing interest in dietary health promotion in the workplace. Although many previous studies have focused on dietary habits in specific occupations, variation between occupational groups requires clarification. The present study aimed to examine differences in food and nutrient intake between occupational groups, using detailed classification. A cross-sectional study was conducted using data from the Japan Environment and Children's Study. The study included 38,721 employed Japanese expectant fathers aged between 20 and 65 years. Dietary intake was assessed using a food frequency questionnaire. Occupations were categorized into 11 categories according to the Japan Standard Occupational Classification. Analysis of variance and analysis of covariance were performed to compare dietary intake of occupational groups. Logistic regression analysis was performed to examine the differences in adherence to dietary recommendations across occupations. Dietary intake differed significantly between occupations. Specific dietary intake was observed in security and agricultural workers, who tended to exhibit higher consumption levels for numerous foods and nutrients. In addition, relative to other workers, security workers showed higher intake of dairy products and calcium, and agricultural workers consumed larger amounts of pickles and salt. The study categorized occupations into detailed categories using the Japan Standard Occupational Classification, which facilitated the clarification of overall dietary trends across occupations and identification of specific dietary characteristics in individual occupations. The findings could aid in workplace health promotion.

  8. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.

    PubMed

    Abuassba, Adnan O M; Zhang, Dezheng; Luo, Xiong; Shaheryar, Ahmad; Ali, Hazrat

    2017-01-01

    Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L 2 -norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets.

  9. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines

    PubMed Central

    Abuassba, Adnan O. M.; Ali, Hazrat

    2017-01-01

    Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L2-norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets. PMID:28546808

  10. Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?

    NASA Astrophysics Data System (ADS)

    Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.

    2018-05-01

    Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.

  11. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.

    PubMed

    Sonnleitner, Andreas; Treder, Matthias Sebastian; Simon, Michael; Willmann, Sven; Ewald, Arne; Buchner, Axel; Schrauf, Michael

    2014-01-01

    Driver distraction is responsible for a substantial number of traffic accidents. This paper describes the impact of an auditory secondary task on drivers' mental states during a primary driving task. N=20 participants performed the test procedure in a car following task with repeated forced braking on a non-public test track. Performance measures (provoked reaction time to brake lights) and brain activity (EEG alpha spindles) were analyzed to describe distracted drivers. Further, a classification approach was used to investigate whether alpha spindles can predict drivers' mental states. Results show that reaction times and alpha spindle rate increased with time-on-task. Moreover, brake reaction times and alpha spindle rate were significantly higher while driving with auditory secondary task opposed to driving only. In single-trial classification, a combination of spindle parameters yielded a median classification error of about 8% in discriminating the distracted from the alert driving. Reduced driving performance (i.e., prolonged brake reaction times) during increased cognitive load is assumed to be indicated by EEG alpha spindles, enabling the quantification of driver distraction in experiments on public roads without verbally assessing the drivers' mental states. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.

    PubMed

    Blokland, Yvonne; Spyrou, Loukianos; Thijssen, Dick; Eijsvogels, Thijs; Colier, Willy; Floor-Westerdijk, Marianne; Vlek, Rutger; Bruhn, Jorgen; Farquhar, Jason

    2014-03-01

    Combining electrophysiological and hemodynamic features is a novel approach for improving current performance of brain switches based on sensorimotor rhythms (SMR). This study was conducted with a dual purpose: to test the feasibility of using a combined electroencephalogram/functional near-infrared spectroscopy (EEG-fNIRS) SMR-based brain switch in patients with tetraplegia, and to examine the performance difference between motor imagery and motor attempt for this user group. A general improvement was found when using both EEG and fNIRS features for classification as compared to using the single-modality EEG classifier, with average classification rates of 79% for attempted movement and 70% for imagined movement. For the control group, rates of 87% and 79% were obtained, respectively, where the "attempted movement" condition was replaced with "actual movement." A combined EEG-fNIRS system might be especially beneficial for users who lack sufficient control of current EEG-based brain switches. The average classification performance in the patient group for attempted movement was significantly higher than for imagined movement using the EEG-only as well as the combined classifier, arguing for the case of a paradigm shift in current brain switch research.

  13. Impact of the revised International Prognostic Scoring System, cytogenetics and monosomal karyotype on outcome after allogeneic stem cell transplantation for myelodysplastic syndromes and secondary acute myeloid leukemia evolving from myelodysplastic syndromes: a retrospective multicenter study of the European Society of Blood and Marrow Transplantation

    PubMed Central

    Koenecke, Christian; Göhring, Gudrun; de Wreede, Liesbeth C.; van Biezen, Anja; Scheid, Christof; Volin, Liisa; Maertens, Johan; Finke, Jürgen; Schaap, Nicolaas; Robin, Marie; Passweg, Jakob; Cornelissen, Jan; Beelen, Dietrich; Heuser, Michael; de Witte, Theo; Kröger, Nicolaus

    2015-01-01

    The aim of this study was to determine the impact of the revised 5-group International Prognostic Scoring System cytogenetic classification on outcome after allogeneic stem cell transplantation in patients with myelodysplastic syndromes or secondary acute myeloid leukemia who were reported to the European Society for Blood and Marrow Transplantation database. A total of 903 patients had sufficient cytogenetic information available at stem cell transplantation to be classified according to the 5-group classification. Poor and very poor risk according to this classification was an independent predictor of shorter relapse-free survival (hazard ratio 1.40 and 2.14), overall survival (hazard ratio 1.38 and 2.14), and significantly higher cumulative incidence of relapse (hazard ratio 1.64 and 2.76), compared to patients with very good, good or intermediate risk. When comparing the predictive performance of a series of Cox models both for relapse-free survival and for overall survival, a model with simplified 5-group cytogenetics (merging very good, good and intermediate cytogenetics) performed best. Furthermore, monosomal karyotype is an additional negative predictor for outcome within patients of the poor, but not the very poor risk group of the 5-group classification. The revised International Prognostic Scoring System cytogenetic classification allows patients with myelodysplastic syndromes to be separated into three groups with clearly different outcomes after stem cell transplantation. Poor and very poor risk cytogenetics were strong predictors of poor patient outcome. The new cytogenetic classification added value to prediction of patient outcome compared to prediction models using only traditional risk factors or the 3-group International Prognostic Scoring System cytogenetic classification. PMID:25552702

  14. Degree Classification and Recent Graduates' Ability: Is There Any Signalling Effect?

    ERIC Educational Resources Information Center

    Di Pietro, Giorgio

    2017-01-01

    Research across several countries has shown that degree classification (i.e. the final grade awarded to students successfully completing university) is an important determinant of graduates' first destination outcome. Graduates leaving university with higher degree classifications have better employment opportunities and a higher likelihood of…

  15. 32 CFR 2103.12 - Level of original classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Level of original classification. 2103.12... DECLASSIFIED Original Classification § 2103.12 Level of original classification. Unnecessary classification, and classification at a level higher than is necessary, shall be avoided. If there is reasonable doubt...

  16. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  17. Classifier fusion for VoIP attacks classification

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Rezac, Filip

    2017-05-01

    SIP is one of the most successful protocols in the field of IP telephony communication. It establishes and manages VoIP calls. As the number of SIP implementation rises, we can expect a higher number of attacks on the communication system in the near future. This work aims at malicious SIP traffic classification. A number of various machine learning algorithms have been developed for attack classification. The paper presents a comparison of current research and the use of classifier fusion method leading to a potential decrease in classification error rate. Use of classifier combination makes a more robust solution without difficulties that may affect single algorithms. Different voting schemes, combination rules, and classifiers are discussed to improve the overall performance. All classifiers have been trained on real malicious traffic. The concept of traffic monitoring depends on the network of honeypot nodes. These honeypots run in several networks spread in different locations. Separation of honeypots allows us to gain an independent and trustworthy attack information.

  18. Classification of EEG Signals Based on Pattern Recognition Approach.

    PubMed

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

  19. Classification of EEG Signals Based on Pattern Recognition Approach

    PubMed Central

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190

  20. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    PubMed

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  1. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.

    PubMed

    Cannon, Edward O; Amini, Ata; Bender, Andreas; Sternberg, Michael J E; Muggleton, Stephen H; Glen, Robert C; Mitchell, John B O

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly (p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  2. Integrating Interview Methodology to Analyze Inter-Institutional Comparisons of Service-Learning within the Carnegie Community Engagement Classification Framework

    ERIC Educational Resources Information Center

    Plante, Jarrad D.; Cox, Thomas D.

    2016-01-01

    Service-learning has a longstanding history in higher education in and includes three main tenets: academic learning, meaningful community service, and civic learning. The Carnegie Foundation for the Advancement of Teaching created an elective classification system called the Carnegie Community Engagement Classification for higher education…

  3. Development and evaluation of a study design typology for human research.

    PubMed

    Carini, Simona; Pollock, Brad H; Lehmann, Harold P; Bakken, Suzanne; Barbour, Edward M; Gabriel, Davera; Hagler, Herbert K; Harper, Caryn R; Mollah, Shamim A; Nahm, Meredith; Nguyen, Hien H; Scheuermann, Richard H; Sim, Ida

    2009-11-14

    A systematic classification of study designs would be useful for researchers, systematic reviewers, readers, and research administrators, among others. As part of the Human Studies Database Project, we developed the Study Design Typology to standardize the classification of study designs in human research. We then performed a multiple observer masked evaluation of active research protocols in four institutions according to a standardized protocol. Thirty-five protocols were classified by three reviewers each into one of nine high-level study designs for interventional and observational research (e.g., N-of-1, Parallel Group, Case Crossover). Rater classification agreement was moderately high for the 35 protocols (Fleiss' kappa = 0.442) and higher still for the 23 quantitative studies (Fleiss' kappa = 0.463). We conclude that our typology shows initial promise for reliably distinguishing study design types for quantitative human research.

  4. 14 CFR 1203.203 - Degree of protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Authorized categories of classification. The three categories of classification, as authorized and defined in... be safeguarded as if it were classified pending a determination by an original classification... appropriate level of classification, it shall be safeguarded at the higher level of classification pending a...

  5. Proposal of a New Adverse Event Classification by the Society of Interventional Radiology Standards of Practice Committee.

    PubMed

    Khalilzadeh, Omid; Baerlocher, Mark O; Shyn, Paul B; Connolly, Bairbre L; Devane, A Michael; Morris, Christopher S; Cohen, Alan M; Midia, Mehran; Thornton, Raymond H; Gross, Kathleen; Caplin, Drew M; Aeron, Gunjan; Misra, Sanjay; Patel, Nilesh H; Walker, T Gregory; Martinez-Salazar, Gloria; Silberzweig, James E; Nikolic, Boris

    2017-10-01

    To develop a new adverse event (AE) classification for the interventional radiology (IR) procedures and evaluate its clinical, research, and educational value compared with the existing Society of Interventional Radiology (SIR) classification via an SIR member survey. A new AE classification was developed by members of the Standards of Practice Committee of the SIR. Subsequently, a survey was created by a group of 18 members from the SIR Standards of Practice Committee and Service Lines. Twelve clinical AE case scenarios were generated that encompassed a broad spectrum of IR procedures and potential AEs. Survey questions were designed to evaluate the following domains: educational and research values, accountability for intraprocedural challenges, consistency of AE reporting, unambiguity, and potential for incorporation into existing quality-assurance framework. For each AE scenario, the survey participants were instructed to answer questions about the proposed and existing SIR classifications. SIR members were invited via online survey links, and 68 members participated among 140 surveyed. Answers on new and existing classifications were evaluated and compared statistically. Overall comparison between the two surveys was performed by generalized linear modeling. The proposed AE classification received superior evaluations in terms of consistency of reporting (P < .05) and potential for incorporation into existing quality-assurance framework (P < .05). Respondents gave a higher overall rating to the educational and research value of the new compared with the existing classification (P < .05). This study proposed an AE classification system that outperformed the existing SIR classification in the studied domains. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  6. Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.

    PubMed

    Caixinha, Miguel; Santos, Mário; Santos, Jaime

    2016-04-01

    To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.

  8. On the classification techniques in data mining for microarray data classification

    NASA Astrophysics Data System (ADS)

    Aydadenta, Husna; Adiwijaya

    2018-03-01

    Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.

  9. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    PubMed Central

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-01-01

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood. PMID:28294963

  10. Vector quantizer designs for joint compression and terrain categorization of multispectral imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Lyons, Daniel F.

    1994-01-01

    Two vector quantizer designs for compression of multispectral imagery and their impact on terrain categorization performance are evaluated. The mean-squared error (MSE) and classification performance of the two quantizers are compared, and it is shown that a simple two-stage design minimizing MSE subject to a constraint on classification performance has a significantly better classification performance than a standard MSE-based tree-structured vector quantizer followed by maximum likelihood classification. This improvement in classification performance is obtained with minimal loss in MSE performance. The results show that it is advantageous to tailor compression algorithm designs to the required data exploitation tasks. Applications of joint compression/classification include compression for the archival or transmission of Landsat imagery that is later used for land utility surveys and/or radiometric analysis.

  11. Machine learning approach for automated screening of malaria parasite using light microscopic images.

    PubMed

    Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan

    2013-02-01

    The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Novel Strength Test Battery to Permit Evidence-Based Paralympic Classification

    PubMed Central

    Beckman, Emma M.; Newcombe, Peter; Vanlandewijck, Yves; Connick, Mark J.; Tweedy, Sean M.

    2014-01-01

    Abstract Ordinal-scale strength assessment methods currently used in Paralympic athletics classification prevent the development of evidence-based classification systems. This study evaluated a battery of 7, ratio-scale, isometric tests with the aim of facilitating the development of evidence-based methods of classification. This study aimed to report sex-specific normal performance ranges, evaluate test–retest reliability, and evaluate the relationship between the measures and body mass. Body mass and strength measures were obtained from 118 participants—63 males and 55 females—ages 23.2 years ± 3.7 (mean ± SD). Seventeen participants completed the battery twice to evaluate test–retest reliability. The body mass–strength relationship was evaluated using Pearson correlations and allometric exponents. Conventional patterns of force production were observed. Reliability was acceptable (mean intraclass correlation = 0.85). Eight measures had moderate significant correlations with body size (r = 0.30–61). Allometric exponents were higher in males than in females (mean 0.99 vs 0.30). Results indicate that this comprehensive and parsimonious battery is an important methodological advance because it has psychometric properties critical for the development of evidence-based classification. Measures were interrelated with body size, indicating further research is required to determine whether raw measures require normalization in order to be validly applied in classification. PMID:25068950

  13. New Features for Neuron Classification.

    PubMed

    Hernández-Pérez, Leonardo A; Delgado-Castillo, Duniel; Martín-Pérez, Rainer; Orozco-Morales, Rubén; Lorenzo-Ginori, Juan V

    2018-04-28

    This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer's disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer's disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked.

  14. Statistical sensor fusion of ECG data using automotive-grade sensors

    NASA Astrophysics Data System (ADS)

    Koenig, A.; Rehg, T.; Rasshofer, R.

    2015-11-01

    Driver states such as fatigue, stress, aggression, distraction or even medical emergencies continue to be yield to severe mistakes in driving and promote accidents. A pathway towards improving driver state assessment can be found in psycho-physiological measures to directly quantify the driver's state from physiological recordings. Although heart rate is a well-established physiological variable that reflects cognitive stress, obtaining heart rate contactless and reliably is a challenging task in an automotive environment. Our aim was to investigate, how sensory fusion of two automotive grade sensors would influence the accuracy of automatic classification of cognitive stress levels. We induced cognitive stress in subjects and estimated levels from their heart rate signals, acquired from automotive ready ECG sensors. Using signal quality indices and Kalman filters, we were able to decrease Root Mean Squared Error (RMSE) of heart rate recordings by 10 beats per minute. We then trained a neural network to classify the cognitive workload state of subjects from heart rate and compared classification performance for ground truth, the individual sensors and the fused heart rate signal. We obtained an increase of 5 % higher correct classification by fusing signals as compared to individual sensors, staying only 4 % below the maximally possible classification accuracy from ground truth. These results are a first step towards real world applications of psycho-physiological measurements in vehicle settings. Future implementations of driver state modeling will be able to draw from a larger pool of data sources, such as additional physiological values or vehicle related data, which can be expected to drive classification to significantly higher values.

  15. High blood Pressure in children and its correlation with three definitions of obesity in childhood

    PubMed Central

    de Moraes, Leonardo Iezzi; Nicola, Thaís Coutinho; de Jesus, Julyanna Silva Araújo; Alves, Eduardo Roberty Badiani; Giovaninni, Nayara Paula Bernurdes; Marcato, Daniele Gasparini; Sampaio, Jéssica Dutra; Fuly, Jeanne Teixeira Bessa; Costalonga, Everlayny Fiorot

    2014-01-01

    Background Several authors have correlated the increase of cardiovascular risk with the nutritional status, however there are different criteria for the classification of overweight and obesity in children. Objectives To evaluate the performance of three nutritional classification criteria in children, as definers of the presence of obesity and predictors of high blood pressure in schoolchildren. Methods Eight hundred and seventeen children ranging 6 to 13 years old, enrolled in public schools in the municipality of Vila Velha (ES) were submitted to anthropometric evaluation and blood pressure measurement. The classification of the nutritional status was established by two international criteria (CDC/NCHS 2000 and IOTF 2000) and one Brazilian criterion (Conde e Monteiro 2006). Results The prevalence of overweight was higher when the criterion of Conde e Monteiro (27%) was used, and inferior by the IOTF (15%) criteria. High blood pressure was observed in 7.3% of children. It was identified a strong association between the presence of overweight and the occurrence of high blood pressure, regardless of the test used (p < 0.001). The test showing the highest sensitivity in predicting elevated BP was the Conde e Monteiro (44%), while the highest specificity (94%) and greater overall accuracy (63%), was the CDC criterion. Conclusions The prevalence of overweight in Brazilian children is higher when using the classification criterion of Conde e Monteiro, and lower when the criterion used is IOTF. The Brazilian classification criterion proved to be the most sensitive predictor of high BP risk in this sample. PMID:24676372

  16. Categorization abilities for emotional and nonemotional stimuli in patients with alcohol-related Korsakoff syndrome.

    PubMed

    Labudda, Kirsten; von Rothkirch, Nadine; Pawlikowski, Mirko; Laier, Christian; Brand, Matthias

    2010-06-01

    To investigate whether patients with alcohol-related Korsakoff syndrome (KR) have emotion-specific or general deficits in multicategoric classification performance. Earlier studies have shown reduced performance in classifying stimuli according to their emotional valence in patients with KS. However, it is unclear whether such classification deficits are of emotion-specific nature or whether they can also occur when nonemotional classifications are demanded. In this study, we examined 35 patients with alcoholic KS and 35 healthy participants with the Emotional Picture Task (EPT) to assess valence classification performance, the Semantic Classification Task (SCT) to assess nonemotional categorizations, and an extensive neuropsychologic test battery. KS patients exhibited lower classification performance in both tasks compared with the healthy participants. EPT and SCT performance were related to each other. EPT and SCT performance correlated with general knowledge and EPT performance in addition with executive functions. Our results indicate a common underlying mechanism of the patients' reductions in emotional and nonemotional classification performance. These deficits are most probably based on problems in retrieving object and category knowledge and, partially, on executive functioning.

  17. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection

    NASA Astrophysics Data System (ADS)

    Erener, A.

    2013-04-01

    Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.

  18. CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules.

    PubMed

    Cestarelli, Valerio; Fiscon, Giulia; Felici, Giovanni; Bertolazzi, Paola; Weitschek, Emanuel

    2016-03-01

    Nowadays, knowledge extraction methods from Next Generation Sequencing data are highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on case-control studies with rule-based supervised classification algorithms that build a model able to discriminate cases from controls. State of the art algorithms compute a single classification model that contains few features (genes). On the contrary, our goal is to elicit a higher amount of knowledge by computing many classification models, and therefore to identify most of the genes related to the predicted class. We propose CAMUR, a new method that extracts multiple and equivalent classification models. CAMUR iteratively computes a rule-based classification model, calculates the power set of the genes present in the rules, iteratively eliminates those combinations from the data set, and performs again the classification procedure until a stopping criterion is verified. CAMUR includes an ad-hoc knowledge repository (database) and a querying tool.We analyze three different types of RNA-seq data sets (Breast, Head and Neck, and Stomach Cancer) from The Cancer Genome Atlas (TCGA) and we validate CAMUR and its models also on non-TCGA data. Our experimental results show the efficacy of CAMUR: we obtain several reliable equivalent classification models, from which the most frequent genes, their relationships, and the relation with a particular cancer are deduced. dmb.iasi.cnr.it/camur.php emanuel@iasi.cnr.it Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  19. Factors influencing discrepancies in self-reported memory and performance on memory recall in the Canadian Community Health Survey-Healthy Aging, 2008-09.

    PubMed

    Sohel, Nazmul; Tuokko, Holly; Griffith, Lauren; Raina, Parminder

    2016-03-01

    the objectives of this study were: (i) to estimate the rate of discrepancy between participant single-item self-reports of good memory and poor performance on a list-learning task and (ii) to identify the factors including age, gender and health status that influence these discrepant classifications. in total, 14,172 individuals, aged 45-85, were selected from the 2008-09 Canadian Community Health Survey on Healthy Aging. We examined the individual characteristics of participants with and without discrepancies between memory self-reports and performance with a generalised linear model, adjusting for potential covariates. the mean age of respondents was 62.9 years with 56.7% being female, 53.8% having post-secondary graduation and 83% being born in Canada. Higher discrepant classification rates we observed for younger people (6.77 versus 3.65 for lowest and highest group), female (5.90 versus 3.68) and with higher education (6.17 versus 3.52). Discrepant classification rates adjusted with all covariates were higher for those without chronic diseases (5.37 [95% Confidence Interval (CI): 4.16, 6.90] versus 4.05 95% CI: 3.38, 4.86; P = 0.0127), those who did not drink alcohol (5.87 95% CI: 4.69, 7.32 versus 3.70 95% CI: 3.00, 4.55; P < 0.0001), lonely participants (5.45 95% CI: 4.20, 7.04 versus 3.99 95% CI: 3.36, 4.77; P = 0.0081) and bilingual participants (5.67 95% CI: 4.18, 7.64 versus 3.83 95% CI: 3.27, 4.50; P = 0.0102). the findings of this study suggest that the self-reported memory and memory performance differ in a substantial proportion of the population. Therefore, relying on a self-reported memory status may not accurately capture those experiencing memory difficulties. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Dyslexia and Developmental Co-Ordination Disorder in Further and Higher Education--Similarities and Differences. Does the "Label" Influence the Support Given?

    ERIC Educational Resources Information Center

    Kirby, Amanda; Sugden, David; Beveridge, Sally; Edwards, Lisa; Edwards, Rachel

    2008-01-01

    Developmental co-ordination disorder (DCD) is a developmental disorder affecting motor co-ordination. The "Diagnostics Statistics Manual"--IV classification for DCD describes difficulties across a range of activities of daily living, impacting on everyday skills and academic performance in school. Recent evidence has shown that…

  1. Pre-operative prediction of surgical morbidity in children: comparison of five statistical models.

    PubMed

    Cooper, Jennifer N; Wei, Lai; Fernandez, Soledad A; Minneci, Peter C; Deans, Katherine J

    2015-02-01

    The accurate prediction of surgical risk is important to patients and physicians. Logistic regression (LR) models are typically used to estimate these risks. However, in the fields of data mining and machine-learning, many alternative classification and prediction algorithms have been developed. This study aimed to compare the performance of LR to several data mining algorithms for predicting 30-day surgical morbidity in children. We used the 2012 National Surgical Quality Improvement Program-Pediatric dataset to compare the performance of (1) a LR model that assumed linearity and additivity (simple LR model) (2) a LR model incorporating restricted cubic splines and interactions (flexible LR model) (3) a support vector machine, (4) a random forest and (5) boosted classification trees for predicting surgical morbidity. The ensemble-based methods showed significantly higher accuracy, sensitivity, specificity, PPV, and NPV than the simple LR model. However, none of the models performed better than the flexible LR model in terms of the aforementioned measures or in model calibration or discrimination. Support vector machines, random forests, and boosted classification trees do not show better performance than LR for predicting pediatric surgical morbidity. After further validation, the flexible LR model derived in this study could be used to assist with clinical decision-making based on patient-specific surgical risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Chellappa, R.

    1993-01-01

    We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polarization SAR intensity data into regions or ensembles of pixels of homogeneous and similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR intensity data is combined with a Markov random field for representing the interactions between region labels to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observations. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude data. The MAP classifier is extended to the case in which the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations acquired at two different frequencies and for improving classification accuracy of SAR data.

  3. Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech☆

    PubMed Central

    Cao, Houwei; Verma, Ragini; Nenkova, Ani

    2014-01-01

    We introduce a ranking approach for emotion recognition which naturally incorporates information about the general expressivity of speakers. We demonstrate that our approach leads to substantial gains in accuracy compared to conventional approaches. We train ranking SVMs for individual emotions, treating the data from each speaker as a separate query, and combine the predictions from all rankers to perform multi-class prediction. The ranking method provides two natural benefits. It captures speaker specific information even in speaker-independent training/testing conditions. It also incorporates the intuition that each utterance can express a mix of possible emotion and that considering the degree to which each emotion is expressed can be productively exploited to identify the dominant emotion. We compare the performance of the rankers and their combination to standard SVM classification approaches on two publicly available datasets of acted emotional speech, Berlin and LDC, as well as on spontaneous emotional data from the FAU Aibo dataset. On acted data, ranking approaches exhibit significantly better performance compared to SVM classification both in distinguishing a specific emotion from all others and in multi-class prediction. On the spontaneous data, which contains mostly neutral utterances with a relatively small portion of less intense emotional utterances, ranking-based classifiers again achieve much higher precision in identifying emotional utterances than conventional SVM classifiers. In addition, we discuss the complementarity of conventional SVM and ranking-based classifiers. On all three datasets we find dramatically higher accuracy for the test items on whose prediction the two methods agree compared to the accuracy of individual methods. Furthermore on the spontaneous data the ranking and standard classification are complementary and we obtain marked improvement when we combine the two classifiers by late-stage fusion. PMID:25422534

  4. Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech☆

    PubMed

    Cao, Houwei; Verma, Ragini; Nenkova, Ani

    2015-01-01

    We introduce a ranking approach for emotion recognition which naturally incorporates information about the general expressivity of speakers. We demonstrate that our approach leads to substantial gains in accuracy compared to conventional approaches. We train ranking SVMs for individual emotions, treating the data from each speaker as a separate query, and combine the predictions from all rankers to perform multi-class prediction. The ranking method provides two natural benefits. It captures speaker specific information even in speaker-independent training/testing conditions. It also incorporates the intuition that each utterance can express a mix of possible emotion and that considering the degree to which each emotion is expressed can be productively exploited to identify the dominant emotion. We compare the performance of the rankers and their combination to standard SVM classification approaches on two publicly available datasets of acted emotional speech, Berlin and LDC, as well as on spontaneous emotional data from the FAU Aibo dataset. On acted data, ranking approaches exhibit significantly better performance compared to SVM classification both in distinguishing a specific emotion from all others and in multi-class prediction. On the spontaneous data, which contains mostly neutral utterances with a relatively small portion of less intense emotional utterances, ranking-based classifiers again achieve much higher precision in identifying emotional utterances than conventional SVM classifiers. In addition, we discuss the complementarity of conventional SVM and ranking-based classifiers. On all three datasets we find dramatically higher accuracy for the test items on whose prediction the two methods agree compared to the accuracy of individual methods. Furthermore on the spontaneous data the ranking and standard classification are complementary and we obtain marked improvement when we combine the two classifiers by late-stage fusion.

  5. Bulk Magnetization Effects in EMI-Based Classification and Discrimination

    DTIC Science & Technology

    2012-04-01

    response adds to classification performance and ( 2 ) develop a comprehensive understanding of the engineering challenges of primary field cancellation...response adds to classification performance and ( 2 ) develop a comprehensive understanding of the engineering challenges of primary field cancellation...classification performance and ( 2 ) develop a comprehensive understanding of the engineering challenges of primary field cancellation that can support a

  6. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.

    PubMed

    Doungpan, Narumol; Engchuan, Worrawat; Chan, Jonathan H; Meechai, Asawin

    2016-12-05

    Gene expression has been used to identify disease gene biomarkers, but there are ongoing challenges. Single gene or gene-set biomarkers are inadequate to provide sufficient understanding of complex disease mechanisms and the relationship among those genes. Network-based methods have thus been considered for inferring the interaction within a group of genes to further study the disease mechanism. Recently, the Gene-Network-based Feature Set (GNFS), which is capable of handling case-control and multiclass expression for gene biomarker identification, has been proposed, partly taking into account of network topology. However, its performance relies on a greedy search for building subnetworks and thus requires further improvement. In this work, we establish a new approach named Gene Sub-Network-based Feature Selection (GSNFS) by implementing the GNFS framework with two proposed searching and scoring algorithms, namely gene-set-based (GS) search and parent-node-based (PN) search, to identify subnetworks. An additional dataset is used to validate the results. The two proposed searching algorithms of the GSNFS method for subnetwork expansion are concerned with the degree of connectivity and the scoring scheme for building subnetworks and their topology. For each iteration of expansion, the neighbour genes of a current subnetwork, whose expression data improved the overall subnetwork score, is recruited. While the GS search calculated the subnetwork score using an activity score of a current subnetwork and the gene expression values of its neighbours, the PN search uses the expression value of the corresponding parent of each neighbour gene. Four lung cancer expression datasets were used for subnetwork identification. In addition, using pathway data and protein-protein interaction as network data in order to consider the interaction among significant genes were discussed. Classification was performed to compare the performance of the identified gene subnetworks with three subnetwork identification algorithms. The two searching algorithms resulted in better classification and gene/gene-set agreement compared to the original greedy search of the GNFS method. The identified lung cancer subnetwork using the proposed searching algorithm resulted in an improvement of the cross-dataset validation and an increase in the consistency of findings between two independent datasets. The homogeneity measurement of the datasets was conducted to assess dataset compatibility in cross-dataset validation. The lung cancer dataset with higher homogeneity showed a better result when using the GS search while the dataset with low homogeneity showed a better result when using the PN search. The 10-fold cross-dataset validation on the independent lung cancer datasets showed higher classification performance of the proposed algorithms when compared with the greedy search in the original GNFS method. The proposed searching algorithms provide a higher number of genes in the subnetwork expansion step than the greedy algorithm. As a result, the performance of the subnetworks identified from the GSNFS method was improved in terms of classification performance and gene/gene-set level agreement depending on the homogeneity of the datasets used in the analysis. Some common genes obtained from the four datasets using different searching algorithms are genes known to play a role in lung cancer. The improvement of classification performance and the gene/gene-set level agreement, and the biological relevance indicated the effectiveness of the GSNFS method for gene subnetwork identification using expression data.

  7. Classifications of central solar domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  8. Management of colorectal trauma: a review.

    PubMed

    Cheong, Ju Yong; Keshava, Anil

    2017-07-01

    Traumatic colorectal injuries are common during times of military conflict, and major improvements in their care have arisen in such periods. Since World War II, many classification systems for colorectal trauma have been proposed, including (i) Flint Grading System; (ii) Penetrating Abdominal Trauma Index; (iii) Colonic/Rectal Injury Scale; and (iv) destructive/non-destructive colonic injuries. The primary goal of these classifications was to aid surgical management and, more particularly, to determine whether a primary repair or faecal diversion should be performed. Primary repair is now the preferred surgical option. Patients who have been identified as having destructive injuries have been found to have higher anastomotic leak rates after a primary repair. Damage control principles need to be adhered to in surgical decision-making. In this review, we discuss the mechanisms of injury, classifications, clinical presentation and current recommendations for the management of colorectal trauma. © 2017 Royal Australasian College of Surgeons.

  9. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  10. Objected-oriented remote sensing image classification method based on geographic ontology model

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Liu, Z. J.; Gu, H. Y.

    2016-11-01

    Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.

  11. Predictive value of C-reactive protein/albumin ratio in acute pancreatitis.

    PubMed

    Kaplan, Mustafa; Ates, Ihsan; Akpinar, Muhammed Yener; Yuksel, Mahmut; Kuzu, Ufuk Baris; Kacar, Sabite; Coskun, Orhan; Kayacetin, Ertugrul

    2017-08-15

    Serum C-reactive protein (CRP) increases and albumin decreases in patients with inflammation and infection. However, their role in patients with acute pancreatitis is not clear. The present study was to investigate the predictive significance of the CRP/albumin ratio for the prognosis and mortality in acute pancreatitis patients. This study was performed retrospectively with 192 acute pancreatitis patients between January 2002 and June 2015. Ranson scores, Atlanta classification and CRP/albumin ratios of the patients were calculated. The CRP/albumin ratio was higher in deceased patients compared to survivors. The CRP/albumin ratio was positively correlated with Ranson score and Atlanta classification in particular and with important prognostic markers such as hospitalization time, CRP and erythrocyte sedimentation rate. In addition to the CRP/albumin ratio, necrotizing pancreatitis type, moderately severe and severe Atlanta classification, and total Ranson score were independent risk factors of mortality. It was found that an increase of 1 unit in the CRP/albumin ratio resulted in an increase of 1.52 times in mortality risk. A prediction value about CRP/albumin ratio >16.28 was found to be a significant marker in predicting mortality with 92.1% sensitivity and 58.0% specificity. It was seen that Ranson and Atlanta classification were higher in patients with CRP/albumin ratio >16.28 compared with those with CRP/albumin ratio ≤16.28. Patients with CRP/albumin ratio >16.28 had a 19.3 times higher chance of death. The CRP/albumin ratio is a novel but promising, easy-to-measure, repeatable, non-invasive inflammation-based prognostic score in acute pancreatitis. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.

  12. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours.

    PubMed

    Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N

    2015-09-01

    The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Risk Classification and Risk-based Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  14. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  15. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S

    2017-06-08

    Auscultation is a medical procedure used for the initial diagnosis and assessment of lung and heart diseases. From this perspective, we propose assessing the performance of the extreme learning machine (ELM) classifiers for the diagnosis of pulmonary pathology using breath sounds. Energy and entropy features were extracted from the breath sound using the wavelet packet transform. The statistical significance of the extracted features was evaluated by one-way analysis of variance (ANOVA). The extracted features were inputted into the ELM classifier. The maximum classification accuracies obtained for the conventional validation (CV) of the energy and entropy features were 97.36% and 98.37%, respectively, whereas the accuracies obtained for the cross validation (CRV) of the energy and entropy features were 96.80% and 97.91%, respectively. In addition, maximum classification accuracies of 98.25% and 99.25% were obtained for the CV and CRV of the ensemble features, respectively. The results indicate that the classification accuracy obtained with the ensemble features was higher than those obtained with the energy and entropy features.

  16. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  17. Association of Krouse Classification for Sinonasal Inverted Papilloma With Recurrence: A Systematic Review and Meta-analysis.

    PubMed

    Lisan, Quentin; Moya-Plana, Antoine; Bonfils, Pierre

    2017-11-01

    The risk factors for the recurrence of sinonasal inverted papilloma are still unclear. To investigate the potential association between the Krouse classification and the recurrence rates of sinonasal inverted papilloma. The EMBASE and MEDLINE databases were searched for the period January 1, 1964, through September 30, 2016, using the following search strategy: (paranasal sinuses [Medical Subject Headings (MeSH) terms] OR sinonasal [all fields]) AND (inverted papilloma [MeSH terms] OR (inverted [all fields] AND papilloma [all fields]). The inclusion criteria were (1) studies including sinonasal inverted papilloma only and no other forms of papillomas, such as oncocytic papilloma; (2) minimum follow-up of 1 year after the surgery; and (3) clear report of cases (recurrence) and controls according to the Krouse classification system or deducible from the full-text article. Literature search was performed by 2 reviewers. Of the 625 articles retrieved in the literature, 97 full-text articles were reviewed. Observational cohort studies or randomized controlled trials were included, and the following variables were extracted from full-text articles: authors of the study, publication year, follow-up data, and number of cases (recurrence) and controls (no recurrence) in each of the 4 stages of the Krouse classification system. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed. Odds ratios (ORs) and 95% CIs were estimated, and data of included studies were pooled using a random-effects model. The main outcome was recurrence after surgical removal of sinonasal inverted papilloma according to each stage of the Krouse classification system. Thirteen studies comprising 1787 patients were analyzed. A significant increased risk of recurrence (51%) was highlighted for Krouse stage T3 disease when compared with stage T2 (pooled OR, 1.51; 95% CI, 1.09-2.09). No significant difference in risk of recurrence was found between Krouse stages T1 and T2 disease (pooled OR, 1.14; 95% CI, 0.63-2.04) or between stages T3 and T4 (pooled OR, 1.27; 95% CI, 0.72-2.26). Inverted papillomas classified as stage T3 according to the Krouse classification system presented a 51% higher likelihood of recurrence. Head and neck surgeons must be aware of this higher likelihood of recurrence when planning and performing surgery for sinonasal inverted papilloma.

  18. Classification of LC columns based on the QSRR method and selectivity toward moclobemide and its metabolites.

    PubMed

    Plenis, Alina; Olędzka, Ilona; Bączek, Tomasz

    2013-05-05

    This paper focuses on a comparative study of the column classification system based on the quantitative structure-retention relationships (QSRR method) and column performance in real biomedical analysis. The assay was carried out for the LC separation of moclobemide and its metabolites in human plasma, using a set of 24 stationary phases. The QSRR models established for the studied stationary phases were compared with the column test performance results under two chemometric techniques - the principal component analysis (PCA) and the hierarchical clustering analysis (HCA). The study confirmed that the stationary phase classes found closely related by the QSRR approach yielded comparable separation for moclobemide and its metabolites. Therefore, the QSRR method could be considered supportive in the selection of a suitable column for the biomedical analysis offering the selection of similar or dissimilar columns with a relatively higher certainty. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Image quality classification for DR screening using deep learning.

    PubMed

    FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu

    2017-07-01

    The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.

  20. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  1. Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).

    PubMed

    Bevilacqua, Marta; Marini, Federico

    2014-08-01

    The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [A Study on the Classification of Nursing Management Competencies and Development of related Behavioral Indicators in Hospitals].

    PubMed

    Kim, Seong Yeol; Kim, Jong Kyung

    2016-06-01

    The aim of this study was to classify nursing management competencies and develop behavioral indicators for nurse managers in hospitals. Also, levels of importance and performance based on developed criteria were to be identified and compared. Using expert survey we classified nursing management competencies and behavioral indicators with data from 34 nurse managers and professors. Subsequently, data from a survey of 216 nurse managers in 7 cities was used to analyze the importance-performance comparison of the classified nursing management competencies and behavioral indicators. Forty-two nursing management competencies were identified together with 181 behavioral indicators. The mean score for importance of nursing management competency was higher than the mean score for performance. According to the importance-performance analysis, 5 of the 42 nursing management competencies require further development: vision-building, analysis, change management, human resource development, and self-management competency. The classification of nursing management competencies and behavioral indicators for nurse managers in hospitals provides basic data for the development and evaluation of programs designed to increase the competency of nurse managers in hospitals.

  3. Examining the Disability Model From the International Classification of Functioning, Disability, and Health Using a Large Data Set of Community-Dwelling Malaysian Older Adults

    PubMed Central

    Loke, Seng Cheong; Lim, Wee Shiong; Someya, Yoshiko; Hamid, Tengku A.; Nudin, Siti S. H.

    2015-01-01

    Objective: This study examines the International Classification of Functioning, Disability, and Health model (ICF) using a data set of 2,563 community-dwelling elderly with disease-independent measures of mobility, physical activity, and social networking, to represent ICF constructs. Method: The relationship between chronic disease and disability (independent and dependent variables) was examined using logistic regression. To demonstrate variability in activity performance with functional impairment, graphing was used. The relationship between functional impairment, activity performance, and social participation was examined graphically and using ANOVA. The impact of cognitive deficits was quantified through stratifying by dementia. Results: Disability is strongly related to chronic disease (Wald 25.5, p < .001), functional impairment with activity performance (F = 34.2, p < .001), and social participation (F= 43.6, p < .001). With good function, there is considerable variability in activity performance (inter-quartile range [IQR] = 2.00), but diminishes with high impairment (IQR = 0.00) especially with cognitive deficits. Discussion: Environment modification benefits those with moderate functional impairment, but not with higher grades of functional loss. PMID:26472747

  4. Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern.

    PubMed

    Cheng, Jiao; Jin, Jing; Wang, Xingyu

    2017-01-01

    Brain-computer interface (BCI) systems allow users to communicate with the external world by recognizing the brain activity without the assistance of the peripheral motor nervous system. P300-based BCI is one of the most common used BCI systems that can obtain high classification accuracy and information transfer rate (ITR). Face stimuli can result in large event-related potentials and improve the performance of P300-based BCI. However, previous studies on face stimuli focused mainly on the effect of various face types (i.e., face expression, face familiarity, and multifaces) on the BCI performance. Studies on the influence of face transparency differences are scarce. Therefore, we investigated the effect of semitransparent face pattern (STF-P) (the subject could see the target character when the stimuli were flashed) and traditional face pattern (F-P) (the subject could not see the target character when the stimuli were flashed) on the BCI performance from the transparency perspective. Results showed that STF-P obtained significantly higher classification accuracy and ITR than those of F-P ( p < 0.05).

  5. 14 CFR 1203.203 - Degree of protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be safeguarded as if it were classified pending a determination by an original classification... appropriate level of classification, it shall be safeguarded at the higher level of classification pending a determination by an original classification authority, who shall make this determination within 30 days. (b...

  6. 14 CFR § 1203.203 - Degree of protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... classification authority, who shall make this determination within 30 days. If there is reasonable doubt about the appropriate level of classification, it shall be safeguarded at the higher level of classification pending a determination by an original classification authority, who shall make this determination within...

  7. 14 CFR 1203.203 - Degree of protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be safeguarded as if it were classified pending a determination by an original classification... appropriate level of classification, it shall be safeguarded at the higher level of classification pending a determination by an original classification authority, who shall make this determination within 30 days. (b...

  8. Voting strategy for artifact reduction in digital breast tomosynthesis.

    PubMed

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  9. Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.

    2018-05-01

    Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.

  10. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  11. A Classification Scheme for Smart Manufacturing Systems’ Performance Metrics

    PubMed Central

    Lee, Y. Tina; Kumaraguru, Senthilkumaran; Jain, Sanjay; Robinson, Stefanie; Helu, Moneer; Hatim, Qais Y.; Rachuri, Sudarsan; Dornfeld, David; Saldana, Christopher J.; Kumara, Soundar

    2017-01-01

    This paper proposes a classification scheme for performance metrics for smart manufacturing systems. The discussion focuses on three such metrics: agility, asset utilization, and sustainability. For each of these metrics, we discuss classification themes, which we then use to develop a generalized classification scheme. In addition to the themes, we discuss a conceptual model that may form the basis for the information necessary for performance evaluations. Finally, we present future challenges in developing robust, performance-measurement systems for real-time, data-intensive enterprises. PMID:28785744

  12. Spectroscopic classification of icy satellites of Saturn II: Identification of terrain units on Rhea

    NASA Astrophysics Data System (ADS)

    Scipioni, F.; Tosi, F.; Stephan, K.; Filacchione, G.; Ciarniello, M.; Capaccioni, F.; Cerroni, P.

    2014-05-01

    Rhea is the second largest icy satellites of Saturn and it is mainly composed of water ice. Its surface is characterized by a leading hemisphere slightly brighter than the trailing side. The main goal of this work is to identify homogeneous compositional units on Rhea by applying the Spectral Angle Mapper (SAM) classification technique to Rhea’s hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Orbiter in the infrared range (0.88-5.12 μm). The first step of the classification is dedicated to the identification of Rhea’s spectral endmembers by applying the k-means unsupervised clustering technique to four hyperspectral images representative of a limited portion of the surface, imaged at relatively high spatial resolution. We then identified eight spectral endmembers, corresponding to as many terrain units, which mostly distinguish for water ice abundance and ice grain size. In the second step, endmembers are used as reference spectra in SAM classification method to achieve a comprehensive classification of the entire surface. From our analysis of the infrared spectra returned by VIMS, it clearly emerges that Rhea’ surface units shows differences in terms of water ice bands depths, average ice grain size, and concentration of contaminants, particularly CO2 and hydrocarbons. The spectral units that classify optically dark terrains are those showing suppressed water ice bands, a finer ice grain size and a higher concentration of carbon dioxide. Conversely, spectral units labeling brighter regions have deeper water ice absorption bands, higher albedo and a smaller concentration of contaminants. All these variations reflect surface’s morphological and geological structures. Finally, we performed a comparison between Rhea and Dione, to highlight different magnitudes of space weathering effects in the icy satellites as a function of the distance from Saturn.

  13. [Endoprosthesis failure in the ankle joint : Histopathological diagnostics and classification].

    PubMed

    Müller, S; Walther, M; Röser, A; Krenn, V

    2017-03-01

    Endoprostheses of the ankle joint show higher revision rates of 3.29 revisions per 100 component years. The aims of this study were the application and modification of the consensus classification of the synovia-like interface membrane (SLIM) for periprosthetic failure of the ankle joint, the etiological clarification of periprosthetic pseudocysts and a detailed measurement of proliferative activity (Ki67) in the region of osteolysis. Tissue samples from 159 patients were examined according to the criteria of the standardized consensus classification. Of these, 117 cases were derived from periprosthetic membranes of the ankle. The control group included 42 tissue specimens from the hip and knee joints. Particle identification and characterization were carried out using the particle algorithm. An immunohistochemical examination with Ki67 proliferation was performed in all cases of ankle pseudocysts and 19 control cases. The consensus classification of SLIM is transferrable to endoprosthetic failure of the ankle joint. Periprosthetic pseudocysts with the histopathological characteristics of the appropriate SLIM subtype were detectable in 39 cases of ankle joint endoprostheses (33.3%). The mean value of the Ki67 index was 14% and showed an increased proliferation rate in periprosthetic pseudocysts of the ankle (p-value 0.02037). In periprosthetic pseudocysts an above average higher detection rate of type 1 SLIM induced by abrasion (51.3%) with an increased Ki67 proliferation fraction (p-value 0.02037) was found, which can be interpreted as local destructive intraosseus synovialitis. This can be the reason for formation of pseudocystic osteolysis caused by high mechanical stress in ankle endoprostheses. A simplified diagnostic classification scoring system of dysfunctional endoprostheses of the ankle is proposed for collation of periprosthetic pseudocysts, ossifications and the Ki67 proliferation fraction.

  14. The Oxfordshire Community Stroke Project classification: correlation with imaging, associated complications, and prediction of outcome in acute ischemic stroke.

    PubMed

    Pittock, Sean J; Meldrum, Dara; Hardiman, Orla; Thornton, John; Brennan, Paul; Moroney, Joan T

    2003-01-01

    This preliminary study investigates the risk factor profile, post stroke complications, and outcome for four OCSP (Oxfordshire Community Stroke Project Classification) subtypes. One hundred seventeen consecutive ischemic stroke patients were clinically classified into 1 of 4 subtypes: total anterior (TACI), partial anterior (PACI), lacunar (LACI), and posterior (POCI) circulation infarcts. Study evaluations were performed at admission, 2 weeks, and 6 months. There was a good correlation between clinical classification and radiological diagnosis if a negative CT head was considered consistent with a lacunar infarction. No significant difference in risk factor profile was observed between subtypes. The TACI group had significantly higher mortality (P < .001), morbidity (P < .001, as per disability scales), length of hospital stay (P < .001), and complications (respiratory tract infection and seizures [P < .01]) as compared to the other three groups which were all similar at the different time points. The only significant difference found was the higher rate of stroke recurrence within the first 6 months in the POCI group (P < .001). The OCSP classification identifies two major groups (TACI and other 3 groups combined) who behave differently with respect to post stroke outcome. Further study with larger numbers of patients and thus greater power will be required to allow better discrimination of OCSP subtypes in respect of risk factors, complications, and outcomes if the OCSP is to be used to stratify patients in clinical trials.

  15. Patient-Specific Deep Architectural Model for ECG Classification

    PubMed Central

    Luo, Kan; Cuschieri, Alfred

    2017-01-01

    Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597

  16. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  17. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.

    PubMed

    Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin

    2017-01-07

    Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  18. Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology

    PubMed Central

    Nagarajan, Mahesh B.; Huber, Markus B.; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2014-01-01

    Objective While dimension reduction has been previously explored in computer aided diagnosis (CADx) as an alternative to feature selection, previous implementations of its integration into CADx do not ensure strict separation between training and test data required for the machine learning task. This compromises the integrity of the independent test set, which serves as the basis for evaluating classifier performance. Methods and Materials We propose, implement and evaluate an improved CADx methodology where strict separation is maintained. This is achieved by subjecting the training data alone to dimension reduction; the test data is subsequently processed with out-of-sample extension methods. Our approach is demonstrated in the research context of classifying small diagnostically challenging lesions annotated on dynamic breast magnetic resonance imaging (MRI) studies. The lesions were dynamically characterized through topological feature vectors derived from Minkowski functionals. These feature vectors were then subject to dimension reduction with different linear and non-linear algorithms applied in conjunction with out-of-sample extension techniques. This was followed by classification through supervised learning with support vector regression. Area under the receiver-operating characteristic curve (AUC) was evaluated as the metric of classifier performance. Results Of the feature vectors investigated, the best performance was observed with Minkowski functional ’perimeter’ while comparable performance was observed with ’area’. Of the dimension reduction algorithms tested with ’perimeter’, the best performance was observed with Sammon’s mapping (0.84 ± 0.10) while comparable performance was achieved with exploratory observation machine (0.82 ± 0.09) and principal component analysis (0.80 ± 0.10). Conclusions The results reported in this study with the proposed CADx methodology present a significant improvement over previous results reported with such small lesions on dynamic breast MRI. In particular, non-linear algorithms for dimension reduction exhibited better classification performance than linear approaches, when integrated into our CADx methodology. We also note that while dimension reduction techniques may not necessarily provide an improvement in classification performance over feature selection, they do allow for a higher degree of feature compaction. PMID:24355697

  19. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals

    PubMed Central

    2014-01-01

    Background The inter-patient classification schema and the Association for the Advancement of Medical Instrumentation (AAMI) standards are important to the construction and evaluation of automated heartbeat classification systems. The majority of previously proposed methods that take the above two aspects into consideration use the same features and classification method to classify different classes of heartbeats. The performance of the classification system is often unsatisfactory with respect to the ventricular ectopic beat (VEB) and supraventricular ectopic beat (SVEB). Methods Based on the different characteristics of VEB and SVEB, a novel hierarchical heartbeat classification system was constructed. This was done in order to improve the classification performance of these two classes of heartbeats by using different features and classification methods. First, random projection and support vector machine (SVM) ensemble were used to detect VEB. Then, the ratio of the RR interval was compared to a predetermined threshold to detect SVEB. The optimal parameters for the classification models were selected on the training set and used in the independent testing set to assess the final performance of the classification system. Meanwhile, the effect of different lead configurations on the classification results was evaluated. Results Results showed that the performance of this classification system was notably superior to that of other methods. The VEB detection sensitivity was 93.9% with a positive predictive value of 90.9%, and the SVEB detection sensitivity was 91.1% with a positive predictive value of 42.2%. In addition, this classification process was relatively fast. Conclusions A hierarchical heartbeat classification system was proposed based on the inter-patient data division to detect VEB and SVEB. It demonstrated better classification performance than existing methods. It can be regarded as a promising system for detecting VEB and SVEB of unknown patients in clinical practice. PMID:24981916

  20. The Society for Vascular Surgery lower extremity threatened limb classification system based on Wound, Ischemia, and foot Infection (WIfI) correlates with risk of major amputation and time to wound healing.

    PubMed

    Zhan, Luke X; Branco, Bernardino C; Armstrong, David G; Mills, Joseph L

    2015-04-01

    The purpose of this study was to evaluate whether the new Society for Vascular Surgery (SVS) Wound, Ischemia, and foot Infection (WIfI) classification system correlates with important clinical outcomes for limb salvage and wound healing. A total of 201 consecutive patients with threatened limbs treated from 2010 to 2011 in an academic medical center were analyzed. These patients were stratified into clinical stages 1 to 4 on the basis of the SVS WIfI classification. The SVS objective performance goals of major amputation, 1-year amputation-free survival (AFS) rate, and wound healing time (WHT) according to WIfI clinical stages were compared. The mean age was 58 years (79% male, 93% with diabetes). Forty-two patients required major amputation (21%); 159 (78%) had limb salvage. The amputation group had a significantly higher prevalence of advanced stage 4 patients (P < .001), whereas the limb salvage group presented predominantly as stages 1 to 3. Patients in clinical stages 3 and 4 had a significantly higher incidence of amputation (P < .001), decreased AFS (P < .001), and delayed WHT (P < .002) compared with those in stages 1 and 2. Among patients presenting with stage 3, primarily as a result of wound and ischemia grades, revascularization resulted in accelerated WHT (P = .008). These data support the underlying concept of the SVS WIfI, that an appropriate classification system correlates with important clinical outcomes for limb salvage and wound healing. As the clinical stage progresses, the risk of major amputation increases, 1-year AFS declines, and WHT is prolonged. We further demonstrated benefit of revascularization to improve WHT in selected patients, especially those in stage 3. Future efforts are warranted to incorporate the SVS WIfI classification into clinical decision-making algorithms in conjunction with a comorbidity index and anatomic classification. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.

    2014-11-01

    This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.

  2. 10 CFR 1045.9 - RD classification performance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Program Management of the Restricted Data and Formerly Restricted Data Classification System § 1045.9 RD classification performance evaluation. (a) Heads of agencies shall ensure that RD management officials and those...

  3. Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.

    PubMed

    Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa

    2017-03-01

    Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.

  4. Classification of Microarray Data Using Kernel Fuzzy Inference System

    PubMed Central

    Kumar Rath, Santanu

    2014-01-01

    The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function. PMID:27433543

  5. Automated Tissue Classification Framework for Reproducible Chronic Wound Assessment

    PubMed Central

    Mukherjee, Rashmi; Manohar, Dhiraj Dhane; Das, Dev Kumar; Achar, Arun; Mitra, Analava; Chakraborty, Chandan

    2014-01-01

    The aim of this paper was to develop a computer assisted tissue classification (granulation, necrotic, and slough) scheme for chronic wound (CW) evaluation using medical image processing and statistical machine learning techniques. The red-green-blue (RGB) wound images grabbed by normal digital camera were first transformed into HSI (hue, saturation, and intensity) color space and subsequently the “S” component of HSI color channels was selected as it provided higher contrast. Wound areas from 6 different types of CW were segmented from whole images using fuzzy divergence based thresholding by minimizing edge ambiguity. A set of color and textural features describing granulation, necrotic, and slough tissues in the segmented wound area were extracted using various mathematical techniques. Finally, statistical learning algorithms, namely, Bayesian classification and support vector machine (SVM), were trained and tested for wound tissue classification in different CW images. The performance of the wound area segmentation protocol was further validated by ground truth images labeled by clinical experts. It was observed that SVM with 3rd order polynomial kernel provided the highest accuracies, that is, 86.94%, 90.47%, and 75.53%, for classifying granulation, slough, and necrotic tissues, respectively. The proposed automated tissue classification technique achieved the highest overall accuracy, that is, 87.61%, with highest kappa statistic value (0.793). PMID:25114925

  6. Aerodynamic Classification of Swept-Wing Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Diebold, Jeff; Bragg, Mike

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice, and spanwise-ridge ice. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  7. A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series

    NASA Astrophysics Data System (ADS)

    Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz

    2014-03-01

    Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.

  8. [Research of electroencephalography representational emotion recognition based on deep belief networks].

    PubMed

    Yang, Hao; Zhang, Junran; Jiang, Xiaomei; Liu, Fei

    2018-04-01

    In recent years, with the rapid development of machine learning techniques,the deep learning algorithm has been widely used in one-dimensional physiological signal processing. In this paper we used electroencephalography (EEG) signals based on deep belief network (DBN) model in open source frameworks of deep learning to identify emotional state (positive, negative and neutrals), then the results of DBN were compared with support vector machine (SVM). The EEG signals were collected from the subjects who were under different emotional stimuli, and DBN and SVM were adopted to identify the EEG signals with changes of different characteristics and different frequency bands. We found that the average accuracy of differential entropy (DE) feature by DBN is 89.12%±6.54%, which has a better performance than previous research based on the same data set. At the same time, the classification effects of DBN are better than the results from traditional SVM (the average classification accuracy of 84.2%±9.24%) and its accuracy and stability have a better trend. In three experiments with different time points, single subject can achieve the consistent results of classification by using DBN (the mean standard deviation is1.44%), and the experimental results show that the system has steady performance and good repeatability. According to our research, the characteristic of DE has a better classification result than other characteristics. Furthermore, the Beta band and the Gamma band in the emotional recognition model have higher classification accuracy. To sum up, the performances of classifiers have a promotion by using the deep learning algorithm, which has a reference for establishing a more accurate system of emotional recognition. Meanwhile, we can trace through the results of recognition to find out the brain regions and frequency band that are related to the emotions, which can help us to understand the emotional mechanism better. This study has a high academic value and practical significance, so further investigation still needs to be done.

  9. Remote sensing based detection of forested wetlands: An evaluation of LiDAR, aerial imagery, and their data fusion

    NASA Astrophysics Data System (ADS)

    Suiter, Ashley Elizabeth

    Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, indicating moderate to strong agreement. However, Classification C, performed with LiDAR derivative without intensity data had less agreement than would be expected by chance, indicating that LiDAR contributed significantly to the accuracy of Classification B.

  10. 32 CFR 2700.12 - Criteria for and level of original classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Criteria for and level of original classification. (a) General Policy. Documents or other material are to... authorized or shall have force. (d) Unnecessary classification, and classification at a level higher than is... 32 National Defense 6 2010-07-01 2010-07-01 false Criteria for and level of original...

  11. Drug related webpages classification using images and text information based on multi-kernel learning

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan

    2015-12-01

    In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.

  12. Integrated 68Gallium Labelled Prostate-Specific Membrane Antigen-11 Positron Emission Tomography/Magnetic Resonance Imaging Enhances Discriminatory Power of Multi-Parametric Prostate Magnetic Resonance Imaging.

    PubMed

    Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel

    2018-01-01

    To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.

  13. Detecting Pilot's Engagement Using fNIRS Connectivity Features in an Automated vs. Manual Landing Scenario

    PubMed Central

    Verdière, Kevin J.; Roy, Raphaëlle N.; Dehais, Frédéric

    2018-01-01

    Monitoring pilot's mental states is a relevant approach to mitigate human error and enhance human machine interaction. A promising brain imaging technique to perform such a continuous measure of human mental state under ecological settings is Functional Near-InfraRed Spectroscopy (fNIRS). However, to our knowledge no study has yet assessed the potential of fNIRS connectivity metrics as long as passive Brain Computer Interfaces (BCI) are concerned. Therefore, we designed an experimental scenario in a realistic simulator in which 12 pilots had to perform landings under two contrasted levels of engagement (manual vs. automated). The collected data were used to benchmark the performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance, Pearson's, and Spearman's Correlation, Spectral Coherence, and Wavelet Coherence) to discriminate these two landing conditions. Classification performance was obtained by using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them. Our findings disclosed that the connectivity features performed significantly better than the classical concentration metrics with a higher accuracy for the wavelet coherence (average: 65.3/59.9 %, min: 45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively). A maximum classification performance was obtained by combining the area under the curve with the wavelet coherence (average: 66.9/61.6 %, min: 57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively). In a general manner all connectivity measures allowed an efficient classification when computed over HbO signals. Those promising results provide methodological cues for further implementation of fNIRS-based passive BCIs. PMID:29422841

  14. Ensemble of sparse classifiers for high-dimensional biological data.

    PubMed

    Kim, Sunghan; Scalzo, Fabien; Telesca, Donatello; Hu, Xiao

    2015-01-01

    Biological data are often high in dimension while the number of samples is small. In such cases, the performance of classification can be improved by reducing the dimension of data, which is referred to as feature selection. Recently, a novel feature selection method has been proposed utilising the sparsity of high-dimensional biological data where a small subset of features accounts for most variance of the dataset. In this study we propose a new classification method for high-dimensional biological data, which performs both feature selection and classification within a single framework. Our proposed method utilises a sparse linear solution technique and the bootstrap aggregating algorithm. We tested its performance on four public mass spectrometry cancer datasets along with two other conventional classification techniques such as Support Vector Machines and Adaptive Boosting. The results demonstrate that our proposed method performs more accurate classification across various cancer datasets than those conventional classification techniques.

  15. 32 CFR 2001.16 - Fundamental classification guidance review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Fundamental classification guidance review. 2001... INFORMATION Classification § 2001.16 Fundamental classification guidance review. (a) Performance of fundamental classification guidance reviews. An initial fundamental classification guidance review shall be...

  16. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image

    NASA Astrophysics Data System (ADS)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu

    2017-10-01

    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  17. A novel method to guide classification of para swimmers with limb deficiency.

    PubMed

    Hogarth, Luke; Payton, Carl; Van de Vliet, Peter; Connick, Mark; Burkett, Brendan

    2018-05-30

    The International Paralympic Committee has directed International Federations that govern Para sports to develop evidence-based classification systems. This study defined the impact of limb deficiency impairment on 100 m freestyle performance to guide an evidence-based classification system in Para Swimming, which will be implemented following the 2020 Tokyo Paralympic games. Impairment data and competitive race performances of 90 international swimmers with limb deficiency were collected. Ensemble partial least squares regression established the relationship between relative limb length measures and competitive 100 m freestyle performance. The model explained 80% of the variance in 100 m freestyle performance, and found hand length and forearm length to be the most important predictors of performance. Based on the results of this model, Para swimmers were clustered into four-, five-, six- and seven-class structures using nonparametric kernel density estimations. The validity of these classification structures, and effectiveness against the current classification system, were examined by establishing within-class variations in 100 m freestyle performance and differences between adjacent classes. The derived classification structures were found to be more effective than current classification based on these criteria. This study provides a novel method that can be used to improve the objectivity and transparency of decision-making in Para sport classification. Expert consensus from experienced coaches, Para swimmers, classifiers and sport science and medicine personnel will benefit the translation of these findings into a revised classification system that is accepted by the Para swimming community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Machine learning algorithms for mode-of-action classification in toxicity assessment.

    PubMed

    Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can

    2016-01-01

    Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.

  19. A multilevel multispectral data set analysis in the visible and infrared wavelength regions. [for land use remote sensing

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Silva, L. F.

    1975-01-01

    Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.

  20. Certified Normal: Alzheimer’s Disease Biomarkers and Normative Estimates of Cognitive Functioning

    PubMed Central

    Hassenstab, Jason; Chasse, Rachel; Grabow, Perri; Benzinger, Tammie L.S.; Fagan, Anne M.; Xiong, Chengjie; Jasielec, Mateusz; Grant, Elizabeth; Morris, John C.

    2016-01-01

    Normative samples drawn from older populations may unintentionally include individuals with preclinical Alzheimer’s disease (AD) pathology, resulting in reduced means, increased variability, and overestimation of age-effects on cognitive performance. 264 cognitively normal (CDR=0) older adults were classified as biomarker-negative (“Robust Normal,” n=177) or biomarker-positive (“Preclinical Alzheimer’s Disease” (PCAD), n=87) based on amyloid imaging, cerebrospinal fluid biomarkers, and hippocampal volumes. PCAD participants performed worse than Robust Normals on nearly all cognitive measures. Removing PCAD participants from the normative sample yielded higher means and less variability on episodic memory, visuospatial ability, and executive functioning measures. These results were more pronounced in participants aged 75 and older. Notably, removing PCAD participants from the sample significantly reduced age effects across all cognitive domains. Applying norms from the Robust Normal sample to a separate cohort did not improve CDR classification when using standard deviation cutoff scores. Overall, removing individuals with biomarker evidence of preclinical AD improves normative sample quality and substantially reduces age-effects on cognitive performance, but provides no substantive benefit for diagnostic classifications. PMID:27255812

  1. Subject-Adaptive Real-Time Sleep Stage Classification Based on Conditional Random Field

    PubMed Central

    Luo, Gang; Min, Wanli

    2007-01-01

    Sleep staging is the pattern recognition task of classifying sleep recordings into sleep stages. This task is one of the most important steps in sleep analysis. It is crucial for the diagnosis and treatment of various sleep disorders, and also relates closely to brain-machine interfaces. We report an automatic, online sleep stager using electroencephalogram (EEG) signal based on a recently-developed statistical pattern recognition method, conditional random field, and novel potential functions that have explicit physical meanings. Using sleep recordings from human subjects, we show that the average classification accuracy of our sleep stager almost approaches the theoretical limit and is about 8% higher than that of existing systems. Moreover, for a new subject snew with limited training data Dnew, we perform subject adaptation to improve classification accuracy. Our idea is to use the knowledge learned from old subjects to obtain from Dnew a regulated estimate of CRF’s parameters. Using sleep recordings from human subjects, we show that even without any Dnew, our sleep stager can achieve an average classification accuracy of 70% on snew. This accuracy increases with the size of Dnew and eventually becomes close to the theoretical limit. PMID:18693884

  2. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks.

    PubMed

    Park, Jinhee; Javier, Rios Jesus; Moon, Taesup; Kim, Youngwook

    2016-11-24

    Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-Doppler signatures are much noisier due to water drops and waves. In this paper, we first investigate whether discriminative signatures could be obtained for activities on water through a simulation study. Then, we show how we can effectively achieve high classification accuracy by applying deep convolutional neural networks (DCNN) directly to the spectrogram of real measurement data. From the five-fold cross-validation on our dataset, which consists of five aquatic activities, we report that the conventional feature-based scheme only achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the collected data attains 66.7%, and the transfer learned DCNN, which takes a DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using the collected data, achieves a much higher 80.3%, which is a significant performance boost.

  3. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    PubMed

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  4. Effectiveness of Spectral Similarity Measures to Develop Precise Crop Spectra for Hyperspectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Chauhan, H.; Krishna Mohan, B.

    2014-11-01

    The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.

  5. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?

    PubMed

    Rossini, Paolo M; Buscema, Massimo; Capriotti, Massimiliano; Grossi, Enzo; Rodriguez, Guido; Del Percio, Claudio; Babiloni, Claudio

    2008-07-01

    It has been shown that a new procedure (implicit function as squashing time, IFAST) based on artificial neural networks (ANNs) is able to compress eyes-closed resting electroencephalographic (EEG) data into spatial invariants of the instant voltage distributions for an automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects with classification accuracy of individual subjects higher than 92%. Here we tested the hypothesis that this is the case also for the classification of individual normal elderly (Nold) vs. MCI subjects, an important issue for the screening of large populations at high risk of AD. Eyes-closed resting EEG data (10-20 electrode montage) were recorded in 171 Nold and in 115 amnesic MCI subjects. The data inputs for the classification by IFAST were the weights of the connections within a nonlinear auto-associative ANN trained to generate the instant voltage distributions of 60-s artifact-free EEG data. The most relevant features were selected and coincidently the dataset was split into two halves for the final binary classification (training and testing) performed by a supervised ANN. The classification of the individual Nold and MCI subjects reached 95.87% of sensitivity and 91.06% of specificity (93.46% of accuracy). These results indicate that IFAST can reliably distinguish eyes-closed resting EEG in individual Nold and MCI subjects. IFAST may be used for large-scale periodic screening of large populations at risk of AD and personalized care.

  7. Cost analysis when open surgeons perform minimally invasive hysterectomy.

    PubMed

    Shepherd, Jonathan P; Kantartzis, Kelly L; Ahn, Ki Hoon; Bonidie, Michael J; Lee, Ted

    2014-01-01

    The costs to perform a hysterectomy are widely variable. Our objective was to determine hysterectomy costs by route and whether traditionally open surgeons lower costs when performing laparoscopy versus robotics. Hysterectomy costs including subcategories were collected from 2011 to 2013. Costs were skewed, so 2 statistical transformations were performed. Costs were compared by surgeon classification (open, laparoscopic, or robotic) and surgery route. A total of 4,871 hysterectomies were performed: 34.2% open, 50.7% laparoscopic, and 15.1% robotic. Laparoscopic hysterectomy had the lowest total costs (P < .001). By cost subcategory, laparoscopic hysterectomy was lower than robotic hysterectomy in 6 and higher in 1. When performing robotic hysterectomy, open and robotic surgeon costs were similar. With laparoscopic hysterectomy, open surgeons had higher costs than laparoscopic surgeons for 1 of 2 statistical transformations (P = .007). Open surgeons had lower costs performing laparoscopic hysterectomy than robotic hysterectomy with robotic maintenance and depreciation included (P < .001) but similar costs if these variables were excluded. Although laparoscopic hysterectomy had lowest costs overall, robotics may be no more costly than laparoscopic hysterectomy when performed by surgeons who predominantly perform open hysterectomy.

  8. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  9. Physical distance, genetic relationship, age, and leprosy classification are independent risk factors for leprosy in contacts of patients with leprosy.

    PubMed

    Moet, F Johannes; Pahan, David; Schuring, Ron P; Oskam, Linda; Richardus, Jan H

    2006-02-01

    Close contacts of patients with leprosy have a higher risk of developing leprosy. Several risk factors have been identified, including genetic relationship and physical distance. Their independent contributions to the risk of developing leprosy, however, have never been sufficiently quantified. Logistic-regression analysis was performed on intake data from a prospective cohort study of 1037 patients newly diagnosed as having leprosy and their 21,870 contacts. Higher age showed an increased risk, with a bimodal distribution. Contacts of patients with paucibacillary (PB) leprosy with 2-5 lesions (PB2-5) and those with multibacillary (MB) leprosy had a higher risk than did contacts of patients with single-lesion PB leprosy. The core household group had a higher risk than other contacts living under the same roof and next-door neighbors, who again had a higher risk than neighbors of neighbors. A close genetic relationship indicated an increased risk when blood-related children, parents, and siblings were pooled together. Age of the contact, the disease classification of the index patient, and physical and genetic distance were independently associated with the risk of a contact acquiring leprosy. Contact surveys in leprosy should be not only focused on household contacts but also extended to neighbors and consanguineous relatives, especially when the patient has PB2-5 or MB leprosy.

  10. Classification of ASKAP Vast Radio Light Curves

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  11. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  12. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode classification methods. On empirical data their classification performances are at a comparable level to the other methods. Conclusions The classification analysis shows that supervised machine learning methods are promising candidates for handling with success the DNA Barcoding species classification problem, obtaining excellent performances. To conclude, a powerful tool to perform species identification is now available to the DNA Barcoding community. PMID:24721333

  13. [Quantitative classification in catering trade and countermeasures of supervision and management in Hunan Province].

    PubMed

    Liu, Xiulan; Chen, Lizhang; He, Xiang

    2012-02-01

    To analyze the status quo of quantitative classification in Hunan Province catering industry, and to discuss the countermeasures in-depth. According to relevant laws and regulations, and after referring to Daily supervision and quantitative scoring sheet and consulting experts, a checklist of key supervision indicators was made. The implementation of quantitative classification in 10 cities in Hunan Province was studied, and the status quo was analyzed. All the 390 catering units implemented quantitative classified management. The larger the catering enterprise, the higher level of quantitative classification. In addition to cafeterias, the smaller the catering units, the higher point of deduction, and snack bars and beverage stores were the highest. For those quantified and classified as C and D, the point of deduction was higher in the procurement and storage of raw materials, operation processing and other aspects. The quantitative classification of Hunan Province has relatively wide coverage. There are hidden risks in food security in small catering units, snack bars, and beverage stores. The food hygienic condition of Hunan Province needs to be improved.

  14. Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment.

    PubMed

    Bullich, Santiago; Seibyl, John; Catafau, Ana M; Jovalekic, Aleksandar; Koglin, Norman; Barthel, Henryk; Sabri, Osama; De Santi, Susan

    2017-01-01

    Standardized uptake value ratios (SUVRs) calculated from cerebral cortical areas can be used to categorize 18 F-Florbetaben (FBB) PET scans by applying appropriate cutoffs. The objective of this work was first to generate FBB SUVR cutoffs using visual assessment (VA) as standard of truth (SoT) for a number of reference regions (RR) (cerebellar gray matter (GCER), whole cerebellum (WCER), pons (PONS), and subcortical white matter (SWM)). Secondly, to validate the FBB PET scan categorization performed by SUVR cutoffs against the categorization made by post-mortem histopathological confirmation of the Aβ presence. Finally, to evaluate the added value of SUVR cutoff categorization to VA. SUVR cutoffs were generated for each RR using FBB scans from 143 subjects who were visually assessed by 3 readers. SUVR cutoffs were validated in 78 end-of life subjects using VA from 8 independent blinded readers (3 expert readers and 5 non-expert readers) and histopathological confirmation of the presence of neuritic beta-amyloid plaques as SoT. Finally, the number of correctly or incorrectly classified scans according to pathology results using VA and SUVR cutoffs was compared. Composite SUVR cutoffs generated were 1.43 (GCER), 0.96 (WCER), 0.78 (PONS) and 0.71 (SWM). Accuracy values were high and consistent across RR (range 83-94% for histopathology, and 85-94% for VA). SUVR cutoff performed similarly as VA but did not improve VA classification of FBB scans read either by expert readers or the majority read but provided higher accuracy than some non-expert readers. The accurate scan classification obtained in this study supports the use of VA as SoT to generate site-specific SUVR cutoffs. For an elderly end of life population, VA and SUVR cutoff categorization perform similarly in classifying FBB scans as Aβ-positive or Aβ-negative. These results emphasize the additional contribution that SUVR cutoff classification may have compared with VA performed by non-expert readers.

  15. Using Neural Networks to Classify Digitized Images of Galaxies

    NASA Astrophysics Data System (ADS)

    Goderya, S. N.; McGuire, P. C.

    2000-12-01

    Automated classification of Galaxies into Hubble types is of paramount importance to study the large scale structure of the Universe, particularly as survey projects like the Sloan Digital Sky Survey complete their data acquisition of one million galaxies. At present it is not possible to find robust and efficient artificial intelligence based galaxy classifiers. In this study we will summarize progress made in the development of automated galaxy classifiers using neural networks as machine learning tools. We explore the Bayesian linear algorithm, the higher order probabilistic network, the multilayer perceptron neural network and Support Vector Machine Classifier. The performance of any machine classifier is dependant on the quality of the parameters that characterize the different groups of galaxies. Our effort is to develop geometric and invariant moment based parameters as input to the machine classifiers instead of the raw pixel data. Such an approach reduces the dimensionality of the classifier considerably, and removes the effects of scaling and rotation, and makes it easier to solve for the unknown parameters in the galaxy classifier. To judge the quality of training and classification we develop the concept of Mathews coefficients for the galaxy classification community. Mathews coefficients are single numbers that quantify classifier performance even with unequal prior probabilities of the classes.

  16. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.

    PubMed

    Tang, Zhichuan; Sun, Shouqian; Zhang, Sanyuan; Chen, Yumiao; Li, Chao; Chen, Shi

    2016-12-02

    To recognize the user's motion intention, brain-machine interfaces (BMI) usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG) can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-related desynchronization/synchronization (ERD/ERS) is proposed. In the decoder-training phase, we investigate the offline classification performance of left versus right hand and left hand versus both feet by using motor execution (ME) or motor imagery (MI). The results indicate that the accuracies of ME sessions are higher than those of MI sessions, and left hand versus both feet paradigm achieves a better classification performance, which would be used in the online-control phase. In the online-control phase, the trained decoder is tested in two scenarios (wearing or without wearing the exoskeleton). The MI and ME sessions wearing the exoskeleton achieve mean classification accuracy of 84.29% ± 2.11% and 87.37% ± 3.06%, respectively. The present study demonstrates that the proposed BMI is effective to control the upper-limb exoskeleton, and provides a practical method by non-invasive EEG signal associated with human natural behavior for clinical applications.

  17. Statistical analysis of spectral data: a methodology for designing an intelligent monitoring system for the diabetic foot

    NASA Astrophysics Data System (ADS)

    Liu, Chanjuan; van Netten, Jaap J.; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi

    2013-12-01

    Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.

  18. Automatic adventitious respiratory sound analysis: A systematic review.

    PubMed

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases.

  19. Automatic adventitious respiratory sound analysis: A systematic review

    PubMed Central

    Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Limitations Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. Conclusion A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases. PMID:28552969

  20. Comparison of Single and Multi-Scale Method for Leaf and Wood Points Classification from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie

    2018-04-01

    The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.

  1. Development and testing of a short physical activity recall questionnaire.

    PubMed

    Matthews, Charles E; Ainsworth, Barbara E; Hanby, Cara; Pate, Russell R; Addy, Cheryl; Freedson, Patty S; Jones, Deborah Arriaza; Macera, Caroline A

    2005-06-01

    To develop and test two different short telephone activity recall (STAR) questionnaires, one with closed-ended and the other with open-ended response options, that assessed overall moderate and vigorous activity in a usual week. One hundred four participants completed a 3-d test-retest study, and 88 participants completed 10-14, 24-h physical activity recalls (24PAR) and at least 7 d of objective physical activity monitoring by Actigraph during a 28-d period. Consistency of classification from one administration to the next was high (65-92%), extreme inconsistencies between reports were infrequent (0-7%), and kappa values were between 0.50 and 0.75. Correlations between self-reports and criterion measures for moderate-intensity duration were between 0.30 and 0.40. Agreement between the instruments and the 24PAR for meeting the moderate or vigorous recommendations was between 60 and 70%. For the 24PAR comparisons, kappa values tended to be higher for women than men, but were of only modest strength (kappa 0.40). With the 24PAR as criterion, sensitivity of the self-report instruments was between 50 and 90%, and specificity was between 63 and 84%. Kappa values comparing the instruments with the Actigraph were low (<0.20). Overall classification by the short instruments into meeting the recommendations was associated with higher levels of total 24PAR activity (P < or = 0.01) as well as greater steps per day and counts per minute per day from the Actigraph (P < or = 0.08). The open-ended instrument appeared to perform better for moderate-intensity activity, whereas the closed-ended item appeared to perform better for vigorous activity. The evaluated instruments had reasonable reliability and demonstrated an ability to capture important differences in overall physical activity patterns in this population, although individual classification errors were substantial.

  2. Application of LogitBoost Classifier for Traceability Using SNP Chip Data

    PubMed Central

    Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability. PMID:26436917

  3. Application of LogitBoost Classifier for Traceability Using SNP Chip Data.

    PubMed

    Kim, Kwondo; Seo, Minseok; Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability.

  4. Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data.

    PubMed

    Moustafa, Ahmed A; Kéri, Szabolcs; Somlai, Zsuzsanna; Balsdon, Tarryn; Frydecka, Dorota; Misiak, Blazej; White, Corey

    2015-09-15

    In this study, we tested reward- and punishment learning performance using a probabilistic classification learning task in patients with schizophrenia (n=37) and healthy controls (n=48). We also fit subjects' data using a Drift Diffusion Model (DDM) of simple decisions to investigate which components of the decision process differ between patients and controls. Modeling results show between-group differences in multiple components of the decision process. Specifically, patients had slower motor/encoding time, higher response caution (favoring accuracy over speed), and a deficit in classification learning for punishment, but not reward, trials. The results suggest that patients with schizophrenia adopt a compensatory strategy of favoring accuracy over speed to improve performance, yet still show signs of a deficit in learning based on negative feedback. Our data highlights the importance of applying fitting models (particularly drift diffusion models) to behavioral data. The implications of these findings are discussed relative to theories of schizophrenia and cognitive processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players.

    PubMed

    Reina, Raúl; Iturricastillo, Aitor; Sabido, Rafael; Campayo-Piernas, Maria; Yanci, Javier

    2018-05-01

    To evaluate the reliability and validity of vertical and horizontal jump tests in football players with cerebral palsy (FPCP) and to analyze the jump performance differences between current International Federation for Cerebral Palsy Football functional classes (ie, FT5-FT8). A total of 132 international parafootballers (25.8 [6.7] y; 70.0 [9.1] kg; 175.7 [7.3] cm; 22.8 [2.8] kg·m -2 ; and 10.7 [7.5] y training experience) participated in the study. The participants were classified according to the International Federation for Cerebral Palsy Football classification rules, and a group of 39 players without cerebral palsy was included in the study as a control group. Football players' vertical and horizontal jump performance was assessed. All the tests showed good to excellent relative intrasession reliability scores, both in FPCP and in the control group (intraclass correlation = .78-.97, SEM < 10.5%). Significant between-groups differences (P < .001) were obtained in the countermovement jump, standing broad jump, 4 bounds for distance, and triple hop for distance dominant leg and nondominant leg. The control group performed higher/farther jumps with regard to all the FPCP classes, obtaining significant differences and moderate to large effect sizes (ESs) (.85 < ES < 5.54, P < .01). Players in FT8 class (less severe impairments) had significantly higher scores in all the jump tests than players in the lower classes (ES = moderate to large, P < .01). The vertical and horizontal jump tests performed in this study could be applied to the classification procedures and protocols for FPCP.

  6. Refined 4-group classification of left ventricular hypertrophy based on ventricular concentricity and volume dilatation outlines distinct noninvasive hemodynamic profiles in a large contemporary echocardiographic population.

    PubMed

    Barbieri, Andrea; Rossi, Andrea; Gaibazzi, Nicola; Erlicher, Andrea; Mureddu, Gian Francesco; Frattini, Silvia; Faden, Giacomo; Manicardi, Marcella; Beraldi, Monica; Agostini, Francesco; Lazzarini, Valentina; Moreo, Antonella; Temporelli, Pier Luigi; Faggiano, Pompilio

    2018-05-23

    Left ventricular hypertrophy (LVH) may reflect a wide variety of physiologic and pathologic conditions. Thus, it can be misleading to consider all LVH to be homogenous or similar. Refined 4-group classification of LVH based on ventricular concentricity and dilatation may be identified. To determine whether the 4-group classification of LVH identified distinct phenotypes, we compared their association with various noninvasive markers of cardiac stress. Cohort of unselected adult outpatients referred to a seven tertiary care echocardiographic laboratory for any indication in a 2-week period. We evaluated the LV geometric patterns using validated echocardiographic indexation methods and partition values. Standard echocardiography was performed in 1137 consecutive subjects, and LVH was found in 42%. The newly proposed 4-group classification of LVH was applicable in 88% of patients. The most common pattern resulted in concentric LVH (19%). The worst functional and hemodynamic profile was associated with eccentric LVH and those with mixed LVH had a higher prevalence of reduced EF than those with concentric LVH (P < .001 for all). The new 4-group classification of LVH system showed distinct differences in cardiac function and noninvasive hemodynamics allowing clinicians to distinguish different LV hemodynamic stress adaptations in patients with LVH. © 2018 Wiley Periodicals, Inc.

  7. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  8. Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: Classification of Stromal Development

    PubMed Central

    Sertel, O.; Kong, J.; Shimada, H.; Catalyurek, U.V.; Saltz, J.H.; Gurcan, M.N.

    2009-01-01

    We are developing a computer-aided prognosis system for neuroblastoma (NB), a cancer of the nervous system and one of the most malignant tumors affecting children. Histopathological examination is an important stage for further treatment planning in routine clinical diagnosis of NB. According to the International Neuroblastoma Pathology Classification (the Shimada system), NB patients are classified into favorable and unfavorable histology based on the tissue morphology. In this study, we propose an image analysis system that operates on digitized H&E stained whole-slide NB tissue samples and classifies each slide as either stroma-rich or stroma-poor based on the degree of Schwannian stromal development. Our statistical framework performs the classification based on texture features extracted using co-occurrence statistics and local binary patterns. Due to the high resolution of digitized whole-slide images, we propose a multi-resolution approach that mimics the evaluation of a pathologist such that the image analysis starts from the lowest resolution and switches to higher resolutions when necessary. We employ an offine feature selection step, which determines the most discriminative features at each resolution level during the training step. A modified k-nearest neighbor classifier is used to determine the confidence level of the classification to make the decision at a particular resolution level. The proposed approach was independently tested on 43 whole-slide samples and provided an overall classification accuracy of 88.4%. PMID:20161324

  9. Relationship between AOD and synoptic circulation over the Eastern Mediterranean: A comparison between subjective and objective classifications

    NASA Astrophysics Data System (ADS)

    Bodenheimer, Shalev; Nirel, Ronit; Lensky, Itamar M.; Dayan, Uri

    2018-03-01

    The Eastern Mediterranean (EM) Basin is strongly affected by dust originating from two of the largest world sources: The Sahara Desert and the Arabian Peninsula. Climatologically, the distribution pattern of aerosol optical depth (AOD), as proxy to particulate matter (PM), is known to be correlated with synoptic circulation. The climatological relationship between circulation type classifications (CTCs) and AOD levels over the EM Basin ("synoptic skill") was examined for the years 2000-2014. We compared the association between subjective (expert-based) and objective (fully automated) classifications and AOD using autoregressive models. After seasonal adjustment, the mean values of R2 for the different methods were similar. However, the distinct spatial pattern of the R2 values suggests that subjective classifications perform better in their area of expertise, specifically in the southeast region of the study area, while, objective CTCs had better synoptic skill over the northern part of the EM. This higher synoptic skill of subjective CTCs stem from their ability to identify distinct circulation types (e.g. Sharav lows and winter lows) that are infrequent but are highly correlated with AOD. Notably, a simple CTC based on seasonality rather than meteorological parameters predicted well AOD levels, especially over the south-eastern part of the domain. Synoptic classifications that are area-oriented are likely better predictors of AOD and possibly other environmental variables.

  10. Using Classification Trees to Predict Alumni Giving for Higher Education

    ERIC Educational Resources Information Center

    Weerts, David J.; Ronca, Justin M.

    2009-01-01

    As the relative level of public support for higher education declines, colleges and universities aim to maximize alumni-giving to keep their programs competitive. Anchored in a utility maximization framework, this study employs the classification and regression tree methodology to examine characteristics of alumni donors and non-donors at a…

  11. Classification Techniques for Digital Map Compression

    DTIC Science & Technology

    1989-03-01

    classification improved the performance of the K-means classification algorithm resulting in a compression of 8.06:1 with Lempel - Ziv coding. Run-length coding... compression performance are run-length coding [2], [8] and Lempel - Ziv coding 110], [11]. These techniques are chosen because they are most efficient when...investigated. After the classification, some standard file compression methods, such as Lempel - Ziv and run-length encoding were applied to the

  12. Grasp movement decoding from premotor and parietal cortex.

    PubMed

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  13. Influence of P300 latency jitter on event related potential-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F.

    2014-06-01

    Objective. Several ERP-based brain-computer interfaces (BCIs) that can be controlled even without eye movements (covert attention) have been recently proposed. However, when compared to similar systems based on overt attention, they displayed significantly lower accuracy. In the current interpretation, this is ascribed to the absence of the contribution of short-latency visual evoked potentials (VEPs) in the tasks performed in the covert attention modality. This study aims to investigate if this decrement (i) is fully explained by the lack of VEP contribution to the classification accuracy; (ii) correlates with lower temporal stability of the single-trial P300 potentials elicited in the covert attention modality. Approach. We evaluated the latency jitter of P300 evoked potentials in three BCI interfaces exploiting either overt or covert attention modalities in 20 healthy subjects. The effect of attention modality on the P300 jitter, and the relative contribution of VEPs and P300 jitter to the classification accuracy have been analyzed. Main results. The P300 jitter is higher when the BCI is controlled in covert attention. Classification accuracy negatively correlates with jitter. Even disregarding short-latency VEPs, overt-attention BCI yields better accuracy than covert. When the latency jitter is compensated offline, the difference between accuracies is not significant. Significance. The lower temporal stability of the P300 evoked potential generated during the tasks performed in covert attention modality should be regarded as the main contributing explanation of lower accuracy of covert-attention ERP-based BCIs.

  14. Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility

    NASA Astrophysics Data System (ADS)

    Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.

    2012-07-01

    Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective monitoring of agricultural facilities is expected to be available if the characteristics such as texture information including satellite images or spatial pattern are studied in detail.

  15. Risk Factors for Failure of Male Slings and Artificial Urinary Sphincters: Results from a Large Middle European Cohort Study.

    PubMed

    Hüsch, Tanja; Kretschmer, Alexander; Thomsen, Frauke; Kronlachner, Dominik; Kurosch, Martin; Obaje, Alice; Anding, Ralf; Pottek, Tobias; Rose, Achim; Olianas, Roberto; Friedl, Alexander; Hübner, Wilhelm; Homberg, Roland; Pfitzenmaier, Jesco; Grein, Ulrich; Queissert, Fabian; Naumann, Carsten Maik; Schweiger, Josef; Wotzka, Carola; Nyarangi-Dix, Joanne; Hofmann, Torben; Ulm, Kurt; Bauer, Ricarda M; Haferkamp, Axel

    2017-01-01

    We analysed the impact of predefined risk factors: age, diabetes, history of pelvic irradiation, prior surgery for stress urinary incontinence (SUI), prior urethral stricture, additional procedure during SUI surgery, duration of incontinence, ASA-classification and cause for incontinence on failure and complications in male SUI surgery. We retrospectively identified 506 patients with an artificial urinary sphincter (AUS) and 513 patients with a male sling (MS) in a multicenter cohort study. Complication rates were correlated to the risk factors in univariate analysis. Subsequently, a multivariate logistic regression adjusted to the risk factors was performed. A p value <0.05 was considered statistically significant. A history of pelvic irradiation was an independent risk factor for explantation in AUS (p < 0.001) and MS (p = 0.018). Moreover, prior urethral stricture (p = 0.036) and higher ASA-classification (p = 0.039) were positively correlated with explantation in univariate analysis for AUS. Urethral erosion was correlated with prior urethral stricture (p < 0.001) and a history of pelvic irradiation (p < 0.001) in AUS. Furthermore, infection was correlated with additional procedures during SUI surgery in univariate analysis (p = 0.037) in MS. We first identified the correlation of higher ASA-classification and explantation in AUS. Nevertheless, only a few novel risk factors had a significant influence on the failure of MS or AUS. © 2016 S. Karger AG, Basel.

  16. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659

  17. Proposal of a new classification of postoperative ileus based on its clinical impact-results of a global survey and preliminary evaluation in colorectal surgery.

    PubMed

    Venara, Aurélien; Slim, Karem; Regimbeau, Jean-Marc; Ortega-Deballon, Pablo; Vielle, Bruno; Lermite, Emilie; Meurette, Guillaume; Hamy, Antoine

    2017-06-01

    There is no consensual definition of postoperative ileus (POI), which leads to a lack of reproducibility. The aims of this study were (i) to propose and evaluate a classification of postoperative ileus based on its consequences and (ii) to assess the reproducibility of the classification. A national global survey was carried out according to the DELPHI method in order to create a classification of primary POI. The classification was subsequently tested on a cohort of patients who underwent colorectal surgery. Finally, a reproducibility test was performed in five teaching hospitals with junior and senior surgeons. A five-stage classification was proposed: grade A (least) to grade E (worst). For better differentiation, subcategories (D1/D2) were included. Overall, 173 patients were included who underwent colorectal surgery. Forty of them experienced primary postoperative ileus (23.1%). Grade A occurred in 10 cases, grade B in 10 cases, grade C in 14 cases, grade D1 in 2 cases, and grade D2 in 2 cases. POI-related death (grade E) occurred in 2 cases. Patients with grade A POI recovered their gastrointestinal function significantly faster than those with higher grades (p = 0.01), and were more likely to undergo laparoscopic surgery (p = 0.04). The Intraclass Correlation Coefficient (ICC) was 0.83 in the overall population, and 0.83 and 0.82 respectively in the junior and senior surgeon populations. This classification is easy to both use and reproduce. It will improve the reproducibility, evaluation, and assessment of POI. These preliminary results should be confirmed in a multi-centric international study.

  18. Relationship between Functional Classification Levels and Anaerobic Performance of Wheelchair Basketball Athletes

    ERIC Educational Resources Information Center

    Molik, Bartosz; Laskin, James J.; Kosmol, Andrzej; Skucas, Kestas; Bida, Urszula

    2010-01-01

    Wheelchair basketball athletes are classified using the International Wheelchair Basketball Federation (IWBF) functional classification system. The purpose of this study was to evaluate the relationship between upper extremity anaerobic performance (AnP) and all functional classification levels in wheelchair basketball. Ninety-seven male athletes…

  19. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform

    PubMed Central

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-01-01

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059

  20. Design and update of a classification system: the UCSD map of science.

    PubMed

    Börner, Katy; Klavans, Richard; Patek, Michael; Zoss, Angela M; Biberstine, Joseph R; Light, Robert P; Larivière, Vincent; Boyack, Kevin W

    2012-01-01

    Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier's Scopus (about 15,000 source titles, 2001-2005) and Thomson Reuters' Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001-2004)-about 16,000 unique source titles. The updated map and classification adds six years (2005-2010) of WoS data and three years (2006-2008) from Scopus to the existing category structure-increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others.

  1. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.

    PubMed

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-11-03

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction.

  2. Design and Update of a Classification System: The UCSD Map of Science

    PubMed Central

    Börner, Katy; Klavans, Richard; Patek, Michael; Zoss, Angela M.; Biberstine, Joseph R.; Light, Robert P.; Larivière, Vincent; Boyack, Kevin W.

    2012-01-01

    Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier’s Scopus (about 15,000 source titles, 2001–2005) and Thomson Reuters’ Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001–2004)–about 16,000 unique source titles. The updated map and classification adds six years (2005–2010) of WoS data and three years (2006–2008) from Scopus to the existing category structure–increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others. PMID:22808037

  3. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  4. Application of random forests methods to diabetic retinopathy classification analyses.

    PubMed

    Casanova, Ramon; Saldana, Santiago; Chew, Emily Y; Danis, Ronald P; Greven, Craig M; Ambrosius, Walter T

    2014-01-01

    Diabetic retinopathy (DR) is one of the leading causes of blindness in the United States and world-wide. DR is a silent disease that may go unnoticed until it is too late for effective treatment. Therefore, early detection could improve the chances of therapeutic interventions that would alleviate its effects. Graded fundus photography and systemic data from 3443 ACCORD-Eye Study participants were used to estimate Random Forest (RF) and logistic regression classifiers. We studied the impact of sample size on classifier performance and the possibility of using RF generated class conditional probabilities as metrics describing DR risk. RF measures of variable importance are used to detect factors that affect classification performance. Both types of data were informative when discriminating participants with or without DR. RF based models produced much higher classification accuracy than those based on logistic regression. Combining both types of data did not increase accuracy but did increase statistical discrimination of healthy participants who subsequently did or did not have DR events during four years of follow-up. RF variable importance criteria revealed that microaneurysms counts in both eyes seemed to play the most important role in discrimination among the graded fundus variables, while the number of medicines and diabetes duration were the most relevant among the systemic variables. We have introduced RF methods to DR classification analyses based on fundus photography data. In addition, we propose an approach to DR risk assessment based on metrics derived from graded fundus photography and systemic data. Our results suggest that RF methods could be a valuable tool to diagnose DR diagnosis and evaluate its progression.

  5. Evaluation of feature selection algorithms for classification in temporal lobe epilepsy based on MR images

    NASA Astrophysics Data System (ADS)

    Lai, Chunren; Guo, Shengwen; Cheng, Lina; Wang, Wensheng; Wu, Kai

    2017-02-01

    It's very important to differentiate the temporal lobe epilepsy (TLE) patients from healthy people and localize the abnormal brain regions of the TLE patients. The cortical features and changes can reveal the unique anatomical patterns of brain regions from the structural MR images. In this study, structural MR images from 28 normal controls (NC), 18 left TLE (LTLE), and 21 right TLE (RTLE) were acquired, and four types of cortical feature, namely cortical thickness (CTh), cortical surface area (CSA), gray matter volume (GMV), and mean curvature (MCu), were explored for discriminative analysis. Three feature selection methods, the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the support vector machine-recursive feature elimination (SVM-RFE), were investigated to extract dominant regions with significant differences among the compared groups for classification using the SVM classifier. The results showed that the SVM-REF achieved the highest performance (most classifications with more than 92% accuracy), followed by the SCDRM, and the t-test. Especially, the surface area and gray volume matter exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical features were combined. Additionally, the dominant regions with higher classification weights were mainly located in temporal and frontal lobe, including the inferior temporal, entorhinal cortex, fusiform, parahippocampal cortex, middle frontal and frontal pole. It was demonstrated that the cortical features provided effective information to determine the abnormal anatomical pattern and the proposed method has the potential to improve the clinical diagnosis of the TLE.

  6. Efficacy of hidden markov model over support vector machine on multiclass classification of healthy and cancerous cervical tissues

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Pratiher, Sawon; Mukherjee, Sukanya; Barman, Ritwik; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2018-02-01

    In this paper, a comparative study between SVM and HMM has been carried out for multiclass classification of cervical healthy and cancerous tissues. In our study, the HMM methodology is more promising to produce higher accuracy in classification.

  7. Performance of fusion algorithms for computer-aided detection and classification of mines in very shallow water obtained from testing in navy Fleet Battle Exercise-Hotel 2000

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William; Kerfoot, Ian

    2001-10-01

    The performance of Computer Aided Detection/Computer Aided Classification (CAD/CAC) Fusion algorithms on side-scan sonar images was evaluated using data taken at the Navy's's Fleet Battle Exercise-Hotel held in Panama City, Florida, in August 2000. A 2-of-3 binary fusion algorithm is shown to provide robust performance. The algorithm accepts the classification decisions and associated contact locations form three different CAD/CAC algorithms, clusters the contacts based on Euclidian distance, and then declares a valid target when a clustered contact is declared by at least 2 of the 3 individual algorithms. This simple binary fusion provided a 96 percent probability of correct classification at a false alarm rate of 0.14 false alarms per image per side. The performance represented a 3.8:1 reduction in false alarms over the best performing single CAD/CAC algorithm, with no loss in probability of correct classification.

  8. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    PubMed

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  9. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  10. Classifying High-noise EEG in Complex Environments for Brain-computer Interaction Technologies

    DTIC Science & Technology

    2012-02-01

    differentiation in the brain signal that our classification approach seeks to identify despite the noise in the recorded EEG signal and the complexity of...performed two offline classifications , one using BCILab (1), the other using LibSVM (2). Distinct classifiers were trained for each individual in...order to improve individual classifier performance (3). The highest classification performance results were obtained using individual frequency bands

  11. Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.

    PubMed

    Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I

    2015-01-01

    This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.

  12. A comparison of unsupervised classification procedures on LANDSAT MSS data for an area of complex surface conditions in Basilicata, Southern Italy

    NASA Technical Reports Server (NTRS)

    Justice, C.; Townshend, J. (Principal Investigator)

    1981-01-01

    Two unsupervised classification procedures were applied to ratioed and unratioed LANDSAT multispectral scanner data of an area of spatially complex vegetation and terrain. An objective accuracy assessment was undertaken on each classification and comparison was made of the classification accuracies. The two unsupervised procedures use the same clustering algorithm. By on procedure the entire area is clustered and by the other a representative sample of the area is clustered and the resulting statistics are extrapolated to the remaining area using a maximum likelihood classifier. Explanation is given of the major steps in the classification procedures including image preprocessing; classification; interpretation of cluster classes; and accuracy assessment. Of the four classifications undertaken, the monocluster block approach on the unratioed data gave the highest accuracy of 80% for five coarse cover classes. This accuracy was increased to 84% by applying a 3 x 3 contextual filter to the classified image. A detailed description and partial explanation is provided for the major misclassification. The classification of the unratioed data produced higher percentage accuracies than for the ratioed data and the monocluster block approach gave higher accuracies than clustering the entire area. The moncluster block approach was additionally the most economical in terms of computing time.

  13. The Research on Dryland Crop Classification Based on the Fusion of SENTINEL-1A SAR and Optical Images

    NASA Astrophysics Data System (ADS)

    Liu, F.; Chen, T.; He, J.; Wen, Q.; Yu, F.; Gu, X.; Wang, Z.

    2018-04-01

    In recent years, the quick upgrading and improvement of SAR sensors provide beneficial complements for the traditional optical remote sensing in the aspects of theory, technology and data. In this paper, Sentinel-1A SAR data and GF-1 optical data were selected for image fusion, and more emphases were put on the dryland crop classification under a complex crop planting structure, regarding corn and cotton as the research objects. Considering the differences among various data fusion methods, the principal component analysis (PCA), Gram-Schmidt (GS), Brovey and wavelet transform (WT) methods were compared with each other, and the GS and Brovey methods were proved to be more applicable in the study area. Then, the classification was conducted based on the object-oriented technique process. And for the GS, Brovey fusion images and GF-1 optical image, the nearest neighbour algorithm was adopted to realize the supervised classification with the same training samples. Based on the sample plots in the study area, the accuracy assessment was conducted subsequently. The values of overall accuracy and kappa coefficient of fusion images were all higher than those of GF-1 optical image, and GS method performed better than Brovey method. In particular, the overall accuracy of GS fusion image was 79.8 %, and the Kappa coefficient was 0.644. Thus, the results showed that GS and Brovey fusion images were superior to optical images for dryland crop classification. This study suggests that the fusion of SAR and optical images is reliable for dryland crop classification under a complex crop planting structure.

  14. Digital mammography: observer performance study of the effects of pixel size on radiologists' characterization of malignant and benign microcalcifications

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Helvie, Mark A.; Petrick, Nicholas; Sahiner, Berkman; Adler, Dorit D.; Blane, Caroline E.; Joynt, Lynn K.; Paramagul, Chintana; Roubidoux, Marilyn A.; Wilson, Todd E.; Hadjiiski, Lubomir M.; Goodsitt, Mitchell M.

    1999-05-01

    A receiver operating characteristic (ROC) experiment was conducted to evaluate the effects of pixel size on the characterization of mammographic microcalcifications. Digital mammograms were obtained by digitizing screen-film mammograms with a laser film scanner. One hundred twelve two-view mammograms with biopsy-proven microcalcifications were digitized at a pixel size of 35 micrometer X 35 micrometer. A region of interest (ROI) containing the microcalcifications was extracted from each image. ROI images with pixel sizes of 70 micrometers, 105 micrometers, and 140 micrometers were derived from the ROI of 35 micrometer pixel size by averaging 2 X 2, 3 X 3, and 4 X 4 neighboring pixels, respectively. The ROI images were printed on film with a laser imager. Seven MQSA-approved radiologists participated as observers. The likelihood of malignancy of the microcalcifications was rated on a 10-point confidence rating scale and analyzed with ROC methodology. The classification accuracy was quantified by the area, Az, under the ROC curve. The statistical significance of the differences in the Az values for different pixel sizes was estimated with the Dorfman-Berbaum-Metz (DBM) method for multi-reader, multi-case ROC data. It was found that five of the seven radiologists demonstrated a higher classification accuracy with the 70 micrometer or 105 micrometer images. The average Az also showed a higher classification accuracy in the range of 70 to 105 micrometer pixel size. However, the differences in A(subscript z/ between different pixel sizes did not achieve statistical significance. The low specificity of image features of microcalcifications an the large interobserver and intraobserver variabilities may have contributed to the relatively weak dependence of classification accuracy on pixel size.

  15. Emotion recognition from EEG using higher order crossings.

    PubMed

    Petrantonakis, Panagiotis C; Hadjileontiadis, Leontios J

    2010-03-01

    Electroencephalogram (EEG)-based emotion recognition is a relatively new field in the affective computing area with challenging issues regarding the induction of the emotional states and the extraction of the features in order to achieve optimum classification performance. In this paper, a novel emotion evocation and EEG-based feature extraction technique is presented. In particular, the mirror neuron system concept was adapted to efficiently foster emotion induction by the process of imitation. In addition, higher order crossings (HOC) analysis was employed for the feature extraction scheme and a robust classification method, namely HOC-emotion classifier (HOC-EC), was implemented testing four different classifiers [quadratic discriminant analysis (QDA), k-nearest neighbor, Mahalanobis distance, and support vector machines (SVMs)], in order to accomplish efficient emotion recognition. Through a series of facial expression image projection, EEG data have been collected by 16 healthy subjects using only 3 EEG channels, namely Fp1, Fp2, and a bipolar channel of F3 and F4 positions according to 10-20 system. Two scenarios were examined using EEG data from a single-channel and from combined-channels, respectively. Compared with other feature extraction methods, HOC-EC appears to outperform them, achieving a 62.3% (using QDA) and 83.33% (using SVM) classification accuracy for the single-channel and combined-channel cases, respectively, differentiating among the six basic emotions, i.e., happiness, surprise, anger, fear, disgust, and sadness. As the emotion class-set reduces its dimension, the HOC-EC converges toward maximum classification rate (100% for five or less emotions), justifying the efficiency of the proposed approach. This could facilitate the integration of HOC-EC in human machine interfaces, such as pervasive healthcare systems, enhancing their affective character and providing information about the user's emotional status (e.g., identifying user's emotion experiences, recurring affective states, time-dependent emotional trends).

  16. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.

    PubMed

    Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying

    2015-04-30

    Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    PubMed

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability.

  18. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes

    PubMed Central

    Yates, Katherine L.; Mellin, Camille; Caley, M. Julian; Radford, Ben T.; Meeuwig, Jessica J.

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability. PMID:27333202

  19. Hierarchical Higher Order Crf for the Classification of Airborne LIDAR Point Clouds in Urban Areas

    NASA Astrophysics Data System (ADS)

    Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C.

    2016-06-01

    We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.

  20. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study

    PubMed Central

    Awais, Muhammad; Palmerini, Luca; Bourke, Alan K.; Ihlen, Espen A. F.; Helbostad, Jorunn L.; Chiari, Lorenzo

    2016-01-01

    The popularity of using wearable inertial sensors for physical activity classification has dramatically increased in the last decade due to their versatility, low form factor, and low power requirements. Consequently, various systems have been developed to automatically classify daily life activities. However, the scope and implementation of such systems is limited to laboratory-based investigations. Furthermore, these systems are not directly comparable, due to the large diversity in their design (e.g., number of sensors, placement of sensors, data collection environments, data processing techniques, features set, classifiers, cross-validation methods). Hence, the aim of this study is to propose a fair and unbiased benchmark for the field-based validation of three existing systems, highlighting the gap between laboratory and real-life conditions. For this purpose, three representative state-of-the-art systems are chosen and implemented to classify the physical activities of twenty older subjects (76.4 ± 5.6 years). The performance in classifying four basic activities of daily life (sitting, standing, walking, and lying) is analyzed in controlled and free living conditions. To observe the performance of laboratory-based systems in field-based conditions, we trained the activity classification systems using data recorded in a laboratory environment and tested them in real-life conditions in the field. The findings show that the performance of all systems trained with data in the laboratory setting highly deteriorates when tested in real-life conditions, thus highlighting the need to train and test the classification systems in the real-life setting. Moreover, we tested the sensitivity of chosen systems to window size (from 1 s to 10 s) suggesting that overall accuracy decreases with increasing window size. Finally, to evaluate the impact of the number of sensors on the performance, chosen systems are modified considering only the sensing unit worn at the lower back. The results, similarly to the multi-sensor setup, indicate substantial degradation of the performance when laboratory-trained systems are tested in the real-life setting. This degradation is higher than in the multi-sensor setup. Still, the performance provided by the single-sensor approach, when trained and tested with real data, can be acceptable (with an accuracy above 80%). PMID:27973434

  1. A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives.

    PubMed

    Algamal, Z Y; Lee, M H

    2017-01-01

    A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.

  2. Comparison of Random Forest and Support Vector Machine classifiers using UAV remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Piragnolo, Marco; Masiero, Andrea; Pirotti, Francesco

    2017-04-01

    Since recent years surveying with unmanned aerial vehicles (UAV) is getting a great amount of attention due to decreasing costs, higher precision and flexibility of usage. UAVs have been applied for geomorphological investigations, forestry, precision agriculture, cultural heritage assessment and for archaeological purposes. It can be used for land use and land cover classification (LULC). In literature, there are two main types of approaches for classification of remote sensing imagery: pixel-based and object-based. On one hand, pixel-based approach mostly uses training areas to define classes and respective spectral signatures. On the other hand, object-based classification considers pixels, scale, spatial information and texture information for creating homogeneous objects. Machine learning methods have been applied successfully for classification, and their use is increasing due to the availability of faster computing capabilities. The methods learn and train the model from previous computation. Two machine learning methods which have given good results in previous investigations are Random Forest (RF) and Support Vector Machine (SVM). The goal of this work is to compare RF and SVM methods for classifying LULC using images collected with a fixed wing UAV. The processing chain regarding classification uses packages in R, an open source scripting language for data analysis, which provides all necessary algorithms. The imagery was acquired and processed in November 2015 with cameras providing information over the red, blue, green and near infrared wavelength reflectivity over a testing area in the campus of Agripolis, in Italy. Images were elaborated and ortho-rectified through Agisoft Photoscan. The ortho-rectified image is the full data set, and the test set is derived from partial sub-setting of the full data set. Different tests have been carried out, using a percentage from 2 % to 20 % of the total. Ten training sets and ten validation sets are obtained from each test set. The control dataset consist of an independent visual classification done by an expert over the whole area. The classes are (i) broadleaf, (ii) building, (iii) grass, (iv) headland access path, (v) road, (vi) sowed land, (vii) vegetable. The RF and SVM are applied to the test set. The performances of the methods are evaluated using the three following accuracy metrics: Kappa index, Classification accuracy and Classification Error. All three are calculated in three different ways: with K-fold cross validation, using the validation test set and using the full test set. The analysis indicates that SVM gets better results in terms of good scores using K-fold cross or validation test set. Using the full test set, RF achieves a better result in comparison to SVM. It also seems that SVM performs better with smaller training sets, whereas RF performs better as training sets get larger.

  3. PDF text classification to leverage information extraction from publication reports.

    PubMed

    Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha

    2016-06-01

    Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    NASA Astrophysics Data System (ADS)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.

  5. Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks

    NASA Technical Reports Server (NTRS)

    Smith, Aaron; Evans, Michael; Downey, Joseph

    2017-01-01

    National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.

  6. An Expert System for Classifying Stars on the MK Spectral Classification System

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher J.; Gray, R. O.

    2013-01-01

    We will describe an expert computer system designed to classify stellar spectra on the MK Spectral Classification system employing methods similar to those of humans who make direct comparison with the MK classification standards. Like an expert human classifier, MKCLASS first comes up with a rough spectral type, and then refines that type by direct comparison with MK standards drawn from a standards library using spectral criteria appropriate to the spectral class. Certain common spectral-type peculiarities can also be detected by the program. The program is also capable of identifying WD spectra and carbon stars and giving appropriate (but currently approximate) spectral types on the relevant systems. We will show comparisons between spectral types (including luminosity types) performed by MKCLASS and humans. The program currently is capable of competent classifications in the violet-green region, but plans are underway to extend the spectral criteria into the red and near-infrared regions. Two standard libraries with resolutions of 1.8 and 3.6Å are now available, but a higher-resolution standard library, using the new spectrograph on the Vatican Advanced Technology Telescope, is currently under preparation. Once that library is available, MKCLASS and the spectral libraries will be made available to the astronomical community.

  7. Analysis of the Carnegie Classification of Community Engagement: Patterns and Impact on Institutions

    ERIC Educational Resources Information Center

    Driscoll, Amy

    2014-01-01

    This chapter describes the impact that participation in the Carnegie Classification for Community Engagement had on the institutions of higher learning that applied for the classification. This is described in terms of changes in direct community engagement, monitoring and reporting on community engagement, and levels of student and professor…

  8. Innovative vehicle classification strategies : using LIDAR to do more for less.

    DOT National Transportation Integrated Search

    2012-06-23

    This study examines LIDAR (light detection and ranging) based vehicle classification and classification : performance monitoring. First, we develop a portable LIDAR based vehicle classification system that can : be rapidly deployed, and then we use t...

  9. Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

    NASA Astrophysics Data System (ADS)

    Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko

    2015-01-01

    Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.

  10. Cost Analysis When Open Surgeons Perform Minimally Invasive Hysterectomy

    PubMed Central

    Kantartzis, Kelly L.; Ahn, Ki Hoon; Bonidie, Michael J.; Lee, Ted

    2014-01-01

    Background and Objective: The costs to perform a hysterectomy are widely variable. Our objective was to determine hysterectomy costs by route and whether traditionally open surgeons lower costs when performing laparoscopy versus robotics. Methods: Hysterectomy costs including subcategories were collected from 2011 to 2013. Costs were skewed, so 2 statistical transformations were performed. Costs were compared by surgeon classification (open, laparoscopic, or robotic) and surgery route. Results: A total of 4,871 hysterectomies were performed: 34.2% open, 50.7% laparoscopic, and 15.1% robotic. Laparoscopic hysterectomy had the lowest total costs (P < .001). By cost subcategory, laparoscopic hysterectomy was lower than robotic hysterectomy in 6 and higher in 1. When performing robotic hysterectomy, open and robotic surgeon costs were similar. With laparoscopic hysterectomy, open surgeons had higher costs than laparoscopic surgeons for 1 of 2 statistical transformations (P = .007). Open surgeons had lower costs performing laparoscopic hysterectomy than robotic hysterectomy with robotic maintenance and depreciation included (P < .001) but similar costs if these variables were excluded. Conclusion: Although laparoscopic hysterectomy had lowest costs overall, robotics may be no more costly than laparoscopic hysterectomy when performed by surgeons who predominantly perform open hysterectomy. PMID:25489215

  11. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang

    2017-07-01

    Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.

  12. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  13. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data

    PubMed Central

    Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757

  14. Certified normal: Alzheimer's disease biomarkers and normative estimates of cognitive functioning.

    PubMed

    Hassenstab, Jason; Chasse, Rachel; Grabow, Perri; Benzinger, Tammie L S; Fagan, Anne M; Xiong, Chengjie; Jasielec, Mateusz; Grant, Elizabeth; Morris, John C

    2016-07-01

    Normative samples drawn from older populations may unintentionally include individuals with preclinical Alzheimer's disease (AD) pathology, resulting in reduced means, increased variability, and overestimation of age effects on cognitive performance. A total of 264 cognitively normal (Clinical Dementia Rating = 0) older adults were classified as biomarker negative ("Robust Normal," n = 177) or biomarker positive ("Preclinical Alzheimer's Disease" [PCAD], n = 87) based on amyloid imaging, cerebrospinal fluid biomarkers, and hippocampal volumes. PCAD participants performed worse than robust normals on nearly all cognitive measures. Removing PCAD participants from the normative sample yielded higher means and less variability on episodic memory, visuospatial ability, and executive functioning measures. These results were more pronounced in participants aged 75 years and older. Notably, removing PCAD participants from the sample significantly reduced age effects across all cognitive domains. Applying norms from the robust normal sample to a separate cohort did not improve Clinical Dementia Rating classification when using standard deviation cutoff scores. Overall, removing individuals with biomarker evidence of preclinical AD improves normative sample quality and substantially reduces age effects on cognitive performance but provides no substantive benefit for diagnostic classifications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) with oral rim ducts; description of a new genus and species from Turkey, and discussion of their higher classification within the Pseudococcidae.

    PubMed

    Kaydan, Mehmet Bora; Szita, Éva

    2017-02-03

    A new monotypic mealybug genus with oral rim ducts, Bromusicoccus Kaydan gen. n. (Hemiptera: Pseudococcidae: Pseudococcinae), is described from Turkey. The higher classification of mealybug genera with oral rim tubular ducts worldwide is discussed and a key is provided to separate them.

  16. Time-reversal imaging for classification of submerged elastic targets via Gibbs sampling and the Relevance Vector Machine.

    PubMed

    Dasgupta, Nilanjan; Carin, Lawrence

    2005-04-01

    Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

  17. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    NASA Technical Reports Server (NTRS)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  18. [Evaluation of the diagnosis of subclinical endometritis in dairy cattle using ultrasound].

    PubMed

    Lenz, Mirjam; Drillich, Marc; Heuwieser, Wolfgang

    2007-01-01

    The aim of this study was to determine signs of subclinical endometritis found by ultrasound that are associated with reduced fertility in dairy cows. The maximum diameter of the uterine lumen was determined by ultrasound in 324 cows without clinical signs of endometritis after evaluation of the genital tract 21 to 27 days postpartum. Cows were classified into healthy or with subclinical endometritis by three threshold values for the maximum uterine lumen diameter of 0.2 cm, 0.5 cm or 0.8 cm. Examinations by rectal palpation and ultrasound as well as classifications were repeated 14 days later. In addition, ovaries were scanned by ultrasound to determine the stage of the estrous cycle. In a subgroup of 103 cows the echotexture of the uterus and its contents was evaluated. In these cows the diagnosis of subclinical endometritis was performed by a scoring system. The diameter of the uterine lumen was significantly affected by stage of the estrous cycle at the time of examination. However, no effects were found for the stage of the cycle at the time of examination on subsequent reproductive performance. A uterine lumen with a maximum diameter of more than 0.2 cm showed a significant negative association with conception rate and proportion of cows pregnant. Classification based on higher threshold values did not reveal an association with reproductive performance. Echogenic content in the uterus also decreased reproductive performance. A classification based on the echotexture of the uterus and its contents revealed significant differences between healthy cows and cows with subclinical endometritis regarding the proportion of cows inseminated and pregnant. The results of this study showed that the diagnostic of bovine endometritis should be broadend by ultrasonography. The definition of subclinical endometritis diagnosed by means of ultrasonography has to be evaluated in further studies.

  19. Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods.

    PubMed

    de Klerk, Helen M; Gilbertson, Jason; Lück-Vogel, Melanie; Kemp, Jaco; Munch, Zahn

    2016-11-01

    Traditionally, to map environmental features using remote sensing, practitioners will use training data to develop models on various satellite data sets using a number of classification approaches and use test data to select a single 'best performer' from which the final map is made. We use a combination of an omission/commission plot to evaluate various results and compile a probability map based on consistently strong performing models across a range of standard accuracy measures. We suggest that this easy-to-use approach can be applied in any study using remote sensing to map natural features for management action. We demonstrate this approach using optical remote sensing products of different spatial and spectral resolution to map the endemic and threatened flora of quartz patches in the Knersvlakte, South Africa. Quartz patches can be mapped using either SPOT 5 (used due to its relatively fine spatial resolution) or Landsat8 imagery (used because it is freely accessible and has higher spectral resolution). Of the variety of classification algorithms available, we tested maximum likelihood and support vector machine, and applied these to raw spectral data, the first three PCA summaries of the data, and the standard normalised difference vegetation index. We found that there is no 'one size fits all' solution to the choice of a 'best fit' model (i.e. combination of classification algorithm or data sets), which is in agreement with the literature that classifier performance will vary with data properties. We feel this lends support to our suggestion that rather than the identification of a 'single best' model and a map based on this result alone, a probability map based on the range of consistently top performing models provides a rigorous solution to environmental mapping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  1. Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers

    PubMed Central

    2014-01-01

    Background Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). Methods This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. Results The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. Conclusions A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients. PMID:24903422

  2. Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers.

    PubMed

    Huang, Huifang; Liu, Jie; Zhu, Qiang; Wang, Ruiping; Hu, Guangshu

    2014-06-05

    Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients.

  3. Gender classification under extended operating conditions

    NASA Astrophysics Data System (ADS)

    Rude, Howard N.; Rizki, Mateen

    2014-06-01

    Gender classification is a critical component of a robust image security system. Many techniques exist to perform gender classification using facial features. In contrast, this paper explores gender classification using body features extracted from clothed subjects. Several of the most effective types of features for gender classification identified in literature were implemented and applied to the newly developed Seasonal Weather And Gender (SWAG) dataset. SWAG contains video clips of approximately 2000 samples of human subjects captured over a period of several months. The subjects are wearing casual business attire and outer garments appropriate for the specific weather conditions observed in the Midwest. The results from a series of experiments are presented that compare the classification accuracy of systems that incorporate various types and combinations of features applied to multiple looks at subjects at different image resolutions to determine a baseline performance for gender classification.

  4. Inter- and intraobserver reliability of the Rockwood classification in acute acromioclavicular joint dislocations.

    PubMed

    Schneider, M M; Balke, M; Koenen, P; Fröhlich, M; Wafaisade, A; Bouillon, B; Banerjee, M

    2016-07-01

    The reliability of the Rockwood classification, the gold standard for acute acromioclavicular (AC) joint separations, has not yet been tested. The purpose of this study was to investigate the reliability of visual and measured AC joint lesion grades according to the Rockwood classification. Four investigators (two shoulder specialists and two second-year residents) examined radiographs (bilateral panoramic stress and axial views) in 58 patients and graded the injury according to the Rockwood classification using the following sequence: (1) visual classification of the AC joint lesion, (2) digital measurement of the coracoclavicular distance (CCD) and the horizontal dislocation (HD) with Osirix Dicom Viewer (Pixmeo, Switzerland), (3) classification of the AC joint lesion according to the measurements and (4) repetition of (1) and (2) after repeated anonymization by an independent physician. Visual and measured Rockwood grades as well as the CCD and HD of every patient were documented, and a CC index was calculated (CCD injured/CCD healthy). All records were then used to evaluate intra- and interobserver reliability. The disagreement between visual and measured diagnosis ranged from 6.9 to 27.6 %. Interobserver reliability for visual diagnosis was good (0.72-0.74) and excellent (0.85-0.93) for measured Rockwood grades. Intraobserver reliability was good to excellent (0.67-0.93) for visual diagnosis and excellent for measured diagnosis (0.90-0.97). The correlations between measurements of the axial view varied from 0.68 to 0.98 (good to excellent) for interobserver reliability and from 0.90 to 0.97 (excellent) for intraobserver reliability. Bilateral panoramic stress and axial radiographs are reliable examinations for grading AC joint injuries according to Rockwood's classification. Clinicians of all experience levels can precisely classify AC joint lesions according to the Rockwood classification. We recommend to grade acute ACG lesions by performing a digital measurement instead of a sole visual diagnosis because of the higher intra- and interobserver reliability. Case series, Level IV.

  5. Object-based random forest classification of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Melville, Bethany; Lucieer, Arko; Aryal, Jagannath

    2018-04-01

    This paper presents a random forest classification approach for identifying and mapping three types of lowland native grassland communities found in the Tasmanian Midlands region. Due to the high conservation priority assigned to these communities, there has been an increasing need to identify appropriate datasets that can be used to derive accurate and frequently updateable maps of community extent. Therefore, this paper proposes a method employing repeat classification and statistical significance testing as a means of identifying the most appropriate dataset for mapping these communities. Two datasets were acquired and analysed; a Landsat ETM+ scene, and a WorldView-2 scene, both from 2010. Training and validation data were randomly subset using a k-fold (k = 50) approach from a pre-existing field dataset. Poa labillardierei, Themeda triandra and lowland native grassland complex communities were identified in addition to dry woodland and agriculture. For each subset of randomly allocated points, a random forest model was trained based on each dataset, and then used to classify the corresponding imagery. Validation was performed using the reciprocal points from the independent subset that had not been used to train the model. Final training and classification accuracies were reported as per class means for each satellite dataset. Analysis of Variance (ANOVA) was undertaken to determine whether classification accuracy differed between the two datasets, as well as between classifications. Results showed mean class accuracies between 54% and 87%. Class accuracy only differed significantly between datasets for the dry woodland and Themeda grassland classes, with the WorldView-2 dataset showing higher mean classification accuracies. The results of this study indicate that remote sensing is a viable method for the identification of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification and statistical significant testing can be used to identify optimal datasets for vegetation community mapping.

  6. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  7. 14 CFR Sec. 19-4 - Service classes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a composite of first class, coach, and mixed passenger/cargo service. The following classifications... integral part of services performed pursuant to published flight schedules. The following classifications... Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating...

  8. 14 CFR Sec. 19-4 - Service classes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a composite of first class, coach, and mixed passenger/cargo service. The following classifications... integral part of services performed pursuant to published flight schedules. The following classifications... Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating...

  9. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials.

    PubMed

    Finke, Mareike; Billinger, Martin; Büchner, Andreas

    Cochlear implants (CIs) restore hearing to the profoundly deaf by direct electrical stimulation of the auditory nerve. To provide an optimal electrical stimulation pattern the CI must be individually fitted to each CI user. To date, CI fitting is primarily based on subjective feedback from the user. However, not all CI users are able to provide such feedback, for example, small children. This study explores the possibility of using the electroencephalogram (EEG) to objectively determine if CI users are able to hear differences in tones presented to them, which has potential applications in CI fitting or closed loop systems. Deviant and standard stimuli were presented to 12 CI users in an active auditory oddball paradigm. The EEG was recorded in two sessions and classification of the EEG data was performed with shrinkage linear discriminant analysis. Also, the impact of CI artifact removal on classification performance and the possibility to reuse a trained classifier in future sessions were evaluated. Overall, classification performance was above chance level for all participants although performance varied considerably between participants. Also, artifacts were successfully removed from the EEG without impairing classification performance. Finally, reuse of the classifier causes only a small loss in classification performance. Our data provide first evidence that EEG can be automatically classified on single-trial basis in CI users. Despite the slightly poorer classification performance over sessions, classifier and CI artifact correction appear stable over successive sessions. Thus, classifier and artifact correction weights can be reused without repeating the set-up procedure in every session, which makes the technique easier applicable. With our present data, we can show successful classification of event-related cortical potential patterns in CI users. In the future, this has the potential to objectify and automate parts of CI fitting procedures.

  10. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong

    2018-06-01

    Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms.

  11. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis.

    PubMed

    Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong

    2018-06-05

    Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Increased body mass index is associated with improved overall survival in extranodal natural killer/T-cell lymphoma, nasal type.

    PubMed

    Li, Ya-Jun; Yi, Ping-Yong; Li, Ji-Wei; Liu, Xian-Ling; Liu, Xi-Yu; Zhou, Fang; OuYang, Zhou; Sun, Zhong-Yi; Huang, Li-Jun; He, Jun-Qiao; Yao, Yuan; Fan, Zhou; Tang, Tian; Jiang, Wen-Qi

    2017-01-17

    The role of body mass index (BMI) in lymphoma survival outcomes is controversial. The prognostic significance of BMI in extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is unclear. We evaluated the prognostic role of BMI in patients with ENKTL. We retrospectively analyzed 742 patients with newly diagnosed ENKTL. The prognostic value of BMI was compared between patients with low BMIs (< 20.0 kg/m2) and patients with high BMIs (≥ 20.0 kg/m2). The prognostic value of the International Prognostic Index (IPI) and the Korean Prognostic Index (KPI) was also evaluated and compared with that of the BMI classification. Patients with low BMIs tended to exhibit higher Eastern Cooperative Oncology Group performance status (ECOG PS) scores (≥ 2) (P = 0.001), more frequent B symptoms (P < 0.001), lower albumin levels (P < 0.001), higher KPI scores (P = 0.03), and lower rates of complete remission (P < 0.001) than patients with high BMIs, as well as inferior progression-free survival (PFS, P = 0.003), and inferior overall survival (OS, P = 0.001). Multivariate analysis demonstrated that age > 60 years, mass > 5 cm, stage III/IV, elevated LDH levels, albumin levels < 35 g/L and low BMIs were independent adverse predictors of OS. The BMI classification was found to be superior to the IPI with respect to predicting patient outcomes among low-risk patients and the KPI with respect to distinguishing between intermediate-low- and high-intermediate-risk patients. Higher BMI at the time of diagnosis is associated with improved overall survival in ENKTL. Using the BMI classification may improve the IPI and KPI prognostic models.

  13. Increased body mass index is associated with improved overall survival in extranodal natural killer/T-cell lymphoma, nasal type

    PubMed Central

    Li, Ya-Jun; Yi, Ping-Yong; Li, Ji-Wei; Liu, Xian-Ling; Liu, Xi-Yu; Zhou, Fang; OuYang, Zhou; Sun, Zhong-Yi; Huang, Li-Jun; He, Jun-Qiao; Yao, Yuan; Fan, Zhou; Tang, Tian; Jiang, Wen-Qi

    2017-01-01

    Objectives: The role of body mass index (BMI) in lymphoma survival outcomes is controversial. The prognostic significance of BMI in extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is unclear. We evaluated the prognostic role of BMI in patients with ENKTL. Methods: We retrospectively analyzed 742 patients with newly diagnosed ENKTL. The prognostic value of BMI was compared between patients with low BMIs (< 20.0 kg/m2) and patients with high BMIs (≥ 20.0 kg/m2). The prognostic value of the International Prognostic Index (IPI) and the Korean Prognostic Index (KPI) was also evaluated and compared with that of the BMI classification. Results: Patients with low BMIs tended to exhibit higher Eastern Cooperative Oncology Group performance status (ECOG PS) scores (≥ 2) (P = 0.001), more frequent B symptoms (P < 0.001), lower albumin levels (P < 0.001), higher KPI scores (P = 0.03), and lower rates of complete remission (P < 0.001) than patients with high BMIs, as well as inferior progression-free survival (PFS, P = 0.003), and inferior overall survival (OS, P = 0.001). Multivariate analysis demonstrated that age > 60 years, mass > 5 cm, stage III/IV, elevated LDH levels, albumin levels < 35 g/L and low BMIs were independent adverse predictors of OS. The BMI classification was found to be superior to the IPI with respect to predicting patient outcomes among low-risk patients and the KPI with respect to distinguishing between intermediate-low- and high-intermediate-risk patients. Conclusions: Higher BMI at the time of diagnosis is associated with improved overall survival in ENKTL. Using the BMI classification may improve the IPI and KPI prognostic models. PMID:28002803

  14. Extending a field-based Sonoran desert vegetation classification to a regional scale using optical and microwave satellite imagery

    NASA Astrophysics Data System (ADS)

    Shupe, Scott Marshall

    2000-10-01

    Vegetation mapping in and regions facilitates ecological studies, land management, and provides a record to which future land changes can be compared. Accurate and representative mapping of desert vegetation requires a sound field sampling program and a methodology to transform the data collected into a representative classification system. Time and cost constraints require that a remote sensing approach be used if such a classification system is to be applied on a regional scale. However, desert vegetation may be sparse and thus difficult to sense at typical satellite resolutions, especially given the problem of soil reflectance. This study was designed to address these concerns by conducting vegetation mapping research using field and satellite data from the US Army Yuma Proving Ground (USYPG) in Southwest Arizona. Line and belt transect data from the Army's Land Condition Trend Analysis (LCTA) Program were transformed into relative cover and relative density classification schemes using cluster analysis. Ordination analysis of the same data produced two and three-dimensional graphs on which the homogeneity of each vegetation class could be examined. It was found that the use of correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMS) ordination methods was superior to the use of any single ordination method for helping to clarify between-class and within-class relationships in vegetation composition. Analysis of these between-class and within-class relationships were of key importance in examining how well relative cover and relative density schemes characterize the USYPG vegetation. Using these two classification schemes as reference data, maximum likelihood and artificial neural net classifications were then performed on a coregistered dataset consisting of a summer Landsat Thematic Mapper (TM) image, one spring and one summer ERS-1 microwave image, and elevation, slope, and aspect layers. Classifications using a combination of ERS-1 imagery and elevation, slope, and aspect data were superior to classifications carried out using Landsat TM data alone. In all classification iterations it was consistently found that the highest classification accuracy was obtained by using a combination of Landsat TM, ERS-1, and elevation, slope, and aspect data. Maximum likelihood classification accuracy was found to be higher than artificial neural net classification in all cases.

  15. Superiority of artificial neural networks for a genetic classification procedure.

    PubMed

    Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D

    2015-08-19

    The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.

  16. The usefulness of the revised classification for chronic kidney disease by the KDIGO for determining the frequency of diabetic micro- and macroangiopathies in Japanese patients with type 2 diabetes mellitus.

    PubMed

    Ito, Hiroyuki; Oshikiri, Koshiro; Mifune, Mizuo; Abe, Mariko; Antoku, Shinichi; Takeuchi, Yuichiro; Togane, Michiko; Yukawa, Chizuko

    2012-01-01

    A new classification of chronic kidney disease (CKD) was proposed by the Kidney Disease: Improving Global Outcomes (KDIGO) in 2011. The major point of revision of this classification was the introduction of a two-dimensional staging of the CKD according to the level of albuminuria in addition to the GFR level. Furthermore, the previous CKD stage 3 was subdivided into two stages (G3a and G3b). We examined the prevalence of diabetic micro- and macroangiopathies in patients with type 2 diabetes mellitus based on the new classification. A cross-sectional study was performed in 2018 patients with type 2 diabetes mellitus. All of the diabetic micro- and macroangiopathies significantly more common in the later stages of both the GFR and albuminuria. The proportion of subjects with diabetic retinopathy, neuropathy, cerebrovascular disease and coronary heart disease was significantly higher in the G3b group than in the G3a group. The brachial-ankle pulse wave velocity, which is one of the surrogate markers for atherosclerosis, was also significantly greater in the G3b group compared to the G3a group. The subdivision of the G3 stage in the revised classification proposed by the KDIGO is useful to evaluate the risk for diabetic vascular complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Aerodynamic Classification of Swept-Wing Ice Accretion

    NASA Technical Reports Server (NTRS)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  18. Aerodynamic Classification of Swept-Wing Ice Accretion

    NASA Technical Reports Server (NTRS)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of nominally 3D or highly 3D horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  19. Comparing Facial 3D Analysis With DNA Testing to Determine Zygosities of Twins.

    PubMed

    Vuollo, Ville; Sidlauskas, Mantas; Sidlauskas, Antanas; Harila, Virpi; Salomskiene, Loreta; Zhurov, Alexei; Holmström, Lasse; Pirttiniemi, Pertti; Heikkinen, Tuomo

    2015-06-01

    The aim of this study was to compare facial 3D analysis to DNA testing in twin zygosity determinations. Facial 3D images of 106 pairs of young adult Lithuanian twins were taken with a stereophotogrammetric device (3dMD, Atlanta, Georgia) and zygosity was determined according to similarity of facial form. Statistical pattern recognition methodology was used for classification. The results showed that in 75% to 90% of the cases, zygosity determinations were similar to DNA-based results. There were 81 different classification scenarios, including 3 groups, 3 features, 3 different scaling methods, and 3 threshold levels. It appeared that coincidence with 0.5 mm tolerance is the most suitable feature for classification. Also, leaving out scaling improves results in most cases. Scaling was expected to equalize the magnitude of differences and therefore lead to better recognition performance. Still, better classification features and a more effective scaling method or classification in different facial areas could further improve the results. In most of the cases, male pair zygosity recognition was at a higher level compared with females. Erroneously classified twin pairs appear to be obvious outliers in the sample. In particular, faces of young dizygotic (DZ) twins may be so similar that it is very hard to define a feature that would help classify the pair as DZ. Correspondingly, monozygotic (MZ) twins may have faces with quite different shapes. Such anomalous twin pairs are interesting exceptions, but they form a considerable portion in both zygosity groups.

  20. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.

    PubMed

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Brain-computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  1. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Objective. Brain–computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. Approach. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. Main results. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. Significance. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  2. Pre-analytical and analytical aspects affecting clinical reliability of plasma glucose results.

    PubMed

    Pasqualetti, Sara; Braga, Federica; Panteghini, Mauro

    2017-07-01

    The measurement of plasma glucose (PG) plays a central role in recognizing disturbances in carbohydrate metabolism, with established decision limits that are globally accepted. This requires that PG results are reliable and unequivocally valid no matter where they are obtained. To control the pre-analytical variability of PG and prevent in vitro glycolysis, the use of citrate as rapidly effective glycolysis inhibitor has been proposed. However, the commercial availability of several tubes with studies showing different performance has created confusion among users. Moreover, and more importantly, studies have shown that tubes promptly inhibiting glycolysis give PG results that are significantly higher than tubes containing sodium fluoride only, used in the majority of studies generating the current PG cut-points, with a different clinical classification of subjects. From the analytical point of view, to be equivalent among different measuring systems, PG results should be traceable to a recognized higher-order reference via the implementation of an unbroken metrological hierarchy. In doing this, it is important that manufacturers of measuring systems consider the uncertainty accumulated through the different steps of the selected traceability chain. In particular, PG results should fulfil analytical performance specifications defined to fit the intended clinical application. Since PG has tight homeostatic control, its biological variability may be used to define these limits. Alternatively, given the central diagnostic role of the analyte, an outcome model showing the impact of analytical performance of test on clinical classifications of subjects can be used. Using these specifications, performance assessment studies employing commutable control materials with values assigned by reference procedure have shown that the quality of PG measurements is often far from desirable and that problems are exacerbated using point-of-care devices. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. The Effect of Normalization in Violence Video Classification Performance

    NASA Astrophysics Data System (ADS)

    Ali, Ashikin; Senan, Norhalina

    2017-08-01

    Basically, data pre-processing is an important part of data mining. Normalization is a pre-processing stage for any type of problem statement, especially in video classification. Challenging problems that arises in video classification is because of the heterogeneous content, large variations in video quality and complex semantic meanings of the concepts involved. Therefore, to regularize this problem, it is thoughtful to ensure normalization or basically involvement of thorough pre-processing stage aids the robustness of classification performance. This process is to scale all the numeric variables into certain range to make it more meaningful for further phases in available data mining techniques. Thus, this paper attempts to examine the effect of 2 normalization techniques namely Min-max normalization and Z-score in violence video classifications towards the performance of classification rate using Multi-layer perceptron (MLP) classifier. Using Min-Max Normalization range of [0,1] the result shows almost 98% of accuracy, meanwhile Min-Max Normalization range of [-1,1] accuracy is 59% and for Z-score the accuracy is 50%.

  4. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  5. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.

    PubMed

    Theeven, Patrick; Hemmen, Bea; Rings, Frans; Meys, Guido; Brink, Peter; Smeets, Rob; Seelen, Henk

    2011-10-01

    To assess the effects of using a microprocessor-controlled prosthetic knee joint on the functional performance of activities of daily living in persons with an above-knee leg amputation. To assess the effects of using a microprocessor-controlled prosthetic knee joint on the functional performance of activities of daily living in persons with an above-knee leg amputation. Randomised cross-over trial. Forty-one persons with unilateral above-knee or knee disarticulation limb loss, classified as Medicare Functional Classification Level-2 (MFCL-2). Participants were measured in 3 conditions, i.e. using a mechanically controlled knee joint and two types of microprocessor-controlled prosthetic knee joints. Functional performance level was assessed using a test in which participants performed 17 simulated activities of daily living (Assessment of Daily Activity Performance in Transfemoral amputees test). Performance time was measured and self-perceived level of difficulty was scored on a visual analogue scale for each activity. High levels of within-group variability in functional performance obscured detection of any effects of using a microprocessor-controlled prosthetic knee joint. Data analysis after stratification of the participants into 3 subgroups, i.e. participants with a "low", "intermediate" and "high" functional mobility level, showed that the two higher functional subgroups performed significantly faster using microprocessor-controlled prosthetic knee joints. MFCL-2 amputees constitute a heterogeneous patient group with large variation in functional performance levels. A substantial part of this group seems to benefit from using a microprocessor-controlled prosthetic knee joint when performing activities of daily living.

  6. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C.

    PubMed

    Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul

    2011-11-30

    Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.

  7. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C

    PubMed Central

    2011-01-01

    Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). Conclusions The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test. PMID:22129438

  8. Estimation of different data compositions for early-season crop type classification.

    PubMed

    Hao, Pengyu; Wu, Mingquan; Niu, Zheng; Wang, Li; Zhan, Yulin

    2018-01-01

    Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer's accuracies (PAs) and user's accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.

  9. Estimation of different data compositions for early-season crop type classification

    PubMed Central

    Wu, Mingquan; Wang, Li; Zhan, Yulin

    2018-01-01

    Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study. PMID:29868265

  10. 48 CFR 1852.204-75 - Security classification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Security classification... and Clauses 1852.204-75 Security classification requirements. As prescribed in 1804.404-70, insert the following clause: Security Classification Requirements (SEP 1989) Performance under this contract will...

  11. 48 CFR 1852.204-75 - Security classification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Security classification... and Clauses 1852.204-75 Security classification requirements. As prescribed in 1804.404-70, insert the following clause: Security Classification Requirements (SEP 1989) Performance under this contract will...

  12. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  13. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease.

    PubMed

    Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B

    2016-01-01

    Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  14. An advanced method for classifying atmospheric circulation types based on prototypes connectivity graph

    NASA Astrophysics Data System (ADS)

    Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros

    2012-11-01

    Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.

  15. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.

    PubMed

    Fang, Shih-Hau; Tsao, Yu; Hsiao, Min-Jing; Chen, Ji-Ying; Lai, Ying-Hui; Lin, Feng-Chuan; Wang, Chi-Te

    2018-03-19

    Computerized detection of voice disorders has attracted considerable academic and clinical interest in the hope of providing an effective screening method for voice diseases before endoscopic confirmation. This study proposes a deep-learning-based approach to detect pathological voice and examines its performance and utility compared with other automatic classification algorithms. This study retrospectively collected 60 normal voice samples and 402 pathological voice samples of 8 common clinical voice disorders in a voice clinic of a tertiary teaching hospital. We extracted Mel frequency cepstral coefficients from 3-second samples of a sustained vowel. The performances of three machine learning algorithms, namely, deep neural network (DNN), support vector machine, and Gaussian mixture model, were evaluated based on a fivefold cross-validation. Collective cases from the voice disorder database of MEEI (Massachusetts Eye and Ear Infirmary) were used to verify the performance of the classification mechanisms. The experimental results demonstrated that DNN outperforms Gaussian mixture model and support vector machine. Its accuracy in detecting voice pathologies reached 94.26% and 90.52% in male and female subjects, based on three representative Mel frequency cepstral coefficient features. When applied to the MEEI database for validation, the DNN also achieved a higher accuracy (99.32%) than the other two classification algorithms. By stacking several layers of neurons with optimized weights, the proposed DNN algorithm can fully utilize the acoustic features and efficiently differentiate between normal and pathological voice samples. Based on this pilot study, future research may proceed to explore more application of DNN from laboratory and clinical perspectives. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Classification of EEG signals to identify variations in attention during motor task execution.

    PubMed

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-06-01

    Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Built-up land mapping capabilities of the ASTER and Landsat ETM+ sensors in coastal areas of southeastern China

    NASA Astrophysics Data System (ADS)

    Xu, Hanqiu; Huang, Shaolin; Zhang, Tiejun

    2013-10-01

    Worldwide urbanization has accelerated expansion of urban built-up lands and resulted in substantial negative impacts on the global environments. Precisely measuring the urban sprawl is becoming an increasing need. Among the satellite-based earth observation systems, the Landsat and ASTER data are most suitable for mesoscale measurements of urban changes. Nevertheless, to date the difference in the capability of mapping built-up land between the two sensors is not clear. Therefore, this study compared the performances of the Landsat-7 ETM+ and ASTER sensors for built-up land mapping in the coastal areas of southeastern China. The comparison was implemented on three date-coincident image pairs and achieved by using three approaches, including per-band-based, index-based, and classification-based comparisons. The index used is the Index-based Built-up Index (IBI), while the classification algorithm employed is the Support Vector Machine (SVM). Results show that in the study areas, ETM+ and ASTER have an overall similar performance in built-up land mapping but also differ in several aspects. The IBI values determined from ASTER were consistently higher than from ETM+ by up to 45.54% according to percentage difference. The ASTER also estimates more built-up land area than ETM+ by 5.9-6.3% estimated with the IBI-based approach or 3.9-6.1% with the SVM classification. The differences in the spectral response functions and spatial resolution between relative spectral bands of the two sensors are attributed to these different performances.

  18. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.

    PubMed

    Ma, Li; Fan, Suohai

    2017-03-14

    The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

  19. Overweight and Obesity Prevalence Among School-Aged Nunavik Inuit Children According to Three Body Mass Index Classification Systems.

    PubMed

    Medehouenou, Thierry Comlan Marc; Ayotte, Pierre; St-Jean, Audray; Meziou, Salma; Roy, Cynthia; Muckle, Gina; Lucas, Michel

    2015-07-01

    Little is known about the suitability of three commonly used body mass index (BMI) classification system for Indigenous children. This study aims to estimate overweight and obesity prevalence among school-aged Nunavik Inuit children according to International Obesity Task Force (IOTF), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO) BMI classification systems, to measure agreement between those classification systems, and to investigate whether BMI status as defined by these classification systems is associated with levels of metabolic and inflammatory biomarkers. Data were collected on 290 school-aged children (aged 8-14 years; 50.7% girls) from the Nunavik Child Development Study with data collected in 2005-2010. Anthropometric parameters were measured and blood sampled. Participants were classified as normal weight, overweight, and obese according to BMI classification systems. Weighted kappa (κw) statistics assessed agreement between different BMI classification systems, and multivariate analysis of variance ascertained their relationship with metabolic and inflammatory biomarkers. The combined prevalence rate of overweight/obesity was 26.9% (with 6.6% obesity) with IOTF, 24.1% (11.0%) with CDC, and 40.4% (12.8%) with WHO classification systems. Agreement was the highest between IOTF and CDC (κw = .87) classifications, and substantial for IOTF and WHO (κw = .69) and for CDC and WHO (κw = .73). Insulin and high-sensitivity C-reactive protein plasma levels were significantly higher from normal weight to obesity, regardless of classification system. Among obese subjects, higher insulin level was observed with IOTF. Compared with other systems, IOTF classification appears to be more specific to identify overweight and obesity in Inuit children. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  20. An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Fealy, Rowan

    2013-04-01

    Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.

  1. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    PubMed

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.

  2. A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm

    NASA Astrophysics Data System (ADS)

    Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina

    The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.

  3. Do pre-trained deep learning models improve computer-aided classification of digital mammograms?

    NASA Astrophysics Data System (ADS)

    Aboutalib, Sarah S.; Mohamed, Aly A.; Zuley, Margarita L.; Berg, Wendie A.; Luo, Yahong; Wu, Shandong

    2018-02-01

    Digital mammography screening is an important exam for the early detection of breast cancer and reduction in mortality. False positives leading to high recall rates, however, results in unnecessary negative consequences to patients and health care systems. In order to better aid radiologists, computer-aided tools can be utilized to improve distinction between image classifications and thus potentially reduce false recalls. The emergence of deep learning has shown promising results in the area of biomedical imaging data analysis. This study aimed to investigate deep learning and transfer learning methods that can improve digital mammography classification performance. In particular, we evaluated the effect of pre-training deep learning models with other imaging datasets in order to boost classification performance on a digital mammography dataset. Two types of datasets were used for pre-training: (1) a digitized film mammography dataset, and (2) a very large non-medical imaging dataset. By using either of these datasets to pre-train the network initially, and then fine-tuning with the digital mammography dataset, we found an increase in overall classification performance in comparison to a model without pre-training, with the very large non-medical dataset performing the best in improving the classification accuracy.

  4. Application of a Brazilian test of expressive vocabulary in European Portuguese children.

    PubMed

    Cáceres-Assenço, Ana Manhani; Ferreira, Sandra Cristina Araújo; Santos, Anabela Cruz; Befi-Lopes, Debora Maria

    2018-01-01

    Objective to investigate the performance of European Portuguese children in a Brazilian test of expressive vocabulary, seeking to identify differences between age groups and gender, and to verify its applicability in this population. Methods the sample consisted of 150 typical developed children, of both genders, between the ages of 5 and 6. All children attended public schools in the north area of Portugal. To assess the semantic performance, the expressive vocabulary sub-test of the language test (ABFW) was used, considering the percentage of usual verbal assignments and the classification (adequate/inadequate) according to the Brazilian reference values. Results the performance of the European Portuguese children indicated that at age 6 they have a higher percentage of correct answers in expressive vocabulary. As for the gender, there were only occasional differences: the girls showed a greater dominance in the semantic fields of clothing (both ages) and furniture and utensils (at age 5), whereas the boys showed more dominance in the semantic field means of transportation (6 years). Regarding classification, there was no difference between age groups in overall performance. Only the semantic field shapes and colors had more individuals of 6 years with inadequate performance. Conclusion the reference values adopted in the Brazilian population for semantic performance indicated that more than 80% of the children of each age group could have their performance classified as adequate. Such evidence suggests that this tool shows potential as an instrument of quantitative vocabulary's assessment of 5 and 6-years old children in European Portuguese.

  5. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape

    PubMed Central

    Sheets, H David; Covino, Kristen M; Panasiewicz, Joanna M; Morris, Sara R

    2006-01-01

    Background Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. Results Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. Conclusion Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein. PMID:16978414

  6. Detection of Alzheimer's disease using group lasso SVM-based region selection

    NASA Astrophysics Data System (ADS)

    Sun, Zhuo; Fan, Yong; Lelieveldt, Boudewijn P. F.; van de Giessen, Martijn

    2015-03-01

    Alzheimer's disease (AD) is one of the most frequent forms of dementia and an increasing challenging public health problem. In the last two decades, structural magnetic resonance imaging (MRI) has shown potential in distinguishing patients with Alzheimer's disease and elderly controls (CN). To obtain AD-specific biomarkers, previous research used either statistical testing to find statistically significant different regions between the two clinical groups, or l1 sparse learning to select isolated features in the image domain. In this paper, we propose a new framework that uses structural MRI to simultaneously distinguish the two clinical groups and find the bio-markers of AD, using a group lasso support vector machine (SVM). The group lasso term (mixed l1- l2 norm) introduces anatomical information from the image domain into the feature domain, such that the resulting set of selected voxels are more meaningful than the l1 sparse SVM. Because of large inter-structure size variation, we introduce a group specific normalization factor to deal with the structure size bias. Experiments have been performed on a well-designed AD vs. CN dataset1 to validate our method. Comparing to the l1 sparse SVM approach, our method achieved better classification performance and a more meaningful biomarker selection. When we vary the training set, the selected regions by our method were more stable than the l1 sparse SVM. Classification experiments showed that our group normalization lead to higher classification accuracy with fewer selected regions than the non-normalized method. Comparing to the state-of-art AD vs. CN classification methods, our approach not only obtains a high accuracy with the same dataset, but more importantly, we simultaneously find the brain anatomies that are closely related to the disease.

  7. FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.

    PubMed

    Wong, Gerard; Leckie, Christopher; Kowalczyk, Adam

    2012-01-15

    Feature selection is a key concept in machine learning for microarray datasets, where features represented by probesets are typically several orders of magnitude larger than the available sample size. Computational tractability is a key challenge for feature selection algorithms in handling very high-dimensional datasets beyond a hundred thousand features, such as in datasets produced on single nucleotide polymorphism microarrays. In this article, we present a novel feature set reduction approach that enables scalable feature selection on datasets with hundreds of thousands of features and beyond. Our approach enables more efficient handling of higher resolution datasets to achieve better disease subtype classification of samples for potentially more accurate diagnosis and prognosis, which allows clinicians to make more informed decisions in regards to patient treatment options. We applied our feature set reduction approach to several publicly available cancer single nucleotide polymorphism (SNP) array datasets and evaluated its performance in terms of its multiclass predictive classification accuracy over different cancer subtypes, its speedup in execution as well as its scalability with respect to sample size and array resolution. Feature Set Reduction (FSR) was able to reduce the dimensions of an SNP array dataset by more than two orders of magnitude while achieving at least equal, and in most cases superior predictive classification performance over that achieved on features selected by existing feature selection methods alone. An examination of the biological relevance of frequently selected features from FSR-reduced feature sets revealed strong enrichment in association with cancer. FSR was implemented in MATLAB R2010b and is available at http://ww2.cs.mu.oz.au/~gwong/FSR.

  8. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects.

    PubMed

    Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak

    2014-01-01

    Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.

  9. Application of Random Forests Methods to Diabetic Retinopathy Classification Analyses

    PubMed Central

    Casanova, Ramon; Saldana, Santiago; Chew, Emily Y.; Danis, Ronald P.; Greven, Craig M.; Ambrosius, Walter T.

    2014-01-01

    Background Diabetic retinopathy (DR) is one of the leading causes of blindness in the United States and world-wide. DR is a silent disease that may go unnoticed until it is too late for effective treatment. Therefore, early detection could improve the chances of therapeutic interventions that would alleviate its effects. Methodology Graded fundus photography and systemic data from 3443 ACCORD-Eye Study participants were used to estimate Random Forest (RF) and logistic regression classifiers. We studied the impact of sample size on classifier performance and the possibility of using RF generated class conditional probabilities as metrics describing DR risk. RF measures of variable importance are used to detect factors that affect classification performance. Principal Findings Both types of data were informative when discriminating participants with or without DR. RF based models produced much higher classification accuracy than those based on logistic regression. Combining both types of data did not increase accuracy but did increase statistical discrimination of healthy participants who subsequently did or did not have DR events during four years of follow-up. RF variable importance criteria revealed that microaneurysms counts in both eyes seemed to play the most important role in discrimination among the graded fundus variables, while the number of medicines and diabetes duration were the most relevant among the systemic variables. Conclusions and Significance We have introduced RF methods to DR classification analyses based on fundus photography data. In addition, we propose an approach to DR risk assessment based on metrics derived from graded fundus photography and systemic data. Our results suggest that RF methods could be a valuable tool to diagnose DR diagnosis and evaluate its progression. PMID:24940623

  10. Structured reporting platform improves CAD-RADS assessment.

    PubMed

    Szilveszter, Bálint; Kolossváry, Márton; Karády, Júlia; Jermendy, Ádám L; Károlyi, Mihály; Panajotu, Alexisz; Bagyura, Zsolt; Vecsey-Nagy, Milán; Cury, Ricardo C; Leipsic, Jonathon A; Merkely, Béla; Maurovich-Horvat, Pál

    2017-11-01

    Structured reporting in cardiac imaging is strongly encouraged to improve quality through consistency. The Coronary Artery Disease - Reporting and Data System (CAD-RADS) was recently introduced to facilitate interdisciplinary communication of coronary CT angiography (CTA) results. We aimed to assess the agreement between manual and automated CAD-RADS classification using a structured reporting platform. Five readers prospectively interpreted 500 coronary CT angiographies using a structured reporting platform that automatically calculates the CAD-RADS score based on stenosis and plaque parameters manually entered by the reader. In addition, all readers manually assessed CAD-RADS blinded to the automatically derived results, which was used as the reference standard. We evaluated factors influencing reader performance including CAD-RADS training, clinical load, time of the day and level of expertise. Total agreement between manual and automated classification was 80.2%. Agreement in stenosis categories was 86.7%, whereas the agreement in modifiers was 95.8% for "N", 96.8% for "S", 95.6% for "V" and 99.4% for "G". Agreement for V improved after CAD-RADS training (p = 0.047). Time of the day and clinical load did not influence reader performance (p > 0.05 both). Less experienced readers had a higher total agreement as compared to more experienced readers (87.0% vs 78.0%, respectively; p = 0.011). Even though automated CAD-RADS classification uses data filled in by the readers, it outperforms manual classification by preventing human errors. Structured reporting platforms with automated calculation of the CAD-RADS score might improve data quality and support standardization of clinical decision making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data.

    PubMed

    Havla, Lukas; Schneider, Moritz J; Thierfelder, Kolja M; Beyer, Sebastian E; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H; Dietrich, Olaf

    2016-02-01

    The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets. Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated. The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters. A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

  12. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  13. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  14. Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification.

    PubMed

    Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2016-01-01

    An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.

  15. Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5-14 μm) to discriminate vegetation species.

    PubMed

    Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke

    2012-01-01

    Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.

  16. Articular cartilage degeneration classification by means of high-frequency ultrasound.

    PubMed

    Männicke, N; Schöne, M; Oelze, M; Raum, K

    2014-10-01

    To date only single ultrasound parameters were regarded in statistical analyses to characterize osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for characterization remains unclear. Therefore, the aim of this work was to utilize feature selection and classification of a Mankin subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and investigate both classification accuracy and the sensitivity towards different degeneration stages. 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz transducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters were available. Logistic regression was performed with each unique US parameter pair as predictor and different degeneration stages as response variables. The best ultrasound-based parameter pair for each Mankin subset score value was assessed by highest classification accuracy and utilized in receiver operating characteristics (ROC) analysis. The classifications discriminating between early degenerations yielded area under the ROC curve (AUC) values of 0.94-0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher Mankin subset scores resulted in lower AUC values: 0.75-0.91 (mean ± SD: 0.84 ± 0.08). Variable sensitivities of the different ultrasound features were observed with respect to different degeneration stages. Our results strongly suggest that combinations of high-frequency ultrasound-based parameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent estimation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency transcutaneous ultrasound. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Twenty-four signature genes predict the prognosis of oral squamous cell carcinoma with high accuracy and repeatability

    PubMed Central

    Gao, Jianyong; Tian, Gang; Han, Xu; Zhu, Qiang

    2018-01-01

    Oral squamous cell carcinoma (OSCC) is the sixth most common type cancer worldwide, with poor prognosis. The present study aimed to identify gene signatures that could classify OSCC and predict prognosis in different stages. A training data set (GSE41613) and two validation data sets (GSE42743 and GSE26549) were acquired from the online Gene Expression Omnibus database. In the training data set, patients were classified based on the tumor-node-metastasis staging system, and subsequently grouped into low stage (L) or high stage (H). Signature genes between L and H stages were selected by disparity index analysis, and classification was performed by the expression of these signature genes. The established classification was compared with the L and H classification, and fivefold cross validation was used to evaluate the stability. Enrichment analysis for the signature genes was implemented by the Database for Annotation, Visualization and Integration Discovery. Two validation data sets were used to determine the precise of classification. Survival analysis was conducted followed each classification using the package ‘survival’ in R software. A set of 24 signature genes was identified based on the classification model with the Fi value of 0.47, which was used to distinguish OSCC samples in two different stages. Overall survival of patients in the H stage was higher than those in the L stage. Signature genes were primarily enriched in ‘ether lipid metabolism’ pathway and biological processes such as ‘positive regulation of adaptive immune response’ and ‘apoptotic cell clearance’. The results provided a novel 24-gene set that may be used as biomarkers to predict OSCC prognosis with high accuracy, which may be used to determine an appropriate treatment program for patients with OSCC in addition to the traditional evaluation index. PMID:29257303

  18. Performance of Four Frailty Classifications in Older Patients With Cancer: Prospective Elderly Cancer Patients Cohort Study.

    PubMed

    Ferrat, Emilie; Paillaud, Elena; Caillet, Philippe; Laurent, Marie; Tournigand, Christophe; Lagrange, Jean-Léon; Droz, Jean-Pierre; Balducci, Lodovico; Audureau, Etienne; Canouï-Poitrine, Florence; Bastuji-Garin, Sylvie

    2017-03-01

    Purpose Frailty classifications of older patients with cancer have been developed to assist physicians in selecting cancer treatments and geriatric interventions. They have not been compared, and their performance in predicting outcomes has not been assessed. Our objectives were to assess agreement among four classifications and to compare their predictive performance in a large cohort of in- and outpatients with various cancers. Patients and Methods We prospectively included 1,021 patients age 70 years or older who had solid or hematologic malignancies and underwent a geriatric assessment in one of two French teaching hospitals between 2007 and 2012. Among them, 763 were assessed using four classifications: Balducci, International Society of Geriatric Oncology (SIOG) 1, SIOG2, and a latent class typology. Agreement was assessed using the κ statistic. Outcomes were 1-year mortality and 6-month unscheduled admissions. Results All four classifications had good discrimination for 1-year mortality (C-index ≥ 0.70); discrimination was best with SIOG1. For 6-month unscheduled admissions, discrimination was good with all four classifications (C-index ≥ 0.70). For classification into three (fit, vulnerable, or frail) or two categories (fit v vulnerable or frail and fit or vulnerable v frail), agreement among the four classifications ranged from very poor (κ ≤ 0.20) to good (0.60 < κ ≤ 0.80). Agreement was best between SIOG1 and the latent class typology and between SIOG1 and Balducci. Conclusion These four frailty classifications have good prognostic performance among older in- and outpatients with various cancers. They may prove useful in decision making about cancer treatments and geriatric interventions and/or in stratifying older patients with cancer in clinical trials.

  19. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.

    PubMed

    Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-01-01

    This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.

  20. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks

    PubMed Central

    Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.

    2017-01-01

    This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009

  1. The distance function effect on k-nearest neighbor classification for medical datasets.

    PubMed

    Hu, Li-Yu; Huang, Min-Wei; Ke, Shih-Wen; Tsai, Chih-Fong

    2016-01-01

    K-nearest neighbor (k-NN) classification is conventional non-parametric classifier, which has been used as the baseline classifier in many pattern classification problems. It is based on measuring the distances between the test data and each of the training data to decide the final classification output. Since the Euclidean distance function is the most widely used distance metric in k-NN, no study examines the classification performance of k-NN by different distance functions, especially for various medical domain problems. Therefore, the aim of this paper is to investigate whether the distance function can affect the k-NN performance over different medical datasets. Our experiments are based on three different types of medical datasets containing categorical, numerical, and mixed types of data and four different distance functions including Euclidean, cosine, Chi square, and Minkowsky are used during k-NN classification individually. The experimental results show that using the Chi square distance function is the best choice for the three different types of datasets. However, using the cosine and Euclidean (and Minkowsky) distance function perform the worst over the mixed type of datasets. In this paper, we demonstrate that the chosen distance function can affect the classification accuracy of the k-NN classifier. For the medical domain datasets including the categorical, numerical, and mixed types of data, K-NN based on the Chi square distance function performs the best.

  2. Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering

    NASA Astrophysics Data System (ADS)

    Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi

    2017-03-01

    The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.

  3. 33 CFR 157.04 - Authorization of classification societies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Authorization of classification... CARRYING OIL IN BULK General § 157.04 Authorization of classification societies. (a) The Coast Guard may authorize any classification society (CS) to perform certain plan reviews, certifications, and inspections...

  4. 33 CFR 157.04 - Authorization of classification societies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Authorization of classification... CARRYING OIL IN BULK General § 157.04 Authorization of classification societies. (a) The Coast Guard may authorize any classification society (CS) to perform certain plan reviews, certifications, and inspections...

  5. Exploring diversity in ensemble classification: Applications in large area land cover mapping

    NASA Astrophysics Data System (ADS)

    Mellor, Andrew; Boukir, Samia

    2017-07-01

    Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area remote sensing applications, for which training data is costly and resource intensive to collect.

  6. CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.

    PubMed

    White, Clarence; Ismail, Hamid D; Saigo, Hiroto; Kc, Dukka B

    2017-12-28

    The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification.

  7. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  8. Large Scale Crop Mapping in Ukraine Using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Shelestov, A.; Lavreniuk, M. S.; Kussul, N.

    2016-12-01

    There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13-18 July 2014, Quebec City, Canada. F.J. Gallego, N. Kussul, S. Skakun, O. Kravchenko, A. Shelestov, O. Kussul, "Efficiency assessment of using satellite data for crop area estimation in Ukraine," International Journal of Applied Earth Observation and Geoinformation vol. 29, pp. 22-30, 2014.

  9. Naval Recruit Classification Tests As Predictors of Performance in 87 Class "A" Enlisted Schools (1964-1966). Final Report.

    ERIC Educational Resources Information Center

    Thomas, Edmund D.

    Scores earned on the Navy's enlisted classification tests determine, in large part, the type of job specialty training a recruit will receive. About 50% of recruits qualify for academic training in Basic Class "A" level schools. How well the classification tests predict performance in these schools is important from both a cost and a…

  10. Accuracy of body fat percent and adiposity indicators cut off values to detect metabolic risk factors in a sample of Mexican adults

    PubMed Central

    2014-01-01

    Background Although body fat percent (BF%) may be used for screening metabolic risk factors, its accuracy compared to BMI and waist circumference is unknown in a Mexican population. We compared the classification accuracy of BF%, BMI and WC for the detection of metabolic risk factors in a sample of Mexican adults; optimized cutoffs as well as sensitivity and specificity at commonly used BF% and BMI international cutoffs were estimated. We also estimated conditional BF% means at BMI international cutoffs. Methods We performed a cross-sectional analysis of data on body composition, anthropometry and metabolic risk factors(high glucose, high triglycerides, low HDL cholesterol and hypertension) from 5,100 Mexican men and women. The association between BMI, WC and BF%was evaluated with linear regression models. The BF%, BMI and WC optimal cutoffs for the detection of metabolic risk factors were selected at the point where sensitivity was closest to specificity. Areas under the ROC Curve (AUC) were compared among classifiers using a non-parametric method. Results After adjustment for WC, a 1% increase in BMI was associated with a BF% rise of 0.05 percentage points (p.p.) in men (P < 0.05) and 0.25 p.p. in women (P < 0.001). At BMI = 25.0 predicted BF% was 27.6 ± 0.16 (mean ± SE) in men and 41.2 ± 0.07 in women. Estimated BF% cutoffs for detection of metabolic risk factors were close to 30.0 in men and close to 44.0 in women. In men WC had higher AUC than BF% for the classification of all conditions whereas BMI had higher AUC than BF% for the classification of high triglycerides and hypertension. In womenBMI and WC had higher AUC than BF% for the classification of all metabolic risk factors. Conclusions BMI and WC were more accurate than BF% for classifying the studied metabolic disorders. International BF% cutoffs had very low specificity and thus produced a high rate of false positives in both sexes. PMID:24721260

  11. Feature selection and classification of multiparametric medical images using bagging and SVM

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Resnick, Susan M.; Davatzikos, Christos

    2008-03-01

    This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.

  12. Border Lakes land-cover classification

    Treesearch

    Marvin Bauer; Brian Loeffelholz; Doug Shinneman

    2009-01-01

    This document contains metadata and description of land-cover classification of approximately 5.1 million acres of land bordering Minnesota, U.S.A. and Ontario, Canada. The classification focused on the separation and identification of specific forest-cover types. Some separation of the nonforest classes also was performed. The classification was derived from multi-...

  13. Relationship between risk classifications used to organize the demand for oral health in a small city of São Paulo, Brazil.

    PubMed

    Peres, João; Mendes, Karine Laura Cortellazzi; Wada, Ronaldo Seichi; Sousa, Maria da Luz Rosario de

    2017-06-01

    Oral health teams can work with both information of the people related to the family context as individual epidemiological through risk ratings, considering equity and service organization. The purpose of our study was to evaluate the association between tools that classify individual and family risk. The study group consisted of students from the age group of 5-6 years and 11-12 years who were classified regarding risk of caries and whether their parents had periodontal disease, in addition to the family risk. There was an association between the risk rating for decay in children (n = 128) and family risk classification with Coef C = 0.338 and p = 0.01, indicating that the higher the family's risk, the higher the risk of caries. Similarly, the association between the risk classification for periodontal disease in parents and family risk classification with Coef C = 0.5503 and p = 0.03 indicated that the higher the family risk, the higher the risk of periodontal disease. It can be concluded that the use of family risk rating tool is indicated as a possibility of ordering actions of the dental service, organizing their demand with greater equity, in this access door.

  14. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    PubMed

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  15. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  16. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection-Relevance for Neuroscience and Clinical Applications.

    PubMed

    Kirchner, Elsa A; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.

  17. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications

    PubMed Central

    Kirchner, Elsa A.; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660

  18. Prediction of fatigue-related driver performance from EEG data by deep Riemannian model.

    PubMed

    Hajinoroozi, Mehdi; Jianqiu Zhang; Yufei Huang

    2017-07-01

    Prediction of the drivers' drowsy and alert states is important for safety purposes. The prediction of drivers' drowsy and alert states from electroencephalography (EEG) using shallow and deep Riemannian methods is presented. For shallow Riemannian methods, the minimum distance to Riemannian mean (mdm) and Log-Euclidian metric are investigated, where it is shown that Log-Euclidian metric outperforms the mdm algorithm. In addition the SPDNet, a deep Riemannian model, that takes the EEG covariance matrix as the input is investigated. It is shown that SPDNet outperforms all tested shallow and deep classification methods. Performance of SPDNet is 6.02% and 2.86% higher than the best performance by the conventional Euclidian classifiers and shallow Riemannian models, respectively.

  19. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance

    PubMed Central

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486

  20. Inter-comparison of weather and circulation type classifications for hydrological drought development

    NASA Astrophysics Data System (ADS)

    Fleig, Anne K.; Tallaksen, Lena M.; Hisdal, Hege; Stahl, Kerstin; Hannah, David M.

    Classifications of weather and circulation patterns are often applied in research seeking to relate atmospheric state to surface environmental phenomena. However, numerous procedures have been applied to define the patterns, thus limiting comparability between studies. The COST733 Action “ Harmonisation and Applications of Weather Type Classifications for European regions” tests 73 different weather type classifications (WTC) and their associate weather types (WTs) and compares the WTCs’ utility for various applications. The objective of this study is to evaluate the potential of these WTCs for analysis of regional hydrological drought development in north-western Europe. Hydrological drought is defined in terms of a Regional Drought Area Index (RDAI), which is based on deficits derived from daily river flow series. RDAI series (1964-2001) were calculated for four homogeneous regions in Great Britain and two in Denmark. For each region, WTs associated with hydrological drought development were identified based on antecedent and concurrent WT-frequencies for major drought events. The utility of the different WTCs for the study of hydrological drought development was evaluated, and the influence of WTC attributes, i.e. input variables, number of defined WTs and general classification concept, on WTC performance was assessed. The objective Grosswetterlagen (OGWL), the objective Second-Generation Lamb Weather Type Classification (LWT2) with 18 WTs and two implementations of the objective Wetterlagenklassifikation (WLK; with 40 and 28 WTs) outperformed all other WTCs. In general, WTCs with more WTs (⩾27) were found to perform better than WTCs with less (⩽18) WTs. The influence of input variables was not consistent across the different classification procedures, and the performance of a WTC was determined primarily by the classification procedure itself. Overall, classification procedures following the relatively simple general classification concept of predefining WTs based on thresholds, performed better than those based on more sophisticated classification concepts such as deriving WTs by cluster analysis or artificial neural networks. In particular, PCA based WTCs with 9 WTs and automated WTCs with a high number of predefined WTs (subjectively and threshold based) performed well. It is suggested that the explicit consideration of the air flow characteristics of meridionality, zonality and cyclonicity in the definition of WTs is a useful feature for a WTC when analysing regional hydrological drought development.

  1. Annual Historical Report Calendar Year 1993

    DTIC Science & Technology

    1994-04-01

    Physical Training, 16. PRICE CODE Military Performance, Military Nutrition , Military Psychology. 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19... Nutrition Division . . . . . . . . . . 97 Military Performance & Neuroscience Division . 115 Occupational Medicine Division ........ .130 Occupational...Directorate, Dr. James A. Vogel, Director. The Directorate incorporates the Military Nutrition Division, the Military Performance and Neuroscience Division

  2. Physicochemical properties of honey from Marche, Central Italy: classification of unifloral and multifloral honeys by multivariate analysis.

    PubMed

    Truzzi, Cristina; Illuminati, Silvia; Annibaldia, Anna; Finale, Carolina; Rossetti, Monica; Scarponi, Giuseppe

    2014-11-01

    The purpose of this study was the physicochemical characterization and classification of Italian honey from Marche Region with a chemometric approach. A total of 135 honeys of different botanical origins [acacia (Robinia pseudoacacia L.), chestnut (Castanea sativa), coriander (Coriandrum sativum L.), lime (Tilia spp.), sunflower (Helianthus annuus L.), Metcalfa honeydew and multifloral honey] were considered. The average results of electrical conductivity (0.14-1.45 mS cm(-1)), pH (3.89-5.42), free acidity (10.9-39.0 meq(NaOH) kg(-1)), lactones (2.4-4.5 meq(NaOH) kg(-1)), total acidity (14.5-40.9 meq(NaOH) kg(-1)), proline (229-665 mg kg(-1)) and 5-(hydroxy-methyl)-2-furaldehyde (0.6-3.9 mg kg(-1)) content show wide variability among the analysed honey types, with statistically significant differences between the different honey types. Pattern recognition methods such as principal component analysis and discriminant analysis were performed in order to find a relationship between variables and types of honey and to classify honey on the basis of its physicochemical properties. The variables of electrical conductivity, acidity (free, lactones), pH and proline content exhibited higher discriminant power and provided enough information for the classification and distinction of unifloral honey types, but not for the classification of multifloral honey (100% and 85% of samples correctly classified, respectively).

  3. Building confidence and credibility into CAD with belief decision trees

    NASA Astrophysics Data System (ADS)

    Affenit, Rachael N.; Barns, Erik R.; Furst, Jacob D.; Rasin, Alexander; Raicu, Daniela S.

    2017-03-01

    Creating classifiers for computer-aided diagnosis in the absence of ground truth is a challenging problem. Using experts' opinions as reference truth is difficult because the variability in the experts' interpretations introduces uncertainty in the labeled diagnostic data. This uncertainty translates into noise, which can significantly affect the performance of any classifier on test data. To address this problem, we propose a new label set weighting approach to combine the experts' interpretations and their variability, as well as a selective iterative classification (SIC) approach that is based on conformal prediction. Using the NIH/NCI Lung Image Database Consortium (LIDC) dataset in which four radiologists interpreted the lung nodule characteristics, including the degree of malignancy, we illustrate the benefits of the proposed approach. Our results show that the proposed 2-label-weighted approach significantly outperforms the accuracy of the original 5- label and 2-label-unweighted classification approaches by 39.9% and 7.6%, respectively. We also found that the weighted 2-label models produce higher skewness values by 1.05 and 0.61 for non-SIC and SIC respectively on root mean square error (RMSE) distributions. When each approach was combined with selective iterative classification, this further improved the accuracy of classification for the 2-weighted-label by 7.5% over the original, and improved the skewness of the 5-label and 2-unweighted-label by 0.22 and 0.44 respectively.

  4. Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information

    NASA Astrophysics Data System (ADS)

    Jamshidpour, N.; Homayouni, S.; Safari, A.

    2017-09-01

    Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  5. An OMIC biomarker detection algorithm TriVote and its application in methylomic biomarker detection.

    PubMed

    Xu, Cheng; Liu, Jiamei; Yang, Weifeng; Shu, Yayun; Wei, Zhipeng; Zheng, Weiwei; Feng, Xin; Zhou, Fengfeng

    2018-04-01

    Transcriptomic and methylomic patterns represent two major OMIC data sources impacted by both inheritable genetic information and environmental factors, and have been widely used as disease diagnosis and prognosis biomarkers. Modern transcriptomic and methylomic profiling technologies detect the status of tens of thousands or even millions of probing residues in the human genome, and introduce a major computational challenge for the existing feature selection algorithms. This study proposes a three-step feature selection algorithm, TriVote, to detect a subset of transcriptomic or methylomic residues with highly accurate binary classification performance. TriVote outperforms both filter and wrapper feature selection algorithms with both higher classification accuracy and smaller feature number on 17 transcriptomes and two methylomes. Biological functions of the methylome biomarkers detected by TriVote were discussed for their disease associations. An easy-to-use Python package is also released to facilitate the further applications.

  6. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  7. Sentiment classification technology based on Markov logic networks

    NASA Astrophysics Data System (ADS)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  8. Validating the performance of vehicle classification stations.

    DOT National Transportation Integrated Search

    2012-05-01

    Vehicle classification is used in many transportation applications, e.g., infrastructure management and planning. Typical of most : developed countries, every state in the US maintains a network of vehicle classification stations to explicitly sort v...

  9. Blob-level active-passive data fusion for Benthic classification

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady

    2012-06-01

    We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.

  10. Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification

    PubMed Central

    Wu, Lin

    2017-01-01

    With the popular use of geotagging images, more and more research efforts have been placed on geographical scene classification. In geographical scene classification, valid spatial feature selection can significantly boost the final performance. Bag of visual words (BoVW) can do well in selecting feature in geographical scene classification; nevertheless, it works effectively only if the provided feature extractor is well-matched. In this paper, we use convolutional neural networks (CNNs) for optimizing proposed feature extractor, so that it can learn more suitable visual vocabularies from the geotagging images. Our approach achieves better performance than BoVW as a tool for geographical scene classification, respectively, in three datasets which contain a variety of scene categories. PMID:28706534

  11. Naïve Bayes classification in R.

    PubMed

    Zhang, Zhongheng

    2016-06-01

    Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes' theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naïve Bayes classification.

  12. Land cover classification for Puget Sound, 1974-1979

    NASA Technical Reports Server (NTRS)

    Eby, J. R.

    1981-01-01

    Digital analysis of LANDSAT data for land cover classification projects in the Puget Sound region is surveyed. Two early rural and urban land use classifications and their application are described. After acquisition of VICAR/IBIs software, another land use classification of the area was performed, and is described in more detail. Future applications are considered.

  13. Computer-implemented land use classification with pattern recognition software and ERTS digital data. [Mississippi coastal plains

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1974-01-01

    Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.

  14. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability.

    PubMed

    Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R

    2015-05-01

    The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.

  15. HMM for hyperspectral spectrum representation and classification with endmember entropy vectors

    NASA Astrophysics Data System (ADS)

    Arabi, Samir Y. W.; Fernandes, David; Pizarro, Marco A.

    2015-10-01

    The Hyperspectral images due to its good spectral resolution are extensively used for classification, but its high number of bands requires a higher bandwidth in the transmission data, a higher data storage capability and a higher computational capability in processing systems. This work presents a new methodology for hyperspectral data classification that can work with a reduced number of spectral bands and achieve good results, comparable with processing methods that require all hyperspectral bands. The proposed method for hyperspectral spectra classification is based on the Hidden Markov Model (HMM) associated to each Endmember (EM) of a scene and the conditional probabilities of each EM belongs to each other EM. The EM conditional probability is transformed in EM vector entropy and those vectors are used as reference vectors for the classes in the scene. The conditional probability of a spectrum that will be classified is also transformed in a spectrum entropy vector, which is classified in a given class by the minimum ED (Euclidian Distance) among it and the EM entropy vectors. The methodology was tested with good results using AVIRIS spectra of a scene with 13 EM considering the full 209 bands and the reduced spectral bands of 128, 64 and 32. For the test area its show that can be used only 32 spectral bands instead of the original 209 bands, without significant loss in the classification process.

  16. Performance analysis of distributed applications using automatic classification of communication inefficiencies

    DOEpatents

    Vetter, Jeffrey S.

    2005-02-01

    The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.

  17. Multi-Temporal Classification and Change Detection Using Uav Images

    NASA Astrophysics Data System (ADS)

    Makuti, S.; Nex, F.; Yang, M. Y.

    2018-05-01

    In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  18. Multi-source remotely sensed data fusion for improving land cover classification

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Bo; Xu, Bing

    2017-02-01

    Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.

  19. Interpreting weightings of the peer assessment rating index and the discrepancy index across contexts on Chinese patients.

    PubMed

    Liu, Siqi; Oh, Heesoo; Chambers, David William; Xu, Tianmin; Baumrind, Sheldon

    2018-04-06

    Determine optimal weightings of Peer Assessment Rating (PAR) index and Discrepancy Index (DI) for malocclusion severity assessment in Chinese orthodontic patients. Sixty-nine Chinese orthodontists assessed a full set of pre-treatment records from a stratified random sample of 120 subjects gathered from six university orthodontic centres. Using professional judgment as the outcome variable, multiple regression analyses were performed to derive customized weighting systems for the PAR index and DI, for all subjects and each Angle classification subgroup. Professional judgment was consistent, with an Intraclass Correlation Coefficient (ICC) of 0.995. The PAR index or DI can be reliably measured, with ICC = 0.959 and 0.990, respectively. The predictive accuracy of PAR index was greatly improved by the Chinese weighting process (from r = 0.431 to r = 0.788) with almost equal distribution in each Angle classification subgroup. The Chinese-weighted DI showed a higher predictive accuracy, at P = 0.01, compared with the PAR index (r = 0.851 versus r = 0.788). A better performance was found in the Class II group (r = 0.890) when compared to Class I (r = 0.736) and III (r = 0.785) groups. The Chinese-weighted PAR index and DI were capable of predicting 62 per cent and 73 per cent of total variance in the professional judgment of malocclusion severity in Chinese patients. Differential prediction across Angle classifications merits attention since different weighting formulas were found.

  20. Effects of different dietary inclusion levels of macadamia oil cake on growth performance and carcass characteristics in South African mutton merino lambs.

    PubMed

    Acheampong-Boateng, Owoahene; Bakare, Archibold G; Nkosi, Douglas B; Mbatha, Khanyisile R

    2017-04-01

    Growth performance and carcass characteristics of South African mutton merino fed graded levels of macadamia oil cake were assessed. A total of 60 South African mutton merino lambs were used in the experiment (initial live weight 25.0 ± 0.45 kg). Five diets with different inclusion levels of macadamia oil cake (MOC) were formulated: T1 (0% MOC, control), T2 (5% MOC), T3 (10% MOC), T4 (15% MOC) and T5 (20% MOC). Effects of inclusion level of MOC on average daily gain (ADG) and average daily feed intake (ADFI) were not significant (P > 0.05). Effects of inclusion levels of MOC on feed conversion ratio (FCR) of sheep were significant (P < 0.05). Highest proportion (71.2%) of sheep in the study had a carcass fat classification of 2, followed by a proportion of 17.3% sheep with a carcass fat classification of 3 and lastly 11.5% sheep had carcass fat classification of 4. Warm and cold carcass mass, chest circumference, carcass length and dressing percentage were higher in sheep fed on 5% MOC compared to other treatment diets (0, 10, 15 and 20% MOC) (P < 0.05). Fat rib eye had a greater area in sheep fed on 5% MOC (P < 0.05). It was concluded that 5% MOC provided the best results in terms of carcass characteristic measurements in sheep.

  1. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  2. Behavior Based Social Dimensions Extraction for Multi-Label Classification

    PubMed Central

    Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin

    2016-01-01

    Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849

  3. Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Yin, Yin; Haldankar, Hrishikesh; Hoffmeister, Jeffrey W.; Periaswamy, Senthil

    2016-03-01

    Computer-aided detection (CAD) has been used in screening mammography for many years and is likely to be utilized for digital breast tomosynthesis (DBT). Higher detection performance is desirable as it may have an impact on radiologist's decisions and clinical outcomes. Recently the algorithms based on deep convolutional architectures have been shown to achieve state of the art performance in object classification and detection. Similarly, we trained a deep convolutional neural network directly on patches sampled from two-dimensional mammography and reconstructed DBT volumes and compared its performance to a conventional CAD algorithm that is based on computation and classification of hand-engineered features. The detection performance was evaluated on the independent test set of 344 DBT reconstructions (GE SenoClaire 3D, iterative reconstruction algorithm) containing 328 suspicious and 115 malignant soft tissue densities including masses and architectural distortions. Detection sensitivity was measured on a region of interest (ROI) basis at the rate of five detection marks per volume. Moving from conventional to deep learning approach resulted in increase of ROI sensitivity from 0:832 +/- 0:040 to 0:893 +/- 0:033 for suspicious ROIs; and from 0:852 +/- 0:065 to 0:930 +/- 0:046 for malignant ROIs. These results indicate the high utility of deep feature learning in the analysis of DBT data and high potential of the method for broader medical image analysis tasks.

  4. Multidate mapping of mosquito habitat. [Nebraska, South Dakota

    NASA Technical Reports Server (NTRS)

    Woodzick, T. L.; Maxwell, E. L.

    1977-01-01

    LANDSAT data from three overpasses formed the data base for a multidate classification of 15 ground cover categories in the margins of Lewis and Clark Lake, a fresh water impoundment between South Dakota and Nebraska. When scaled to match topographic maps of the area, the ground cover classification maps were used as a general indicator of potential mosquito-breeding habitat by distinguishing productive wetlands areas from nonproductive nonwetlands areas. The 12 channel multidate classification was found to have an accuracy 23% higher than the average of the three single date 4 channel classifications.

  5. Privacy-Preserving Evaluation of Generalization Error and Its Application to Model and Attribute Selection

    NASA Astrophysics Data System (ADS)

    Sakuma, Jun; Wright, Rebecca N.

    Privacy-preserving classification is the task of learning or training a classifier on the union of privately distributed datasets without sharing the datasets. The emphasis of existing studies in privacy-preserving classification has primarily been put on the design of privacy-preserving versions of particular data mining algorithms, However, in classification problems, preprocessing and postprocessing— such as model selection or attribute selection—play a prominent role in achieving higher classification accuracy. In this paper, we show generalization error of classifiers in privacy-preserving classification can be securely evaluated without sharing prediction results. Our main technical contribution is a new generalized Hamming distance protocol that is universally applicable to preprocessing and postprocessing of various privacy-preserving classification problems, such as model selection in support vector machine and attribute selection in naive Bayes classification.

  6. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke

    2018-04-01

    The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.

  7. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  8. Impact of federal compliance reviews of trucking companies in reducing highway truck crashes.

    PubMed

    Chen, Guang Xiang

    2008-01-01

    The compliance review (CR) is a federal program monitoring motor carrier safety performance and regulatory compliance. This study sought to assess the impact of CRs on reviewed trucking companies in reducing truck crashes. Data was from the Motor Carrier Management Information System. Study subjects were trucking companies established during 1990-1995, had at least one truck, and remained active until April 2004. Truck crash data of these companies was examined from 1996 to 2003. The crash rates in 2003 and annual percentage changes in number of crashes were computed. Analyses were stratified by company size, organization, operation classification, and safety rating. Companies that received CRs had a higher crash rate than never-reviewed companies. Reviewed companies experienced a 39-15% reduction in number of crashes in the year the CR was performed. The reduction in crashes was observed in all reviewed companies regardless of company size, operation classification, type of organization, or safety rating. The reduction in crashes was sustained for at least 7 years after CRs. The study results were controlled for the year in which CRs were performed, crash trend, and CR selection bias. However, further studies, especially a randomized prospective longitudinal study, are needed to overcome the limitations that are associated with an observation study.

  9. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  10. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  11. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques.

    PubMed

    Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming

    2018-06-01

    This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

  12. Histopathologic features in actinic cheilitis by the comparison of grading dysplasia systems.

    PubMed

    Pilati, Sfm; Bianco, B C; Vieira, Dsc; Modolo, F

    2017-03-01

    This study aimed to determine the histopathologic findings in actinic cheilitis (AC) and lip squamous cell carcinomas (LSCC) diagnosed at Federal University of Santa Catarina in order to attempt to predict the evolution from AC to LSCC based on the comparison of two dysplasia classification systems. Histopathologic features were evaluated according to the World Health Organization classification of dysplasia and binary system of classification. Also, in LSCC, pattern, stage of invasion, and degree of keratinization were evaluated. A total of 58 cases of AC and 70 cases of LSCC were studied, and data correlation was performed using statistical analysis. The presence of dyskeratosis and keratin pearls was found to be strongly associated with severe dysplasia and could represent higher proximity between the severe dysplasia in AC and LSCC. Also, changes related to the nuclei, such as hyperchromasia, nuclear pleomorphism, anisonucleosis, increase in the number and size of nucleoli, increased number of mitoses, and atypical mitoses, indicate progression in dysplasia spectrum. Knowledge of clinical and histological features of AC and LSCC leads to better understanding of factors possibly associated with malignant transformation of epithelial dysplasia. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. LMD Based Features for the Automatic Seizure Detection of EEG Signals Using SVM.

    PubMed

    Zhang, Tao; Chen, Wanzhong

    2017-08-01

    Achieving the goal of detecting seizure activity automatically using electroencephalogram (EEG) signals is of great importance and significance for the treatment of epileptic seizures. To realize this aim, a newly-developed time-frequency analytical algorithm, namely local mean decomposition (LMD), is employed in the presented study. LMD is able to decompose an arbitrary signal into a series of product functions (PFs). Primarily, the raw EEG signal is decomposed into several PFs, and then the temporal statistical and non-linear features of the first five PFs are calculated. The features of each PF are fed into five classifiers, including back propagation neural network (BPNN), K-nearest neighbor (KNN), linear discriminant analysis (LDA), un-optimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM), for five classification cases, respectively. Confluent features of all PFs and raw EEG are further passed into the high-performance GA-SVM for the same classification tasks. Experimental results on the international public Bonn epilepsy EEG dataset show that the average classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases, and this indicates the effectiveness of the proposed approach for automated seizure detection.

  14. Neural net classification of x-ray pistachio nut data

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Sipe, Michael A.; Schatzki, Thomas F.; Keagy, Pamela M.; Le, Lan Chau

    1996-12-01

    Classification results for agricultural products are presented using a new neural network. This neural network inherently produces higher-order decision surfaces. It achieves this with fewer hidden layer neurons than other classifiers require. This gives better generalization. It uses new techniques to select the number of hidden layer neurons and adaptive algorithms that avoid other such ad hoc parameter selection problems; it allows selection of the best classifier parameters without the need to analyze the test set results. The agriculture case study considered is the inspection and classification of pistachio nuts using x- ray imagery. Present inspection techniques cannot provide good rejection of worm damaged nuts without rejecting too many good nuts. X-ray imagery has the potential to provide 100% inspection of such agricultural products in real time. Only preliminary results are presented, but these indicate the potential to reduce major defects to 2% of the crop with 1% of good nuts rejected. Future image processing techniques that should provide better features to improve performance and allow inspection of a larger variety of nuts are noted. These techniques and variations of them have uses in a number of other agricultural product inspection problems.

  15. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

    PubMed Central

    Sellers, Eric W.; Wang, Xingyu

    2013-01-01

    Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331

  16. Real-time classification of auditory sentences using evoked cortical activity in humans

    NASA Astrophysics Data System (ADS)

    Moses, David A.; Leonard, Matthew K.; Chang, Edward F.

    2018-06-01

    Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.

  17. Land use/cover classification in the Brazilian Amazon using satellite images.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  18. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  19. Examining the Effect of Transverse Motion on Retinal Biometric Identifiers Relating to Shipboard Security Mechanisms

    DTIC Science & Technology

    1986-03-01

    CLASSIFICATION OF THIS PAGEZ-~-ft! -q 1 REPORT DOCUMENTATION PAGE a REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS . UNCLASSIFIED """ a. SECURITY...CLASSIFICATION AUTHORITY 3 DISTRiBUTION(/AVAILABILITY OF REPORT Approved for public release; 2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution...is un 1 im i ted 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPOR•r NUMBER(S) j a.NAME OF PERFORMING ORGANIZATION 16b

  20. Regression-Based Approach For Feature Selection In Classification Issues. Application To Breast Cancer Detection And Recurrence

    NASA Astrophysics Data System (ADS)

    Belciug, Smaranda; Serbanescu, Mircea-Sebastian

    2015-09-01

    Feature selection is considered a key factor in classifications/decision problems. It is currently used in designing intelligent decision systems to choose the best features which allow the best performance. This paper proposes a regression-based approach to select the most important predictors to significantly increase the classification performance. Application to breast cancer detection and recurrence using publically available datasets proved the efficiency of this technique.

  1. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales.

    PubMed

    Oh, Jihoon; Yun, Kyongsik; Hwang, Ji-Hyun; Chae, Jeong-Ho

    2017-01-01

    Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders ( N  = 573) were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements) and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC) was the highest for 1-month suicide attempts detection (0.93), followed by lifetime (0.89), and 1-year detection (0.87). Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87). Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  2. Posture and performance: sitting vs. standing for security screening.

    PubMed

    Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R

    2008-03-01

    A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.

  3. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks.

    PubMed

    Zhang, Jianhua; Li, Sunan; Wang, Rubin

    2017-01-01

    In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.

  4. Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    PubMed Central

    Mozetič, Igor; Grčar, Miha; Smailović, Jasmina

    2016-01-01

    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered. PMID:27149621

  5. Evaluation of different classification methods for the diagnosis of schizophrenia based on functional near-infrared spectroscopy.

    PubMed

    Li, Zhaohua; Wang, Yuduo; Quan, Wenxiang; Wu, Tongning; Lv, Bin

    2015-02-15

    Based on near-infrared spectroscopy (NIRS), recent converging evidence has been observed that patients with schizophrenia exhibit abnormal functional activities in the prefrontal cortex during a verbal fluency task (VFT). Therefore, some studies have attempted to employ NIRS measurements to differentiate schizophrenia patients from healthy controls with different classification methods. However, no systematic evaluation was conducted to compare their respective classification performances on the same study population. In this study, we evaluated the classification performance of four classification methods (including linear discriminant analysis, k-nearest neighbors, Gaussian process classifier, and support vector machines) on an NIRS-aided schizophrenia diagnosis. We recruited a large sample of 120 schizophrenia patients and 120 healthy controls and measured the hemoglobin response in the prefrontal cortex during the VFT using a multichannel NIRS system. Features for classification were extracted from three types of NIRS data in each channel. We subsequently performed a principal component analysis (PCA) for feature selection prior to comparison of the different classification methods. We achieved a maximum accuracy of 85.83% and an overall mean accuracy of 83.37% using a PCA-based feature selection on oxygenated hemoglobin signals and support vector machine classifier. This is the first comprehensive evaluation of different classification methods for the diagnosis of schizophrenia based on different types of NIRS signals. Our results suggested that, using the appropriate classification method, NIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Masiero, J.; Bauer, J.

    We have combined the NEOWISE and Sloan Digital Sky Survey data to study the albedos of 24,353 asteroids with candidate taxonomic classifications derived using Sloan photometry. We find a wide range of moderate to high albedos for candidate S-type asteroids that are analogous to the S complex defined by previous spectrophotometrically based taxonomic systems. The candidate C-type asteroids, while generally very dark, have a tail of higher albedos that overlaps the S types. The albedo distribution for asteroids with a photometrically derived Q classification is extremely similar to those of the S types. Asteroids with similar colors to (4) Vestamore » have higher albedos than the S types, and most have orbital elements similar to known Vesta family members. Finally, we show that the relative reflectance at 3.4 and 4.6 {mu}m is higher for D-type asteroids and suggest that their red visible and near-infrared spectral slope extends out to these wavelengths. Understanding the relationship between size, albedo, and taxonomic classification is complicated by the fact that the objects with classifications were selected from the visible/near-infrared Sloan Moving Object Catalog, which is biased against fainter asteroids, including those with lower albedos.« less

  8. 14 CFR 1203.406 - Additional classification factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 1203.406 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY... other Government departments and agencies should be considered. Classification of official information... exists elsewhere for the information under consideration which would make it necessary to assign a higher...

  9. Identification of asteroid dynamical families

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Carusi, A.; Knezevic, Z.; Kresak, L.; Williams, J. G.

    1989-01-01

    Problems involved in the identification of asteroid dynamical families are discussed, and some methodological guidelines are presented. Asteroid family classifications are reviewed, and differences in the existing classifications are examined with special attention given to the effects of observational selection on the classification of family membership. The paper also discusses various theories of secular perturbations, including the classical linear theory, the theory of Williams (1969), and the higher order/degree theory of Yuasa (1973).

  10. Average Likelihood Methods for Code Division Multiple Access (CDMA)

    DTIC Science & Technology

    2014-05-01

    lengths in the range of 22 to 213 and possibly higher. Keywords: DS / CDMA signals, classification, balanced CDMA load, synchronous CDMA , decision...likelihood ratio test (ALRT). We begin this classification problem by finding the size of the spreading matrix that generated the DS - CDMA signal. As...Theoretical Background The classification of DS / CDMA signals should not be confused with the problem of multiuser detection. The multiuser detection deals

  11. Inter-observer reliability of radiographic classifications and measurements in the assessment of Perthes' disease.

    PubMed

    Wiig, Ola; Terjesen, Terje; Svenningsen, Svein

    2002-10-01

    We evaluated the inter-observer agreement of radiographic methods when evaluating patients with Perthes' disease. The radiographs were assessed at the time of diagnosis and at the 1-year follow-up by local orthopaedic surgeons (O) and 2 experienced pediatric orthopedic surgeons (TT and SS). The Catterall, Salter-Thompson, and Herring lateral pillar classifications were compared, and the femoral head coverage (FHC), center-edge angle (CE-angle), and articulo-trochanteric distance (ATD) were measured in the affected and normal hips. On the primary evaluation, the lateral pillar and Salter-Thompson classifications had a higher level of agreement among the observers than the Catterall classification, but none of the classifications showed good agreement (weighted kappa values between O and SS 0.56, 0.54, 0.49, respectively). Combining Catterall groups 1 and 2 into one group, and groups 3 and 4 into another resulted in better agreement (kappa 0.55) than with the original 4-group system. The agreement was also better (kappa 0.62-0.70) between experienced than between less experienced examiners for all classifications. The femoral head coverage was a more reliable and accurate measure than the CE-angle for quantifying the acetabular covering of the femoral head, as indicated by higher intraclass correlation coefficients (ICC) and smaller inter-observer differences. The ATD showed good agreement in all comparisons and had low interobserver differences. We conclude that all classifications of femoral head involvement are adequate in clinical work if the radiographic assessment is done by experienced examiners. When they are less experienced examiners, a 2-group classification or the lateral pillar classification is more reliable. For evaluation of containment of the femoral head, FHC is more appropriate than the CE-angle.

  12. Does the Spine Surgeon’s Experience Affect Fracture Classification, Assessment of Stability, and Treatment Plan in Thoracolumbar Injuries?

    PubMed Central

    Kanna, Rishi Mugesh; Schroeder, Gregory D.; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Kandziora, Frank; Vaccaro, Alexander R.

    2017-01-01

    Study Design: Prospective survey-based study. Objectives: The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons’ clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Methods: Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as <10 years (n = 12) and >10 years (n = 29). Results: There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience had more correct diagnosis in classifying A3 (47.2% vs 38.5% in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0% in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Conclusion: Surgeons’ experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups. PMID:28815158

  13. Does the Spine Surgeon's Experience Affect Fracture Classification, Assessment of Stability, and Treatment Plan in Thoracolumbar Injuries?

    PubMed

    Rajasekaran, Shanmuganathan; Kanna, Rishi Mugesh; Schroeder, Gregory D; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Kandziora, Frank; Vaccaro, Alexander R

    2017-06-01

    Prospective survey-based study. The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons' clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as <10 years (n = 12) and >10 years (n = 29). There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience had more correct diagnosis in classifying A3 (47.2% vs 38.5% in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0% in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Surgeons' experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups.

  14. Foot-strike pattern and performance in a marathon.

    PubMed

    Kasmer, Mark E; Liu, Xue-Cheng; Roberts, Kyle G; Valadao, Jason M

    2013-05-01

    To determine prevalence of heel strike in a midsize city marathon, if there is an association between foot-strike classification and race performance, and if there is an association between foot-strike classification and gender. Foot-strike classification (forefoot, midfoot, heel, or split strike), gender, and rank (position in race) were recorded at the 8.1-km mark for 2112 runners at the 2011 Milwaukee Lakefront Marathon. 1991 runners were classified by foot-strike pattern, revealing a heel-strike prevalence of 93.67% (n = 1865). A significant difference between foot-strike classification and performance was found using a Kruskal-Wallis test (P < .0001), with more elite performers being less likely to heel strike. No significant difference between foot-strike classification and gender was found using a Fisher exact test. In addition, subgroup analysis of the 126 non-heel strikers found no significant difference between shoe wear and performance using a Kruskal-Wallis test. The high prevalence of heel striking observed in this study reflects the foot-strike pattern of most mid-distance to long-distance runners and, more important, may predict their injury profile based on the biomechanics of a heel-strike running pattern. This knowledge can help clinicians appropriately diagnose, manage, and train modifications of injured runners.

  15. Weakly supervised classification in high energy physics

    DOE PAGES

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; ...

    2017-05-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  16. Weakly supervised classification in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  17. Physical Human Activity Recognition Using Wearable Sensors.

    PubMed

    Attal, Ferhat; Mohammed, Samer; Dedabrishvili, Mariam; Chamroukhi, Faicel; Oukhellou, Latifa; Amirat, Yacine

    2015-12-11

    This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle). Three main steps describe the activity recognition process: sensors' placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.

  18. Physical Human Activity Recognition Using Wearable Sensors

    PubMed Central

    Attal, Ferhat; Mohammed, Samer; Dedabrishvili, Mariam; Chamroukhi, Faicel; Oukhellou, Latifa; Amirat, Yacine

    2015-01-01

    This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle). Three main steps describe the activity recognition process: sensors’ placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject. PMID:26690450

  19. Epidemiological investigation of school-related injuries in Koprivnica County, Croatia.

    PubMed

    Vorko-Jović, A; Rimac, M; Jović, F; Strnad, M; Solaja, D

    2001-02-01

    To assess the prevalence of injuries in elementary schools and determine specific risk groups of school-age children. According to the 1991 census, there were 6,398 children between 7 and 14 years of age in the study area of the former Koprivnica district. During the 1992-1997 period, 354 children were injured in school. The registration of injured children was performed via structured questionnaires filled out at the emergency clinic and outpatient surgical clinic of the General Hospital in Koprivnica. The mechanism of accident and activities preceding it were categorized according to the Nordic Medico-Statistical Committee classification. Chi-square test was used to determine groups of school children at specific risk and a classification tree was made on the basis of minimum entropy values for age, sex, activity, and mechanism of injury. The highest injury rate of was recorded in 12-year-olds (21.7%). Upper extremities were most common site of injury (52.8%), whereas the most common type of injury was contusion (45.2%). The rate of head injuries was 3.2 times higher in younger (aged 7-10) children, whereas the rate of sports injuries was 3.5-fold higher in older (aged 11-14) children (p=0.001). Entropy classification revealed younger school-age children to be at the highest risk of contusion due to a blow from a ball, an object, or contact during sports activities. In Koprivnica County, most school-related injuries occurred during sport activities (42%) and play during recess (55%), with specific differences in age and sex.

  20. Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data.

    PubMed

    Gomez-Pulido, Juan A; Cerrada-Barrios, Jose L; Trinidad-Amado, Sebastian; Lanza-Gutierrez, Jose M; Fernandez-Diaz, Ramon A; Crawford, Broderick; Soto, Ricardo

    2016-08-31

    Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.

  1. Sleep staging with movement-related signals.

    PubMed

    Jansen, B H; Shankar, K

    1993-05-01

    Body movement related signals (i.e., activity due to postural changes and the ballistocardiac effort) were recorded from six normal volunteers using the static-charge-sensitive bed (SCSB). Visual sleep staging was performed on the basis of simultaneously recorded EEG, EMG and EOG signals. A statistical classification technique was used to determine if reliable sleep staging could be performed using only the SCSB signal. A classification rate of between 52% and 75% was obtained for sleep staging in the five conventional sleep stages and the awake state. These rates improved from 78% to 89% for classification between awake, REM and non-REM sleep and from 86% to 98% for awake versus asleep classification.

  2. SkICAT: A cataloging and analysis tool for wide field imaging surveys

    NASA Technical Reports Server (NTRS)

    Weir, N.; Fayyad, U. M.; Djorgovski, S. G.; Roden, J.

    1992-01-01

    We describe an integrated system, SkICAT (Sky Image Cataloging and Analysis Tool), for the automated reduction and analysis of the Palomar Observatory-ST ScI Digitized Sky Survey. The Survey will consist of the complete digitization of the photographic Second Palomar Observatory Sky Survey (POSS-II) in three bands, comprising nearly three Terabytes of pixel data. SkICAT applies a combination of existing packages, including FOCAS for basic image detection and measurement and SAS for database management, as well as custom software, to the task of managing this wealth of data. One of the most novel aspects of the system is its method of object classification. Using state-of-theart machine learning classification techniques (GID3* and O-BTree), we have developed a powerful method for automatically distinguishing point sources from non-point sources and artifacts, achieving comparably accurate discrimination a full magnitude fainter than in previous Schmidt plate surveys. The learning algorithms produce decision trees for classification by examining instances of objects classified by eye on both plate and higher quality CCD data. The same techniques will be applied to perform higher-level object classification (e.g., of galaxy morphology) in the near future. Another key feature of the system is the facility to integrate the catalogs from multiple plates (and portions thereof) to construct a single catalog of uniform calibration and quality down to the faintest limits of the survey. SkICAT also provides a variety of data analysis and exploration tools for the scientific utilization of the resulting catalogs. We include initial results of applying this system to measure the counts and distribution of galaxies in two bands down to Bj is approximately 21 mag over an approximate 70 square degree multi-plate field from POSS-II. SkICAT is constructed in a modular and general fashion and should be readily adaptable to other large-scale imaging surveys.

  3. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    PubMed

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  4. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  5. PROTAX-Sound: A probabilistic framework for automated animal sound identification

    PubMed Central

    Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities. PMID:28863178

  6. PROTAX-Sound: A probabilistic framework for automated animal sound identification.

    PubMed

    de Camargo, Ulisses Moliterno; Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities.

  7. Vegetation zones in changing climate

    NASA Astrophysics Data System (ADS)

    Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava

    2017-04-01

    Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries between the selected types can be studied as well providing the information on climate change signal. The shift of the boundary between the boreal zone and continental temperate zone to the north is clearly seen in most simulations as well as eastern move of the boundary of the maritime and continental type of temperate zone. However, there can be quite clear problem with model biases in climate types association. When analysing climate types in Europe and their shifts under climate change using Köppen-Trewartha classification (KTC), for the temperate climate type there are subtypes defined following the continentality patterns, and we can see their generally meridionally located divide across Europe shifted to the east. There is a question whether this is realistic or rather due to the simplistic condition in KTC following the winter minimum temperature, while other continentality indices consider rather the amplitude of temperature during the year. This leads us to connect our analysis of climate change effects using climate classification to the more detailed analysis of continentality patterns development in Europe to provide better insight on the climate regimes and to verify the continentality conditions, their definitions and climate change effects on them. The comparison of several selected continentality indices is shown.

  8. Application of visible and near-infrared spectroscopy to classification of Miscanthus species

    DOE PAGES

    Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; ...

    2017-04-03

    Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less

  9. Application of visible and near-infrared spectroscopy to classification of Miscanthus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang

    Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less

  10. Application of visible and near-infrared spectroscopy to classification of Miscanthus species.

    PubMed

    Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua

    2017-01-01

    The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.

  11. Application of visible and near-infrared spectroscopy to classification of Miscanthus species

    PubMed Central

    Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J.; Peng, Junhua

    2017-01-01

    The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species. PMID:28369059

  12. On the nature of global classification

    NASA Technical Reports Server (NTRS)

    Wheelis, M. L.; Kandler, O.; Woese, C. R.

    1992-01-01

    Molecular sequencing technology has brought biology into the era of global (universal) classification. Methodologically and philosophically, global classification differs significantly from traditional, local classification. The need for uniformity requires that higher level taxa be defined on the molecular level in terms of universally homologous functions. A global classification should reflect both principal dimensions of the evolutionary process: genealogical relationship and quality and extent of divergence within a group. The ultimate purpose of a global classification is not simply information storage and retrieval; such a system should also function as an heuristic representation of the evolutionary paradigm that exerts a directing influence on the course of biology. The global system envisioned allows paraphyletic taxa. To retain maximal phylogenetic information in these cases, minor notational amendments in existing taxonomic conventions should be adopted.

  13. Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm.

    PubMed

    Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal

    2018-01-17

    The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.

  14. 46 CFR 8.200 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Recognition of a Classification Society § 8.200 Purpose. This subpart establishes criteria and procedures for vessel classification societies to obtain recognition from the Coast Guard. This recognition is necessary in order for a classification society to become authorized to perform vessel inspection and...

  15. 46 CFR 8.200 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Recognition of a Classification Society § 8.200 Purpose. This subpart establishes criteria and procedures for vessel classification societies to obtain recognition from the Coast Guard. This recognition is necessary in order for a classification society to become authorized to perform vessel inspection and...

  16. Conjugate-Gradient Neural Networks in Classification of Multisource and Very-High-Dimensional Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.

    1993-01-01

    Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.

  17. Ensemble Sparse Classification of Alzheimer’s Disease

    PubMed Central

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2012-01-01

    The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352

  18. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    NASA Astrophysics Data System (ADS)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  19. Classification images for localization performance in ramp-spectrum noise.

    PubMed

    Abbey, Craig K; Samuelson, Frank W; Zeng, Rongping; Boone, John M; Eckstein, Miguel P; Myers, Kyle

    2018-05-01

    This study investigates forced localization of targets in simulated images with statistical properties similar to trans-axial sections of x-ray computed tomography (CT) volumes. A total of 24 imaging conditions are considered, comprising two target sizes, three levels of background variability, and four levels of frequency apodization. The goal of the study is to better understand how human observers perform forced-localization tasks in images with CT-like statistical properties. The transfer properties of CT systems are modeled by a shift-invariant transfer function in addition to apodization filters that modulate high spatial frequencies. The images contain noise that is the combination of a ramp-spectrum component, simulating the effect of acquisition noise in CT, and a power-law component, simulating the effect of normal anatomy in the background, which are modulated by the apodization filter as well. Observer performance is characterized using two psychophysical techniques: efficiency analysis and classification image analysis. Observer efficiency quantifies how much diagnostic information is being used by observers to perform a task, and classification images show how that information is being accessed in the form of a perceptual filter. Psychophysical studies from five subjects form the basis of the results. Observer efficiency ranges from 29% to 77% across the different conditions. The lowest efficiency is observed in conditions with uniform backgrounds, where significant effects of apodization are found. The classification images, estimated using smoothing windows, suggest that human observers use center-surround filters to perform the task, and these are subjected to a number of subsequent analyses. When implemented as a scanning linear filter, the classification images appear to capture most of the observer variability in efficiency (r 2 = 0.86). The frequency spectra of the classification images show that frequency weights generally appear bandpass in nature, with peak frequency and bandwidth that vary with statistical properties of the images. In these experiments, the classification images appear to capture important features of human-observer performance. Frequency apodization only appears to have a significant effect on performance in the absence of anatomical variability, where the observers appear to underweight low spatial frequencies that have relatively little noise. Frequency weights derived from the classification images generally have a bandpass structure, with adaptation to different conditions seen in the peak frequency and bandwidth. The classification image spectra show relatively modest changes in response to different levels of apodization, with some evidence that observers are attempting to rebalance the apodized spectrum presented to them. © 2018 American Association of Physicists in Medicine.

  20. Verification, refinement, and applicability of long-term pavement performance vehicle classification rules.

    DOT National Transportation Integrated Search

    2014-11-01

    The Long-Term Pavement Performance (LTPP) project has developed and deployed a set of rules for converting axle spacing and weight data into estimates of a vehicles classification. These rules are being used at Transportation Pooled Fund Study (TP...

  1. High Dimensional Classification Using Features Annealed Independence Rules.

    PubMed

    Fan, Jianqing; Fan, Yingying

    2008-01-01

    Classification using high-dimensional features arises frequently in many contemporary statistical studies such as tumor classification using microarray or other high-throughput data. The impact of dimensionality on classifications is largely poorly understood. In a seminal paper, Bickel and Levina (2004) show that the Fisher discriminant performs poorly due to diverging spectra and they propose to use the independence rule to overcome the problem. We first demonstrate that even for the independence classification rule, classification using all the features can be as bad as the random guessing due to noise accumulation in estimating population centroids in high-dimensional feature space. In fact, we demonstrate further that almost all linear discriminants can perform as bad as the random guessing. Thus, it is paramountly important to select a subset of important features for high-dimensional classification, resulting in Features Annealed Independence Rules (FAIR). The conditions under which all the important features can be selected by the two-sample t-statistic are established. The choice of the optimal number of features, or equivalently, the threshold value of the test statistics are proposed based on an upper bound of the classification error. Simulation studies and real data analysis support our theoretical results and demonstrate convincingly the advantage of our new classification procedure.

  2. Preprocessing and meta-classification for brain-computer interfaces.

    PubMed

    Hammon, Paul S; de Sa, Virginia R

    2007-03-01

    A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.

  3. U.S. Fish and Wildlife Service 1979 wetland classification: a review

    USGS Publications Warehouse

    Cowardin, L.M.; Golet, F.C.

    1995-01-01

    In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process.

  4. A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Uswatun Khasanah, Annisa; Harwati

    2017-06-01

    Student’s performance prediction is essential to be conducted for a university to prevent student fail. Number of student drop out is one of parameter that can be used to measure student performance and one important point that must be evaluated in Indonesia university accreditation. Data Mining has been widely used to predict student’s performance, and data mining that applied in this field usually called as Educational Data Mining. This study conducted Feature Selection to select high influence attributes with student performance in Department of Industrial Engineering Universitas Islam Indonesia. Then, two popular classification algorithm, Bayesian Network and Decision Tree, were implemented and compared to know the best prediction result. The outcome showed that student’s attendance and GPA in the first semester were in the top rank from all Feature Selection methods, and Bayesian Network is outperforming Decision Tree since it has higher accuracy rate.

  5. 46 CFR 1.03-35 - Appeals from decisions or actions of a recognized classification society acting on behalf of the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... classification society acting on behalf of the Coast Guard. 1.03-35 Section 1.03-35 Shipping COAST GUARD... recognized classification society acting on behalf of the Coast Guard. (a) Any person directly affected by a decision or action of a recognized classification society performing plan review, tonnage measurement, or...

  6. 46 CFR 1.03-35 - Appeals from decisions or actions of a recognized classification society acting on behalf of the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... classification society acting on behalf of the Coast Guard. 1.03-35 Section 1.03-35 Shipping COAST GUARD... recognized classification society acting on behalf of the Coast Guard. (a) Any person directly affected by a decision or action of a recognized classification society performing plan review, tonnage measurement, or...

  7. Evaluation of gene expression classification studies: factors associated with classification performance.

    PubMed

    Novianti, Putri W; Roes, Kit C B; Eijkemans, Marinus J C

    2014-01-01

    Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.

  8. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification

    NASA Astrophysics Data System (ADS)

    Sharif, I.; Khare, S.

    2014-11-01

    With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.

  9. Juvenile idiopathic arthritis in adulthood: fulfilment of classification criteria for adult rheumatic diseases, long-term outcomes and predictors of inactive disease, functional status and damage.

    PubMed

    Oliveira-Ramos, Filipa; Eusébio, Mónica; M Martins, Fernando; Mourão, Ana Filipa; Furtado, Carolina; Campanilho-Marques, Raquel; Cordeiro, Inês; Ferreira, Joana; Cerqueira, Marcos; Figueira, Ricardo; Brito, Iva; Canhão, Helena; Santos, Maria José; Melo-Gomes, José A; Fonseca, João Eurico

    2016-01-01

    To determine how adult juvenile idiopathic arthritis (JIA) patients fulfil classification criteria for adult rheumatic diseases, evaluate their outcomes and determine clinical predictors of inactive disease, functional status and damage. Patients with JIA registered on the Rheumatic Diseases Portuguese Register (Reuma.pt) older than 18 years and with more than 5 years of disease duration were included. Data regarding sociodemographic features, fulfilment of adult classification criteria, Health Assessment Questionnaire, Juvenile Arthritis Damage Index-articular (JADI-A) and Juvenile Arthritis Damage Index-extra-articular (JADI-E) damage index and disease activity were analysed. 426 patients were included. Most of patients with systemic JIA fulfilled criteria for Adult Still's disease. 95.6% of the patients with rheumatoid factor (RF)-positive polyarthritis and 57.1% of the patients with RF-negative polyarthritis matched criteria for rheumatoid arthritis (RA). 38.9% of the patients with extended oligoarthritis were classified as RA while 34.8% of the patients with persistent oligoarthritis were classified as spondyloarthritis. Patients with enthesitis-related arthritis fulfilled criteria for spondyloarthritis in 94.7%. Patients with psoriatic arthritis maintained this classification. Patients with inactive disease had lower disease duration, lower diagnosis delay and corticosteroids exposure. Longer disease duration was associated with higher HAQ, JADI-A and JADI-E. Higher JADI-A was also associated with biological treatment and retirement due to JIA disability and higher JADI-E with corticosteroids exposure. Younger age at disease onset was predictive of higher HAQ, JADI-A and JADI-E and decreased the chance of inactive disease. Most of the included patients fulfilled classification criteria for adult rheumatic diseases, maintain active disease and have functional impairment. Younger age at disease onset was predictive of higher disability and decreased the chance of inactive disease.

  10. Expected energy-based restricted Boltzmann machine for classification.

    PubMed

    Elfwing, S; Uchibe, E; Doya, K

    2015-04-01

    In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A tutorial on the use of ROC analysis for computer-aided diagnostic systems.

    PubMed

    Scheipers, Ulrich; Perrey, Christian; Siebers, Stefan; Hansen, Christian; Ermert, Helmut

    2005-07-01

    The application of the receiver operating characteristic (ROC) curve for computer-aided diagnostic systems is reviewed. A statistical framework is presented and different methods of evaluating the classification performance of computer-aided diagnostic systems, and, in particular, systems for ultrasonic tissue characterization, are derived. Most classifiers that are used today are dependent on a separation threshold, which can be chosen freely in many cases. The separation threshold separates the range of output values of the classification system into different target groups, thus conducting the actual classification process. In the first part of this paper, threshold specific performance measures, e.g., sensitivity and specificity, are presented. In the second part, a threshold-independent performance measure, the area under the ROC curve, is reviewed. Only the use of separation threshold-independent performance measures provides classification results that are overall representative for computer-aided diagnostic systems. The following text was motivated by the lack of a complete and definite discussion of the underlying subject in available textbooks, references and publications. Most manuscripts published so far address the theme of performance evaluation using ROC analysis in a manner too general to be practical for everyday use in the development of computer-aided diagnostic systems. Nowadays, the user of computer-aided diagnostic systems typically handles huge amounts of numerical data, not always distributed normally. Many assumptions made in more or less theoretical works on ROC analysis are no longer valid for real-life data. The paper aims at closing the gap between theoretical works and real-life data. The review provides the interested scientist with information needed to conduct ROC analysis and to integrate algorithms performing ROC analysis into classification systems while understanding the basic principles of classification.

  12. A new classification scheme of plastic wastes based upon recycling labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr

    Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less

  13. Use of hydrologic landscape classification to diagnose streamflow predictability in Oregon

    EPA Science Inventory

    We implement a spatially lumped rainfall-runoff model to predict daily streamflow at 88 catchments within Oregon, USA and analyze its performance within the context of Oregon Hydrologic Landscapes (OHL) classification. OHL classification is used to characterize the physio-climat...

  14. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  15. Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm.

    PubMed

    Al-Saffar, Ahmed; Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-Bared, Mohammed

    2018-01-01

    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.

  16. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  17. Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm

    PubMed Central

    Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-bared, Mohammed

    2018-01-01

    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach. PMID:29684036

  18. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .

  19. The prediction of swimming performance in competition from behavioral information.

    PubMed

    Rushall, B S; Leet, D

    1979-06-01

    The swimming performances of the Canadian Team at the 1976 Olympic Games were categorized as being improved or worse than previous best times in the events contested. The two groups had been previously assessed on the Psychological Inventories for Competitive Swimmers. A stepwise multiple-discriminant analysis of the inventory responses revealed that 13 test questions produced a perfect discrimination of group membership. The resultant discriminant functions for predicting performance classification were applied to the test responses of 157 swimmers at the 1977 Canadian Winter National Swimming Championships. Using the same performance classification criteria the accuracy of prediction was not better than chance in three of four sex by performance classifications. This yielded a failure to locate a set of behavioral factors which determine swimming performance improvements in elite competitive circumstances. The possibility of sets of factors which do not discriminate between performances in similar environments or between similar groups of swimmers was raised.

  20. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  1. Brain-actuated gait trainer with visual and proprioceptive feedback

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.

    2017-10-01

    Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

  2. Brain-actuated gait trainer with visual and proprioceptive feedback.

    PubMed

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Del R Millán, José

    2017-10-01

    Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. (i) For real-time classification, the average accuracy was [Formula: see text]% and [Formula: see text]% for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback ([Formula: see text]%) was significantly better than with visual feedback ([Formula: see text]%), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

  3. Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.

    2017-01-01

    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.

  4. Image Classification Workflow Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Christoffersen, M. S.; Roser, M.; Valadez-Vergara, R.; Fernández-Vega, J. A.; Pierce, S. A.; Arora, R.

    2016-12-01

    Recent increases in the availability and quality of remote sensing datasets have fueled an increasing number of scientifically significant discoveries based on land use classification and land use change analysis. However, much of the software made to work with remote sensing data products, specifically multispectral images, is commercial and often prohibitively expensive. The free to use solutions that are currently available come bundled up as small parts of much larger programs that are very susceptible to bugs and difficult to install and configure. What is needed is a compact, easy to use set of tools to perform land use analysis on multispectral images. To address this need, we have developed software using the Python programming language with the sole function of land use classification and land use change analysis. We chose Python to develop our software because it is relatively readable, has a large body of relevant third party libraries such as GDAL and Spectral Python, and is free to install and use on Windows, Linux, and Macintosh operating systems. In order to test our classification software, we performed a K-means unsupervised classification, Gaussian Maximum Likelihood supervised classification, and a Mahalanobis Distance based supervised classification. The images used for testing were three Landsat rasters of Austin, Texas with a spatial resolution of 60 meters for the years of 1984 and 1999, and 30 meters for the year 2015. The testing dataset was easily downloaded using the Earth Explorer application produced by the USGS. The software should be able to perform classification based on any set of multispectral rasters with little to no modification. Our software makes the ease of land use classification using commercial software available without an expensive license.

  5. Natural stimuli improve auditory BCIs with respect to ergonomics and performance

    NASA Astrophysics Data System (ADS)

    Höhne, Johannes; Krenzlin, Konrad; Dähne, Sven; Tangermann, Michael

    2012-08-01

    Moving from well-controlled, brisk artificial stimuli to natural and less-controlled stimuli seems counter-intuitive for event-related potential (ERP) studies. As natural stimuli typically contain a richer internal structure, they might introduce higher levels of variance and jitter in the ERP responses. Both characteristics are unfavorable for a good single-trial classification of ERPs in the context of a multi-class brain-computer interface (BCI) system, where the class-discriminant information between target stimuli and non-target stimuli must be maximized. For the application in an auditory BCI system, however, the transition from simple artificial tones to natural syllables can be useful despite the variance introduced. In the presented study, healthy users (N = 9) participated in an offline auditory nine-class BCI experiment with artificial and natural stimuli. It is shown that the use of syllables as natural stimuli does not only improve the users’ ergonomic ratings; also the classification performance is increased. Moreover, natural stimuli obtain a better balance in multi-class decisions, such that the number of systematic confusions between the nine classes is reduced. Hopefully, our findings may contribute to make auditory BCI paradigms more user friendly and applicable for patients.

  6. Network-based high level data classification.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-06-01

    Traditional supervised data classification considers only physical features (e.g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

  7. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  8. Clinico-pathological Correlation of Thyroid Nodule Ultrasound and Cytology Using the TIRADS and Bethesda Classifications.

    PubMed

    Singaporewalla, R M; Hwee, J; Lang, T U; Desai, V

    2017-07-01

    Clinico-pathological correlation of thyroid nodules is not routinely performed as until recently there was no objective classification system for reporting thyroid nodules on ultrasound. We compared the Thyroid Imaging Reporting and Data System (TIRADS) of classifying thyroid nodules on ultrasound with the findings on fine-needle aspiration cytology (FNAC) reported using the Bethesda System. A retrospective analysis of 100 consecutive cases over 1 year (Jan-Dec 2015) was performed comparing single-surgeon-performed bedside thyroid nodule ultrasound findings based on the TIRADS classification to the FNAC report based on the Bethesda Classification. TIRADS 1 (normal thyroid gland) and biopsy-proven malignancy referred by other clinicians were excluded. Benign-appearing nodules were reported as TIRADS 2 and 3. Indeterminate or suspected follicular lesions were reported as TIRADS 4, and malignant-appearing nodules were classified as TIRADS 5 during surgeon-performed bedside ultrasound. All the nodules were subjected to ultrasound-guided FNAC, and TIRADS findings were compared to Bethesda FNAC Classification. Of the 100 cases, 74 were considered benign or probably benign, 20 were suspicious for malignancy, and 6 were indeterminate on ultrasound. Overall concordance rate with FNAC was 83% with sensitivity and specificity of 70.6 and 90.4%, respectively. The negative predictive value was 93.8%. It is essential for clinicians performing bedside ultrasound thyroid and guided FNAC to document their sonographic impression of the nodule in an objective fashion using the TIRADS classification and correlate with the gold standard cytology to improve their learning curve and audit their results.

  9. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network

    PubMed Central

    Adak, M. Fatih; Yumusak, Nejat

    2016-01-01

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data. PMID:26927124

  10. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.

    PubMed

    Adak, M Fatih; Yumusak, Nejat

    2016-02-27

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  11. 40 CFR 51.900 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... higher or lower, classifications are ranked from lowest to highest as follows: classification under... National Ambient Air Quality Standard § 51.900 Definitions. The following definitions apply for purposes of... 42 U.S.C. 7401-7671q (2003). (f) Applicable requirements means for an area the following requirements...

  12. 40 CFR 51.900 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... higher or lower, classifications are ranked from lowest to highest as follows: classification under... National Ambient Air Quality Standard § 51.900 Definitions. The following definitions apply for purposes of... 42 U.S.C. 7401-7671q (2003). (f) Applicable requirements means for an area the following requirements...

  13. Evaluating data mining algorithms using molecular dynamics trajectories.

    PubMed

    Tatsis, Vasileios A; Tjortjis, Christos; Tzirakis, Panagiotis

    2013-01-01

    Molecular dynamics simulations provide a sample of a molecule's conformational space. Experiments on the mus time scale, resulting in large amounts of data, are nowadays routine. Data mining techniques such as classification provide a way to analyse such data. In this work, we evaluate and compare several classification algorithms using three data sets which resulted from computer simulations, of a potential enzyme mimetic biomolecule. We evaluated 65 classifiers available in the well-known data mining toolkit Weka, using 'classification' errors to assess algorithmic performance. Results suggest that: (i) 'meta' classifiers perform better than the other groups, when applied to molecular dynamics data sets; (ii) Random Forest and Rotation Forest are the best classifiers for all three data sets; and (iii) classification via clustering yields the highest classification error. Our findings are consistent with bibliographic evidence, suggesting a 'roadmap' for dealing with such data.

  14. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  15. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  16. How does the ball influence the performance of change of direction and sprint tests in para-footballers with brain impairments? Implications for evidence-based classification in CP-Football

    PubMed Central

    2017-01-01

    The aims of this study were: i) to analyze the reliability and validity of three tests that require sprinting (10 m, 25 m, 40 m), accelerations/decelerations (Stop and Go Test) and change of direction (Illinois Agility Test), with and without ball, in para-footballers with neurological impairments, and ii) to compare the performance in the tests when ball dribbling is required and to explore the practical implications for evidence-based classification in cerebral palsy (CP)-Football. Eighty-two international para-footballers (25.2 ± 6.8 years; 68.7 ± 8.3 kg; 175.3 ± 7.4 cm; 22.5 ± 2.7 kg·m-2), classified according to the International Federation of Cerebral Palsy Football (IFCPF) Classification Rules (classes FT5-FT8), participated in the study. A group of 31 players without CP was also included in the study as a control group. The para-footballers showed good reliability scores in all tests, with and without ball (ICC = 0.53–0.95, SEM = 2.5–9.8%). Nevertheless, the inclusion of the ball influenced testing reproducibility. The low or moderate relationships shown among sprint, acceleration/deceleration and change of direction tests with and without ball also evidenced that they measure different capabilities. Significant differences and large effect sizes (0.53 < ηp2 < 0.97; p < 0.05) were found when para-footballers performed the tests with and without dribbling the ball. Players with moderate neurological impairments (i.e. FT5, FT6, and FT7) had higher coefficients of variation in the trial requiring ball dribbling. For all the tests, we also obtained between-group (FT5-FT8) statistical and large practical differences (ηp2 = 0.35–0.62, large; p < 0.01). The proposed sprint, acceleration/deceleration and change of direction tests with and without ball may be applicable for classification purposes, that is, evaluation of activity limitation from neurological impairments, or decision-making between current CP-Football classes. PMID:29099836

  17. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.

    PubMed

    Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin

    2018-05-03

    The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.

  18. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline

    PubMed Central

    Fan, Yong; Batmanghelich, Nematollah; Clark, Chris M.; Davatzikos, Christos

    2010-01-01

    Spatial patterns of brain atrophy in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) were measured via methods of computational neuroanatomy. These patterns were spatially complex and involved many brain regions. In addition to the hippocampus and the medial temporal lobe gray matter, a number of other regions displayed significant atrophy, including orbitofrontal and medial-prefrontal grey matter, cingulate (mainly posterior), insula, uncus, and temporal lobe white matter. Approximately 2/3 of the MCI group presented patterns of atrophy that overlapped with AD, whereas the remaining 1/3 overlapped with cognitively normal individuals, thereby indicating that some, but not all, MCI patients have significant and extensive brain atrophy in this cohort of MCI patients. Importantly, the group with AD-like patterns presented much higher rate of MMSE decline in follow-up visits; conversely, pattern classification provided relatively high classification accuracy (87%) of the individuals that presented relatively higher MMSE decline within a year from baseline. High-dimensional pattern classification, a nonlinear multivariate analysis, provided measures of structural abnormality that can potentially be useful for individual patient classification, as well as for predicting progression and examining multivariate relationships in group analyses. PMID:18053747

  19. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  20. GA(M)E-QSAR: a novel, fully automatic genetic-algorithm-(meta)-ensembles approach for binary classification in ligand-based drug design.

    PubMed

    Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann

    2012-09-24

    Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.

Top