Sample records for higher co2 levels

  1. Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition.

    PubMed

    Gao, Guang; Xia, Jianrong; Yu, Jinlan; Zeng, Xiaopeng

    2018-02-01

    A classical red tide alga Skeletonema costatum was cultured under various nitrate levels to investigate its physiological response to nitrate enrichment combined with CO 2 limitation. The higher nitrate levels increased content of photosynthetic pigments (Chl a and Chl c), electron transport rate in photosystem II, photosynthetic O 2 evolution, and thus growth rate in S. costatum. On the other hand, the lower CO 2 levels (3.5-4.4 μmol kg -1 seawater) and higher pH (8.56-8.63) values in seawater were observed under higher nitrate conditions. Redox activity of plasma membrane and carbonic anhydrase in S. costatum was enhanced to address the reduced CO 2 level at higher nitrate levels. In addition, the pH compensation point was enhanced and direct HCO 3 - use was induced at higher nitrate levels. These findings indicate that nitrate enrichment would stimulate the breakout of S. costatum dominated red tides via enhancing its photosynthetic performances, and maintain a quick growth rate under CO 2 limitation conditions through improving its inorganic carbon acquisition capability. Our study sheds light on the mechanisms of S. costatum defeating CO 2 limitation during algal bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The effects of triazophos applied to transgenic Bt rice on the nutritional indexes, Nlvg expression, and population growth of Nilaparvata lugens Stål under elevated CO₂.

    PubMed

    Ge, Lin-Quan; Sun, Yu-Cheng; Ouyang, Fang; Wu, Jin-Cai; Ge, Feng

    2015-02-01

    The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a typical pest in which population resurgence can be induced by insecticides. Warmer global temperatures, associated with anthropogenic climate change, are likely to have marked ecological effects on terrestrial ecosystems. However, the effects of elevated CO2 (eCO2) concentrations on the resurgence of N. lugens that have been treated with pesticides used for transgenic Bt rice cultivation are not fully understood. The present study investigated changes in the protein content, soluble sugar content, free amino acid level, vitellogenin (Nlvg) mRNA expression, and the population growth of N. lugens on transgenic Bt rice (TT51) following triazaophos foliar spray under conditions of eCO2. The results showed that the protein content in the fat bodies and ovaries of N. lugens adult females in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under ambient CO2 (aCO2) and was also higher than that in females feeding on the non-transgenic parent (MH63) under aCO2 at different days after emergence (DAEs). The soluble sugar content and free amino level of adult females in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under aCO2 and was also higher than in MH63 under aCO2 at 1 and 3 DAE. The Nlvg mRNA expression level of N. lugens adult females in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under aCO2 and was also higher than in MH63 under aCO2 at 1 and 3 DAE. The population number of N. lugens in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under aCO2 and was also higher than in MH63 under aCO2. The present findings provide important information for integrated pest management with transgenic varieties and a better understanding of the resurgence mechanism of N. lugens under eCO2. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Preliminary evidences of CCM operation and its down regulation in relation to increasing CO2 levels in natural phytoplankton assemblages from the coastal waters of Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Biswas, Haimanti; Rahman Shaik, Aziz Ur; Bandyopadhyay, Debasmita

    2014-05-01

    Bay of Bengal (BoB), a low productive part of the North Indian Ocean, often possesses low CO2 levels in its surface water and diatoms dominate the phytoplankton communities. Virtually no studies are available from this area reporting how this diatom dominated phytoplankton community would respond any increase in dissolved CO2 levels either naturally or anthopogenically. In most of the marine phytoplankton, the inefficiency of the sole carbon fixing enzyme Rubisco necessitates the need of concentrating dissolved inorganic carbon (DIC) (mostly as HCO3) inside the cell in excess of the ambient water concentrations in order to maintain high rate of photosynthesis under low CO2 levels through an energy consuming carbon concentration mechanisms (CCMs). The ubiquitous enzyme carbonic anhydrase (CA) plays a vital role in CCMs by converting HCO3- to CO2 and usually utilizes the trace metal zinc (Zn) as a cofactor. However, it is evident in many marine phytoplankton species that with increasing external CO2 levels, CCMs can be down-regulated leading to energetic savings which can be reallocated to growth; although exceptions occur. Hence, in order to predict their responses to the projected changes, it is imperative to understand their carbon metabolism patterns. We have conducted a series of incubation experiments in microcosms with natural phytoplankton communities from the coastal waters of BoB under different CO2 levels. Our results revealed that the rate of net photosynthetic oxygen evolution and biomass build-up increased in response to increasing CO2 levels. The depletion in δ13CPOM values were more in the high CO2 treatments relative to the low CO2 treated cells (control), indicating that dissolved CO2 uptake was higher when CO2 levels were increased. When additional Zn was added to the low CO2 treated cells, net photosynthetic oxygen evolution rate was increased significantly than that of the untreated control. It is likely that upon the supply of Zn under low CO2 levels, CA activity was enhanced and accelerated DIC transport and photosynthetic rate. Moreover, δ13CPOM values of low CO2 samples (both Zn treated and untreated) were almost identical, though the rate of photosynthesis was higher in response to Zn addition. This could be because of the fact that under low CO2 levels, DIC was possibly transported as HCO3- and an active HCO3- transport can contribute to low discrimination of 13C compared to diffusive CO2uptake leading to unaltered values of δ13CPOM. Furthermore, under low CO2 treatments, the need of nitrogen resource can be higher to maintain an active CCM (to build-up required proteins, Rubisco and CCM components) and our results showed higher values of δ15NPOMunder low CO2 levels relative to the high CO2treatments suggesting higher nitrogen utilization efficiency in the former case. These observations strengthen the possibility of operating an active CCM under low CO2 levels. HPLC pigment analysis revealed the occurrences of diatoxanthin (DT) [indicator of non-photo-chemical quenching (NPQ)] and high values of photoprotective carotenoid to light harvesting carotenoid ratios (PPC/LHC) in the low CO2 treated cells indicating light stress. This is likely that, when CO2, the only substrate for Rubisco, is low, absorbed light energy within the cell can be surplus leading to photo-damage and to protect the cell from potential damage, DT was produced by energy dissipation via NPQ and PPC were synthesized in excess of LHC. Conversely, in Zn and high CO2 treated cells, the absence of DT and reduced values of PPC/LHC indirectly indicates reduced light stress which was possibly because of enhanced supply of Rubisco substrate either via active bicarbonate transport or diffusive CO2 supply. Thus, we infer that the diatom dominated phytoplankton communities from the study area perform CCMs under low CO2 conditions and the same can be down regulated upon the increasing levels of CO2 and the community may benefit from the increasing CO2 levels followed by increased rate of carbon fixation. These can have large biogeochemical significance.

  4. Ciliate and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lischka, Silke; Bach, Lennart T.; Schulz, Kai-Georg; Riebesell, Ulf

    2017-01-01

    Community approaches to investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis. We conducted a large-scale mesocosm CO2 enrichment experiment ( ˜ 55 m3) enclosing the natural plankton community in Tvärminne-Storfjärden for 8 weeks during June-August 2012 and studied community and species-taxon response of ciliates and mesozooplankton to CO2 elevations expected for this century. In addition to the response to fCO2, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of ciliates significantly decreased with fCO2 and temperature with a greater dominance of smaller species. The mixotrophic Myrionecta rubra seemed to indirectly and directly benefit from higher CO2 concentrations in the post-bloom phase through increased occurrence of picoeukaryotes (most likely Cryptophytes) and Dinophyta at higher CO2 levels. With respect to mesozooplankton, we did not detect significant effects for either total abundance or for Shannon diversity. The cladocera Bosmina sp. occurred at distinctly higher abundance for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina sp. with empty to embryo- or resting-egg-bearing brood chambers, however, was significantly affected by CO2, temperature, and chlorophyll a. An indirect CO2 effect via increased food availability (Cyanobacteria) stimulating Bosmina sp. reproduction cannot be ruled out. Although increased regenerated primary production diminishes trophic transfer in general, the presence of organisms able to graze on bacteria such as cladocerans may positively impact organic matter transfer to higher trophic levels. Thus, under increasing OA in cladoceran-dominated mesozooplankton communities, the importance of the microbial loop in the pelagic zone may be temporarily enhanced and carbon transfer to higher trophic levels may be stimulated.

  5. Effects of Elevated CO2 on Levels of Primary Metabolites and Transcripts of Genes Encoding Respiratory Enzymes and Their Diurnal Patterns in Arabidopsis thaliana: Possible Relationships with Respiratory Rates

    PubMed Central

    Watanabe, Chihiro K.; Sato, Shigeru; Yanagisawa, Shuichi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko

    2014-01-01

    Elevated CO2 affects plant growth and photosynthesis, which results in changes in plant respiration. However, the mechanisms underlying the responses of plant respiration to elevated CO2 are poorly understood. In this study, we measured diurnal changes in the transcript levels of genes encoding respiratory enzymes, the maximal activities of the enzymes and primary metabolite levels in shoots of Arabidopsis thaliana grown under moderate or elevated CO2 conditions (390 or 780 parts per million by volume CO2, respectively). We examined the relationships between these changes and respiratory rates. Under elevated CO2, the transcript levels of several genes encoding respiratory enzymes increased at the end of the light period, but these increases did not result in changes in the maximal activities of the corresponding enzymes. The levels of some primary metabolites such as starch and sugar phosphates increased under elevated CO2, particularly at the end of the light period. The O2 uptake rate at the end of the dark period was higher under elevated CO2 than under moderate CO2, but higher under moderate CO2 than under elevated CO2 at the end of the light period. These results indicate that the changes in O2 uptake rates are not directly related to changes in maximal enzyme activities and primary metabolite levels. Instead, elevated CO2 may affect anabolic processes that consume respiratory ATP, thereby affecting O2 uptake rates. PMID:24319073

  6. Dynamics of carbon dioxide concentrations in the air and its effect on the cognitive ability of school students

    NASA Astrophysics Data System (ADS)

    Sidorin, D. I.

    2015-12-01

    The carbon dioxide (CO2) production intensity by a secondary school student is studied using a nondispersive infrared CO2 logger for different conditions: relaxation, mental stress, and physical stress. CO2 production measured for mental stress is 24% higher than that for relaxation, while CO2 production for physical stress is more than 2.5 times higher than relaxation levels. Dynamics of CO2 concentration in the classroom air is measured for a typical school building. It is shown that even when the classroom is ventilated between classes, CO2 concentration exceeds 2100 parts per million (ppm), which is significantly higher than the recommended limits defined in developed countries. The ability of seventh-grade school students to perform tasks requiring mental concentration is tested under different CO2 concentration conditions (below 1000 ppm and above 2000 ppm). Five-letter word anagrams are used as test tasks. Statistical analysis of the test results revealed a significant reduction in the number of provided correct answers and an increase in the number of errors when CO2 levels exceeded 2000 ppm.

  7. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema

    PubMed Central

    Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2014-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806

  8. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    PubMed

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).

  9. CO2 induced growth response in a diatom dominated phytoplankton community from SW Bay of Bengal coastal water

    NASA Astrophysics Data System (ADS)

    Biswas, Haimanti; Shaik, Aziz Ur Rahman; Bandyopadhyay, Debasmita; Chowdhury, Neha

    2017-11-01

    The ongoing increase in surface seawater CO2 level could potentially impact phytoplankton primary production in coastal waters; however, CO2 sensitivity studies on tropical coastal phytoplankton assemblages are rare. The present study investigated the interactive impacts of variable CO2 level, light and zinc (Zn) addition on the diatom dominated phytoplankton assemblages from the western coastal Bay of Bengal. Increased CO2 supply enhanced particulate organic matter (POC) production; a concomitant depletion in δ13CPOM values at elevated CO2 suggested increased CO2 diffusive influx inside the cell. Trace amount of Zn added under low CO2 level accelerated growth probably by accelerating Zn-Carbonic Anhydrase activity which helps in converting bicarbonate ion to CO2. Almost identical values of δ13CPOM in the low CO2 treated cells grown with and without Zn indicated a low discrimination between 13C and 12C probably due to bicarbonate uptake. These evidences collectively indicated the existence of the carbon concentration mechanisms (CCMs) at low CO2. A minimum growth rate was observed at low CO2 and light limited condition indicating light dependence of CCMs activity. Upon the increase of light and CO2 level, growth response was maximum. The cells grown in the low CO2 levels showed higher light stress (higher values of both diatoxanthin index and the ratio of photo-protective to light-harvesting pigments) that was alleviated by both increasing CO2 supply and Zn addition (probably by efficient light energy utilization in presence of adequate CO2). This is likely that the diatom dominated phytoplankton communities benefited from the increasing CO2 supply and thus may enhance primary production in response to any further increase in coastal water CO2 levels and can have large biogeochemical consequences in the study area.

  10. Regulatory capacities of a broiler and layer strain exposed to high CO2 levels during the second half of incubation.

    PubMed

    Everaert, Nadia; Willemsen, Hilke; Kamers, Bram; Decuypere, Eddy; Bruggeman, Veerle

    2011-02-01

    It has been shown that during embryonic chicken (Gallus gallus) development, the metabolism of broiler embryos differs from that of layers in terms of embryonic growth, pCO2/pO2 blood levels, heat production, and heart rate. Therefore, these strains might adapt differently on extreme environmental factors such as exposure to high CO2. The aim of this study was to compare broiler and layer embryos in their adaptation to 4% CO2 from embryonic days (ED) 12 to 18. Due to hypercapnia, blood pCO2 increased in both strains. Blood bicarbonate concentration was ~10 mmol/L higher in embryos exposed to high CO2 of both strains, while the bicarbonates of broilers had ~5 mmol/L higher values than layer embryos. In addition, the pH increased when embryos of both strains were exposed to CO2. Moreover, under CO2 conditions, the blood potassium concentration increased in both strains significantly, reaching a plateau at ED14. At ED12, the layer strain had a higher increase in CAII protein in red blood cells due to incubation under high CO2 compared to the broiler strain, whereas at ED14, the broiler strain had the highest increase. In conclusion, the most striking observation was the similar mechanism of broiler and layer embryos to cope with high CO2 levels. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Effects of elevated CO2 on maize defense against mycotoxigenic Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Elevated atmospheric carbon dioxide concentration ([CO2]) increased maize susceptibility to Fusarium verticillioides stalk rot. Even though the pathogen biomass accumulated to significantly higher levels at double ambient [CO2] (2x[CO2]), the projected [CO2] concentration to occur at the end of this...

  12. Maintenance of CO2 level in a BLSS by controlling solid waste treatment unit

    NASA Astrophysics Data System (ADS)

    Dong, Yingying; Li, Leyuan; Liu, Hong; Fu, Yuming; Xie, Beizhen; Hu, Dawei; Liu, Dianlei; Dong, Chen; Liu, Guanghui

    A bioregenerative life support system (BLSS) is an artificial closed ecosystem for providing basic human life support for long-duration, far-distance space explorations such as lunar bases. In such a system, the circulation of gases is one of the main factor for realizing a higher closure degree. O2 produced by higher plants goes to humans, as well as microorganisms for the treatment of inedible plant biomass and human wastes; CO2 produced by the crew and microorganisms is provided for plant growth. During this process, an excessively high CO2 level will depress plant growth and may be harmful to human health; and if the CO2 level is too low, plant growth will also be affected. Thus, keeping the balance between CO2 and O2 levels is a crucial problem. In this study, a high-efficiency, controllable solid waste treatment unit is constructed, which adopts microbial fermentation of the mixture of inedible biomass and human wastes. CO2 production during the fermentation process is controlled by adjusting fermentation temperature, aeration rate, moisture, etc., so as to meet the CO2 requirement of plants

  13. Photosynthetic responses of yellow poplar and white oak to long term atmospheric CO sub 2 enrichment in the field. [Liriondendron tulipifera L; Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, C.A.; Norby, R.J.

    1991-05-01

    A critical consideration in evaluating forest response to rising atmospheric CO{sub 2} is whether the enhancement of net photosynthesis (P{sub N}) by elevated CO{sub 2} can be sustained over the long term. There are reports of declining enhancement of P{sub N} with duration of exposure to elevated CO{sub 2}, associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have beenmore » exposed continuously to CO{sub 2} enrichment during the last two growing seasons. The three CO{sub 2} treatment levels were: ambient, ambient +150, and ambient +300 {mu}L/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO{sub 2} levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO{sub 2} enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO{sub 2}, but instantaneous water use efficiency (P{sub N}/transpiration) increased significantly with CO{sub 2}. Analysis of P{sub N} versus internal CO{sub 2} concentration indicated no significant treatment differences in carboxylation efficiency, CO{sub 2}-saturated P{sub N}, or CO{sub 2} compensation point. There was no evidence of a downward acclimation of photosynthesis to CO{sub 2} enrichment in this system.« less

  14. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Stark, J. M.; Bugbee, B.

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

  15. High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H2O2 production in tomato (Solanum lycopersicum).

    PubMed

    Yi, Changyu; Yao, Kaiqian; Cai, Shuyu; Li, Huizi; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan; Foyer, Christine Helen; Zhou, Yanhong

    2015-12-01

    Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol(-1)) or high (760 μmol mol(-1)) CO2 in the absence or presence of sodium chloride (100mM). The higher atmospheric CO2 level induced the expression of RESPIRATORY BURST OXIDASE 1 (SlRBOH1) and enhanced H2O2 accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO2 levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SlRBOH1 abolished high CO2 -induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na(+) accumulation in the plants. The higher atmospheric CO2 level increased the abundance of a subset of transcripts involved in Na(+) homeostasis in the controls but not in the SlRBOH1-silenced plants. It is concluded that high atmospheric CO2 concentrations increase salt stress tolerance in an apoplastic H2O2 dependent manner, by suppressing transpiration and hence Na(+) delivery from the roots to the shoots, leading to decreased leaf Na(+) accumulation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment.

    PubMed

    Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-02-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].

  17. Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment

    PubMed Central

    Chen, Charles P.; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-01-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol−1 above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety ‘Koshihikari’. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2]. PMID:24443497

  18. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    PubMed

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application, the elevation of atmospheric CO2 increased the transport coefficients of SMg,Fe, SMg,Mn and SS,B, but decreased the transport coefficients of SCa, Mg, SFe,Mo and SS,Fe indicating the proportions of Fe, Mn and Ca transported into the upper part of plant tissues was higher than that of Mg; the corresponding value of B was higher than that observed for S, the corresponding value of Fe was higher than that of Mo, and the corresponding value of S was higher than that of Fe.

  19. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    PubMed

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  20. The role of CO2 variability and exposure time for biological impacts of ocean acidification

    NASA Astrophysics Data System (ADS)

    Shaw, Emily C.; Munday, Philip L.; McNeil, Ben I.

    2013-09-01

    impacts of ocean acidification have mostly been studied using future levels of CO2 without consideration of natural variability or how this modulates both duration and magnitude of CO2 exposure. Here we combine results from laboratory studies on coral reef fish with diurnal in situ CO2 data from a shallow coral reef, to demonstrate how natural variability alters exposure times for marine organisms under increasingly high-CO2 conditions. Large in situ CO2 variability already results in exposure of coral reef fish to short-term CO2 levels higher than laboratory-derived critical CO2 levels (~600 µatm). However, we suggest that the in situ exposure time is presently insufficient to induce negative effects observed in laboratory studies. Our results suggest that both exposure time and the magnitude of CO2 levels will be important in determining the response of organisms to future ocean acidification, where both will increase markedly with future increases in CO2.

  1. Relationship between soil cobalt and vitamin B12 levels in the liver of livestock in Saudi Arabia: role of competing elements in soils.

    PubMed

    Huwait, Etimad A; Kumosani, Taha A; Moselhy, Said S; Mosaoa, Rami M; Yaghmoor, Soonham S

    2015-09-01

    This study aimed to analyze the agricultural soils from different regions in Saudi Arabia for cobalt and related metals as Cu(2+), Ni(2+), Cr(3+), Zn(2+) and Pb(2+). Liver and muscle tissues of livestock grazing on the selected areas were analyzed for the content of Co and vitamin B12. Our results indicated that the levels of Co in surface soil (0-15 cm) were higher than in sub-surface soil (>15 cm-45 cm). In contrast, Pb and Zn were higher in sub-surface soil than in surface soil. A significant positive correlation existed between the levels of Co and vitamin B12 in the liver of livestock. However, Co was not detected in muscle tissues while vitamin B12 was present at very low levels in comparison with the levels found in the liver. The results indicated that Zn(2+), Pb(2+) compete with Co in soil, which eventually affected the levels of vitamin B12 in liver. It was recommended that survey of heavy metals in grazing fields of cattle should consider inclusion of multiple elements that compete with the bioavailability of essential elements in plants and animals for the prevention of deficiency of essential elements such as Co.

  2. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    PubMed

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  3. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress*

    PubMed Central

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388

  4. Modification of land-atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone

    2016-10-01

    Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.

  5. Climate change and crop phytochemical defenses: Potential implications for food security and food safety

    USDA-ARS?s Scientific Manuscript database

    Elevated atmospheric carbon dioxide concentration ([CO2]) increased maize susceptibility to Fusarium verticillioides stalk rot. Even though the pathogen biomass accumulated to significantly higher levels at double ambient [CO2] (2x[CO2]), the projected [CO2] concentration to occur at the end of this...

  6. Effect of Prolonged Exposure to Elevated Carbon Monoxide and Carbon Dioxide Levels on Red Blood Cell Parameters during Submarine Patrols

    DTIC Science & Technology

    1975-12-01

    rise in Hb, Hct. and red cells, to compensate for the anoxic stress induced by higher carboxyhemoglobin levels (HbCO). Inhalation of CO2 in higher...expected to cause an equilibrium value of 8-50% carboxyhemoglobin (HbCO). Under these conditions, Schulte (1961) did not find any gross changes in...according to Stewart (1974). Carboxyhemoglobin levels of 1-5% cause an increased blood Cow to vital organs, which compensates for the loss of oxygen

  7. Ocean acidification and fertilization in the antarctic sea urchin Sterechinus neumayeri: the importance of polyspermy.

    PubMed

    Sewell, Mary A; Millar, Russell B; Yu, Pauline C; Kapsenberg, Lydia; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification (OA), the reduction of the seawater pH as a result of increasing levels of atmospheric CO2, is an important climate change stressor in the Southern Ocean and Antarctic. We examined the impact of OA on fertilization success in the Antarctic sea urchin Sterechinus neumayeri using pH treatment conditions reflective of the current and near-future "pH seascape" for this species: current (control: pH 8.052, 384.1 μatm of pCO2), a high CO2 treatment approximating the 0.2-0.3 unit decrease in pH predicted for 2100 (high CO2: pH 7.830, 666.0 μatm of pCO2), and an intermediate medium CO2 (pH 7.967, 473.4 μatm of pCO2). Using a fertilization kinetics approach and mixed-effect models, we observed significant variation in the OA response between individual male/female pairs (N = 7) and a significant population-level increase (70-100%) in tb (time for a complete block to polyspermy) at medium and high CO2, a mechanism that potentially explains the higher levels of abnormal development seen in OA conditions. However, two pairs showed higher fertilization success with CO2 treatment and a nonsignificant effect. Future studies should focus on the mechanisms and levels of interindividual variability in OA response, so that we can consider the potential for selection and adaptation of organisms to a future ocean.

  8. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    PubMed

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  9. Micro- and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lischka, S.; Bach, L. T.; Schulz, K.-G.; Riebesell, U.

    2015-12-01

    Community approaches investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis, thus some level of tolerance/adaptation may be expected. We conducted a large-scale mesocosm CO2 enrichment experiment (~ 55 m3) enclosing the natural plankton community in Tvärminne/Storfjärden for eight weeks during June-August 2012 and studied community and species/taxon response of microzooplankton (ciliates) and mesozooplankton to CO2 elevations expected for this century. Besides the response to fCO2 and associate changes in carbonate chemistry speciation, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of microzooplankton significantly decreased with fCO2 and temperature with a greater dominance of smaller species. Small sized ciliates (Myrionecta rubra, Balanion comatum, Strombidium cf. epidemum, Strobilidium sp.) showed significant relations with one or more of the factors. The phototrophic Myrionecta rubra seemed to directly benefit from higher CO2 concentrations and showed increased abundance in the pre-bloom phase. With respect to meszooplankton, we neither detected significant effects for total abundance nor for Shannon diversity. The cladocera Bosmina occurred at distinctly higher abundance (more than twice as high compared to the control mesocosms) for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina with empty to embryo/resting egg bearing brood chambers, however, was significantly affected by all three factors. An indirect CO2 effect via increased food availability stimulating Bosmina reproduction is suggested, but too low sampling frequency of this highly flexible organism probably entailed proving a significant relation with fCO2. Filter-feeding cladocerans effectively transfer microbial loop carbon to higher trophic levels. Thus, under increasing OA in cladoceran dominated mesozooplankton communities the importance of the microbial loop in the pelagic zone may be enhanced and carbon transfer to higher trophic levels stimulated.

  10. CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column

    NASA Astrophysics Data System (ADS)

    puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.

    2018-03-01

    Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.

  11. Impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries heifers

    PubMed Central

    Pandey, Priyanka; Hooda, O. K.; Kumar, Sunil

    2017-01-01

    Aim: The present investigation was undertaken to study the impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries (KF) heifers. Materials and Methods: The animals of both the breeds of Tharparkar and KF were exposed at different temperatures and CO2 levels. Exposure conditions of 25°C, 400 ppm CO2 level, and 60% relative humidity (RH) were taken as a control condition. The exposure conditions 40°C with two levels of CO2 500 ppm and 600 ppm with RH 55±5% and exposure conditions 42°C with two levels of CO2 500 ppm and 600 ppm with RH 55±5% were taken as treatments. The exposure period in each condition was 4 h daily for 5 consecutive days. Results: Physiological responses (respiration rate [RR], pulse rate [PR], and rectal temperature [RT]) were significantly (p<0.01) higher and different during all exposure conditions compared to control condition in both the breeds of cattle. KF heifers had higher RR, PR, and RT than Tharparkar heifers. Hematological parameters, namely, red blood cell, hemoglobin, and packed cell volume were significantly higher and different during all exposure condition than control in both the breeds, whereas no significant changes were observed in total leukocyte count and differential leukocyte count. Blood pH increased with increase in temperature and CO2 levels and was significantly higher than control conditions. PCO2 and base excess were significantly (p<0.05) lower, and PO2 was higher during different exposure conditions than control in both breeds. Restlessness and excitement signs were observed in all the exposure conditions as compared to control condition in both the breeds. Conclusion: Changes in physiological responses, behavioral pattern, and hematological parameters reflect the current functional status of the body system, and it can be used as an index for assessing the adaptation capacity of cattle to predict changes occurring in climate variables due to increasing CO2 levels and environmental temperature. PMID:29062208

  12. Effects of carbon dioxide on turkey poult performance and behavior.

    PubMed

    Cândido, M G L; Xiong, Y; Gates, R S; Tinôco, I F F; Koelkebeck, K W

    2018-04-14

    Appropriate ventilation of poultry facilities is critical for achieving optimum performance. Ventilation promotes good air exchange to remove harmful gases, excessive heat, moisture, and particulate matter. In a turkey brooder barn, carbon dioxide (CO2) may be present at higher levels during the winter due to reduced ventilation rates to maintain high temperatures. This higher CO2 may negatively affect turkey poult performance. Therefore, the objective of this study was to evaluate the effects of subjecting tom turkey poults (commercial Large White Hybrid Converters) to different constant levels of atmospheric CO2 on their growth performance and behavior. In three consecutive replicate trials, a total of 552 poults were weighed post-hatch and randomly placed in 3 environmental control chambers, with 60 (Trial 1) and 62 (Trials 2 and 3) poults housed per chamber. They were reared with standard temperature and humidity levels for 3 wks. The poults were exposed to 3 different fixed CO2 concentrations of 2,000, 4,000, and 6,000 ppm throughout each trial. Following each trial (replicate), the CO2 treatments were switched and assigned to a different chamber in order to expose each treatment to each chamber. At the end of each trial, all poults were sent to a local turkey producer to finish growout. For each trial, individual body weight and group feed intake were measured, and mortality and behavioral movement were recorded. Wk 3 and cumulative body weight gain of poults housed at 2,000 ppm CO2 was greater (P < 0.05) than those exposed to 4,000 and 6,000 ppm CO2. Feed intake and feed conversion were unaffected by the different CO2 concentrations. No significant difference in poult mortality was found between treatments. In addition, no effect of CO2 treatments was evident in the incidence of spontaneous turkey cardiomyopathy for turkeys processed at 19 wk of age. Poults housed at the lower CO2 level (2,000 ppm) demonstrated reduced movement compared with those exposed to the 2 higher CO2 concentrations.

  13. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel energy demand show CO2 concentrations increasing indefinitely into the future. After electricity production, the transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Over 80% of the transport sector is composed of onroad emissions, with the remainder shared by the nonroad, aircraft, railroad, and commercial marine vessel transportation. In order to construct effective mitigation policy for the onroad transportation sector and more accurately predict CO2 emissions for use in transport models and atmospheric measurements, analysis must incorporate the three components that determine the CO2 onroad transport emissions: vehicle fleet composition, average speed of travel, and emissions regulation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. National-level projections of VMT growth is not sufficient to highlight regional differences in CO2 emissions growth due to the heterogeneity of vehicle fleet and each state’s road network which determines the speed of travel of vehicles. We examine how an analysis based on direct CO2 emissions and an analysis based on VMT differ in terms of their emissions and mitigation implications highlighting potential biases introduced by the VMT-based approach. This analysis is performed at the US state level and results are disaggregated by road and vehicle classification. We utilize the results of the Vulcan fossil fuel CO2 emissions inventory which quantified emissions for the year 2002 across all economic sectors in the US at high resolution. We perform this comparison by fuel type,12 road types, and 12 vehicle types for US census regions and individual states. At the national level, rural roads show a 5% higher CO2 relative fraction compared to the VMT relative fraction, mostly due to a 15% higher CO2 fraction on rural interstates as a result of a higher proportion of heavy-duty vehicles such as large trucks. The diesel vehicle fleet has a 62% higher CO2 fraction compared to VMT with the largest contributors being buses and the heaviest truck classes. The differences become larger when analyzed at the state level. For example, Tennessee has 30% higher CO2 fractions compared to VMT on rural interstates and New York has 175% higher CO2 fractions compared to VMT for the bus vehicle class. Using VMT as a proxy for CO2 emissions results in incorrect estimations of CO2 emissions because of the strong space and time variations in fleet composition and road type. At the national scale the differences among the two methods are very small, but the spatial signature of CO2 emitted by onroad traffic is very strong and highly dependent on the region which can be confirmed with atmospheric measurements from aircraft and flux towers.

  14. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: A possible role in statin-induced hepatotoxicity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavintharan, S.; Ong, C.N.; Jeyaseelan, K.

    2007-09-01

    Lowering of low-density lipoprotein cholesterol is well achieved by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins). Statins inhibit the conversion of HMG-CoA to mevalonate, a precursor for cholesterol and coenzyme Q10 (CoQ{sub 10}). In HepG2 cells, simvastatin decreased mitochondrial CoQ{sub 10} levels, and at higher concentrations was associated with a moderately higher degree of cell death, increased DNA oxidative damage and a reduction in ATP synthesis. Supplementation of CoQ{sub 10}, reduced cell death and DNA oxidative stress, and increased ATP synthesis. It is suggested that CoQ{sub 10} deficiency plays an important role in statin-induced hepatopathy, and that CoQ{sub 10} supplementation protectsmore » HepG2 cells from this complication.« less

  15. Quality of Golden papaya stored under controlled atmosphere conditions.

    PubMed

    Martins, Derliane Ribeiro; de Resende, Eder Dutra

    2013-10-01

    This work evaluated physicochemical parameters of Golden papaya stored under refrigeration in controlled atmospheres. The fruits were kept at 13  in chambers containing either 3 or 6% O2 combined with 6%, 10% or 15% CO2. Moreover, a normal atmosphere was produced with 20.8% O2 and 0.03% CO2 with ethylene scrubbing, and a control treatment was used with ambient conditions. Evaluations were performed at the following times: before storage, after 30 days of storage in controlled atmosphere, and after removal from controlled atmosphere and storage for 7 days in the cold room. At the lower O2 levels and higher CO2 levels, the ripening rate was decreased. The drop in pulp acidity was avoided after 30 days of storage at 3% O2, but the fruits reached normal acidity after removal from controlled atmosphere and storage for 7 days in the cold room. The reducing sugars remained at a higher concentration after 30 days under 3% O2 and 15% CO2 even 7 days after removal from controlled atmosphere and storage in the cold room. This atmosphere also preserved the content of ascorbic acid at a higher level.

  16. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  17. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum.

    PubMed

    Sun, Yu Cheng; Chen, Fa Jun; Ge, Feng

    2009-02-01

    Effects of elevated CO2 (twice ambient) on the interspecific competition among three species of wheat aphids (Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum) and on wheat-aphid interactions were studied. Wheat plants had higher biomass and yield and lower water and nitrogen content of grain when grown under elevated CO2 than under ambient CO2; levels of condensed tannins, total phenols, and total nonstructural carbohydrates were also higher in wheat ears under elevated CO2. Compared with ambient CO2, elevated CO2 increased the abundance of R. padi when introduced solely but reduced its abundance when S. avenae was also present. The spatial distribution of wheat aphids was apparently influenced by CO2 levels, with significantly more S. avenae on ears and a more even distribution of R. padi on wheat plants under elevated CO2 versus ambient CO2. Elevated CO2 did not affect the abundance and spatial distribution of S. graminus when inoculated solely. Moreover, when S. avenae was present with either R. padi or S. graminum, spatial niche overlap was significantly decreased with elevated CO2. When three species co-occurred, elevated CO2 reduced spatial niche overlap between S. avenae and S. graminum and between R. padi and S. graminum. Our results suggest that increases in atmospheric CO2 would alleviate interspecific competition for these cases, which would accentuate the abundance of and the damage caused by these wheat aphids.

  18. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO

    NASA Astrophysics Data System (ADS)

    Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A.

    2016-04-01

    With the development of better catalysts, mass transport limitations are becoming a challenge to high throughput electrochemical reduction of CO2 to CO. In contrast to optimization of electrodes for fuel cells, optimization of gas diffusion electrodes (GDE) - consisting of a carbon fiber substrate (CFS), a micro porous layer (MPL), and a catalyst layer (CL) - for CO2 reduction has not received a lot of attention. Here, we studied the effect of the MPL and CFS composition on cathode performance in electroreduction of CO2 to CO. In a flow reactor, optimized GDEs exhibited a higher partial current density for CO production than Sigracet 35BC, a commercially available GDE. By performing electrochemical impedance spectroscopy in a CO2 flow reactor we determined that a loading of 20 wt% PTFE in the MPL resulted in the best performance. We also investigated the influence of the thickness and wet proof level of CFS with two different feeds, 100% CO2 and the mixture of 50% CO2 and N2, determining that thinner and lower wet proofing of the CFS yields better cathode performance than when using a thicker and higher wet proof level of CFS.

  19. Formaldehyde levels in traditional and portable classrooms: A pilot investigation

    PubMed Central

    2015-01-01

    This pilot study assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide (CO2), temperature, and relative humidity). In a cross-sectional design, we evaluated formaldehyde levels in day and overnight indoor air samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 ppm. In both type of classrooms, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). CO2 levels measured 470–790 parts per million (ppm) at 7AM and 470–1800 ppm at 4PM. Afternoon medians were higher in TCs (1,400 ppm ) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing CO2 levels by improving ventilation is recommended for classrooms. PMID:27197349

  20. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Der-Jen; Huang, Hsiao-Lin

    2009-12-01

    Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO 2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO 2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM 10 and PM 2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO 2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.

  1. Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants.

    PubMed

    Paudel, Jamuna Risal; Amirizian, Alexandre; Krosse, Sebastian; Giddings, Jessica; Ismail, Shoieb Akaram Arief; Xia, Jianguo; Gloer, James B; van Dam, Nicole M; Bede, Jacqueline C

    2016-03-22

    Increased atmospheric carbon dioxide (CO2) levels predicted to occur before the end of the century will impact plant metabolism. In addition, nitrate availability will affect metabolism and levels of nitrogen-containing defense compounds, such as glucosinolates (GSLs). We compared Arabidopsis foliar metabolic profile in plants grown under two CO2 regimes (440 vs 880 ppm), nitrate fertilization (1 mM vs 10 mM) and in response to mechanical damage of rosette leaves. Constitutive foliar metabolites in nitrate-limited plants show distinct global patterns depending on atmospheric CO2 levels; in contrast, plants grown under higher nitrate fertilization under elevated atmospheric CO2 conditions have a unique metabolite signature. Nitrate fertilization dampens the jasmonate burst in response to wounding in plants grown at elevated CO2 levels. Leaf GSL profile mirrors the jasmonate burst; in particular, indole GSLs increase in response to damage in plants grown at ambient CO2 but only in nitrate-limited plants grown under elevated CO2 conditions. This may reflect a reduced capacity of C3 plants grown under enriched CO2 and nitrate levels to signal changes in oxidative stress and has implications for future agricultural management practices.

  2. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    PubMed

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  3. In vivo determination of triglyceride (TG) secretion in rats fed different dietary saturated fats using (2- sup 3 H)-glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, H.C.; Yang, H.; Lasekan, J.

    1990-02-26

    Male, Sprague-Dawley rats (154{plus minus}1 g) were fed diets containing 2% corn oil (CO) + 14% butterfat (BF), beef tallow (BT), olive oil (OO) or coconut oil (CN) vs a 16% CO control diet for 5 weeks. Changes in plasma TG specific activity (dpm/mg TG) were determined in individual unanesthetized rats after injection of 100 {mu}Ci (2-{sup 3}H)-glycerol via a carotid cannula. Fractional rate constants were obtained using a 2-compartment model and nonlinear regression analysis. Results demonstrated no difference in the fractional rate constants among dietary groups; but, differences in the rates of hepatic TG secretion were noted. Rats fedmore » BT showed a higher rate of hepatic TG secretion than rats fed CO. Rats fed BF, OO or CN showed somewhat higher rates of hepatic TG secretion than CO. VLDL TG, phospholipid, and apolipoprotein B and E levels were higher with saturated fats vs CO. The data suggest that the higher plasma TG levels noted in response to feeding saturated fats vs corn oil can be explained, in part, by an increased flux of hepatic TG secretion.« less

  4. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    PubMed

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  5. Plasma levels of thrombomodulin, plasminogen activator inhibitor-1 and fibrinogen in elderly, diabetic patients with depressive symptoms.

    PubMed

    Gorska-Ciebiada, Malgorzata; Saryusz-Wolska, Malgorzata; Borkowska, Anna; Ciebiada, Maciej; Loba, Jerzy

    2016-10-01

    Diabetes, depression and aging have been associated with pro-inflammatory and prothrombotic state. The aim of the study was to determine the plasma levels of thrombomodulin, plasminogen activator inhibitor-1 (PAI-1) and fibrinogen in elderly diabetic patients with and without depressive symptoms and to examine factors (including thrombomodulin, PAI-1, fibrinogen levels) associated with depressive symptoms in elderly patients with type 2 diabetes (T2DM). A total of 276 T2DM elders were evaluated: 82 subjects with depressive symptoms and 194 controls. Data were collected concerning biochemical parameters and biomarkers. Plasma thrombomodulin, PAI-1 and fibrinogen were elevated in patients with depressive symptoms compared to controls. Thrombomodulin level was correlated with fibrinogen and PAI-1 levels. All parameters were correlated with the Geriatric Depression Scale-30 score. The univariate logistic regression models revealed that variables which increased the likelihood of diagnosis of depressive symptoms in elderly patients with T2DM were: female sex, smoking habit, longer duration of T2DM, hyperlipidemia, neuropathy, increased number of co-morbidities, higher BMI, and higher levels of total and LDL cholesterol, thrombomodulin, PAI-1 and fibrinogen. In addition, the multivariable analysis indicated that female sex, smoking habit, increased number of co-morbidities, higher BMI, and higher levels of LDL cholesterol and thrombomodulin are the predisposing factors for depressive symptoms. Elderly diabetic patients with depressive symptoms have higher levels of thrombomodulin, PAI-1 and fibrinogen. Further prospective larger studies are needed to provide potential directions for the research, treatment and prevention of co-morbid depression and diabetes.

  6. Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?

    NASA Astrophysics Data System (ADS)

    Ramirez, R.

    2014-04-01

    Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.

  7. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones.

    PubMed

    Külen, Oktay; Stushnoff, Cecil; Holm, David G

    2013-08-15

    Twelve Colorado-grown specialty potato clones were evaluated for total phenolic content, antioxidant activity and ascorbic acid content at harvest and after 2, 4, 6 and 7 months cold storage at 4 °C. Potato clones were categorized as pigmented ('CO97226-2R/R', 'CO99364-3R/R', 'CO97215-2P/P', 'CO97216-3P/P', 'CO97227-2P/P', 'CO97222-1R/R', 'Purple Majesty', 'Mountain Rose' and 'All Blue'), yellow ('Yukon Gold') and white fleshed ('Russet Nugget', 'Russet Burbank'). Folin-Ciocalteu reagent was used to estimate total phenolic content, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•) ) radical scavenging assays were used to estimate antioxidant capacity. Pigmented potato genotypes had significantly higher total phenolic content and antioxidant activity at all data points than yellow- and white-fleshed cultivars. Vitamin C content was higher in 'Yukon Gold' than in the other clones. The highest level of vitamin C in all clones was at harvest and after 2 months in cold storage. Vitamin C content in all potato clones dropped rapidly with longer intervals of cold storage. Although total phenolic content and antioxidant activity fluctuated during cold storage, after 7 months of cold storage their levels were slightly higher than at harvest. Total phenolic content was better correlated with Trolox equivalent antioxidant capacity (TEAC)/ABTS(•+) than the TEAC/DPPH(•) radical scavenging assay. Pigmented potato clones had significantly higher total phenolic content and antioxidant activity, while the yellow-fleshed potato cultivar 'Yukon Gold' had significantly higher vitamin C content. Vitamin C content decreased in all potato clones during cold storage, while total phenolics increased in pigmented clones. © 2013 Society of Chemical Industry.

  8. Performance of CO2 enrich CNG in direct injection engine

    NASA Astrophysics Data System (ADS)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  9. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    PubMed

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  10. Heterologous expression of key C and N metabolic enzymes improves re-assimilation of photorespired CO2 and NH3, and growth.

    PubMed

    Kaachra, Anish; Vats, Surender Kumar; Kumar, Sanjay

    2018-06-11

    We investigated the effect of heterologous expression of phosphoenolpyruvate carboxylase (ZmPepcase), aspartate aminotransferase (GmAspAT), and glutamine synthetase (NtGS) on carbon (C) and nitrogen (N) metabolism in Arabidopsis (Arabidopsis thaliana). These transgenes were expressed either separately or in different combinations. The highest gains in shoot dry weight were observed in transgenic lines co-expressing all three genes. Tracer experiments using NaH14CO3 suggested that the co-expression of ZmPepcase, GmAspAT,and NtGS resulted in a higher flux of assimilated CO2 towards sugars and amino acids. Upon feeding the leaf discs with glycine-1-14C, transgenic lines evolved significantly lower 14CO2 levels than the WT, suggesting a higher re-assimilation of CO2 evolved during photorespiration. Leaves of transgenic plants accumulated significantly lower ammonium without any significant difference in the levels of photorespiratory ammonium relative to the WT, suggesting higher re-assimilation of photorespired NH3. Transgenic lines also showed improved photosynthetic rates, higher shoot biomass accumulation, and improved seed yield in comparison to WT plants under both optimum and limiting N conditions. The present work demonstrates that the heterologous co-expression of ZmPepcase, GmAspAT, and NtGS reduced the photorespiratory loss of C and N with concomitant enhancements in shoot biomass and seed yield. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  11. Theoretical study of the mechanism of CH2CO + CN reaction

    NASA Astrophysics Data System (ADS)

    Sun, Hao; He, Hong-Qing; Hong, Bo; Chang, Ying-Fei; An, Zhe; Wang, Rong-Shun

    The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6-311+G(d,p) level. To gain further mechanistic knowledge, higher-level single-point calculations for the stationary points are performed at the QCISD(T)/6-311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition-elimination, carbonyl carbon addition-elimination, and side oxygen addition-elimination. Our calculations demonstrate that R?IM1?TS3?P3: CH2CN + CO is the energetically favorable channel; however, channel R?IM2?TS4?P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction.

  12. CO{sub 2} adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhijian Liang; Marc Marshall; Alan L. Chaffee

    2009-05-15

    The potential for the metal organic framework (MOF) Cu-BTC to selectively adsorb and separate CO{sub 2} is considered. Isotherms for CO{sub 2}, CH{sub 4}, and N{sub 2} were measured from 0 to 15 bar and at temperatures between 25 and 105{sup o}C. The isotherms suggest a much higher working capacity (x4) for CO{sub 2} adsorption on Cu-BTC relative to the benchmark zeolite 13X over the same pressure range. Higher CO{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} selectivities in the higher pressure range (1-15 bar) and with lower heats of adsorption were also demonstrated. Cu-BTC was observed to be stable inmore » O{sub 2} at 25{sup o}C, but its crystallinity was reduced in humid environments. The CO{sub 2} adsorption capacity was progressively reduced upon cyclic exposure to water vapor at low relative humidity (<30%), but leveled out at 75% of its original value after several water adsorption/desorption cycles. 27 refs., 1 fig.« less

  13. Control of yellow and purple nutsedge in elevated co2 environments with glyphosate and halosulfuron

    USDA-ARS?s Scientific Manuscript database

    Atmospheric concentrations of carbon dioxide (CO2) have significantly increased over the past century and are expected to continue increasing in the future. While elevated levels of CO2 will likely result in higher crop yields, weed growth is also highly likely to increase. An experiment was conduct...

  14. Tillage, Mulch and N Fertilizer Affect Emissions of CO2 under the Rain Fed Condition

    PubMed Central

    Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng

    2013-01-01

    A two year (2010–2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010–11 relative to the year 2011–12. During cropping year 2010–11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011–12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options. PMID:24086256

  15. Effects of CO(2) enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii.

    PubMed

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-10-01

    Seagrass ecosystems are expected to benefit from the global increase in CO(2) in the ocean because the photosynthetic rate of these plants may be C(i)-limited at the current CO(2) level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H(+) across the membrane as in terrestrial plants. Here, we investigate the effects of CO(2) enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO(2) concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (P(m)) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO(2)-enriched conditions. On the other hand, no significant effects of CO(2) enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO(2) concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO(2)-enriched conditions was fourfold lower than the uptake of plants exposed to current CO(2) level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H(+) as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO(2) concentrations. Our results suggest that the global effects of CO(2) on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO(2) increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO(2) increase on nitrate uptake rate was not confirmed.

  16. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

    PubMed Central

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-01-01

    Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed. PMID:23145346

  17. The impact of economic complexity on carbon emissions: evidence from France.

    PubMed

    Can, Muhlis; Gozgor, Giray

    2017-07-01

    This paper reanalyzes the determinants of the CO 2 emissions in France. For this purpose, it considers the unit root test with two structural breaks and a dynamic ordinary least squares estimation. The paper also considers the effects of the energy consumption and the economic complexity on CO 2 emissions. First, it is observed that the EKC hypothesis is valid in France. Second, the positive effect of the energy consumption on CO 2 emissions is obtained. Third, it is observed that a higher economic complexity suppresses the level of CO 2 emissions in the long run. The findings imply noteworthy environmental policy implications to decrease the level of CO 2 emissions in France.

  18. The impact of high serum bicarbonate levels on mortality in hemodialysis patients.

    PubMed

    Chang, Kyung Yoon; Kim, Hyung Wook; Kim, Woo Jeong; Kim, Yong Kyun; Kim, Su-Hyun; Song, Ho Chul; Kim, Young Ok; Jin, Dong Chan; Choi, Euy Jin; Yang, Chul Woo; Kim, Yong-Lim; Kim, Nam-Ho; Kang, Shin-Wook; Kim, Yon-Su; Kim, Young Soo

    2017-01-01

    The optimal serum bicarbonate level is controversial for patients who are undergoing hemodialysis (HD). In this study, we analyzed the impact of serum bicarbonate levels on mortality among HD patients. Prevalent HD patients were selected from the Clinical Research Center registry for End Stage Renal Disease cohort in Korea. Patients were categorized into quartiles according to their total carbon dioxide (tCO 2 ) levels: quartile 1, a tCO 2 of < 19.4 mEq/L; quartile 2, a tCO 2 of 19.4 to 21.5 mEq/L; quartile 3, a tCO 2 of 21.6 to 23.9 mEq/L; and quartile 4, a tCO 2 of ≥ 24 mEq/L. Cox regression analysis was used to calculate the adjusted hazard ratio (HR) and confidence interval (CI) for mortality. We included 1,159 prevalent HD patients, with a median follow-up period of 37 months. Kaplan-Meier analysis revealed that the all-cause mortality was significantly higher in patients from quartile 4, compared to those from the other quartiles ( p = 0.009, log-rank test). The multivariate Cox proportional hazard model revealed that patients from quartile 4 had significantly higher risk of mortality than those from quartile 1, 2 and 3, after adjusting for the clinical variables in model 1 (HR, 1.99; 95% CI, 1.15 to 3.45; p = 0.01) and model 2 (HR, 1.82; 95% CI, 1.03 to 3.22; p = 0.04). Our data indicate that high serum bicarbonate levels (a tCO2 of ≥ 24 mEq/L) were associated with increased mortality among prevalent HD patients. Further effort might be necessary in finding the cause and correcting metabolic alkalosis in the chronic HD patients with high serum bicarbonate levels.

  19. Existence of compensatory defense mechanisms against oxidative stress and hypertension in preeclampsia.

    PubMed

    Roland, L; Gagné, A; Bélanger, M-C; Boutet, M; Berthiaume, L; Fraser, W D; Julien, P; Bilodeau, J-F

    2010-01-01

    Preeclampsia is a complex obstetrical syndrome characterized by hypertension and proteinuria. This syndrome is associated with oxidative stress, antioxidant imbalance and impaired production of vasoactive eicosanoids such as thromboxane A(2) (TXA(2)), a potent vasoconstrictor, and prostacyclin (PGI(2)), a well-known vasodilator. We hypothesized that there was a relationship between antioxidant vitamins, such as vitamin E and coenzyme Q(10) (CoQ(10)), and the production of vasoactive eicosanoids- PGI(2) and TXA(2)-potentially regulated by pro-oxidants and antioxidants in preeclampsia. Therefore, the plasma levels of vitamin E, CoQ(10), TXA(2) and PGI(2) in normotensive (n = 30) and preeclamptic (n = 29) pregnancies were evaluated. Reduced and oxidized forms of vitamin E and CoQ(10) in blood were measured using a HPLC coupled to electrochemical detection. The levels of TXB(2) and 6-keto-PGF(1alpha), stable metabolites of TXA(2) and PGI(2) respectively, were measured by ELISA. The CoQ(10) oxidized/reduced ratio was significantly higher in preeclamptic compared to normotensive pregnancies (p = 0.04). A strong correlation between plasma levels of reduced vitamin E and CoQ(10), corrected for apolipoprotein B, was observed only in preeclampsia (r = 0.69, p < 0.0001). The 6-keto-PGF(1alpha)/TXB(2) ratio was higher in preeclampsia than in controls (p = 0.02), and this ratio was correlated to the oxidized/reduced ratio of both, vitamin E and CoQ(10) in all pregnancies (p <0.023). The data indicated that CoQ(10) is a sensitive marker of oxidative stress in preeclampsia. The correlation between vitamin E and CoQ(10) suggested a coordinated defense mechanism against oxidation. Furthermore, the higher 6-keto-PGF(1alpha)/TXB(2) ratio that strongly correlated with oxidative stress markers, suggests a mechanism developed by the maternal cardiovascular system to counteract hypertension during preeclampsia.

  20. Effects of export concentration on CO2 emissions in developed countries: an empirical analysis.

    PubMed

    Apergis, Nicholas; Can, Muhlis; Gozgor, Giray; Lau, Chi Keung Marco

    2018-03-08

    This paper provides the evidence on the short- and the long-run effects of the export product concentration on the level of CO 2 emissions in 19 developed (high-income) economies, spanning the period 1962-2010. To this end, the paper makes use of the nonlinear panel unit root and cointegration tests with multiple endogenous structural breaks. It also considers the mean group estimations, the autoregressive distributed lag model, and the panel quantile regression estimations. The findings illustrate that the environmental Kuznets curve (EKC) hypothesis is valid in the panel dataset of 19 developed economies. In addition, it documents that a higher level of the product concentration of exports leads to lower CO 2 emissions. The results from the panel quantile regressions also indicate that the effect of the export product concentration upon the per capita CO 2 emissions is relatively high at the higher quantiles.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effectmore » of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.« less

  2. Monitoring of environmental parameters for CO2 sequestration: a case study of Nagpur City, India.

    PubMed

    Chaudhari, P R; Gajghate, D G; Dhadse, Sharda; Suple, Sonali; Satapathy, D R; Wate, S R

    2007-12-01

    Carbon dioxide concentration is an index of total amount of combustion and natural ventilation in an urban environment and therefore required more careful attention for assessment of CO(2) level in air environment. An attempt was made to monitor CO(2) levels in ambient air of Nagpur city at industrial, commercial and residential sites. In addition to this a remote sensing studies and biotic survey for floral biodiversity were carried out to study the green cover at respective sampling locations. The observations showed that the largest amount of CO(2) occurred at night due to absence of photosynthesis and lowest concentration of CO(2) was observed in the afternoon due to photosynthesis at its maximum level. The most pollution tolerant species found in Nagpur city are having higher Air Pollution Tolerance Index (APTI) value, which acts as a natural sink for CO(2) sequestration. In case of commercial site the CO(2) level is highest (366 ppm) because of lowest vegetation and vehicular pollution. The generation of database of CO(2) concentration and floral biodiversity along with percentage of green cover helps to formulate the strategy for prevention of global worming phenomenon.

  3. Increased 2,3-diphosphoglycerate during normocapnic hypobaric hypoxia.

    PubMed

    Cymerman, A; Maher, J T; Cruz, J C; Reeves, J T; Denniston, J C; Grover, R F

    1976-10-01

    The effect of 96 h of exposure to hypobaric hypoxia with and without 3.8% CO2 supplementation was studied in two groups of subjects. Five subjects (CO2) were exposed to 440-465 mm Hg barometric pressure (4000-4400 m), and 4 subjects (no-CO2) were exposed to 455-492 mm Hg (3500-1400 m) in order to produce similar levels of resting end-tidal PO2. After 24 h, 2,3-DPG levels of both groups significantly increased and remained elevated. The CO2 group had higher levels than the non-CO2 group after 48 and 72 h. Concurrent measurements of P50 showed similar changes over the same time course. Mean corpuscular hemoglobin concentrations remained normal for 48 h and then decreased in both groups, the CO2 group showing the larger decrease. We conclude that altitude exposure may produce an increase in 2,3-DPG without the presence of respiratory alkalosis previously thought necessary.

  4. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  5. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  6. Drought sensitivity changes over the last century at the North American savanna-forest boundary

    NASA Astrophysics Data System (ADS)

    Heilman, K.; McLachlan, J. S.

    2017-12-01

    Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If changes in drought sensitivity scale to ecosystem level, decreased drought sensitivity may have helped promote regional forest expansion.

  7. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    PubMed

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  8. Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC

    NASA Astrophysics Data System (ADS)

    Ren, Jin; Guo, Shuangsheng; Xu, Chunlan; Yang, Chengjia; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2014-01-01

    Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol-1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.

  9. Indoor air quality in preschools (3- to 5-year-old children) in the Northeast of Portugal during spring-summer season: pollutants and comfort parameters.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2017-01-01

    Indoor air quality at schools (elementary, primary) has been the subject of many studies; however, there are still relative few data regarding preschool (3- to 5-year-old children) environments. This investigation determined the concentrations of particulate matter (PM) 2.5 , total volatile organic compounds (TVOC), formaldehyde, carbon monoxide (CO), and ozone (O 3 ) as well as the levels of carbon dioxide (CO 2 ), temperature, and relative humidity (RH) in the indoor and outdoor air of two preschools situated in different geographical regions of Portugal. The indoor concentrations of TVOC, CO, O 3 , and CO 2 were predominantly higher at the end of school day compared to early morning periods. The TVOC and CO 2 concentrations were higher indoors than outdoors suggesting predominantly an indoor origin. Outdoor air infiltrations were the major contributing source of CO and O 3 to indoor air in both preschools. The concentrations of all pollutants were within the limits defined by national regulations and international organizations, except for TVOC that exceeded 8-12-fold higher than the recommendation of 0.2 mg/m 3 proposed by European Commission. The levels of CO 2 were below the protective guideline of 2250 mg/m 3 (Portuguese legislation); however, the observed ranges exceeded the Portuguese margin of tolerance (2925 mg/m 3 ) at the end of school days, indicating the impact of occupancy rates particularly at one of the preschools. Regarding comfort parameters, temperature exerted a significant influence on O 3 concentrations, while RH values were significantly correlated with TVOC levels in indoor air of preschools, particularly during the late afternoon periods.

  10. Temporal Trends of NO2, CO and their Relation to the Fire Occurrences over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Pandey, A. K.; Kumar, K.

    2016-12-01

    Air pollution is an environmental issue that has a gigantic impact on human health, and it is a major problem in the densely populated regions throughout the world. Situated in the foothills of the great Himalayas Indo-Gangetic Plain (IGP) is among one of the most densely populated regions of the earth. NO2 and CO are among major air pollutants which affect the air quality of IGP predominantly. In the present study, we studied the temporal trends of NO2, CO and fire count over the IGP region. Further, we investigated the role of the fire occurrences in the ambient NO2 and CO levels. We used MODIS instrument (Aqua satellite), OMI sensor and AIRS instrument data for fire count, Nitrogen Dioxide (NO2) tropospheric column and Carbon monoxide (CO) column study respectively. The IGP is divided into three part geographically i.e. Eastern (E-IGP), Central (C-IGP) and Western (W-IGP). A higher columnar CO concentration is observed in the E-IGP whereas NO2 concentration is highest in the W-IGP. A higher NO2 concentration is obtained in winter followed by summer and a minimum in monsoon months throughout the IGP. Columnar CO concentration is higher in the E-IGP and its concentration is maximum in pre-monsoon months and minimum in the monsoon months. Fire pixel count is highest in the W-IGP with peak twice every year i.e. in the April - May and October - November corresponding to the harvest period in the Rabi-Kharif cropping system. We also obtained a significant positive correlation between fire occurrences and columnar NO2 & CO levels over the IGP which shows the biomass burning practices associated with the agriculture influences the NO2 and CO concentration in the atmosphere.

  11. Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Schulz, K. G.; Riebesell, U.

    2007-11-01

    Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 750 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) but not a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Although specific phosphate affinity and specific APA tended to be higher in 3×CO2 than in 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, no statistical differences were found. Responses of specific glucose affinity for bacteria were similar at the three different pCO2 levels. Measured specific glucose affinities were consistently much lower than the theoretical maximum predicted from the diffusion-limited model, suggesting that bacterial growth was not limited by the availability of labile dissolved organic carbon. These results suggest that availability of phosphate and glucose was similar at the three different pCO2 levels.

  12. Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure.

    PubMed

    Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A

    2013-07-01

    Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 . © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  13. Variations in levels of IL-6 and TNF-α in type 2 diabetes mellitus between rural and urban Ashanti Region of Ghana.

    PubMed

    Darko, Samuel N; Yar, Denis D; Owusu-Dabo, Ellis; Awuah, Anthony Afum-Adjei; Dapaah, Williams; Addofoh, Nicholas; Salifu, Samson P; Awua-Boateng, Nana Y; Adomako-Boateng, Fred

    2015-09-21

    A surge in pro-inflammatory markers, Il-6 and TNF-α, has been associated with type 2 diabetes mellitus (T2DM). However, there is no data on the dynamics of these markers in T2DM Ghanaian populations. The aim of this study was to determine variations in the levels of IL-6 and TNF-α in T2DM patients. This study also examined the associations of IL-6 and TNF-α with anthropometric measurement and the effect of co-morbidity with hypertension using rural and urban dwellers in the Ashanti region, Ghana. A nested case-control design using participants aged 25-70 years consisting of 77 T2DM ± hypertension patients and 112 controls were selected from a larger study on Research on Obesity and Diabetes among African Migrants (RODAM). Anthropometric measurements, blood pressure and body fat percentage were measured. Fasting blood samples were analyzed for glucose, IL-6 and TNF-α levels. The median level of IL-6 was significantly higher (p < 0.0001) among rural dwellers compared to urban dwellers. Inversely, urban dwellers had significantly higher (p = 0.0424) median level of TNF-α compared to rural cases. No significant differences were observed in IL-6 (p = 0.3571) and TNF-α (p = 0.2581) among T2DM patients compared with T2DM ± hypertension patients. A weak negative correlation was found between IL-6 and BMI in urban T2DM. The average level of IL-6 was higher in rural T2DM participants compared with those in urban setting. However, higher levels of TNF-α was observed among the study participants with T2DM in urban settings compared to those of rural. In this study, we observed that co-morbidity of hypertension had no significant effect on the levels of IL-6 and TNF-α. We are of the opinion that higher physical activity levels among rural particpants and high obesity levels in urabn participants explain the observation but needs more numbers to validate. This study revealed that IL-6 levels were higher among rural dwellers than urban while TNF-α levels were higher in urban dwellers than rural in patients with T2DM. There was no association of body fat percentage and body mass index with IL-6 and TNF-α levels. Co-morbidity of hypertension with T2DM had no effect on IL-6 and TNF-α levels.

  14. The impact of low levels of carbon dioxide on rats.

    PubMed

    Krohn, Thomas C; Hansen, Axel Kornerup; Dragsted, Nils

    2003-04-01

    The widespread use of individually ventilated cage (IVC) systems today has made the impact of CO(2) on rodents a highly important matter. Leaving cages from these systems without ventilation increases CO(2) concentrations inside the cages, as CO(2) generated from the animals is no longer removed actively. In modern IVC systems the CO(2) levels may reach 3-5% within a very short time, as the cages are very tightly sealed. The aim of the present study was to investigate the effects of 1%, 3%, and 5% CO(2) by studying the preferences of the animals as well as changes in the heart rate and systolic blood pressure as measured by telemetry. The rats avoided the cages, which contained 3% CO(2). In the telemetric study an anaesthetic effect on the rats were seen at 3% as a drop in the heart rate, and at 5% CO(2) a drop in the systolic blood pressure was also seen. The results from the present study could indicate that CO(2) levels of up to 3% do not affect the animals, or at least only to a minor extent, but that if the animals are exposed to CO(2) levels of higher than 3% they are affected directly as seen by changes in physiological parameters and preferences.

  15. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  16. Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.

    PubMed

    Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi

    2015-08-03

    A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients.

    PubMed

    Li, Wenfang; Dong, Huimin; Huang, Yan; Chen, Tingjin; Kong, Xiangzhan; Sun, Hengchang; Yu, Xinbing; Xu, Jin

    2016-06-01

    Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine.

  18. Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients

    PubMed Central

    Huang, Yan; Chen, Tingjin; Kong, Xiangzhan; Sun, Hengchang; Yu, Xinbing; Xu, Jin

    2016-01-01

    Background Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Principal Findings Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Conclusions/Significance Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine. PMID:27348302

  19. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H.; Nojiri, Y.

    2011-08-01

    Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by algal symbionts, versus associated changes in seawater carbonate chemistry, which decreases a carbonate concentration. Our findings suggest that ongoing ocean acidification might favor symbiont-bearing reef foraminifers with hyaline shells at intermediate pCO2 levels (580 to 770 μatm) but be unfavorable to those with either hyaline or porcelaneous shells at higher pCO2 levels (near 1000 μatm).

  20. Effect of vitamin A and vitamin C supplementation on oxidative stress in HIV and HIV-TB co-infection at Lagos University Teaching Hospital (LUTH) Nigeria.

    PubMed

    Makinde, Oluwamayowa; Rotimi, Kunle; Ikumawoyi, Victor; Adeyemo, Titilope; Olayemi, Sunday

    2017-06-01

    HIV and TB infections are both associated with elevated oxidative stress parameters. Anti-oxidant supplementation may offer beneficial effects in positively modulating oxidative stress parameters in HIV and HIV-TB infected patients. We investigated the effects of vitamin A and C supplementation on oxidative stress in HIV infected and HIV-TB co-infected subjects. 40 HIV/TB co-infected and 50 HIV mono-infected patients were divided into 2 equal groups. Participants provided demographic information and blood was collected to determine oxidative stress parameters before and after vitamin A (5000 IU) and C (2600 mg) supplementation for 1 month. There was a significantly (p < 0.05) higher level of Malondialdehyde (MDA) at baseline for HIV infected subjects compared with HIV-TB co-infected subjects. There was a significantly (p < 0.05) lower level of MDA and higher level of Catalase (CAT) in subjects administered supplementation compared to subjects without supplementation for the HIV infected group. There was a significantly lower level of Reduced Glutathione (GSH), Superoxide Dismutase (SOD) and higher level of MDA after one month of supplementation compared with baseline levels for HIV/TB co infected subjects. A similar result was also obtained for the HIV mono-infected groups which had a significantly lower level of SOD, MDA and CAT compared to the baseline. There was a significantly lower level of GSH and SOD, and higher level of MDA after supplementation compared with the baseline for HIV/TB co-infected subjects. Comparing the indices at baseline and post no-supplementation in HIV/TB co-infection showed no significant differences in the oxidative stress parameters. HIV/TB co-infection and HIV mono-infection seems to diminish the capacity of the anti-oxidant system to control oxidative stress, however exogenous anti-oxidant supplementation appears not to have beneficial roles in positively modulating the associated oxidative stress.

  1. Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis.

    PubMed

    Chekanov, K; Schastnaya, E; Solovchenko, A; Lobakova, E

    2017-06-01

    The atmospheric CO 2 level is limiting for growth of phototrophic organisms such as microalgae, so CO 2 enrichment boosts the growth and photosynthesis of microalgal cultures. Still, excessive CO 2 injection might inhibit photosynthesis of microalgae. We investigated the effect of continuous sparging of the cultures of Haematococcus pluvialis BM 1 (IPPAS H-2018) (Chlorophyceae), the richest natural source of the value-added pigment astaxanthin. H. pluvialis cultures with CO 2 -enriched air-gas mixtures (with CO 2 level from the atmospheric to 20%) on growth and astaxanthin accumulation in the microalga. Special attention was paid to photosynthetic activity and non-photochemical excited chlorophyll states quenching in the microalgal cells, which was monitored via chlorophyll fluorescence analysis. We also report on the capability of CO 2 capture by H. pluvialis derived from direct measurements of its elemental carbon content. The beneficial effect of the moderately high (5%) CO 2 levels on the culture growth and astaxanthin accumulation under stress results in a higher overall astaxanthin productivity. However, increase of the CO 2 level to 10% or 20% was deteriorative for growth, photosynthesis and carbon assimilation. The results support the possibility of combining a traditional two-stage H. pluvialis cultivation with CO 2 bio-capture although a dilution of the flue gas before its injection is required. Copyright © 2017. Published by Elsevier B.V.

  2. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    NASA Astrophysics Data System (ADS)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can shift upward/downward in elevation as a response to temperature increase/decrease through time. In the lower and upper montane zones the columnar types (compact, open, fascicular optic) are the most common fabrics, with the microcrystalline type most typical of the upper montane zone. The dendritic fabric becomes predominant in the higher upper montane and lower subalpine zones. The higher subalpine to lower alpine zones the only speleothem actually forming is moonmilk. Eventually, the occurrence of "altitudinal" fabrics within the vertical growth axis of a stalagmite is indicative of changes in the MAT through time Therefore, fabric changes in fossil speleothems in temperate climate settings can be potentially used to reconstruct regional MAT changes in the past.

  3. Indoor air pollution levels in public buildings in Thailand and exposure assessment.

    PubMed

    Klinmalee, Aungsiri; Srimongkol, Kasama; Kim Oanh, Nguyen Thi

    2009-09-01

    Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people working in the mall, should be of health effect concern.

  4. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    PubMed

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan; Hao, Qin; Kristiansen, Karsten; Frøyland, Livar; Madsen, Lise

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2) were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64) were higher in the stromal vascular fraction (SVF) isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1) were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2) was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  5. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  6. Ocean acidification affects fish spawning but not paternity at CO2 seeps.

    PubMed

    Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M

    2016-07-27

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. © 2016 The Author(s).

  7. Ocean acidification affects fish spawning but not paternity at CO2 seeps

    PubMed Central

    Cattano, Carlo; Alonzo, Suzanne H.; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A.; Hall-Spencer, Jason M.

    2016-01-01

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2. Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. PMID:27466451

  8. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.

    PubMed

    Wang, Sheng-Fan; Tseng, Sung-Pin; Yen, Chia-Hung; Yang, Jyh-Yuan; Tsao, Ching-Han; Shen, Chun-Wei; Chen, Kuan-Hsuan; Liu, Fu-Tong; Liu, Wu-Tse; Chen, Yi-Ming Arthur; Huang, Jason C

    2014-08-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) still carries the potential for reemergence, therefore efforts are being made to create a vaccine as a prophylactic strategy for control and prevention. Antibody-dependent enhancement (ADE) is a mechanism through which dengue viruses, feline coronaviruses, and HIV viruses take advantage of anti-viral humoral immune responses to infect host target cells. Here we describe our observations of SARS-CoV using ADE to enhance the infectivity of a HL-CZ human promonocyte cell line. Quantitative-PCR and immunofluorescence staining results indicate that SARS-CoV is capable of replication in HL-CZ cells, and of displaying virus-induced cytopathic effects and increased levels of TNF-α, IL-4 and IL-6 two days post-infection. According to flow cytometry data, the HL-CZ cells also expressed angiotensin converting enzyme 2 (ACE2, a SARS-CoV receptor) and higher levels of the FcγRII receptor. We found that higher concentrations of anti-sera against SARS-CoV neutralized SARS-CoV infection, while highly diluted anti-sera significantly increased SARS-CoV infection and induced higher levels of apoptosis. Results from infectivity assays indicate that SARS-CoV ADE is primarily mediated by diluted antibodies against envelope spike proteins rather than nucleocapsid proteins. We also generated monoclonal antibodies against SARS-CoV spike proteins and observed that most of them promoted SARS-CoV infection. Combined, our results suggest that antibodies against SARS-CoV spike proteins may trigger ADE effects. The data raise new questions regarding a potential SARS-CoV vaccine, while shedding light on mechanisms involved in SARS pathogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. [Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) blood levels in patients with acute carbon monoxide poisoning - a preliminary observations].

    PubMed

    Ciszowski, Krzysztof; Gomółka, Ewa; Gawlikowski, Tomasz; Szpak, Dorota; Potoczek, Anna; Boba, Magdalena

    Neurotrophins are the family of proteins which stimulate and regulate the process of neurogenesis. Several factors belong to the family, mainly nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT 3), and neurotrophin-4/5 (NT-4/5). Acute poisoning with carbon monoxide (CO), which usually is accompanied by neurologic symptoms, can potentially change the secretion profile of neurotrophins. Aim of the study. The main goal of the study is to assess the changes of NGF and BDNF plasma levels during an acute phase of CO poisoning as well as immediately after recovery. Additionally, the relationship among neurotrophin levels and selected aspects of clinical course of CO poisoning were studied. The study group consisted of 18 patients (mean age: 31.8±10.3 years) hospitalized in Toxicology Department of University Hospital in Cracow because of acute CO poisoning. There were 10 women (mean age: 30.2±6.9 years) and 8 men (mean age 33.9±13.7 years) in the group. The levels of NGF and BDNF were evaluated using immunoenzymatic method (ELISA) in plasma samples taken thrice in each patient. The sample 1. was taken during hospital admission, the sample 2. about 12-36 hours after admission, and the sample 3. just before the hospital discharging (usually, on the 3rd-4th day). The clinical data were collected from patients’ anamnesis, physical examination and neuropsychological evaluation. The statistical analysis were performed using tools comprised in STATISTICA 12.0 PL (StatSoft Polska, Cracow, Poland) software. The majority of NGF plasma levels were less than 14 pg/mL (values below the limit of quantification), contrary to the sole case of 34.3 pg/mL. BDNF plasma levels ranged from 4.8 ng/mL to above 48 ng/mL, i.e. they were higher than the upper limit of measurement range for the plasma dilution which had been used. The comparison of NGF and BDNF plasma levels in the study group with their analogues in healthy volunteers taken from the literature indicates that NGF level declines and BDNF level rises in patients with CO poisoning. The profile of BDNF concentrations in the majority of patients formed the characteristic pattern: BDNF sample 1. > BDNF sample 2. < BDNF sample 3. Taking all the values of BDNF higher than 48 ng/mL as equal to 48 ng/ mL, the statistically significant difference among 3 sample series was found according to BDNF levels. Maintaining the above mentioned assumption, the statistically significant negative correlation between the number of higher cognitive functions disturbed in one patient at the same time and the BDNF levels in sample series 2 was discovered, as well as the weak correlations between BDNF level in sample series 1 and carboxyhaemoglobin or lactate level. Moreover, weak but statistically significant correlations were present between the duration of CO exposure and BDNF levels in each sample series. The NGF plasma level is probably declined, while the BDNF plasma level is increased in patients with acute CO poisoning. The concentration–time curve for the plasma BDNF may sometimes undergo fluctuations with two peaks on its course. Plasma BDNF level may serve as a biological marker of disturbed higher cognitive functions in acute CO poisoning. Some clinical aspects of CO poisoning (duration of exposure, HbCO and lactate blood levels) may influence BDNF level.

  10. Personal carbon monoxide exposures of preschool children in Helsinki, Finland: levels and determinants

    NASA Astrophysics Data System (ADS)

    Alm, S.; Mukala, K.; Jantunen, M. J.

    Personal CO exposures of 194 preschool children were measured with personal exposure monitors during a 24 week sampling period from fall 1990 to spring 1991 in Helsinki, Finland. Arithmetic mean of the maximum 1 and 8 h exposure levels were 6.0 and 3.3 mg m -3. The then Finnish ambient air quality guideline values for 1/8 h maximum CO level (30/10 mg m -3) were exceeded in 2/4% of the children's daily maximum 1/8 h exposure levels. Gas stove at home, parents, especially mother, smoking in the home, and living in high rise buildings — reflecting higher local population and traffic density — increased the children's CO exposures. The presence of a fireplace in the home was associated with decreased CO exposures. Father's high education reduced the children's CO exposure while mother's education level had no significant effect. The peak (15 min) exposure levels of the children commuting to day care center by car or bus were higher than those of the children who walked or came by bike.

  11. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    PubMed

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. The type of competition modulates the ecophysiological response of grassland species to elevated CO2 and drought.

    PubMed

    Miranda-Apodaca, J; Pérez-López, U; Lacuesta, M; Mena-Petite, A; Muñoz-Rueda, A

    2015-03-01

    The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well-watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non-stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species-specific and dependent on the type of competition. Thus, the response to elevated CO2 in well-watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species-level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.

    PubMed

    Talmage, Stephanie C; Gobler, Christopher J

    2010-10-05

    The combustion of fossil fuels has enriched levels of CO(2) in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO(3) shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO(2) concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenaria and Argopecten irradians). Larvae grown under near preindustrial CO(2) concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO(2) levels. Bivalves grown under near preindustrial CO(2) levels displayed thicker, more robust shells than individuals grown at present CO(2) concentrations, whereas bivalves exposed to CO(2) levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.

  14. Responses of neurogenesis and neuroplasticity related genes to elevated CO2 levels in the brain of three teleost species.

    PubMed

    Lai, Floriana; Fagernes, Cathrine E; Bernier, Nicholas J; Miller, Gabrielle M; Munday, Philip L; Jutfelt, Fredrik; Nilsson, Göran E

    2017-08-01

    The continuous increase of anthropogenic CO 2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback ( Gasterosteus aculeatus ), cinnamon anemonefish ( Amphiprion melanopus ) and spiny damselfish ( Acanthochromis polyacanthus ) exposed to elevated CO 2 The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO 2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO 2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO 2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO 2 -exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO 2 level. © 2017 The Author(s).

  15. Dendritic cell co-stimulatory and co-inhibitory markers in chronic HCV: An Egyptian study

    PubMed Central

    Fouad, Hanan; Raziky, Maissa Saeed El; Aziz, Rasha Ahmed Abdel; Sabry, Dina; Aziz, Ghada Mahmoud Abdel; Ewais, Manal; Sayed, Ahmed Reda

    2013-01-01

    AIM: To assess co-stimulatory and co-inhibitory markers of dendritic cells (DCs) in hepatitis C virus (HCV) infected subjects with and without uremia. METHODS: Three subject groups were included in the study: group 1 involved 50 control subjects, group 2 involved 50 patients with chronic HCV infection and group 3 involved 50 HCV uremic subjects undergoing hemodialysis. CD83, CD86 and CD40 as co-stimulatory markers and PD-L1 as a co-inhibitory marker were assessed in peripheral blood mononuclear cells by real-time polymerase chain reaction. Interleukin-10 (IL-10) and hyaluronic acid (HA) levels were also assessed. All findings were correlated with disease activity, viral load and fibrogenesis. RESULTS: There was a significant decrease in co-stimulatory markers; CD83, CD86 and CD40 in groups 2 and 3 vs the control group. Co-stimulatory markers were significantly higher in group 3 vs group 2. There was a significant elevation in PD-L1 in both HCV groups vs the control group. PD-L1 was significantly lower in group 3 vs group 2. There was a significant elevation in IL-10 and HA levels in groups 2 and 3, where IL-10 was higher in group 3 and HA was lower in group 3 vs group 2. HA level was significantly correlated with disease activity and fibrosis grade in group 2. IL-10 was significantly correlated with fibrosis grade in group 2. There were significant negative correlations between co-stimulatory markers and viral load in groups 2 and 3, except CD83 in dialysis patients. There was a significant positive correlation between PD-L1 and viral load in both HCV groups. CONCLUSION: A significant decrease in DC co-stimulatory markers and a significant increase in a DC co-inhibitory marker were observed in HCV subjects and to a lesser extent in dialysis patients. PMID:24282359

  16. Kinetic and mechanistic study of bimetallic Pt-Pd/Al 2O 3 catalysts for CO and C 3H 6 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, Melanie J.; Moses-Debusk, Melanie; Parks, III, James E.

    2016-09-21

    Low temperature combustion (LTC) diesel engines are being developed to meet increased fuel economy demands. However, some LTC engines emit higher levels of CO and hydrocarbons and therefore diesel oxidation catalyst (DOC) efficiency will be critical. Here, CO and propylene oxidation were studied, as representative LTC exhaust components, over model bimetallic Pt-Pd/γ-Al 2O 3 catalysts. During CO oxidation tests, monometallic Pt suffered the most extensive inhibition which was correlated to a greater extent of dicarbonyl species formation. Pd and Pd-rich bimetallics were inhibited by carbonate formation at higher temperatures. The 1:1 and 3:1 Pt:Pd bimetallic catalysts did not form themore » dicarbonyl species to the same extent as the monometallic Pt sample, and therefore did not suffer from the same level of inhibition. Similarly they also did not form carbonates to as large an extent as the Pd-rich samples and were therefore not as inhibited from this intermediate surface species at higher temperature. The Pd-rich samples were relatively poor propylene oxidation catalysts; and partial oxidation product accumulation deactivated these catalysts. Byproducts observed include acetone, ethylene, acetaldehyde, acetic acid, formaldehyde and CO. For CO and propylene co-oxidation, the onset of propylene oxidation was not observed until complete CO oxidation was achieved, and the bimetallics showed higher activity. In conclusion, this was again related to less extensive poisoning, less dicarbonyl species formation and less overall partial oxidation product accumulation.« less

  17. Modification of land-atmosphere interactions by CO2 effects

    NASA Astrophysics Data System (ADS)

    Lemordant, Leo; Gentine, Pierre

    2017-04-01

    Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.

  18. The possible evolution and future of CO2-concentrating mechanisms.

    PubMed

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Schulz, K. G.; Bellerby, R. G. J.; Brussaard, C. P. D.; Büdenbender, J.; Czerny, J.; Engel, A.; Fischer, M.; Koch-Klavsen, S.; Krug, S. A.; Lischka, S.; Ludwig, A.; Meyerhöfer, M.; Nondal, G.; Silyakova, A.; Stuhr, A.; Riebesell, U.

    2013-01-01

    Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in Kongsfjorden on the west coast of Spitsbergen (Norway), in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured as high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2-related shifts in nutrient flow into different phytoplankton groups (mainly dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.

  20. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Schulz, K. G.; Bellerby, R. G. J.; Brussaard, C. P. D.; Büdenbender, J.; Czerny, J.; Engel, A.; Fischer, M.; Koch-Klavsen, S.; Krug, S. A.; Lischka, S.; Ludwig, A.; Meyerhöfer, M.; Nondal, G.; Silyakova, A.; Stuhr, A.; Riebesell, U.

    2012-09-01

    Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.

  1. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness

    PubMed Central

    Wang, Xianzhong; Lewis, James D.; Tissue, David T.; Seemann, Jeffrey R.; Griffin, Kevin L.

    2001-01-01

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants. PMID:11226264

  2. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    PubMed

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  3. Leaf water use efficiency of C{sub 4} plants grown at glacial to elevated CO{sub 2} concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, H.W.; Johnson, H.B.; Mayeux, H.S.

    1995-09-01

    Leaf gas exchange and stable carbon isotope compositions were measured on C{sub 4} species grown from near glacial to current CO{sub 2} concentrations (200 to 350 {mu}mol/mol) and from the current concentration to levels possible in the future (700 and 1000 {mu}mol/mol) to determine effects of rising CO{sub 2} on intrinsic water use efficiency (CO{sub 2} assimilation, A/stomatal conductance to water, g) of C{sub 4} plants. The increase in A/g was proportionally greater than that in CO{sub 2} from near glacial to present concentrations in the perennial grass Schizachyrium scoparium and, in one of two years, in the annual grassmore » Zea mays, because of a corresponding decrease in the ratio of leaf intercellular (c{sub i}) to external CO{sub 2} concentration (c{sub a}). Leaf A/g increased 66% in S. scoparium and 80% in the perennial shrub Atriplex canescens from 350 to 700 {mu}mol/mol CO{sub 2}, but averaged across species declined 15% from 700 to 1000 {mu}mol/mol because of an accompanying increase in c{sub i}/c{sub a}. At each CO{sub 2} level, A/g was higher in the grass than shrub. There were substantial differences in A/g at a given CO{sub 2} concentration and in the response of A/g to CO{sub 2} among the species examined. Because much of the positive response of C{sub 4} plants to CO{sub 2} derives from higher water use efficiency, these differences could influence the relative productivities of C{sub 4} species.« less

  4. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

    PubMed Central

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749

  5. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    PubMed

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  6. Evaluation of CO2 Efflux From Soils: A New Method Using Streamwater CO2 Measurements, Field Data and a Watershed Model

    NASA Astrophysics Data System (ADS)

    Sullivan, A. B.; Mulholland, P. J.; Jones, J. B.

    2001-05-01

    Headwater streams are almost always supersaturated with CO2 compared to concentrations expected in equilibrium with atmospheric CO2. Direct measurements of CO2 in two streams in eastern Tennessee with different bedrock lithologies (Walker Branch, Upper Gum Hollow Branch) over a year revealed levels of supersaturation of two to five times atmospheric CO2. Highest levels were generally found during the summer months. Springs discharging into the stream had dissolved CO2 concentration up to an order of magnitude higher than that in streamwater. These levels of supersaturation are a reflection of the high concentrations of CO2 in soil produced by root respiration and organic matter decomposition. The hydrologic connection between soil CO2 and streamwater CO2 forms the basis of our method to determine soil CO2 concentrations and efflux from the soil to the atmosphere. The method starts with streamwater measurements of CO2. Then corrections are made for evasion from the stream surface using injections of a conservative solute tracer and volatile gas, and for instream metabolism using a dissolved oxygen change technique. The approach then works backward along the hydrologic flowpath and evaluates the contribution of bedrock weathering, which consumes CO2, by examining the changes in major ion chemistry between precipitation and the stream. This produces estimates of CO2 concentration in soil water and soil atmosphere, which when coupled with soil porosity, allows estimation of CO2 efflux from soil. The hydrologic integration of CO2 signals from whole watersheds into streamwater allows calculation of soil CO2 efflux at large scales. These estimates are at scales larger than current chamber or tower methods, and can provide broad estimates of soil CO2 efflux with easily collected stream chemistry data.

  7. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density.

    PubMed

    Jhong, Huei-Ru Molly; Tornow, Claire E; Smid, Bretislav; Gewirth, Andrew A; Lyth, Stephen M; Kenis, Paul J A

    2017-03-22

    We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO 2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H 2 (approximately 98 % CO and 2 % H 2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm -2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO 2 reduction as an approach to reduce atmospheric CO 2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characteristics of PM10 and CO2 concentrations on 100 underground subway station platforms in 2014 and 2015

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Ho; Park, Wha Me; Park, Jae Bum; Nam, Taegyun

    2017-10-01

    In this study, the concentrations of particulate matter 10 μm or less in diameter (PM10) and carbon dioxide (CO2) were measured in 100 underground subway stations, and the potential health risks of PM10, and environmental factors affecting these concentrations were analyzed. The concentrations were measured from May 2014 to September 2015 in stations along Seoul Metro lines 1-4. There were significantly different PM10 concentrations among the underground subway stations along lines 1, 2, 3, and 4. The PM10 concentrations were associated with the CO2 concentrations, construction years, station depths, and numbers of passengers. The underground PM10 concentrations were significantly higher than the outdoor PM10 concentrations. In addition, the PM10 concentrations were higher in the stations that were constructed in the 1970s than in those constructed after the 1970s. The PM10 and CO2 concentrations varied significantly, depending on the construction year and number of passengers. The hazard quotient is higher than the acceptable level of 1.0 μg kg-1 day for children, indicating that they are at risk of exposure to unsafe PM10 levels when travelling by the metro. Therefore, stricter management may be necessary for the stations constructed in the 1970s as well as those with higher numbers of passengers.

  9. Plasma copeptin as a predictor of intoxication severity and delayed neurological sequelae in acute carbon monoxide poisoning.

    PubMed

    Pang, Li; Wang, He-Lei; Wang, Zhi-Hao; Wu, Yang; Dong, Ning; Xu, Da-Hai; Wang, Da-Wei; Xu, Hong; Zhang, Nan

    2014-09-01

    The present study was designed to assess the usefulness of measuring plasma levels of copeptin (a peptide co-released with the hypothalamic stress hormone vasopressin) as a biomarker for the severity of carbon monoxide (CO) poisoning and for predicting delayed neurological sequelae (DNS). Seventy-two patients with CO poisoning and 72 sex and age matched healthy individuals were recruited. Plasma copeptin levels were measured on admission from CO poisoning patients and for healthy individuals at study entry by using a sandwich immunoassay. The CO poisoning patients were divided into two groups according to severity (unconscious and conscious) and occurrence of DNS. The mean plasma copeptin levels (52.5±18.5 pmol/L) in the unconscious group were significantly higher than in the conscious group (26.3±12.7 pmol/L) (P<0.001). Plasma copeptin levels of more than 39.0 pmol/L detected CO poisoning with severe neurological symptoms e.g. unconsciousness (sensitivity 84.6% and specificity 81.4%). The plasma copeptin levels were higher in patients with DNS compared to patients without DNS (52.2±20.6 pmol/L vs. 27.9±14.8 pmol/L, P<0.001). Plasma copeptin levels higher than 40.5 pmol/L predicted the development of DNS (sensitivity 77.8%, specificity 82.1%). Plasma copeptin levels were identified as an independent predictor for intoxication severity [odds ratio (OR) 1.261, 95% confidence interval (CI) 1.112-1.638, P=0.002] and DNS (OR 1.313, 95% CI 1.106-1.859, P=0.001). Thus, plasma copeptin levels independently related to intoxication severity and were identified as a novel biomarker for predicting DNS after acute CO poisoning. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enhancing visible light photocatalytic and photocharge separation of (BiO){sub 2}CO{sub 3} plate via dramatic I{sup −} ions doping effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Lei; Cao, Jing; Anhui Collaborative Innovation Center of Advanced Functional Composite, Huaibei, 235000, Anhui

    Highlights: • Novel I-(BiO){sub 2}CO{sub 3} was prepared by a facile chemical precipitation method. • I{sup −} ions impurity level located on the top of valence band of (BiO){sub 2}CO{sub 3}. • I{sup −} ions doping largely improved photocatalytic activity of I-(BiO){sub 2}CO{sub 3}. • I-(BiO){sub 2}CO{sub 3} displayed excellent photocharge separation efficiency. - Abstract: Novel I{sup −} ions doped (BiO){sub 2}CO{sub 3} (I-(BiO){sub 2}CO{sub 3}) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO){sub 2}CO{sub 3} displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO){submore » 2}CO{sub 3}. The pseudo-first-order rate constant k{sub app} of RhB degradation over 15.0% I-(BiO){sub 2}CO{sub 3} was 0.54 h{sup −1}, which is 11.3 times higher than that of (BiO){sub 2}CO{sub 3}. The doped I{sup −} ions formed an impurity level on the top of valence band of (BiO){sub 2}CO{sub 3} and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO){sub 2}CO{sub 3} system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO){sub 2}CO{sub 3} via intense doping effect of I{sup −} ions.« less

  11. Sources and Dynamics of Inorganic Carbon within the Upper Reaches of the Xi River Basin, Southwest China

    PubMed Central

    Zou, Junyu

    2016-01-01

    The carbon isotopic composition (δ13C) of dissolved and particulate inorganic carbon (DIC; PIC) was used to compare and analyze the origin, dynamics and evolution of inorganic carbon in two headwater tributaries of the Xi River, Southwest China. Carbonate dissolution and soil CO2 were regarded as the primary sources of DIC on the basis of δ13CDIC values which varied along the Nanpan and Beipan Rivers, from −13.9‰ to 8.1‰. Spatial trends in DIC differed between the two rivers (i.e., the tributaries), in part because factors controlling pCO2, which strongly affected carbonate dissolution, differed between the two river basins. Transport of soil CO2 and organic carbon through hydrologic conduits predominately controlled the levels of pCO2 in the Nanpan River. However, pCO2 along the upper reaches of the Nanpan River also was controlled by the extent of urbanization and industrialization relative to agriculture. DIC concentrations in the highly urbanized upper reaches of the Nanpan River were typical higher than in other carbonate-dominated areas of the upper Xi River. Within the Beipan River, the oxidation of organic carbon is the primary process that maintains pCO2 levels. The pCO2 within the Beipan River was more affected by sulfuric acid from coal industries, inputs from a scenic spot, and groundwater than along the Nanpan River. With regards to PIC, the contents and δ13C values in the Nanpan River were generally lower than those in the Beipan River, indicating that chemical and physical weathering contributes more marine carbonate detritus to the PIC along the Beipan River. The CO2 evasion flux from the Nanpan River was higher than that in the Beipan River, and generally higher than along the middle and lower reaches of the Xi River, demonstrating that the Nanpan River is an important net source of atmospheric CO2 in Southwest China. PMID:27513939

  12. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    PubMed Central

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-01-01

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO2), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked. PMID:29584686

  13. Carbon monoxide exposure from cooking in snow caves at high altitude.

    PubMed

    Keyes, L E; Hamilton, R S; Rose, J S

    2001-01-01

    To determine the physiological consequences of acute CO exposure from cooking in snow caves at 3,200 m. We hypothesized that ambient CO and serum carboxyhemoglobin (COHb) levels would increase and that even low levels of COHb would be associated with symptoms of CO poisoning at high altitude. This was a prospective observational study. Twenty-two healthy volunteers age 18 years or older were recruited during a winter camping trip at 3,200 m. Subjects filled out symptom questionnaires, and heart rate (HR), oxygen saturation (SaO2), serum COHb, and ambient CO were all measured before and after cooking inside snow caves. Median age of subjects was 32 years, and 87% were male. The median ambient CO level increased by 17 ppm (IQR, 2-27 ppm), P = .005. Mean serum COHb level rose from 0.3% (IQR, 0.2%-0.4%) to 1.2% (IQR, 0.7%-2.6%) after cooking, for a difference of 1% (IQR, 0.4%-2.3%), P < .001. There were no differences in symptom scores before and after cooking, and there was no significant effect on HR or SaO2. A single exposure to CO at 3,200 m increases ambient CO and COHb but not to clinically important levels. Further studies are needed to examine the risks of longer exposures at higher altitudes.

  14. Can elevated CO2 modify regeneration from seed banks of floating freshwater marshes subjected to rising sea-level?

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen L.

    2012-01-01

    Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l-1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.

  15. Performance of a new carbon dioxide absorbent, Yabashi lime® as compared to conventional carbon dioxide absorbent during sevoflurane anesthesia in dogs.

    PubMed

    Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji

    2015-08-01

    In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.

  16. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces.

    PubMed

    Sgherri, Cristina; Pérez-López, Usue; Micaelli, Francesco; Miranda-Apodaca, Jon; Mena-Petite, Amaia; Muñoz-Rueda, Alberto; Quartacci, Mike Frank

    2017-06-01

    Both salt stress and high CO 2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO 2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO 2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO 2 , alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO 2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO 2 , reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Tracing changes in soil N transformations to explain the doubling of N2O emissions under elevated CO2 in the Giessen FACE

    NASA Astrophysics Data System (ADS)

    Moser, Gerald; Brenzinger, Kristof; Gorenflo, Andre; Clough, Tim; Braker, Gesche; Müller, Christoph

    2017-04-01

    To reduce the emissions of greenhouse gases (CO2, CH4 & N2O) it is important to quantify main sources and identify the respective ecosystem processes. While the main sources of N2O emissions in agro-ecosystems under current conditions are well known, the influence of a projected higher level of CO2 on the main ecosystem processes responsible for N2O emissions has not been investigated in detail. A major result of the Giessen FACE in a managed temperate grassland was that a +20% CO2 level caused a positive feedback due to increased emissions of N2O to 221% related to control condition. To be able to trace the sources of additional N2O emissions a 15N tracing study was conducted. We measured the N2O emission and its 15N signature, together with the 15N signature of soil and plant samples. The results were analyzed using a 15N tracing model which quantified the main changes in N transformation rates under elevated CO2. Directly after 15N fertilizer application a much higher dynamic of N transformations was observed than in the long run. Absolute mineralisation and DNRA rates were lower under elevated CO2 in the short term but higher in the long term. During the one year study period beginning with the 15N labelling a 1.8-fold increase of N2O emissions occurred under elevated CO2. The source of increased N2O was associated with NO3- in the first weeks after 15N application. Elevated CO2 affected denitrification rates, which resulted in increased N2O emissions due to a change of gene transcription rates (nosZ/(nirK+nirS)) and resulting enzyme activity (see: Brenzinger et al.). Here we show that the reported enhanced N2O emissions for the first 8 FACE years do prevail even in the long-term (> 15 years). The effect of elevated CO2 on N2O production/emission can be explained by altered activity ratios within a stable microbial community.

  18. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    NASA Astrophysics Data System (ADS)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  19. Seasonal variation in airborne endotoxin levels in indoor environments with different micro-environmental factors in Seoul, South Korea.

    PubMed

    Hwang, Sung Ho; Park, Dong Jin; Park, Wha Me; Park, Dong Uk; Ahn, Jae Kyoung; Yoon, Chung Sik

    2016-02-01

    This study evaluated the variation over a year in airborne endotoxin levels in the indoor environment of five university laboratories in Seoul, South Korea, and examined the micro-environmental factors that influenced endotoxin levels. These included temperature, relative humidity, CO2, CO, illumination, and wind velocity. A total of 174 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from <0.001 to 8.90EU/m(3), with an overall geometric mean of 0.240EU/m(3). Endotoxin levels showed significantly negative correlation with temperature (r=-0.529, p<0.001), CO2 (r=-0.213, p<0.001) and illumination (r=-0.538, p<0.001). Endotoxin levels tended to be higher in winter. Endotoxin levels in laboratories with rabbits were significantly higher than those of laboratories with mice. Multivariate regression analysis showed that the environmental factors affecting endotoxin levels were temperature (coefficient=-0.388, p<0.001) and illumination (coefficient=-0.370, p<0.001). Strategies aimed at reducing airborne endotoxin levels in the indoor environments may be most effective if they focus on illumination. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Personal exposures and microenvironment concentrations of PM 2.5, VOC, NO 2 and CO in Oxford, UK

    NASA Astrophysics Data System (ADS)

    Lai, H. K.; Kendall, M.; Ferrier, H.; Lindup, I.; Alm, S.; Hänninen, O.; Jantunen, M.; Mathys, P.; Colvile, R.; Ashmore, M. R.; Cullinan, P.; Nieuwenhuijsen, M. J.

    Between 1998 and 2000 in Oxford, UK, simultaneous personal exposures and microenvironmental measurements (home indoor, home outdoor and work indoor) to fine particulate matters PM 2.5, volatile organic compounds (VOC), nitrogen dioxide (NO 2) and carbon monoxide (CO) were carried out once per person among 50 adults over a 48-h period. Thirty-seven elements in PM 2.5 and 30 different VOCs were analysed. Questionnaires were distributed to record their time-activity patterns and exposure-related information. Results showed that participants spent more time (89.5%) in all indoors than in other microenvironments. Geometric mean (GM) of personal and home indoor levels of PM 2.5, 14 elements (aluminium, arsenic, bromine, calcium, copper, iron, gallium, potassium, sodium, phosphorus, lead, selenium, silicon, titanium), total VOC (TVOC) and 8 individual compounds (nonane, decane, undecane, trimethylbenzene, toluene, benzaldehyde, alpha-pinene and d-limonene) were over 20% higher than their GM outdoor levels. Those of NO 2, 5 aromatic VOCs (benzene, o-xylene, ethylbenzene, propylbenzene, m, p-xylene) and 5 other elements (chlorine, magnesium, manganese, sulphur, zinc) were close to their GM outdoor levels. For PM 2.5 and TVOC, personal exposures and residential indoor levels (in GM) were about 2 times higher among the tobacco-smoke exposed group compared to the non-smoke exposed group, suggesting that smoking is an important determinant of these exposures. Determinants for CO were visualised by real-time monitoring, and we showed that the peak levels of personal exposure to CO were associated with smoking, cooking and transportation activities. Moderate to good correlations were only found between the personal exposures and residential indoor levels for both PM 2.5 ( r=0.60, p<0.001) and NO 2 ( r=0.47, p=0.003).

  1. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Kawahata, H.

    2011-02-01

    Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of Baculogypsina and Calcarina, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of Amphisorus, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. These different responses among the three species are possibly due to differences in calcification mechanisms (in particular, the specific carbonate species used for calcification) between hyaline and porcelaneous taxa, and to links between calcification by the foraminiferal hosts and photosynthesis by the algal endosymbionts. Our findings suggest that ongoing ocean acidification might favor symbiont-bearing reef foraminifers with hyaline shells at intermediate pCO2 levels (580 to 770 μatm) but be unfavorable to those with either hyaline or porcelaneous shells at higher pCO2 levels (near 1000 μatm).

  2. Intestinal absorption of calcium from calcium ascorbate in rats.

    PubMed

    Tsugawa, N; Yamabe, T; Takeuchi, A; Kamao, M; Nakagawa, K; Nishijima, K; Okano, T

    1999-01-01

    The intestinal absorption of calcium (Ca) from Ca ascorbate (Ca-AsA) was investigated in normal rats. Each animal was perorally administered either 5mg (low dose) or 10mg (high dose) of Ca in 1ml of distilled water as Ca-AsA, Ca carbonate (CaCO3), or Ca chloride (CaCl2), which were intrinsically labeled with 45Ca using 45CaCl2. The amount of radioactivity in plasma was measured periodically up to 34h after dosing, and pharmacokinetic parameters were calculated from the radioactivity in plasma. The time taken to reach the maximum 45Ca level (Tmax) did not differ among the three groups. The area under the plasma 45Ca level/time curve (AUCinfinity) value for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups. The radioactivity at Tmax (Cmax) for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups for the low dose, and comparable with or significantly higher than those for the CaCl2 and CaCO3 groups for the high dose. Similar results were observed for whole-body 45Ca retention. Radioactivity in the femur 34h after dosing was the highest in the Ca-AsA group and the lowest in the CaCO3 group. The rank order of solubility in water, the first fluid (pH 1.2, JP-1) of JPXIII disintegration medium, acetate buffer solution (pH 4.0), triethanolamine-malate buffer solution (pH 7.0) and ammonium chloride buffer solution (pH 10.0) at 37 degrees C was CaCl2 > Ca-AsA > CaCO3. In contrast, the rank order of the solubility in the second fluid (pH 6.8, JP-2) of JPXIII disintegration medium at 37 degrees C was Ca-AsA > CaCl2 > CaCO3. These results indicate that the absorbability of Ca from Ca-AsA is almost comparable with, or higher than, that from CaCl2 and significantly higher than that from CaCO3 because of its high degree of solubility in the intestine. Therefore, Ca-AsA would be useful as a Ca supplement with relatively high absorption from intestine.

  3. Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides

    PubMed Central

    Vaughan, Martha M.; Huffaker, Alisa; Schmelz, Eric A.; Dafoe, Nicole J.; Christensen, Shawn A.; McAuslane, Heather J.; Alborn, Hans T.; Allen, Leon Hartwell; Teal, Peter E. A.

    2016-01-01

    Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin levels remain unaffected. In this study we show that maize simultaneously exposed to elevated [CO2] and drought are even more susceptible to Fv proliferation and also prone to higher levels of fumonisin contamination. Despite the increase in fumonisin levels, the amount of fumonisin produced in relation to pathogen biomass remained lower than corresponding plants grown at ambient [CO2]. Therefore, the increase in fumonisin contamination was likely due to even greater pathogen biomass rather than an increase in host-derived stimulants. Drought did not negate the compromising effects of elevated [CO2] on the accumulation of maize phytohormones and metabolites. However, since elevated [CO2] does not influence the drought-induced accumulation of abscisic acid (ABA) or root terpenoid phytoalexins, the effects elevated [CO2] are negated belowground, but the stifled defense response aboveground may be a consequence of resource redirection to the roots. PMID:27410032

  4. Ocean acidification affects prey detection by a predatory reef fish.

    PubMed

    Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I

    2011-01-01

    Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  5. Characteristics of PM2.5, CO2 and particle-number concentration in mass transit railway carriages in Hong Kong.

    PubMed

    Zheng, Hai-Long; Deng, Wen-Jing; Cheng, Yan; Guo, Wei

    2017-08-01

    Fine particulate matter (PM 2.5 ) levels, carbon dioxide (CO 2 ) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM 2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m 3 , higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m 3 ). The CO 2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm 3 , lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM 2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2  = 0.834) was observed between passenger numbers and CO 2 levels, with each passenger contributing approximately 7.7-9.8 ppm of CO 2 . The real-time measurements of PM 2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM 2.5 levels and PNC. Assessment of the risk associated with PM 2.5 exposure revealed that children are most severely affected by PM 2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM 2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  6. Historical patterns of acidification and increasing CO2 flux associated with Florida springs

    USGS Publications Warehouse

    Barrera, Kira E.; Robbins, Lisa L.

    2017-01-01

    Florida has one of the highest concentrations of springs in the world, with many discharging into rivers and predominantly into eastern Gulf of Mexico coast, and they likely influence the hydrochemistry of these adjacent waters; however, temporal and spatial trends have not been well studied. We present over 20 yr of hydrochemical, seasonally sampled data to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2), and CO2flux from five first-order-magnitude (springs that discharge greater than 2.83 m3 s−1) coastal spring groups fed by the Floridan Aquifer System that ultimately discharge into the Gulf of Mexico. All spring groups had pCO2 levels (averages 3174.3–6773.2 μatm) that were much higher than atmospheric levels of CO2 and demonstrated statistically significant temporal decreases in pH and increases in CO2 flux, pCO2, and alkalinity. Total carbon flux emissions increased from each of the spring groups by between 3.48 × 107 and 2.856 × 108 kg C yr−1 over the time period. By 2013 the Springs Groups in total emitted more than 1.1739 × 109 kg C yr−1. Increases in alkalinity and pCO2 varied from 90.9 to 347.6 μmol kg−1 and 1262.3 to 2666.7 μatm, respectively. Coastal data show higher CO2 evasion than the open Gulf of Mexico, which suggests spring water influences nearshore waters. The results of this study have important implications for spring water quality, dissolution of the Florida carbonate platform, and identification of the effect and partitioning of carbon fluxes to and within coastal and marine ecosystems.

  7. High Aminopeptidase N/CD13 Levels Characterize Human Amniotic Mesenchymal Stem Cells and Drive Their Increased Adipogenic Potential in Obese Women

    PubMed Central

    Iaffaldano, Laura; Nardelli, Carmela; Raia, Maddalena; Mariotti, Elisabetta; Ferrigno, Maddalena; Quaglia, Filomena; Labruna, Giuseppe; Capobianco, Valentina; Capone, Angela; Maruotti, Giuseppe Maria; Pastore, Lucio; Di Noto, Rosa; Martinelli, Pasquale; Del Vecchio, Luigi

    2013-01-01

    Maternal obesity is associated to increased fetal risk of obesity and other metabolic diseases. Human amniotic mesenchymal stem cells (hA-MSCs) have not been characterized in obese women. The aim of this study was to isolate and compare hA-MSC immunophenotypes from obese (Ob-) and normal weight control (Co-) women, to identify alterations possibly predisposing the fetus to obesity. We enrolled 16 Ob- and 7 Co-women at delivery (mean/SEM prepregnancy body mass index: 40.3/1.8 and 22.4/1.0 kg/m2, respectively), and 32 not pregnant women. hA-MSCs were phenotyped by flow cytometry; several maternal and newborn clinical and biochemical parameters were also measured. The expression of membrane antigen CD13 was higher on Ob-hA-MSCs than on Co-hA-MSCs (P=0.005). Also, serum levels of CD13 at delivery were higher in Ob- versus Co-pregnant women and correlated with CD13 antigen expression on Ob-hA-MSCs (r2=0.84, P<0.0001). Adipogenesis induction experiments revealed that Ob-hA-MSCs had a higher adipogenic potential than Co-hA-MSCs as witnessed by higher peroxisome proliferator-activated receptor gamma and aP2 mRNA levels (P=0.05 and P=0.05, respectively), at postinduction day 14 associated with increased CD13 mRNA levels from baseline to day 4 postinduction (P<0.05). Adipogenesis was similar in the two sets of hA-MSCs after CD13 silencing, whereas it was increased in Co-hA-MSCs after CD13 overexpression. CD13 expression was high also in Ob-h-MSCs from umbilical cords or visceral adipose tissue of not pregnant women. In conclusion, antigen CD13, by influencing the adipogenic potential of hA-MSCs, could be an in utero risk factor for obesity. Our data strengthen the hypothesis that high levels of serum and MSC CD13 are obesity markers. PMID:23488598

  8. Acute Exposure to Low-to-Moderate Carbon Dioxide Levels and Submariner Decision Making.

    PubMed

    Rodeheffer, Christopher D; Chabal, Sarah; Clarke, John M; Fothergill, David M

    2018-06-01

    Submarines routinely operate with higher levels of ambient carbon dioxide (CO2) (i.e., 2000 - 5000 ppm) than what is typically considered normal (i.e., 400 - 600 ppm). Although significant cognitive impairments are rarely reported at these elevated CO2 levels, recent studies using the Strategic Management Simulation (SMS) test have found impairments in decision-making performance during acute CO2 exposure at levels as low as 1000 ppm. This is a potential concern for submarine operations, as personnel regularly make mission-critical decisions that affect the safety and efficiency of the vessel and its crew while exposed to similar levels of CO2. The objective of this study was to determine if submariner decision-making performance is impacted by acute exposure to levels of CO2 routinely present in the submarine atmosphere during sea patrols. Using a subject-blinded balanced design, 36 submarine-qualified sailors were randomly assigned to receive 1 of 3 CO2 exposure conditions (600, 2500, or 15,000 ppm). After a 45-min atmospheric acclimation period, participants completed an 80-min computer-administered SMS test as a measure of decision making. There were no significant differences for any of the nine SMS measures of decision making between the CO2 exposure conditions. In contrast to recent research demonstrating cognitive deficits on the SMS test in students and professional-grade office workers, we were unable to replicate this effect in a submariner population-even with acute CO2 exposures more than an order of magnitude greater than those used in previous studies that demonstrated such effects.Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerosp Med Hum Perform. 2018; 89(6):520-525.

  9. Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels in a mesocosm study

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Allgaier, M.; Meyerhöfer, M.; Schulz, K. G.; Wohlers, J.; Zöllner, E.; Riebesell, U.

    2008-05-01

    Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced the bacterial capacity to consume labile DOC in the upper mixed layer of the stratified mesocosms.

  10. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study.

    PubMed

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J; Ball, J Timothy; Johnson, Dale W

    2006-06-01

    We conducted a 4-year study of juvenile Pinus ponderosa fine root (< or =2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 mumol/mol, ambient+350 mumol/mol) and three N-fertilization levels (0, 10, 20 g m(-2) year(-1)). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m(-2)), production (m m(-2) year(-1)), and mortality (m m(-2) year(-1)) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m(-2)) in the second and third years, and production and mortality (m m(-2) year(-1)) in the third year. Higher mortality (m m(-2) year(-1)) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.

  11. Coral Reefs on the Edge? Carbon Chemistry on Inshore Reefs of the Great Barrier Reef

    PubMed Central

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff. PMID:25295864

  12. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems

    NASA Astrophysics Data System (ADS)

    Martínez-Crego, B.; Olivé, I.; Santos, R.

    2014-12-01

    Increasing evidence emphasizes that the effects of human impacts on ecosystems must be investigated using designs that incorporate the responses across levels of biological organization as well as the effects of multiple stressors. Here we implemented a mesocosm experiment to investigate how the individual and interactive effects of CO2 enrichment and eutrophication scale-up from changes in primary producers at the individual (biochemistry) or population level (production, reproduction, and/or abundance) to higher levels of community (macroalgae abundance, herbivory, and global metabolism), and ecosystem organization (detritus release and carbon sink capacity). The responses of Zostera noltii seagrass meadows growing in low- and high-nutrient field conditions were compared. In both meadows, the expected CO2 benefits on Z. noltii leaf production were suppressed by epiphyte overgrowth, with no direct CO2 effect on plant biochemistry or population-level traits. Multi-level meadow response to nutrients was faster and stronger than to CO2. Nutrient enrichment promoted the nutritional quality of Z. noltii (high N, low C : N and phenolics), the growth of epiphytic pennate diatoms and purple bacteria, and shoot mortality. In the low-nutrient meadow, individual effects of CO2 and nutrients separately resulted in reduced carbon storage in the sediment, probably due to enhanced microbial degradation of more labile organic matter. These changes, however, had no effect on herbivory or on community metabolism. Interestingly, individual effects of CO2 or nutrient addition on epiphytes, shoot mortality, and carbon storage were attenuated when nutrients and CO2 acted simultaneously. This suggests CO2-induced benefits on eutrophic meadows. In the high-nutrient meadow, a striking shoot decline caused by amphipod overgrazing masked the response to CO2 and nutrient additions. Our results reveal that under future scenarios of CO2, the responses of seagrass ecosystems will be complex and context-dependent, being mediated by epiphyte overgrowth rather than by direct effects on plant biochemistry. Overall, we found that the responses of seagrass meadows to individual and interactive effects of CO2 and nutrient enrichment varied depending on interactions among species and connections between organization levels.

  13. Effectiveness of carbon dioxide removal in lowering atmospheric CO2 and reversing global warming in the context of 1.5 degrees

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Azevedo, D.

    2017-12-01

    The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a cooler climate, on the other hand, is largely insensitive to the level of overshoot.

  14. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana.

    PubMed

    Sabia, Alessandra; Clavero, Esther; Pancaldi, Simonetta; Salvadó Rovira, Joan

    2018-02-01

    The marine diatom Thalassiosira pseudonana grown under air (0.04% CO 2 ) and 1 and 5% CO 2 concentrations was evaluated to determine its potential for CO 2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO 2 showed higher growth rates (1.14 and 1.29 div day -1 , respectively) and biomass productivities (44 and 48 mg AFDW L -1  day -1 ) than air grown cultures (with 1.13 div day -1 and 26 mg AFDW L -1  day -1 ). The increase of CO 2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO 2 . Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO 2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  15. Indoor air quality in primary schools in Kecioren, Ankara.

    PubMed

    Babayiğit, Mustafa Alparslan; Bakir, Bilal; Tekbaş, Omer Faruk; Oğur, Recai; Kiliç, Abdullah; Ulus, Serdar

    2014-01-01

    To increase the awareness of environmental risk factors by determining the indoor air quality status of primary schools. Indoor air quality parameters in 172 classrooms of 31 primary schools in Kecioren, Ankara, were examined for the purpose of assessing the levels of air pollutants (CO, CO2, SO2, NO2, and formaldehyde) within primary schools. Schools near heavy traffic had a statistically significant mean average of CO and SO2 (P < 0.05). The classrooms that had more than 35 students had higher and statistically significant averages of CO2, SO2, NO2, and formaldehyde compared to classrooms that had fewer than 35 students (P < 0.05). Of all classrooms, 29% had 100 CFU/100 mL and higher concentrations of microorganisms, which were not pathogens. Indoor air quality management should continually be maintained in primary schools for the prevention and control of acute and chronic diseases, particularly considering biological and chemical pollution.

  16. The Influence of Elevated CO2 Concentration on the Fitness Traits of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae).

    PubMed

    ShuQi, He; Ying, Lin; Lei, Qian; ZhiHua, Li; Chao, Xi; Lu, Yang; FuRong, Gui

    2017-06-01

    Development and fecundity were investigated in an invasive alien thrips species, Frankliniella occidentalis (Pergande), and a related native species, Frankliniella intonsa (Trybom), under high CO2 concentration. Results show that the two thrips species reacted differently toward elevated CO2 concentration. Developmental duration decreased significantly (11.93%) in F. occidentalis at the CO2 concentration of 800 µl/liter; survival rate of all stages also significantly increased (e.g., survival rate of first instar increased 17.80%), adult longevity of both female and male extended (e.g., female increased 2.02 d on average), and both fecundity and daily eggs laid per female were higher at a CO2 concentration of 800 µl/liter than at 400 µl/liter. Developmental duration of F. intonsa decreased, insignificantly, at a CO2 concentration of 800 µl/liter. Unlike F. occidentalis, survival rate of F. intonsa declined considerably at higher CO2 concentration level (e.g., survival rate of first instar decreased 19.70%), adult longevity of both female and male curtailed (e.g., female reduced 3.82 d on average), and both fecundity and daily eggs laid per female were reduced to 24.86 and 0.83, respectively, indicating that there exist significant differences between the two CO2 levels. Results suggest that the population fitness of invasive thrips species might be enhanced with increase in CO2 concentration, and accordingly change the local thrips population composition with their invasion. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Carbon dioxide sensing in the social context: Leaf-cutting ants prefer elevated CO2 levels to tend their brood.

    PubMed

    Römer, Daniela; Bollazzi, Martin; Roces, Flavio

    2018-07-01

    Social insects show temperature and humidity preferences inside their nests to successfully rear brood. In underground nests, ants also encounter rising CO 2 concentrations with increasing depth. It is an open question whether they use CO 2 as a cue to decide where to place and tend the brood. Leaf-cutting ants do show CO 2 preferences for the culturing of their symbiotic fungus. We evaluated their CO 2 choices for brood placement in laboratory experiments. Workers of Acromyrmex lundii in the process of relocating brood were offered a binary choice consisting of two interconnected chambers with different CO 2 concentrations. Values ranged from atmospheric to high concentrations of 4% CO 2 . The CO 2 preferences shown by workers for themselves and for brood placement were assessed by quantifying the number of workers and relocated brood in each chamber. Ants showed clear CO 2 preferences for brood placement. They avoided atmospheric levels, 1% and 4% CO 2 , and showed a preference for levels of 3%. This is the first report of CO 2 preferences for the maintenance of brood in social insects. The observed preferences for brood location were independent of the workers' own CO 2 preferences, since they showed no clear-cut pattern. Workers' CO 2 preferences for brood maintenance were slightly higher than those reported for fungus culturing, although brood is reared in the same chambers as the fungus in leaf-cutting ant nests. Workers' choices for brood placement in natural nests are likely the result of competing preferences for other environmental factors more crucial for brood survival, aside from those for CO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

    PubMed Central

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  19. A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli.

    PubMed

    Torres, J C; Guixé, V; Babul, J

    1997-11-01

    Strains of Escherichia coli bearing different forms of phosphofructokinase were used to assess the occurrence of futile cycling in cell resuspensions supplied with glycerol as gluconeogenic carbon source. A model was used to simulate results of different kinds of experiments for different levels of futile cycle. The main predictions of the model were experimentally confirmed in a strain with a mutant phosphofructokinase-2 (phosphofructokinase-2*) which is not inhibited by MgATP. The intracellular fructose 1, 6-bisphosphate concentration reaches significantly higher levels in the mutant-bearing strain than in strains with either phosphofructokinase-1 or -2. Also, this strain showed a higher rate and level of in vivo radioactive labelling of fructose 1, 6-bisphosphate, from a trace of [U-14C]glucose supplied during gluconeogenesis, indicating higher kinase activity in these conditions. Cell resuspensions of the mutant-bearing strain produced higher levels of radioactively labelled CO2 when supplied with [U-14C]glycerol as the only carbon source. Simultaneously, fewer glycerol carbons were incorporated into HClO4-insoluble macromolecules. Finally, radioactive CO2 output was measured in resuspensions supplied with glycerol as the major carbon source with traces of either [1-14C]glucose or [6-14C]glucose. It was found that, whereas in the strains with either of the wild-type phosphofructokinase isoenzymes, radioactive CO2 output from [1-14C]glucose was higher than with [6-14C]glucose, the reverse is found for the strain with phosphofructokinase-2*. This result also agrees with the corresponding prediction of the model. Using the radioactivity flux rates predicted by the model, an explanation linking the futile cycle to the differential labelling of CO2 is advanced. Finally, on the basis of these results it is proposed that strains bearing phosphofructokinase-2* sustain higher rates of futile cycling during gluconeogenesis than strains bearing either of the wild-type isoforms of phosphofructokinase. The kinetic equations and parameter values used for the model simulations are given in Supplementary Publication SUP 50183 (8 pages), which has been deposited at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1997) 321, 8.

  20. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  1. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  2. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  3. ASSESSMENT OF THE INDOOR ENVIRONMENT AND IMPLICATIONS FOR HEALTH IN ROMA VILLAGES IN SLOVAKIA AND ROMANIA

    PubMed Central

    Majdan, Marek; Coman, Alexandru; Gallová, Eva; Ďuricová, Janka; Kállayová, Daniela; Kvaková, Mária; Bošák, Ľuboš

    2013-01-01

    SUMMARY Objectives The objective of this paper is to provide information on indoor air quality and on the quality of the broader indoor environment of the houses in Roma villages in Slovakia and Romania and to discuss possible implications for health. Methods Indoor air was sampled in 11 houses in a Romanian Roma village and in 19 houses in a Slovakian Roma village. Levels of Carbon Monoxide (CO), Carbon Dioxide (CO2), total particulate matter (PM), temperature and humidity were measured. A questionnaire and a checklist were used to obtain additional information on the indoor environment and behavioural factors. We have sampled the same houses in winter and in summer. Results Levels of CO and CO2 were higher in winter in both countries as compared to summer. The limit value of 10 mg/m3 CO was exceeded in a few cases in both countries. In general, levels of CO, CO2 and PM were higher in Romania. Further environmental and behavioural hazards such as indoor smoking, pets inside or lack of ventilation were found. The reported self-perceived quality of the indoor environment was poor in many aspects. Conclusions Our findings of CO, CO2 and PM levels suggest that indoor air pollution in Roma settlements has the potential to be a health threat. The fact that the inhabitants spend a relatively long time inside the houses and that a number of additional environmental and behavioural hazards were identified by our study emphasizes the importance of the indoor air quality for health and thus priority attention should be paid to these issues by health authorities and researchers. Further research is essential and study designs must consider cultural background and specific characteristics of the community, especially in order to obtain valid data on health outcomes. PMID:23285520

  4. Ocean acidification does not affect magnesium composition or dolomite formation in living crustose coralline algae, Porolithon onkodes in an experimental system

    NASA Astrophysics Data System (ADS)

    Nash, M. C.; Uthicke, S.; Negri, A. P.; Cantin, N. E.

    2015-09-01

    There are concerns that Mg-calcite crustose coralline algae (CCA), which are key reef builders on coral reefs, will be most susceptible to increased rates of dissolution under higher pCO2 and ocean acidification. Due to the higher solubility of Mg-calcite, it has been hypothesised that magnesium concentrations in CCA Mg-calcite will decrease as the ocean acidifies, and that this decrease will make their skeletons more chemically stable. In addition to Mg-calcite, CCA Porolithon onkodes, the predominant encrusting species on tropical reefs, can have dolomite (Ca0.5Mg0.5CO3) infilling cell spaces which increases their stability. However, nothing is known about how bio-mineralised dolomite formation responds to higher pCO2. Using P. onkodes grown for 3 and 6 months in tank experiments, we aimed to determine (1) if mol % MgCO3 in new crust and new settlement was affected by increasing CO2 levels (365, 444, 676 and 904 μatm), (2) whether bio-mineralised dolomite formed within these time frames, and (3) if so, whether this was effected by CO2. Our results show that there was no significant effect of CO2 on mol % MgCO3 in any sample set, indicating an absence of a plastic response under a wide range of experimental conditions. Dolomite within the CCA cells formed within 3 months and dolomite abundance did not vary significantly with CO2 treatment. While evidence mounts that climate change will impact many sensitive coral and CCA species, the results from this study indicate that reef-building P. onkodes will continue to form stabilising dolomite infill under near-future acidification conditions, thereby retaining its higher resistance to dissolution.

  5. Ocean acidification does not affect magnesium composition or dolomite formation in living crustose coralline algae, Porolithon onkodes in an experimental system

    NASA Astrophysics Data System (ADS)

    Nash, M. C.; Uthicke, S.; Negri, A. P.; Cantin, N. E.

    2015-01-01

    There are concerns that Mg-calcite crustose coralline algae (CCA), which are key reef builders on coral reefs, will be most susceptible to increased rates of dissolution under higher pCO2 and ocean acidification. Due to the higher solubility of Mg-calcite, it has been hypothesized that magnesium concentrations in CCA Mg-calcite will decrease as the ocean acidifies, and that this decrease will make their skeletons more chemically stable. In addition to Mg-calcite, CCA Porolithon onkodes the predominant encrusting species on tropical reefs, can have dolomite (Ca0.5Mg0.5CO3) infilling cell spaces which increases their stability. However, nothing is known about how bio-mineralised dolomite formation responds to higher pCO2. Using P. onkodes grown for 3 and 6 months in tank experiments, we aimed to determine (1) if mol % MgCO3 in new crust and new settlement affected by increasing pCO2 levels (365, 444, 676 and 904 ppm), (2) whether bio-mineralised dolomite formed within these time frames, and (3) if so, whether this was effected by pCO2. Our results show there was no significant effect of pCO2 on mol % MgCO3 in any sample set, indicating an absence of a plastic response under a wide range of experimental conditions. Dolomite within the CCA cells formed within 3 months and dolomite abundance did not vary significantly with pCO2 treatment. While evidence mounts that climate change will impact many sensitive coral and CCA species, the results from this study indicate that reef-building P. onkodes will continue to form stabilising dolomite infill under near-future acidification conditions, thereby retaining its higher resistance to dissolution.

  6. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  7. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  8. Declining Atmospheric pCO2 During the Late Miocene and Early Pliocene: New Insights from Paired Alkenone and Coccolith Stable Isotope Barometry

    NASA Astrophysics Data System (ADS)

    Phelps, S. R.; Polissar, P. J.; deMenocal, P. B.; Swann, J. P.; Guo, M. Y.; Stoll, H. M.

    2015-12-01

    The relationship between atmospheric CO2 concentrations and climate is broadly understood for the Cenozoic era: warmer periods are associated with higher atmospheric carbon dioxide. This understanding is supported by atmospheric samples of the past 800,000 years from ice cores, which suggest CO2 levels play a key role in regulating global climate on glacial interglacial timescales as well. In this context, the late Miocene poses a challenge: sea-surface temperatures indicate substantial global warmth, though existing data suggest atmospheric CO2 concentrations were lower than pre-industrial values. Recent work using the stable carbon and oxygen isotopic composition of coccolith calcite has demonstrated these organisms began actively diverting inorganic carbon away from calcification and to the site of photosynthesis during the late Miocene. This process occurs in culture experiments in response to low aqueous CO2 concentrations, and suggests decreasing atmospheric pCO2 values during the late Miocene. Here we present new data from ODP Site 806 in the western equatorial Pacific Ocean that supports declining atmospheric CO2 across the late Miocene. Carbon isotope values of coccolith calcite from Site 806 demonstrate carbon limitation and re-allocation of inorganic carbon to photosynthesis starting between ~8 and 6 Ma. The timing of this limitation at Site 806 precedes shifts at other ODP sites, reflecting the higher mixed layer temperature and resultant lower CO2 solubility at Site 806. New measurements of carbon isotope values from alkenones at Site 806 show an increase in photosynthetic carbon fractionation (ɛp) accompanied the carbon limitation evident from coccolith calcite stable isotope data. While higher ɛp is typically interpreted as higher CO2 concentrations, at Site 806, our data suggest it reflects enhancement of chloroplast CO2 from active carbon transport by the coccolithophore algae in response to lower CO2 concentrations. Our new data from ODP Site 806 combined with previous published measurements suggests atmospheric CO2 values declined across the late Miocene and early Pliocene. This decline is coincident with decreasing ocean temperatures suggesting the fundamental relationship between atmospheric CO2 and climate can qualitatively explain late Miocene warmth.

  9. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges.

    PubMed

    Yuan, Wubiao; Gao, Guang; Shi, Qi; Xu, Zhiguang; Wu, Hongyan

    2018-04-01

    Diatoms are one of the most important groups of phytoplankton in terms of abundance and ecological functionality in the ocean. They usually dominate the phytoplankton communities in coastal waters and experience frequent and large fluctuations in light. In order to evaluate the combined effects of ocean warming and acidification on the diatom's exploitation of variable light environments, we grew a globally abundant diatom Thalassiosira pseudonana under two levels of temperature (18, 24 °C) and pCO 2 (400, 1000 μatm) to examine its physiological performance after light challenge. It showed that the higher temperature increased the photoinactivation rate in T. pseudonana at 400 μatm pCO 2 , while the higher pCO 2 alleviated the negative effect of the higher temperature on PSII photoinactivation. Higher pCO 2 stimulated much faster PsbA removal, but it still lagged behind the photoinactivation of PSII under high light. Although the sustained phase of nonphotochemical quenching (NPQs) and activity of superoxide dismutase (SOD) were provoked during the high light exposure in T. pseudonana under the combined pCO 2 and temperature conditions, it could not offset the damage caused by these multiple environmental changes, leading to decreased maximum photochemical yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. [Study on relationship between prevalence or co-prevalence of risk factors for cardiovascular disease and blood pressure level in adults in China].

    PubMed

    Chen, Z H; Zhang, M; Li, Y C; Zhao, Z P; Zhang, X; Huang, Z J; Li, C; Wang, L M

    2018-05-10

    Objective: To study the relationship between blood pressure level and major risk factors for cardiovascular diseases in adults in China. Methods: A total of 179 347 adults aged ≥18 years were recruited from 298 surveillance points in 31 provinces in China in 2013 through complex multistage stratified sampling. The survey included face to face interview and physical examination to collect information about risk factors, such as smoking, drinking, diet pattern, physical activity, overweight or obesity, and the prevalence of hypertension. The blood pressure was classified into 6 levels (ideal blood pressure, normal blood pressure, normal high blood pressure and hypertension phase Ⅰ, Ⅱ and Ⅲ). The relationship between the prevalence or co-prevalence of risk factors for cardiovascular disease and blood pressure was analyzed. Results: The adults with ideal blood pressure, normal blood pressure, normal high pressure, hypertension phase Ⅰ, Ⅱ and Ⅲ accounted for 36.14 % , 22.77 % , 16.22 % , 16.43 % , 5.97 % and 2.48 % , respectively. Among them, the blood pressure was higher in men, people in Han ethnic group and those married, and the blood pressure was higher in those with older age, lower income level and lower education level, the differences were all significant ( P <0.05). Whether taking antihypertensive drug or not, co-prevalence of risk factors influenced the blood pressure levels of both sexes ( P <0.05), and the blood pressure levels of those taking no antihypertensive drug was influenced more by the co-prevalence of risk factors. Finally, multiple logistic analysis showed that the risks for high blood pressure in adults with 1, 2 and ≥3 risk factors were 1.36, 1.79 and 2.38 times higher, respectively, than that of the adults without risk factor. Conclusion: The more the risk factors for cardiovascular disease in adults, the higher their blood pressure were. It is necessary to conduct comprehensive behavior intervention targeting ≥ 2 risk factors for the better control of blood pressure in general population.

  11. Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: A model-data comparison

    NASA Astrophysics Data System (ADS)

    Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław; Markwick, Paul J.

    2017-09-01

    We investigate the impact of different CO2 levels and different subarctic gateway configurations on the surface temperatures during the latest Cretaceous using the Earth System Model COSMOS. The simulated temperatures are compared with the surface temperature reconstructions based on a recent compilation of the latest Cretaceous proxies. In our numerical experiments, the CO2 level ranges from 1 to 6 times the preindustrial (PI) CO2 level of 280 ppm. On a global scale, the most reasonable match between modeling and proxy data is obtained for the experiments with 3 to 5 × PI CO2 concentrations. However, the simulated low- (high-) latitude temperatures are too high (low) as compared to the proxy data. The moderate CO2 levels scenarios might be more realistic, if we take into account proxy data and the dead zone effect criterion. Furthermore, we test if the model-data discrepancies can be caused by too simplistic proxy-data interpretations. This is distinctly seen at high latitudes, where most proxies are biased toward summer temperatures. Additional sensitivity experiments with different ocean gateway configurations and constant CO2 level indicate only minor surface temperatures changes (< 1°C) on a global scale, with higher values (up to 8°C) on a regional scale. These findings imply that modeled and reconstructed temperature gradients are to a large degree only qualitatively comparable, providing challenges for the interpretation of proxy data and/or model sensitivity. With respect to the latter, our results suggest that an assessment of greenhouse worlds is best constrained by temperatures in the midlatitudes.

  12. Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors

    PubMed Central

    Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash

    2016-01-01

    Background Tuberculosis-diabetes co-morbidity (TB-DM) is characterized by increased inflammation with elevated circulating levels of inflammatory cytokines and other factors. Circulating angiogenic factors are intricately involved in the angiogenesis-inflammation nexus. Methods To study the association of angiogenic factors with TB-DM, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2, VEGF-R3 in individuals with either TB-DM (n=44) or TB alone (n=44). Results Circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly higher in TB-DM compared to TB individuals. Moreover, the levels of VEGF-A, C, R2 and/or R3 were significantly higher in TB-DM with bilateral or cavitary disease or with hemoptysis, suggesing an association with both disease severity and adverse clinical presentation. The levels of these factors also exhibited a significant positive relationship with bacterial burdens and HbA1c levels. In addition, VEGF-A, C and R2 levels were signifantly higher (at 2 months of treatment) in culture positive compared to culture negative TB-DM individuals. Finally, the circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly reduced following successful chemotherapy at 6 months. Conclusion Our data demonstrate that TB-DM is associated with heightened levels of circulating angiogenic factors, possibly reflecting both dysregulated angiogenesis and exaggerated inflammation. PMID:27717783

  13. Effects of Tidally Driven Variation on the Response of Coralline Algae to Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Ets-Hokin, J. M.; Fachon, E.; Donham, E. M.; Price, N.

    2016-02-01

    As atmospheric CO2 levels continue to rise, our oceans are becoming more acidic, making it difficult for calcareous organisms like coralline algae to calcify. Coralline algae are early colonizers after disturbances and foundational species that initiate succession by inducing larval settlement of many invertebrate species. However, coralline algae tend to be more susceptible to experimentally elevated pCO2 than other calcifiers, likely due to the higher magnesium content in their calcite skeleton, which can render them more soluble. Magnesium content varies between individuals and is context dependent, thus could be a mechanism of acclimation for algae recruiting to harsh environments. To test this hypothesis, we collected Corallina officinalis from tide pools that experience extreme daily variation and from a well-flushed site that experiences lower daily variation in seawater pH. Samples were placed for 22 days in 1L microcosms bubbled with air enriched with pCO2, with values ranging from preindustrial lows (280 uatm) to predicted highs over the next century (1120 uatm) over 6 treatment levels. C. officinalis collected in the isolated tide pools showed decreased growth ( 50%) both in net calcification (measured via buoyant weight method) and linear extension (visualized with fluorescent stain) in low and high pCO2 levels, with growth peaking at an optimal pCO2 value of approximatly 300 uatm similar to present-day conditions. In contrast C. officinalis collected from the flushed site had no response to pCO2 treatments but had significantly lower growth overall. Tide pool two showed higher inclusion of magnesium in its carbonate skeleton which could explain its more pronounced response to the pCO2 treatments. While living in harsh environments can acclimate coralline algae to high pCO2, overall growth rates are substantially lower and will likely be insufficient to alleviate effects of ocean acidification.

  14. Impact of carbon dioxide level, water velocity, and feeding regimen on growth and fillet attributes of cultured rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Mazik, Patricia M.; Mazik, P.M.; Kenney, P.B.; Silverstein, J.T

    2016-01-01

    Production and management variables such as carbon dioxide (CO2) level, water velocity, and feeding frequency influence the growth and fillet attributes of rainbow trout (Oncorhynchus mykiss), as well as cost of production. More information is needed to determine the contributions of these variables to growth and fillet attributes to find the right balance between input costs and fish performance. Two studies, of 84 and 90 days duration, were conducted to determine the effects of CO2 level, water velocity, and feed frequency on rainbow trout growth, fillet yield, and fillet quality. In the first study, two CO2levels (30 and 49 mg/L) and two velocity levels (0.5 and 2.0 body lengths/s) were tested. In the second study two CO2 levels (30 and 49 mg/L) and two feeding regimens (fed once daily to satiation or three times daily to satiation) were tested. In the first study, after 84 days, fillet weight from high CO2 tanks was 13.5% lower than the fillet weights of fish from low CO2 tanks. Percent fat of fillets was higher in low CO2 fish (P = 0.05) after 84 days and, fish from the low CO2 treatment were larger (P < 0.01). Both studies had similar results in regards to fat content and weight of fillets in response to elevated CO2levels. Velocity had little affect on either whole wet weight or fillet attributes of rainbow trout in this study. Muscle tissue contained more (P < 0.01) fat when fish were fed three times daily (7.3%; day 90) compared to once daily (5.4%; day 90). Also, fish were larger (P < 0.05) when fed 3 times per day (1079 g; day 90) in comparison to only one daily feeding (792 g; day 90). Fish in high feed/high CO2 tanks were larger and had more fillet fat than fish from low feed/low CO2 tanks. To maximize rainbow trout growth at aquaculture facilities, management strategies should attempt to keep CO2 levels below 30 mg/L when cost efficient. However, feeding 2–3 times daily should reduce production losses if CO2 cannot be minimized. The effect of strain and velocity were minimal over the range we tested in comparison to the effects of CO2 and feeding regimen.

  15. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  16. Changes in plants and soil microorganisms in an artificial CO2 leakage experiment

    NASA Astrophysics Data System (ADS)

    Ko, D.; Kim, Y.; Yoo, G.; Chung, H.

    2017-12-01

    Carbon capture and storage (CCS) technology is considered to be a promising technology that can mitigate global climate change by greatly reducing anthropogenic CO2 emissions. Despite the advantage, potential risks of leakage of CO2 from CO2 storage site exists, which may negatively affect organisms in the soil ecosystems. To investigate the short- term impacts of geological CO2 leakage on soil ecosystem, we conducted an artificial CO2 leakage experiment in a greenhouse where plants and soils were exposed to high levels of CO2. Corn was grown in a 1:1 (v/v) mixture of potting and field soil, and 99.99% CO2 gas was injected at a flow rate of 0.1l min-1 for 30 days whereas no gas was injected to control pots. Changes in plant growth, soil characteristics, and bacterial community composition were determined. Mean soil CO2 and O2 concentrations were 31.6% and 15.6%, respectively, in CO2-injected pots, while they were at ambient levels in control pots. The shoot and root length, and chlorophyll contents decreased in CO2-injected pots by 19.4%, 9.7%, and 11.9%, respectively. In addition, the concentration of available N such as NH4+-N and NO3-N was 83.3 to 90.8% higher in CO2-injected pots than in control pots likely due to inhibited plant growth. The results of bacterial 16S rRNA gene pyrosequencing showed that the major phyla in the soils were Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Saccharibacteria_TM7. Among these, the relative abundance of Proteobacteria was lower in CO2-injected than in control pots (28.8% vs. 34.1%) likely due to decreased C availability. On the other hand, the abundance of Saccharibacteria_TM7 was significantly higher in CO2-injected than in control pots (6.0% vs. 1.3%). The changes in soil mineral N and microorganisms in response to injected CO2 was likely due to inhibited plant growth under high soil CO2 conditions, and further studies are needed to determine if belowground CO2 leakage from CO2 storage sites can directly affect soil microbial communities.

  17. [CaCO3 stimulates alpha-ketoglutarate accumulation during pyruvate fermentation by Torulopsis glabrata].

    PubMed

    Liu, Li-Ming; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2003-11-01

    A large amount of alpha-ketoglutarate (alpha-KG) (6.8 g/L) was accumulated in flask culture when CaCO3 was used as a buffering agent in the production of pyruvate by multi-vitamin auxotrophic yeast Torulopsis glabrata CCTCC M202019. In a 5 L jar-fermentor, less alpha-KG (1.3 g/L) was produced when NaOH was used to adjust the pH, while more alpha-KG (11.5 g/L) detected when CaCO3 was used as the buffer. In the latter case, the molar carbon ratio of pyruvate to alpha-KG (C(PYR)/ CalphaKG) was similar to that obtained in flask culture, suggesting the accumulation of alpha-ketoglutarate was related to the addition of CaCO3. Furthermore, it was found that: (1) delaying the addition time of CaCO3 decreased the a-ketoglutarate formation but increased C(PYR)/ C(alphaKG); and (2) under vitamin limitation conditions increasing the concentration of CaCO3 led to an increased a-KG accumulation at the expenses of pyruvate. To study which ions in CaCO3 was responsible for the accumulation of alpha-KG, the effects of different pH buffers on the a-KG accumulation were studied. The level of alpha-KG was found to correlate with the levels of both Ca2+ and CO3(2-), with Ca2+ played a dominant role and CO3(2-) played a minor role. To find out which pathway was responsible for the accumulation of alpha-KG, the effects of biotin and thiamine on alpha-KG accumulation was investigated. The increase in biotin concentration led to an increase in alpha-KG accumulation and a decrease in C(PYR)/ C(alpha-KG), while the levels of alpha-KG and C(PYR)/C(alphaKG) were not affected by thiamine concentration. The activity of pyruvate carboxylase was increased as much as 40% when the medium was supplemented with Ca2+ . On the other hand, the activity of the pyruvate dehydrogenase complex was unaffected by the presence of Ca2+. To conclude, the higher level of a-KG was caused by higher activity of pyruvate carboxylase stimulated by Ca2+, with CO3(2-) served as the substrate of the reaction.

  18. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    NASA Technical Reports Server (NTRS)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    2003-01-01

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  19. Effects of CO 2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.

  20. [HIF-2α/Notch3 pathway mediates CoCl2-induced migration and invasion in human breast cancer MCF-7 cells].

    PubMed

    Wang, Jian-Guo; Yuan, Lei

    2016-12-25

    The aim of this study is to investigate the effects of hypoxia inducible factor-2α (HIF-2α) and Notch3 on CoCl 2 -induced migration and invasion of human breast cancer cell line MCF-7. MCF-7 cells were exposed to normoxia (21% O 2 ) or chemical hypoxia (21% O 2 plus CoCl 2 ). Short hairpin RNA (shRNA) was used to knock down HIF-2α and Notch3 in MCF-7 cells. The mRNA expression levels of HIF-2α, Notch3 and Hey1 were measured by RT-PCR. Western blot was performed to determine the protein expression levels of HIF-2α, Notch3, Hey1, Snail and E-cadherin. CoCl 2 treatment resulted in higher protein expression levels of HIF-2α, Notch3, Hey1, Snail (P < 0.05) and lower levels of E-cadherin (P < 0.05), and promoted migration and invasion of MCF-7 cells (P < 0.05). shRNA-HIF-2α suppressed CoCl 2 -induced mRNA expression of Notch3 and Hey1. Notch3 knockdown down-regulated Snail and up-regulated E-cadherin at protein level under simulated hypoxia (P < 0.05), and inhibited CoCl 2 -induced migration and invasion of MCF-7 cells (P < 0.05). In conclusion, our data provide evidence that HIF-2α may promote the migration and invasion of MCF-7 cells under chemical hypoxic conditions by potentiating Notch3 pathway.

  1. Asymptomatic prospective and retrospective cohorts with metal-on-metal hip arthroplasty indicate acquired lymphocyte reactivity varies with metal ion levels on a group basis

    PubMed Central

    Hallab, NJ; Caicedo, M; McAllister, K; Skipor, A; Amstutz, H; Jacobs, JJ

    2012-01-01

    Some tissues from metal-on-metal (MoM) hip arthroplasty revisions have shown evidence of adaptive-immune reactivity (i.e., excessive peri-implant lymphocyte infiltration/activation). We hypothesized that, prior to symptoms, some people with MoM hip arthroplasty will develop quantifiable metal-induced lymphocyte reactivity responses related to peripheral metal ion levels. We tested 3 cohorts (Group-1: n=21 prospective longitudinal MoM hip arthroplasty; Group-2: n=17 retrospective MoM hip arthroplasty; and Group-3: n=20 controls without implants). We compared implant position, metal-ion release, and immuno-reactivity. MoM cohorts had elevated (p<0.01) amounts of serum Co and Cr compared to controls as early as 3 mos post-op (Group-1:1.2ppb-Co, 1.5ppb-Cr; Group-2: 3.4ppb-Co,, 5.4ppb-Cr; Group-3: 0.01ppb-Co, 0.1ppb-Cr). However, only after 1 to 4 yrs post-op did 56% of Group-1 develop metal-reactivity (vs. 5%pre-op, metal-LTT, SI>2), compared with 76% of Group-2 and 15% of Group-3 controls (patch testing was a poor diagnostic indicator with only 1/21 Group-1 positive). Higher cup-abduction angles (50° vs. 40°) in Group-1 were associated with higher serum Cr (p<0.07). However, sub-optimal cup-anteversion angles (9° vs. 20°) had higher serum Co (p<0.08). Serum Cr and Co were significantly elevated in reactive vs. non-reactive Group-1 participants (p<0.04). CD4+CD69+ T-helper lymphocytes (but not CD8+) and IL-1β, IL-12 and IL-6 cytokines were all significantly elevated in metal-reactive vs. non-reactive Group-1 participants. Our results showed that lymphocyte reactivity to metals can develop within the first 1 to 4 years after MoM arthroplasty in asymptomatic patients and lags increases in metal ion levels. This increased metal reactivity was more prevalent in those individuals with extreme cup angles and higher amounts of circulating metal. PMID:22941579

  2. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger

    PubMed Central

    2012-01-01

    Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. Methods High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. Results CO2 levels of 800 μmol·mol−1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO2 enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO2 and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO2 enrichment. Plants not treated with SA and kept under ambient CO2 conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO2 conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO2 levels. As the level of CO2 increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with SA and grown under high CO2 conditions. Conclusions The biological activities of both ginger varieties were enhanced when the plants were treated with SA and grown under elevated CO2 concentration. The increase in the production of anthocyanin and flavonoids in plants treated with SA could be attributed to the increase in CHS activity under high CO2 levels. PMID:23176249

  3. Combined effect of CO(2) enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Ze; Karimi, Ehsan; Ibrahim, Mohd Hafiz

    2012-11-23

    The increase in atmospheric CO(2) concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO(2) enrichment (at two levels: 400 and 800 μmol·mol-1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. CO(2) levels of 800 μmol·mol-1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO(2) enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO(2) and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO(2) enrichment. Plants not treated with SA and kept under ambient CO(2) conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO(2) conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO(2) levels. As the level of CO(2) increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with SA and grown under high CO(2) conditions. The biological activities of both ginger varieties were enhanced when the plants were treated with SA and grown under elevated CO(2) concentration. The increase in the production of anthocyanin and flavonoids in plants treated with SA could be attributed to the increase in CHS activity under high CO(2) levels.

  4. Carbon Monoxide Exposure in Youth Ice Hockey.

    PubMed

    Macnow, Theodore; Mannix, Rebekah; Meehan, William P

    2017-11-01

    To examine the effect of ice resurfacer type on carboxyhemoglobin levels in youth hockey players. We hypothesized that players in arenas with electric resurfacers would have normal, stable carboxyhemoglobin levels during games, whereas those in arenas with internal combustion engine (IC) resurfacers would have an increase in carboxyhemoglobin levels. Prospective cohort study. Enclosed ice arenas in the northeastern United States. Convenience sample of players aged 8 to 18 years old in 16 games at different arenas. Eight arenas (37 players) used an IC ice resurfacer and 8 arenas (36 players) an electric resurfacer. Carboxyhemoglobin levels (SpCO) were measured using a pulse CO-oximeter before and after the game. Arena air was tested for carbon monoxide (CO) using a metered gas detector. Players completed symptom questionnaires. The change in SpCO from pregame to postgame was compared between players at arenas with electric versus IC resurfacers. Carbon monoxide was present at 6 of 8 arenas using IC resurfacers, levels ranged from 4 to 42 parts per million. Carbon monoxide was not found at arenas with electric resurfacers. Players at arenas with IC resurfacers had higher median pregame SpCO levels compared with those at electric arenas (4.3% vs 1%, P < 0.01). Players in the IC group also had a significant increase in their SpCO level during a hockey game compared with those in the electric group (2.8% vs 1%, P = 0.01). There were no significant differences in symptom scores. Players at arenas operating IC resurfacers had significantly higher SpCO levels. Youth hockey players in arenas with IC resurfacers have an increase in carboxyhemoglobin during games and have elevated baseline carboxyhemoglobin levels compared with players at arenas with electric resurfacers. Electric resurfacers decrease the risk of CO exposure.

  5. Assessing the Health and Performance Risks of Carbon Dioxide Exposures

    NASA Technical Reports Server (NTRS)

    James, John T.; Meyers, V. E.; Alexander, D.

    2010-01-01

    Carbon dioxide (CO2) is an anthropogenic gas that accumulates in spacecraft to much higher levels than earth-normal levels. Controlling concentrations of this gas to acceptable levels to ensure crew health and optimal performance demands major commitment of resources. NASA has many decades of experience monitoring and controlling CO2, yet we are uncertain of the levels at which subtle performance decrements develop. There is limited evidence from ground-based studies that visual disturbances can occur during brief exposures and visual changes have been noted in spaceflight crews. These changes may be due to CO2 alone or in combination with other known spaceflight factors such as increased intracranial pressure due to fluid shifts. Discerning the comparative contribution of each to performance decrements is an urgent issue if we hope to optimize astronaut performance aboard the ISS. Long-term, we must know the appropriate control levels for exploration-class missions to ensure that crewmembers can remain cooperative and productive in a highly stressful environment. Furthermore, we must know the magnitude of interindividual variability in susceptibility to the adverse effects of CO2 so that the most tolerant crewmembers can be identified. Ground-based studies have been conducted for many years to set exposure limits for submariners; however, these studies are typically limited and incompletely reported. Nonetheless, NASA, in cooperation with the National Research Council, has set exposure limits for astronauts using this limited database. These studies do not consider the interactions of spaceflight-induced fluid shifts and CO2 exposures. In an attempt to discern whether CO2 levels affect the incidence of headache and visual disturbances in astronauts we performed a retrospective study comparing average CO2 levels and the prevalence of headache and visual disturbances. Our goal is to narrow gaps in the risk profile for in-flight CO2 exposures. Such studies can provide no more than partial answers to the questions of environmental interactions, interindividual variability, and optimal control levels. Future prospective studies should involve assessment of astronaut well being using sophisticated measures during exposures to levels of CO2 in the range from 2 to 8 mmHg.

  6. Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus.

    PubMed

    Forsberg, Elisabete; Xu, Cheng; Grünler, Jacob; Frostegård, Johan; Tekle, Michael; Brismar, Kerstin; Kärvestedt, Lars

    2015-01-01

    Our study aimed to explore associations between metabolic control, oxidative stress and coenzyme Q10 (CoQ10) in relation to diabetes complications in a representative population of type 2 diabetes. A geographic cohort of 156 subjects was recruited. Serum concentrations of CoQ10 and vitamin E were measured by HPLC. ROS was determined by free oxygen radicals testing (FORT). Glutaredoxin (Grx) activity, oxidized LDL cholesterol (oxLDLc), high sensitive CRP (hsCRP), HbA1c, urine albumin, serum creatinine, serum cystatin C, and plasma lipids were assayed with routine laboratory protocols. Serum CoQ10 was higher than in nondiabetics. HbA1c, fP-glucose, hyperlipidemia, inflammation (hsCRP), and increased BMI were associated with signs of oxidative stress as increased levels of FORT, Grx activity and/or increased levels of oxLDLc Oxidative stress was found to be strongly correlated with prevalence of cardiovascular disease (CVD) and peripheral sensory neuropathy (PSN). In both gender groups there were positive correlations between CoQ10 and oxLDLc, and between BMI and the ratio CoQ10/chol. Grx activity was inversely correlated to oxLDLc and CoQ10. Women with CVD and PSN had higher waist index, oxLDLc, and FORT levels compared to men but lower CoQ10 levels. Men had worse kidney function and lower vitamin E. Multiple regression analysis showed increased levels of CoQ10 to be significantly correlated with increased levels of cholesterol, triglycerides, vitamin E, fB-glucose and BMI. Hyperlipidemia, hyperglycemia and inflammation were associated with oxidative stress, which was correlated to the prevalence of diabetes complications. CoQ10 was increased in response to oxidative stress. There were gender differences in the risk factors associated with diabetes complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.

    PubMed

    Cheng, Y-S; Labavitch, J M; VanderGheynst, J S

    2015-01-01

    The effect of CO2 concentration on the relative content of starch, lipid and cell wall carbohydrates in microalgal biomass was investigated for the four following Chlorella strains: C. vulgaris (UTEX 259), C. sorokiniana (UTEX 2805), C. minutissima (UTEX 2341) and C. variabilis (NC64A). Each strain had a different response to CO2 concentration. The starch content was higher in UTEX259 and NC64A cultured with 2% CO2 in the air supply than in cells cultured with ca. 0·04% CO2 (ambient air), while starch content was not affected for UTEX 2805 and UTEX 2341. The lipid content was higher in Chlorella minutissima UTEX 2341 cultured in 2% CO2 than in cells cultured in ambient air, but was unchanged for the other three strains. All four Chlorella strains tended to have a higher percentage of uronic acids and lower percentage of neutral sugars in their cell wall polysaccharide complement when grown with 2% CO2 supply. Although the percentage of neutral sugars in the cell walls varied with CO2 concentration, the relative proportions of different neutral sugar constituents remained constant for both CO2 conditions. The results demonstrate the importance of considering the effects of CO2 on the cell wall carbohydrate composition of microalgae. Microalgae have the potential to produce products that will reduce society's reliance on fossil fuels and address challenges related to food and feed production. An overlooked yet industrially relevant component of microalgae are their cell walls. Cell wall composition affects cell flocculation and the recovery of intracellular products. In this study, we show that increasing CO2 level results in greater cell wall polysaccharide and uronic acid content in the cell walls of three strains of microalgae. The results have implications on the management of systems for the capture of CO2 and production of fuels, chemicals and food from microalgae. © 2014 The Society for Applied Microbiology.

  8. Responses of two scleractinian corals to cobalt pollution and ocean acidification.

    PubMed

    Biscéré, Tom; Rodolfo-Metalpa, Riccardo; Lorrain, Anne; Chauvaud, Laurent; Thébault, Julien; Clavier, Jacques; Houlbrèque, Fanny

    2015-01-01

    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm) and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate). Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as temperature increase, other heavy metals, and eutrophication.

  9. Responses of Two Scleractinian Corals to Cobalt Pollution and Ocean Acidification

    PubMed Central

    Biscéré, Tom; Rodolfo-Metalpa, Riccardo; Lorrain, Anne; Chauvaud, Laurent; Thébault, Julien; Clavier, Jacques; Houlbrèque, Fanny

    2015-01-01

    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm) and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate). Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as temperature increase, other heavy metals, and eutrophication. PMID:25849317

  10. Effects of Increased CO2 Level on the Well-Being, Growth and Renal Function of Rats

    NASA Technical Reports Server (NTRS)

    Lang, C.; Bonner, R.; Vasques, M.; Baer, L.; Fung, P.; Steele, M.; Wade, C.

    1994-01-01

    On the Space Shuttle the mean CO2 levels have been 0.3% which is ten times normal air, while there have been extended periods with mean levels of 0.7% and peak concentrations of 2%. On the Space Station the projected mean concentration of CO2 is 0.7% and not to exceed 1.0%. To ensure that high level of CO2 does not compromise the integrity of the science on the Space Station, the effects of chronic exposure to high levels of CO2 were investigated. Following 7 days of cage adaptation animals exposed to 2% CO2 for 30 days were compared to control (ambient air) animals and the effects on the well-being, growth and renal function analyzed. Ten male rats per group were placed in individual metabolic cages which allowed monitoring of daily food and water consumption, as well as feces and urine to be collected. Cages were placed in a plexiglass chamber with internal environment controlled by a computer in conjunction with gas sensors. The elevated CO2 was held constant at 2.0 +/- 0.03% and the O2 at 20.9 +/- 0.15%. Body weight and food and water intake were measured daily for the first ten days of exposure and then every three to four days for the remaining three weeks. Urine was measured for pH, CO2 (as an indicator for bicarbonate) and ammonia (as an indicator for ammonium). During 2% CO2 exposure, animal growth, weight, food and water consumption were within normal ranges suggesting that their well-being was not affected. Urine pH decreased from 7.12 to 6.77 over the first 6 days of exposure and increased the following 24 days returning to pre-exposure levels. Urine NH4+ increased 68% the first 6 days then dropped to and remained at 29% higher than pre-exposure level. Urine bicarbonate concentration did not change the first 6 days, but significantly increased by day 30. These results of chronic exposure to 2% C02 are consistent with renal compensation for respiratory acidosis which may impact science conducted on the Space Shuttle or the Space Station if CO2 levels reach 2%.

  11. Ocean Acidification Differentially Affects the Photosynthesis of Key New England Macrophytes

    NASA Astrophysics Data System (ADS)

    Fachon, E.; Ets-Hokin, J. M.; Donham, E. M.; Price, N.

    2016-02-01

    While the influence of anthropogenic CO2 emissions on seawater chemistry is detrimental to calcification among CaCO3 reliant organisms such as commercially important shellfish species, non-calcareous macrophytes like seagrasses and seaweeds can experience enhanced growth under elevated pCO2 conditions and may be a substantial, if ephemeral, CO2 sink. Most marine macrophytes rely on enzyme conversion of HCO3- to supply the inorganic carbon necessary for photosynthesis; the ability to down-regulate this energetically expensive carbon acquisition under high pCO2 conditions could determine future species success. We exposed four commercially and ecologically relevant New England macrophytes (Saccharina latissima, Fucus vesiculosus, Ulva lactuca, and Zostera marina) to pre-industrial (280 uatm), present (400 and 520 utam - recorded in Casco Bay) and future (640, 880 and 1120 uatm - as predicted by the IPCC) pCO2 levels in 1.5 hr long respirometry assays after 72 hrs acclimation. CO2 consumption, photosynthetic quotient (Q = CO2 consumed:O2 evolved), and change in carbonate saturation state (Ωcalcite) were calculated for each sample using differences in initial and final carbonate chemistry and dissolved oxygen concentrations. All species experienced increases in rate of CO2 uptake and Q under elevated pCO2 treatments, but response level differed across species. Saccharina latissima had the greatest relative effect on all parameters measured, consuming 4 times more carbon at high pCO2 levels than the lowest performing species. While all macrophytes were able to raise Ωcalcite, the magnitude of change decreased at higher pCO2 levels, suggesting a limitation to the degree to which photosynthesis can locally raise calcification potential for sensitive native or farmed populations of shellfish in the future. The varied responses observed across species have implications for future community structures and for phytoremediation efforts.

  12. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase.

    PubMed

    Shen, Fei; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zhu, Baoning; Zou, Dexun; Liu, Yanping; Ma, Jingwei; Yu, Liang; Li, Xiujin

    2013-09-01

    The co-digestion of fruit & vegetable waste (FVW) and food waste (FW) was performed at various organic loading ratios (OLRs) in single-phase and two-phase system, respectively. The results showed that the ethanol-type fermentation dominated in both digestion processes when OLR was at low levels (<2.0 g(VS) L(-1) d(-1)). The propionic acid was rapidly accumulated as OLR was increased to higher levels (>2.0 g(VS) L(-1) d(-1)), which could cause unstable anaerobic digestion. Single-phase digestion was better than two-phase digestion in term of 4.1% increase in CH4 production at lower OLRs (<2.0 g(VS) L(-1) d(-1)). However, at higher level of OLR (≥2.0 g(VS) L(-1) d(-1)), two-phase digestion achieved higher CH4 production of 0.351-0.455 L(g VS)(-1) d(-1), which were 7.0-15.8% more than that of single-phase. Additionally, two-phase digestion presented more stable operation, and higher OLR treatment capacity. Furthermore, comparison of these two systems with bioenergy recovery revealed that two-phase system overall presented higher bioenergy yield than single-phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Research of CO2 concentration in naturally ventilated lecture room

    NASA Astrophysics Data System (ADS)

    Laska, Marta; Dudkiewicz, Edyta

    2017-11-01

    Naturally ventilated buildings especially dedicated for educational purposes need to be design to achieve required level of thermal comfort and indoor air quality. It is crucial in terms of both: health and productivity of the room users. Higher requirements of indoor environment are important due to the level of students concentration, their ability to acquire new knowledge and willingness to interact with the lecturer. The article presents the results of experimental study and surveys undertaken in naturally ventilated lecture room. The data is analysed in terms of CO2 concentration and its possible influence on users. Furthermore the outcome of the research is compared with the CO2 concentration models available in the literature.

  14. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    PubMed

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  15. Long-term changes in CO(2) emissions in Austria and Czechoslovakia-Identifying the drivers of environmental pressures.

    PubMed

    Gingrich, Simone; Kušková, Petra; Steinberger, Julia K

    2011-02-01

    This study presents fossil-fuel related CO(2) emissions in Austria and Czechoslovakia (current Czech Republic and Slovakia) for 1830-2000. The drivers of CO(2) emissions are discussed by investigating the variables of the standard Kaya identity for 1920-2000 and conducting a comparative Index Decomposition Analysis. Proxy data on industrial production and household consumption are analysed to understand the role of the economic structure. CO(2) emissions increased in both countries in the long run. Czechoslovakia was a stronger emitter of CO(2) throughout the time period, but per-capita emissions significantly differed only after World War I, when Czechoslovakia and Austria became independent. The difference in CO(2) emissions increased until the mid-1980s (the period of communism in Czechoslovakia), explained by the energy intensity and the composition effects, and higher industrial production in Czechoslovakia. Counterbalancing factors were the income effect and household consumption. After the Velvet revolution in 1990, Czechoslovak CO(2) emissions decreased, and the energy composition effect (and industrial production) lost importance. Despite their different political and economic development, Austria and Czechoslovakia reached similar levels of per-capita CO(2) emissions in the late 20th century. Neither Austrian "eco-efficiency" nor Czechoslovak restructuring have been effective in reducing CO(2) emissions to a sustainable level.

  16. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    PubMed

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  18. Factors Associated with D-Dimer Levels in HIV-Infected Individuals

    PubMed Central

    Borges, Álvaro H.; O’Connor, Jemma L.; Phillips, Andrew N.; Baker, Jason V.; Vjecha, Michael J.; Losso, Marcelo H.; Klinker, Hartwig; Lopardo, Gustavo; Williams, Ian; Lundgren, Jens D.

    2014-01-01

    Background Higher plasma D-dimer levels are strong predictors of mortality in HIV+ individuals. The factors associated with D-dimer levels during HIV infection, however, remain poorly understood. Methods In this cross-sectional study, participants in three randomized controlled trials with measured D-dimer levels were included (N = 9,848). Factors associated with D-dimer were identified by linear regression. Covariates investigated were: age, gender, race, body mass index, nadir and baseline CD4+ count, plasma HIV RNA levels, markers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6]), antiretroviral therapy (ART) use, ART regimens, co-morbidities (hepatitis B/C, diabetes mellitus, prior cardiovascular disease), smoking, renal function (estimated glomerular filtration rate [eGFR] and cystatin C) and cholesterol. Results Women from all age groups had higher D-dimer levels than men, though a steeper increase of D-dimer with age occurred in men. Hepatitis B/C co-infection was the only co-morbidity associated with higher D-dimer levels. In this subgroup, the degree of hepatic fibrosis, as demonstrated by higher hyaluronic acid levels, but not viral load of hepatitis viruses, was positively correlated with D-dimer. Other factors independently associated with higher D-dimer levels were black race, higher plasma HIV RNA levels, being off ART at baseline, and increased levels of CRP, IL-6 and cystatin C. In contrast, higher baseline CD4+ counts and higher high-density lipoprotein cholesterol were negatively correlated with D-dimer levels. Conclusions D-dimer levels increase with age in HIV+ men, but are already elevated in women at an early age due to reasons other than a higher burden of concomitant diseases. In hepatitis B/C co-infected individuals, hepatic fibrosis, but not hepatitis viral load, was associated with higher D-dimer levels. PMID:24626096

  19. Response of Photosynthesis and Yield of Sweetpotato and Peanut to Super-optimal CO2 levels

    NASA Astrophysics Data System (ADS)

    Bonsi, C.; Bullard, J.; Hileman, D.; Mortley, D.; Hill, J.; Hill, W.; Morrris, C.

    The fate of persons involved in long-term space travel and habitation will depend greatly on the ability to provide food and a livable environment for them In the National Aeronautics and Space Administration NASA Advanced Life Support ALS program photosynthesis of higher plants will be utilized to provide food and oxygen while removing carbon dioxide produced by humans and other heterotrophs as well as transpiring water that can be recycled for drinking This plant-mediated process is collectively referred to as Bioregenerative Life Support Carbon dioxide concentrations on board a space shuttle cabin atmosphere range between 4000 and 6000 mu mol mol -1 CO 2 but with large crews may exceed 10 000- mu mol mol -1 CO 2 Thus it is critical to evaluate the responses of candidate crops to super optimal levels of CO 2 Soybean and potato have been exposed to CO 2 concentrations up to 5000 and 10 000- mu mol mol -1 Very little research has been published about the effects of super-optimal CO 2 levels on sweetpotato and peanut growth and physiology thus indicating a need for extensive research on these plants The aim of this study was to evaluate the effects of super-optimal CO 2 enrichment on growth of TU-82-155 sweetpotato and Georgia Red peanut in a Microporous Tube Membrane MPT using Turface Media and Nutrient Film Technique NFT nutrient delivery systems Sweetpotato Ipomoea batatas L Lam and peanut Arachis hypogaea L were exposed to three CO 2 levels of 400

  20. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    NASA Technical Reports Server (NTRS)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  1. Agroecosystem productivity in a warmer and CO2 enriched atmosphere

    NASA Astrophysics Data System (ADS)

    Bernacchi, Carl; Köhler, Iris; Ort, Donald; Long, Steven; Clemente, Thomas

    2017-04-01

    A number of in-field manipulative experiments have been conducted that address the response of key ecosystem services of major agronomic species to rising CO2. Global warming, however, is inextricably linked to rising greenhouse gases in general, of which CO2 is the most dominant. Therefore, agroecosystem functioning in future conditions requires an understanding of plant responses to both rising CO2 and increased temperatures. Few in-field manipulative experiments have been conducted that supplement both heating and CO2 above background concentrations. Here, the results of six years of experimentation using a coupled Free Air CO2 Enrichment (FACE) technology with variable output infrared heating arrays are reported. The manipulative experiment increased temperatures (+ 3.5˚ C) and CO2 (+ 200 μmol mol-1) above background levels for on two major agronomic crop species grown throughout the world, Zea mays (maize) and Glycine max (soybean). The first phase of this research addresses the response of plant physiological parameters to growth in elevated CO2 and warmer temperatures for maize and soybean grown in an open-air manipulative experiment. The results show that any increase in ecosystem productivity associated with rising CO2 is either similar or is offset by growth at higher temperatures, inconsistent with the perceived benefits of higher CO2 plus warmer temperatures on agroecosystem productivity. The second phase of this research addresses the opportunity to genetically modify soybean to allow for improved productivity under high CO2 and warmer temperatures by increasing a key photosynthetic carbon reduction cycle enzyme, SPBase. The results from this research demonstrates that manipulation of the photosynthetic pathway can lead to higher productivity in high CO2 and temperature relative to the wild-type control soybean. Overall, this research advances the understanding of the physiological responses of two major crops, and the impact on ecosystem services, to atmospheric conditions with the ultimate goals of better understanding agronomic responses to global change and improved representation of these processes in ecosystem models.

  2. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    NASA Astrophysics Data System (ADS)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  3. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    PubMed

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate parameters which would allow a definition of the term "succulence" on the level of the cell rather than on the level of the whole plant or plant organs.

  4. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  5. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    PubMed

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 2: Characterization of complexed powders and determination of crystalline structure.

    PubMed

    Ho, Thao M; Howes, Tony; Jack, Kevin S; Bhandari, Bhesh R

    2016-09-01

    This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Indoor air quality at nine shopping malls in Hong Kong.

    PubMed

    Li, W M; Lee, S C; Chan, L Y

    2001-06-12

    Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.

  8. High-level ab initio studies of the complex formed between CO and O2

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2017-05-01

    The explicitly correlated CCSD(T)-F12 method with VXZ-F12 basis sets was used to find the most stable structures of the van der Waals CO-O2 complexes. With geometry optimizations performed up to the quadruple-zeta level and basis set extrapolation, the calculated interaction energies for the triplet complexes are 123 cm-1 for the H complex in Cs symmetry (slipped near-parallel structure), 118 cm-1 for the X complex, also in Cs symmetry (perpendicular alignment) and 116 cm-1 for the CO-O2 T complex in C2v symmetry. The corresponding CCSD(T)-F12 results using the aug-cc-pVXZ basis sets are nearly the same. Similar calculations were performed for the CO-O2 singlet complexes, which are shown to have much higher stabilization energies, the highest being 206 cm-1 for the X complex.

  9. Evaluation of ozone, nitrogen dioxide, and carbon monoxide at nine sites in Saudi Arabia during 2007.

    PubMed

    Butenhoff, Christopher L; Khalil, M Aslam K; Porter, William C; Al-Sahafi, Mohammed Saleh; Almazroui, Mansour; Al-Khalaf, Abdulrahman

    2015-07-01

    This paper presents a one-year record of in situ air-quality data from nine sites throughout Saudi Arabia. The data set is composed of hourly measurements of ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO) at six of the largest cities in Saudi Arabia (Riyadh, Jeddah, Makkah, Yanbu, Dammam, Hafouf) and two remote locations in the mountainous southwestern region of Alsodah for the year 2007. The authors found that international O3 and CO standards were routinely exceeded throughout the year at many sites, and that exceedances increased during Ramadan (Sep. 12-Oct. 13), the Islamic month of fasting when much of normal daily activity is shifted to nighttime hours. In general NO2 and CO levels were higher in Saudi cities compared to U.S. cities of comparable population, while O3 levels were lower. There was a general trend for O3 and NO2 to be negatively correlated in Saudi cities in contrast to U.S. cities where the correlation is positive, suggesting that ozone chemistry in Saudi Arabia is limited by volatile organic compound emissions. This may be caused by low biogenic emissions from vegetation. Pollutant levels were lower at most Saudi sites during the four day Hajj period (Dec. 18-21) but higher in Makkah which receives millions of visitors during Hajj. The authors also found that ozone levels were elevated during the weekend (Thursday & Friday) relative to weekday levels despite lower NO2, a phenomenon known as the "weekend effect." As little air quality data is available from Saudi Arabia in the English-language literature, this data set fills a knowledge gap and improves understanding of air quality in an important but under-reported region of the world. Air quality measurements at nine sites in Saudi Arabia provide a detailed look at spatial and temporal patterns of ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). NO2 and CO levels increased in most cities during the fasting month of Ramadan, whereas O3 levels decreased. This led to an increased frequency of CO exceedances based on international standards. NO2 and CO also increased in Makkah during the Hajj pilgrimage. In general, NO2 and O3 levels were anticorrelated at most sites, suggesting that O3 chemistry is limited by volatile organic compound emissions throughout much of Saudi Arabia.

  10. Influence of Co2+ on electrical and optical behavior of Mn2+-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sakthivel, P.; Muthukumaran, S.

    2018-07-01

    Co2+-doped Zn0.98Mn0.02S quantum dots with various concentrations of Co2+ from 0% to 4% have been successfully synthesized by a simple co-precipitation method. X-ray diffraction (XRD) pattern confirmed the acquirement of cubic structure and phase purity in all the samples. The average crystallite size of the particles was ∼3 nm observed from XRD result. Surface morphology of the samples was studied using scanning electron microscope (SEM). TEM study was also taken to know the structural parameters of the samples. Fourier transform infrared (FTIR) spectra proved the presence of Co2+ and Mn2+ in ZnS host lattice. Energy dispersive X-ray (EDX) analysis confirmed the elemental composition with their normal stoichiometric ratio. In the dielectric study, dielectric dispersion and dielectric loss were increased with Co2+ composition due to the increase of carrier concentration. From the AC conductivity measurement, the maximum conductivity was observed for Co2+ = 2% due to their higher charge carrier density and it was decreased for Co2+ = 4% due to the scattering of charge carriers. Because of the low dielectric constant at higher frequency, these materials can be used for high-frequency applications. The variation of peak intensity and wavelength shifting in UV-vis absorption and transmittance were discussed on the basis of formation of secondary phase and variation of charge carrier density. The continuous red shift of energy gap by Co2+-doping is attributed to the direct energy transfer between excited states and 3d levels of Co2+ ions. Photoluminescence spectra showed the strong and broad blue emission bands between 468 nm and 483 nm. Since higher transmittance was observed for Co2+ = 2% addition, this material can be selected for optimum applications of optoelectronic devices.

  11. Thermal analysis and kinetics of coal during oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  12. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish

    NASA Astrophysics Data System (ADS)

    Miller, Gabrielle M.; Watson, Sue-Ann; Donelson, Jennifer M.; McCormick, Mark I.; Munday, Philip L.

    2012-12-01

    Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000μatm CO2 and a temperature rise of 1.5-3.0°C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.

  13. Aldosterone, cognitive function, and cerebral hemodynamics in hypertension and antihypertensive therapy.

    PubMed

    Hajjar, Ihab; Hart, Meaghan; Mack, Wendy; Lipsitz, Lewis A

    2015-03-01

    Animal studies suggest that the renin-angiotensin-aldosterone system is involved in neurocognitive function and the response to antihypertensive therapy. We investigated the impact of circulating aldosterone and renin activity on cognition and cerebral hemodynamics at baseline and after antihypertensive therapy for 1 year. Participants were older adults (n = 47; mean age = 71 years) enrolled in a clinical trial. Routine antihypertensive medications were replaced with the study regimen to achieve a blood pressure <140/90 mm Hg. Executive function, memory, cerebral hemodynamics (blood flow velocity), CO2 vasoreactivity (measured using transcranial Doppler ultrasonography), plasma renin activity, and aldosterone were measured at baseline and at 6 and 12 months after the initiation of treatment. At baseline, higher levels of circulating aldosterone were associated with lower blood flow velocity (β = -0.02; P = 0.03), lower CO2 vasoreactivity (β = -0.11; P = 0.007), and decreased autoregulation abilities (β = -0.09; P = 0.01). Those with higher levels of aldosterone at baseline demonstrated the greatest improvement in executive function (P = 0.014 for the aldosterone effect) and in CO2 vasoreactivity (P = 0.026 for the aldosterone effect) after 12 months of lowering blood pressure (<140/90 mm Hg). Plasma renin activity was not associated with any of the measures. Higher levels of aldosterone may be associated with decreased cerebrovascular function in hypertension. Those with higher aldosterone levels may benefit the most from lowering blood pressure. The role of aldosterone in brain health warrants further investigation in a larger trial. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Aldosterone, Cognitive Function, and Cerebral Hemodynamics in Hypertension and Antihypertensive Therapy

    PubMed Central

    Hart, Meaghan; Mack, Wendy; Lipsitz, Lewis A.

    2015-01-01

    BACKGROUND Animal studies suggest that the renin–angiotensin–aldosterone system is involved in neurocognitive function and the response to antihypertensive therapy. We investigated the impact of circulating aldosterone and renin activity on cognition and cerebral hemodynamics at baseline and after antihypertensive therapy for 1 year. METHODS Participants were older adults (n = 47; mean age = 71 years) enrolled in a clinical trial. Routine antihypertensive medications were replaced with the study regimen to achieve a blood pressure <140/90mm Hg. Executive function, memory, cerebral hemodynamics (blood flow velocity), CO2 vasoreactivity (measured using transcranial Doppler ultrasonography), plasma renin activity, and aldosterone were measured at baseline and at 6 and 12 months after the initiation of treatment. RESULTS At baseline, higher levels of circulating aldosterone were associated with lower blood flow velocity (β = −0.02; P = 0.03), lower CO2 vasoreactivity (β = −0.11; P = 0.007), and decreased autoregulation abilities (β = −0.09; P = 0.01). Those with higher levels of aldosterone at baseline demonstrated the greatest improvement in executive function (P = 0.014 for the aldosterone effect) and in CO2 vasoreactivity (P = 0.026 for the aldosterone effect) after 12 months of lowering blood pressure (<140/90mm Hg). Plasma renin activity was not associated with any of the measures. CONCLUSIONS Higher levels of aldosterone may be associated with decreased cerebrovascular function in hypertension. Those with higher aldosterone levels may benefit the most from lowering blood pressure. The role of aldosterone in brain health warrants further investigation in a larger trial. PMID:25213687

  15. Carbon dioxide insufflation during colonoscopy in deeply sedated patients

    PubMed Central

    Singh, Rajvinder; Neo, Eu Nice; Nordeen, Nazree; Shanmuganathan, Ganesananthan; Ashby, Angelie; Drummond, Sharon; Nind, Garry; Murphy, Elizabeth; Luck, Andrew; Tucker, Graeme; Tam, William

    2012-01-01

    AIM: To compare the impact of carbon dioxide (CO2) and air insufflation on patient tolerance/safety in deeply sedated patients undergoing colonoscopy. METHODS: Patients referred for colonoscopy were randomized to receive either CO2 or air insufflation during the procedure. Both the colonoscopist and patient were blinded to the type of gas used. During the procedure, insertion and withdrawal times, caecal intubation rates, total sedation given and capnography readings were recorded. The level of sedation and magnitude of patient discomfort during the procedure was assessed by a nurse using a visual analogue scale (VAS) (0-3). Patients then graded their level of discomfort and abdominal bloating using a similar VAS. Complications during and after the procedure were recorded. RESULTS: A total of 142 patients were randomized with 72 in the air arm and 70 in the CO2 arm. Mean age between the two study groups were similar. Insertion time to the caecum was quicker in the CO2 group at 7.3 min vs 9.9 min with air (P = 0.0083). The average withdrawal times were not significantly different between the two groups. Caecal intubation rates were 94.4% and 100% in the air and CO2 groups respectively (P = 0.012). The level of discomfort assessed by the nurse was 0.69 (air) and 0.39 (CO2) (P = 0.0155) and by the patient 0.82 (air) and 0.46 (CO2) (P = 0.0228). The level of abdominal bloating was 0.97 (air) and 0.36 (CO2) (P = 0.001). Capnography readings trended to be higher in the CO2 group at the commencement, caecal intubation, and conclusion of the procedure, even though this was not significantly different when compared to readings obtained during air insufflation. There were no complications in both arms. CONCLUSION: CO2 insufflation during colonoscopy is more efficacious than air, allowing quicker and better cecal intubation rates. Abdominal discomfort and bloating were significantly less with CO2 insufflation. PMID:22783048

  16. The larvae of congeneric gastropods showed differential responses to the combined effects of ocean acidification, temperature and salinity.

    PubMed

    Zhang, Haoyu; Cheung, S G; Shin, Paul K S

    2014-02-15

    The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (pCO2 at 380, 950, 1250 ppm), temperature (15, 30°C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO2 and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO2 level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO2 reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.

    PubMed

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2011-09-01

    The inverse relationship between the number of stomata on a leaf surface and the atmospheric carbon dioxide concentration ([CO(2)]) in which the leaf developed allows plants to optimise water-use efficiency (WUE), but it also permits the use of fossil plants as proxies of palaeoatmospheric [CO(2)]. The ancient conifer family Araucariaceae is often represented in fossil floras and may act as a suitable proxy of palaeo-[CO(2)], yet little is known regarding the stomatal index (SI) responses of extant Araucariaceae to [CO(2)]. Four Araucaria species (Araucaria columnaris, A. heterophylla, A. angustifolia and A. bidwillii) and Agathis australis displayed no significant relationship in SI to [CO(2)] below current ambient levels (~380 ppm). However, representatives of the three extant genera within the Araucariaceae (A. bidwillii, A. australis and Wollemia nobilis) all exhibited significant reductions in SI when grown in atmospheres of elevated [CO(2)] (1,500 ppm). Stomatal conductance was reduced and WUE increased when grown under elevated [CO(2)]. Stomatal pore length did not increase alongside reduced stomatal density (SD) and SI in the three araucariacean conifers when grown at elevated [CO(2)]. These pronounced SD and SI reductions occur at higher [CO(2)] levels than in other species with more recent evolutionary origins, and may reflect an evolutionary legacy of the Araucariaceae in the high [CO(2)] world of the Mesozoic Era. Araucariacean conifers may therefore be suitable stomatal proxies of palaeo-[CO(2)] during periods of "greenhouse" climates and high [CO(2)] in the Earth's history.

  18. In Situ X-ray Diffraction Studies on the Mechanism of Capacity Retention Improvement by Coating at the Surface of Li CoO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung,K.; Yoon, W.; McBreen, J.

    2007-01-01

    Synchrotron based in situ X-ray diffraction technique has been used to study the mechanism of capacity fading of LiCoO2 cycled to a higher voltage above the normal 4.2 V limit and to investigate the mechanism of capacity retention improvement by ZrO2 surface coating on LiCoO2. It was found that the capacity fading of LiCoO2 cycled at higher voltage limit is closely related to the increased polarization rather than the bulk crystal structure damage. The capacity of uncoated LiCoO2 sample dropped to less than 70 mAh g-1 when charged to 4.8 V after high voltage cycling. However, when the voltage limitmore » was further increased to 8.35 V, the capacity was partially restored and the corresponding structural changes were recovered to the similar level as seen in fresh sample. This indicates that the integrity of the bulk crystal structure of LiCoO2 was not seriously damaged during cycling to 4.8 V. The increased polarization seems to be responsible for the fading capacity and the uncompleted phase transformation of LiCoO2. The polarization-induced capacity fading can be significantly improved by ZrO2 surface coating. It was proposed that the effect of ZrO2-coating layer on the capacity retention during high voltage cycling is through the formation of protection layer on the surface of LiCoO2 particles, which can reduce the decomposition of the electrolyte at higher voltages.« less

  19. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  20. Hydrogenation Reactions of CO and CO2: New Insights through In Situ X-ray Spectroscopy and Chemical Transient Kinetics Experiments on Cobalt Catalysts

    NASA Astrophysics Data System (ADS)

    Ralston, Walter Thomas

    The catalytic hydrogenations of CO and CO2 to more useful chemicals is not only beneficial in producing more valuable products and reducing dependence on fossil fuels, but present a scientific challenge in how to control the selectivity of these reactions. Using colloidal chemistry techniques, a high level of control over the synthesis of nanomaterials can be achieved, and by exploiting this fact a simple model system can be realized to understand the reaction of CO and CO2 on a molecular level. Specifically, this dissertation focuses on understanding cobalt materials for the conversion of CO and CO2 into more useful, valuable chemicals. Colloidally prepared cobalt nanoparticles with a narrow size distribution were supported in mesoporous SiO2 and TiO2 to study the effect of the support on the Co catalyzed hydrogenation of CO and CO2. The 10nm Co/SiO2 and Co/TiO2 catalysts were tested for CO and CO2 hydrogenation at 5 bar with a ratio to hydrogen of 1:2 and 1:3, respectively. In addition, the effect of Co oxidation state was studied by using different reduction pretreatment temperatures (250°C and 450°C). The results showed that for both hydrogenation reactions, Co/TiO2 had a high activity at both reduction temperatures compared to Co/SiO2. However, unlike Co/SiO2 which showed higher activity after 450°C reduction, Co/TiO2 had a higher activity after reduction at 250°C. Through synchrotron x-ray spectroscopy, it was concluded that the TiO2 was wetting the Co particle at higher reduction temperatures and dewetting at lower reduction temperatures. In addition to the wetting, CoO was observed to be the surface species on Co/TiO2 catalyst after reduction at low temperatures, which catalyzed both CO and CO2 hydrogenation reactions with higher activity than the Co metal obtained after reduction at 450°C. Classical steady-state measurements are limited in so much as they are often unable to provide information on individual reaction steps in complex reaction pathways. To attempt to circumvent this, a chemical transient kinetics (CTK) reactor was designed and built. Verification of the reactor was performed by evaluating a catalyst from the literature and confirming the results. A CoMgO catalyst was used to accomplish this, and our original findings show that at short time scales steric hindrances at the surface may push the product distribution towards olefinic rather than branched compounds. Continuing work on the CTK, two distinct particle sizes of Co nanoparticles were synthesized and tested under atmospheric conditions (H2:CO = 2:1) on the transient reactor. 4.3 nm Co and 9.5 nm Co were supported on MCF-17 to study the previously observed size effect, where Co nanoparticles lose activity at smaller sizes. It was found that indeed, the 4.3 nm Co are less active because they contain less CO dissociation sites, which are necessary for populating the surface with carbon monomers and spurring subsequent chain growth. The specific CO dissociation site was identified as the Co (221) step, of which larger Co particles have more and smaller Co particles have less. To investigate the nature of the MnO / Co3O4 interface, an in situ study using synchrotron radiation was undertaken. A sample of 6nm MnO nanoparticles loaded on mesoporous Co3O4 was studied with ambient pressure x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy at the Mn and Co L edges, and scanning transmission x-ray microscopy. X-ray measurements show that under reducing conditions of CO + H2, the MnO nanoparticles wet the Co surface until it is completely covered by a layer of MnO. Through the combination of techniques, it is shown that the system is catalytic active at the low pressures studied, and that the nature of the interface between MnO and Co3O4 is highly dependent on the temperature and gaseous environment it is prepared in. (Abstract shortened by ProQuest.).

  1. Hazardous indoor CO2 concentrations in volcanic environments.

    PubMed

    Viveiros, Fátima; Gaspar, João L; Ferreira, Teresa; Silva, Catarina

    2016-07-01

    Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Randomised controlled crossover trial of the effect on PtCO2 of oxygen-driven versus air-driven nebulisers in severe chronic obstructive pulmonary disease.

    PubMed

    Edwards, Llifon; Perrin, Kyle; Williams, Mathew; Weatherall, Mark; Beasley, Richard

    2012-11-01

    The comparative safety of oxygen versus air-driven nebulised bronchodilators in patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) is uncertain. A randomised controlled trial was performed to assess the effect on the arterial partial pressure of carbon dioxide of nebulised bronchodilator driven with oxygen versus air in stable severe COPD. In an open label randomised study, 18 subjects with stable severe COPD attended on 2 days to receive nebulised bronchodilator therapy driven by air or oxygen. Subjects received 5 mg salbutamol and 0.5 mg ipratropium bromide by nebulisation over 15 min, then, after 5 min, 5 mg salbutamol nebulised over 15 min, followed by 15 min of observation. Transcutaneous carbon dioxide tension (PtCO(2)) and oxygen saturations were recorded at 5 min intervals during the study. The primary outcome was the PtCO(2) after the completion of the second bronchodilator treatment. PtCO(2) was higher with nebulised bronchodilator therapy delivered by oxygen, but decreased back to the level associated with air nebulisation 15 min after completion of the second nebulised dose. One subject experienced an increase in PtCO(2) of 11 mm Hg after the first bronchodilator nebulisation driven by oxygen. The mean PtCO(2) difference between the oxygen and air groups after the second nebulisation was 3.1 mm Hg (95% CI 1.6 to 4.5, p<0.001). Nebulisers driven with oxygen result in significantly higher levels of PtCO(2) than those driven with air in patients with severe COPD. The study was registered on the Australian New Zealand Clinical Trials Registry (ACTRN12610000080022).

  3. Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: situation in two different seasons

    PubMed Central

    Khalequzzaman, Md.; Sakai, Kiyoshi; Hoque, Bilqis Amin; Nakajima, Tamie

    2010-01-01

    Objectives Indoor air pollution levels are reported to be higher with biomass fuel, and a number of respiratory diseases in children are associated with pollution from burning such fuel. However, little is known about the situation in developing countries. The aim of the study was to compare indoor air pollution levels and prevalence of symptoms in children between biomass- and fossil-fuel-using households in different seasons in Bangladesh. Methods We conducted a cross-sectional study among biomass- (n = 42) and fossil-fuel (n = 66) users having children <5 years in Moulvibazar and Dhaka, Bangladesh. Health-related information of one child from each family was retrieved once in winter (January 2008) and once in summer (June 2008). The measured pollutants were carbon monoxide (CO), carbon dioxide (CO2), dust particles, volatile organic compounds (VOCs), and nitrogen dioxide. Results Mean concentration of dust particles and geometric mean concentrations of VOCs such as benzene, toluene, and xylene, which were significantly higher in biomass- than fossil-fuel-users’ kitchens (p < 0.05), were significantly higher in winter than in summer (p < 0.05). Levels of CO and CO2, which were significantly higher in biomass than fossil-fuel users (p < 0.05), were significantly higher in summer than winter (p < 0.05). However, no significant difference was found in the occurrence of symptoms between biomass- and fossil-fuel users either in winter or in summer. Conclusions It was suggested that the measured indoor air pollution did not directly result in symptoms among children. Other factors may be involved. PMID:21432551

  4. Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: situation in two different seasons.

    PubMed

    Khalequzzaman, Md; Kamijima, Michihiro; Sakai, Kiyoshi; Hoque, Bilqis Amin; Nakajima, Tamie

    2010-07-01

    Indoor air pollution levels are reported to be higher with biomass fuel, and a number of respiratory diseases in children are associated with pollution from burning such fuel. However, little is known about the situation in developing countries. The aim of the study was to compare indoor air pollution levels and prevalence of symptoms in children between biomass- and fossil-fuel-using households in different seasons in Bangladesh. We conducted a cross-sectional study among biomass- (n = 42) and fossil-fuel (n = 66) users having children <5 years in Moulvibazar and Dhaka, Bangladesh. Health-related information of one child from each family was retrieved once in winter (January 2008) and once in summer (June 2008). The measured pollutants were carbon monoxide (CO), carbon dioxide (CO(2)), dust particles, volatile organic compounds (VOCs), and nitrogen dioxide. Mean concentration of dust particles and geometric mean concentrations of VOCs such as benzene, toluene, and xylene, which were significantly higher in biomass- than fossil-fuel-users' kitchens (p < 0.05), were significantly higher in winter than in summer (p < 0.05). Levels of CO and CO(2), which were significantly higher in biomass than fossil-fuel users (p < 0.05), were significantly higher in summer than winter (p < 0.05). However, no significant difference was found in the occurrence of symptoms between biomass- and fossil-fuel users either in winter or in summer. It was suggested that the measured indoor air pollution did not directly result in symptoms among children. Other factors may be involved.

  5. Ocean acidification effects in the early life-stages of summer flounder, Paralichthys dentatus

    NASA Astrophysics Data System (ADS)

    Chambers, R. C.; Candelmo, A. C.; Habeck, E. A.; Poach, M. E.; Wieczorek, D.; Cooper, K. R.; Greenfield, C. E.; Phelan, B. A.

    2013-08-01

    The limited available evidence about effects of high CO2 and acidification of our oceans on fish suggests that effects will differ across fish species, be subtle, and interact with other stressors. An experimental framework was implemented that includes the use of (1) multiple marine fish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat; (2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and (3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. This report is on an array of early life-history responses of summer flounder (Paralichthys dentatus), an ecologically and economically important flatfish of this region, to a wide range of pH and CO2 levels. Survival of summer flounder embryos was reduced by 50% below local ambient conditions (7.8 pH, 775 ppm pCO2) when maintained at the intermediate conditions (7.4 pH, 1860 ppm pCO2), and by 75% below local ambient when maintained at the most acidic conditions tested (7.1 pH, 4715 ppm pCO2). This pattern of reduced survival of embryos at higher CO2 levels was consistent among three females used as sources of embryos. Sizes and shapes of larvae were altered by elevated CO2 levels with longer larvae in more acidic waters. This pattern of longer larvae was evident at hatching (although longer hatchlings had less energy reserves) to midway through the larval period. Larvae from the most acidic conditions initiated metamorphosis at earlier ages and smaller sizes than those from more moderate and ambient conditions. Tissue damage was evident in older larvae (age 14 to 28 d post-hatching) from both elevated CO2 levels. Damage included liver sinusoid dilation, focal hyperplasia on the epithelium, separation of the trunk muscle bundles, and dilation of the liver sinusoids and central veins. Cranial-facial features were affected by CO2 levels that changed with ages of larvae. Skeletal elements of larvae from ambient CO2 environments were comparable or smaller than those from elevated CO2 environments when younger (14 d and 21 d post-hatching) but larger at older ages (28 d). The degree of impairment in the early life-stages of summer flounder due to elevated CO2 levels suggests that this species will be challenged by ocean acidification in the near future. Further experimental comparative studies on marine fish are warranted in order to identify the species, life-stages, ecologies, and responses that are most sensitive to increased levels of CO2 and acidity in near-future ocean waters, and a strategy is proposed for achieving these goals.

  6. Increasing atmospheric [CO2] from glacial through future levels affects drought tolerance via impacts on leaves, xylem and their integrated function

    PubMed Central

    Medeiros, Juliana S.; Ward, Joy K.

    2013-01-01

    Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237

  7. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates.

    PubMed

    Pedersen, Sindre A; Håkedal, Ole Jacob; Salaberria, Iurgi; Tagliati, Alice; Gustavson, Liv Marie; Jenssen, Bjørn Munro; Olsen, Anders J; Altin, Dag

    2014-10-21

    The copepod Calanus finmarchicus is a key component of northern Atlantic food webs, linking energy-transfer from phytoplankton to higher trophic levels. We examined the effect of different ocean acidification (OA) scenarios (i.e., ambient, 1080, 2080, and 3080 μatm CO2) over two subsequent generations under limited food availability. Determination of metabolic and feeding rates, and estimations of the scope for growth, suggests that negative effects observed on vital rates (ontogenetic development, somatic growth, fecundity) may be a consequence of energy budget constraints due to higher maintenance costs under high pCO2-environments. A significant delay in development rate among the parental generation animals exposed to 2080 μatm CO2, but not in the following F1 generation under the same conditions, suggests that C. finmarchicus may have adaptive potential to withstand the direct long-term effects of even the more pessimistic future OA scenarios but underlines the importance of transgenerational experiments. The results also indicate that in a more acidic ocean, increased energy expenditure through rising respiration could lower the energy transfer to higher trophic levels and thus hamper the productivity of the northern Atlantic ecosystem.

  8. An apple a day does not always keep the doctor away....

    PubMed

    Dedouit, Fabrice; Tournel, Gilles; Robert, Anne Bécart; Dutrieux, Pierre; Hédouin, Valéry; Gosset, Didier

    2008-11-01

    The authors describe a case of suicide in the workplace. A 45-year-old man employed by a fruit and vegetable packing company was found dead in a room containing a modified atmosphere for the packaging of fruits and vegetables. The rescue team measured the carbon monoxide (CO) concentration of the ambient air with a digital CO tester and found a level higher than 600 particles per million. Analysis of an arterial blood sample taken with an airtight syringe revealed the absence of CO but high levels of carbon dioxide (CO(2)). Autopsy revealed no significant injury and police investigators found a handwritten note of intent, describing a recent personal crisis. The authors concluded that the cause of death was suicide by asphyxiation secondary to CO(2) intoxication and notably oxygen (O(2)) depletion. This manner of suicide is rare and most cases previously described in the literature were accidental intoxications. To the best of our knowledge, this is the first case of suicide by CO(2) intoxication and O(2) depletion in a room with a modified atmosphere.

  9. Influence of air pollution on exhaled carbon monoxide levels in smokers and non-smokers. A prospective cross-sectional study.

    PubMed

    Maga, Mikołaj; Janik, Maciej K; Wachsmann, Agnieszka; Chrząstek-Janik, Olga; Koziej, Mateusz; Bajkowski, Mateusz; Maga, Paweł; Tyrak, Katarzyna; Wójcik, Krzysztof; Gregorczyk-Maga, Iwona; Niżankowski, Rafał

    2017-01-01

    The poor air quality and cigarette smoking are the most important reasons for increased carbon monoxide (CO) level in exhaled air. However, the influence of high air pollution concentration in big cities on the exhaled CO level has not been well studied yet. To evaluate the impact of smoking habit and air pollution in the place of living on the level of CO in exhaled air. Citizens from two large cities and one small town in Poland were asked to complete a survey disclosing their place of residence, education level, work status and smoking habits. Subsequently, the CO level in their exhaled air was measured. Air quality data, obtained from the Regional Inspectorates of Environmental Protection, revealed the differences in atmospheric CO concentration between locations. 1226 subjects were divided into 4 groups based on their declared smoking status and place of living. The average CO level in exhaled air was significantly higher in smokers than in non-smokers (p<0.0001) as well as in non-smokers from big cities than non-smokers from small ones (p<0.0001). Created model showed that non-smokers from big cities have odds ratio of 125.3 for exceeding CO cutoff level of 4ppm compared to non-smokers from small towns. The average CO level in exhaled air is significantly higher in smokers than non-smokers. Among non-smokers, the average exhaled CO level is significantly higher in big city than small town citizens. These results suggest that permanent exposure to an increased concentration of air pollution and cigarette smoking affect the level of exhaled CO. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOEpatents

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  11. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency

    PubMed Central

    Cripps, Gemma; Flynn, Kevin J.; Lindeque, Penelope K.

    2016-01-01

    The critical role played by copepods in ocean ecology and biogeochemistry warrants an understanding of how these animals may respond to ocean acidification (OA). Whilst an appreciation of the potential direct effects of OA, due to elevated pCO2, on copepods is improving, little is known about the indirect impacts acting via bottom-up (food quality) effects. We assessed, for the first time, the chronic effects of direct and/or indirect exposures to elevated pCO2 on the behaviour, vital rates, chemical and biochemical stoichiometry of the calanoid copepod Acartia tonsa. Bottom-up effects of elevated pCO2 caused species-specific biochemical changes to the phytoplanktonic feed, which adversely affected copepod population structure and decreased recruitment by 30%. The direct impact of elevated pCO2 caused gender-specific respiratory responses in A.tonsa adults, stimulating an enhanced respiration rate in males (> 2-fold), and a suppressed respiratory response in females when coupled with indirect elevated pCO2 exposures. Under the combined indirect+direct exposure, carbon trophic transfer efficiency from phytoplankton-to-zooplankton declined to < 50% of control populations, with a commensurate decrease in recruitment. For the first time an explicit role was demonstrated for biochemical stoichiometry in shaping copepod trophic dynamics. The altered biochemical composition of the CO2-exposed prey affected the biochemical stoichiometry of the copepods, which could have ramifications for production of higher tropic levels, notably fisheries. Our work indicates that the control of phytoplankton and the support of higher trophic levels involving copepods have clear potential to be adversely affected under future OA scenarios. PMID:27082737

  12. Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels.

    PubMed

    Singh, Aradhana; Agrawal, Madhoolika

    2015-03-01

    Catharanthus roseus L. plants were grown under ambient (375 ± 30 ppm) and elevated (560 ± 25 ppm) concentrations of atmospheric CO2 at different rates of N supply (without supplemental N, 0 kg N ha(-1); recommended N, 50 kg N ha(-1); and double recommended N, 100 kg N ha(-1)) in open top chambers under field condition. Elevated CO2 significantly increased photosynthetic pigments, photosynthetic efficiency, and organic carbon content in leaves at recommended (RN) and double recommended N (DRN), while significantly decreased total nitrogen content in without supplemental N (WSN). Activities of superoxide dismutase, catalase, and ascorbate peroxidase were declined, while glutathione reductase, peroxidase, and phenylalanine-ammonia lyase were stimulated under elevated CO2. However, the responses of the above enzymes were modified with different rates of N supply. Elevated CO2 significantly reduced superoxide production rate, hydrogen peroxide, and malondialdehyde contents in RN and DRN. Compared with ambient, total alkaloids content increased maximally at recommended level of N, while total phenolics in WSN under elevated CO2. Elevated CO2 stimulated growth of plants by increasing plant height and numbers of branches and leaves, and the magnitude of increment were maximum in DRN. The study suggests that elevated CO2 has positively affected plants by increasing growth and alkaloids production and reducing the level of oxidative stress. However, the positive effects of elevated CO2 were comparatively lesser in plants grown under limited N availability than in moderate and higher N availability. Furthermore, the excess N supply in DRN has stimulated the growth but not the alkaloids production under elevated CO2.

  13. Physiological, Behavioral, and Histological Responses of Male C57BL/6N Mice to Different CO2 Chamber Replacement Rates

    PubMed Central

    Boivin, Gregory P; Bottomley, Michael A; Dudley, Emily S; Schiml, Patricia A; Wyatt, Christopher N; Grobe, Nadja

    2016-01-01

    Rodent euthanasia with CO2 by using gradual displacement of 10% to 30% of the chamber volume per minute is considered acceptable by the AVMA Panel on Euthanasia. However, whether a 50% to 100% chamber replacement rate (CRR) of CO2 is more painful or distressful than 10% to 30% CRR is unclear. Therefore, we examined physiological and behavioral parameters, corticosterone and ACTH levels, and lung histology of mice euthanized at CRR of 15%, 30%, 50%, or 100%. Adult male C57BL/6N mice were euthanized at different CO2 CRR as physiological parameters were recorded telemetrically. Video recordings were reviewed to determine when the mouse first became ataxic, when it was fully recumbent (characterized by the mouse's nose resting on the cage floor), and when breathing stopped. Overall, CO2 euthanasia increased cardiovascular parameters and activity. Specific significant differences that were associated with 50% to 100% compared with 15% to 30% CO2 CRR included an increase in systolic blood pressure per second from initiation of CO2 until ataxia, a decrease in total diastolic blood pressure until ataxia, and a decrease in total heart rate until ataxia, immobility, and death. All physiological responses occurred more rapidly with higher CRR. Activity levels, behavioral responses, plasma adrenocorticotropic hormone and corticosterone levels, and lung pathology were not different between groups. We found no physiological, behavioral, or histologic evidence that 15% or 30% CO2 CRR is less painful or distressful than is 50% or 100% CO2 CRR. We conclude that 50% to 100% CO2 CRR is acceptable for euthanizing adult male C57BL/6N mice. PMID:27423153

  14. Interaction of the Onset of Spring and Elevated Atmospheric CO2 on Ragweed (Ambrosia artemisiifolia L.) Pollen Production

    PubMed Central

    Rogers, Christine A.; Wayne, Peter M.; Macklin, Eric A.; Muilenberg, Michael L.; Wagner, Christopher J.; Epstein, Paul R.; Bazzaz, Fakhri A.

    2006-01-01

    Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of the growing season. We designed the present study to examine the interactive effects of timing of dormancy release of seeds with low and high atmospheric CO2 on biomass, reproduction, and phenology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-controlled glasshouses at either ambient or 700-ppm CO2 concentrations, placing open-top bags over inflorescences to capture pollen. Measurements of plant height and weight; inflorescence number, weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant pollen productivity was estimated from an allometric-based model. Timing and CO2 interacted to influence pollen production. At ambient CO2 levels, the earlier cohort acquired a greater biomass, a higher average weight per inflorescence, and a larger number of inflorescences; flowered earlier; and had 54.8% greater pollen production than did the latest cohort. At high CO2 levels, plants showed greater biomass and reproductive effort compared with those in ambient CO2 but only for later cohorts. In the early cohort, pollen production was similar under ambient and high CO2, but in the middle and late cohorts, high CO2 increased pollen production by 32% and 55%, respectively, compared with ambient CO2 levels. Overall, ragweed pollen production can be expected to increase significantly under predicted future climate conditions. PMID:16759986

  15. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production.

    PubMed

    Rogers, Christine A; Wayne, Peter M; Macklin, Eric A; Muilenberg, Michael L; Wagner, Christopher J; Epstein, Paul R; Bazzaz, Fakhri A

    2006-06-01

    Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of the growing season. We designed the present study to examine the interactive effects of timing of dormancy release of seeds with low and high atmospheric CO2 on biomass, reproduction, and phenology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-controlled glass-houses at either ambient or 700-ppm CO2 concentrations, placing open-top bags over influorescences to capture pollen. Measurements of plant height and weight; inflorescence number, weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant pollen productivity was estimated from an allometric-based model. Timing and CO2 interacted to influence pollen production. At ambient CO2 levels, the earlier cohort acquired a greater biomass, a higher average weight per inflorescence, and a larger number of influorescences; flowered earlier; and had 54.8% greater pollen production than did the latest cohort. At high CO2 levels, plants showed greater biomass and reproductive effort compared with those in ambient CO2 but only for later cohorts. In the early cohort, pollen production was similar under ambient and high CO2, but in the middle and late cohorts, high CO2 increased pollen production by 32% and 55%, respectively, compared with ambient CO2 levels. Overall, ragweed pollen production can be expected to increase significantly under predicted future climate conditions.

  16. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  17. Continuous distending pressure effects on variables contributing to oxygenation in healthy and ARDS model pigs during HFOV

    NASA Astrophysics Data System (ADS)

    Laviola, Marianna; Hajny, Ondrej; Roubik, Karel

    2014-10-01

    High frequency oscillatory ventilation (HFOV) is an alternative mode of mechanical ventilation. HFOV has been shown to provide adequate ventilation and oxygenation in acute respiratory distress syndrome (ARDS) patients and may represent an effective lung-protective ventilation in patients where conventional ventilation is failing. The aim of this study is to evaluate effects of continuous distending pressure (CDP) on variables that contribute to the oxygenation in healthy and ARDS lung model pigs. Methods. In order to simulate a lung disease, lung injury was induced by lavage with normal saline with detergent in three pigs. HFOV ventilation was applied before and after the lung lavage. CDP was stepwise increased by 2 cmH2O, until the maximum CDP (before the lung lavage 32 cmH2O and after the lung lavage 42 cmH2O) and then it was stepwise decreased by 2 cmH2O to the initial value. In this paper we analyzed the following parameters acquired during our experiments: partial pressure of oxygen in arterial blood (PaO2), cardiac output (CO) and mixed venous blood oxygen saturation (SvO2). In order to find how both PaO2 and CO affected SvO2 during the increase of CDP before and after lavage, a nonlinear regression fitting of the response in SvO2 on the predictors (PaO2 and CO) was implemented. Results. Before the lavage, with increasing of CDP, PaO2 remained constant, CO strongly decreased and SvO2 slightly decreased. After the lavage, with increasing of CDP, PaO2 strongly increased, CO decreased and SvO2 increased. So, development of SvO2 followed the PaO2 and CO trends. Changes in PaO2 and CO occur at decisive CDP step and it was much higher after the lung lavage compared to the healthy lungs. The implemented nonlinear model gives a good goodness of fitting in all three pigs. The values of PaO2 and CO estimated coefficients changed at the same decisive step of CDP identified by the trends. Also the algorithm identified a CDP step much higher after the lung lavage. Conclusions. The novelty of this study consists of the implementing of a model that allows to predict how PaO2 and CO affect SvO2. It is possible to identify a certain level of CDP (higher in ARDS model pigs) at which the contribution of PaO2 and CO to SvO2 course changes their weights. Above this value, PaO2 plays a major role in SvO2 developments. This is in concordance with the clinical experience that HFOV is suitable for patient with more severe lung diseases when much higher CDP levels are required to assure an adequate oxygenation.

  18. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).

    PubMed

    Pedersen, Sindre Andre; Våge, Vegard Thorset; Olsen, Anders Johny; Hammer, Karen Marie; Altin, Dag

    2014-01-01

    Ocean acidification poses an ongoing threat to marine organisms, and early life stages are believed to be particularly sensitive. The boreal calanoid copepod Calanus finmarchicus seasonally dominates the standing stock of zooplankton in the northern North Sea and North Atlantic, and due to its size and abundance is considered an ecological key species linking energy from primary producers to higher trophic levels. To examine whether the early stages of C. finmarchicus are particularly vulnerable to elevated levels of CO2, eggs and nauplii were subjected to different levels of CO2-acidified seawater for 1 wk. The first experiment, with eggs as the starting point, revealed no marked effect on hatching success, but a significant reduction in nauplii survival during incubation at 8800 ppm CO2. In addition, a significant decrease in ontogenetic development rate during incubation at 8800 ppm CO2 was observed in this experiment. In the second experiment, where third-stage nauplii represented the starting point, no significant effects on ontogenetic development and survival following exposure to pCO2 ≥ 7700 ppm were observed. Data suggest that the two first nauplii stages, which are fed endogenously, may be more vulnerable and therefore likely to represent the "bottleneck" for this species in a more acidic ocean. However, the absence of significant effects in the most sensitive stages during exposure to 2800 ppm CO2, a level that is well above worst-case scenario predictions for year 2300 (approximately 2000 ppm CO2), suggests that this species may be generally robust to direct effects of ocean acidification.

  19. Multidecadal Increase in North Atlantic Coccolithophores and Potential Role of Increasing CO2

    NASA Astrophysics Data System (ADS)

    Rivero-Calle, S.; Gnanadesikan, A.; del Castillo, C. E.; Balch, W. M.; Guikema, S.

    2016-02-01

    As anthropogenic CO2 emissions acidify the oceans, calcifiers are expected to be negatively impacted. Using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic has increased from 2 to over 20% from 1965 through 2010. We used Random Forest models to examine more than 20 possible environmental drivers of this change. CO2 and the Atlantic Multidecadal Oscillation were the best predictors. Since coccolithophore photosynthesis is strongly carbon-limited, we hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing pCO2 and temperature accelerated the growth rate of a key phytoplankton group for carbon cycling.

  20. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  1. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    PubMed

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  2. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  3. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  4. High-resolution Atmospheric pCO2 Reconstruction across the Paleogene Using Marine and Terrestrial δ13C records

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2016-02-01

    The early Paleogene (63 to 47 Ma) is considered to have a greenhouse climate1 with proxies suggesting atmospheric CO2 levels (pCO2) approximately 2× pre-industrial levels. However, the proxy based pCO2 reconstructions are limited and do not allow for assessment of changes in pCO2 at million to sub-million year time scales. It has recently been recognized that changes in C3 land plant carbon isotope fractionation can be used as a proxy for pCO2 with quantifiable uncertainty2. Here, we present a high-resolution pCO2 reconstruction (n = 597) across the early Paleogene using published carbon isotope data from both terrestrial organic matter and marine carbonates. The minimum and maximum pCO2 values reconstructed using this method are broad (i.e., 170 +60/-40 ppmv to 2000 +4480/-1060 ppmv) and reflective of the wide range of environments sampled. However, the large number of measurements allows for a robust estimate of average pCO2 during this time interval ( 400 +260/-120 ppmv), and indicates brief (sub-million-year) excursions to very high pCO2 during hyperthermal events (e.g., the PETM). By binning our high-resolution pCO2 data at 1 million year intervals, we can compare our dataset to the other available pCO2 proxies. Our result is broadly consistent with pCO2 levels reconstructed using other proxies, with the exception of paleosol-based pCO2 estimates spanning 53 to 50 Ma. At this timescale, no proxy suggests pCO2 higher than 2000 ppmv, whereas the global surface ocean temperature is considered to be >10 oC warmer than today. Recent climate modeling suggests that low atmospheric pressure during this time period could help reconcile the apparent disconnect between pCO2 and temperature and contribute to the greenhouse climate3. References1. Huber, M., Caballero, R., 2011. Climate of the Past 7, 603-633. 2. Schubert, B.A., Jahren, A.H., 2015. Geology 43, 435-438. 3. Poulsen, C.J., Tabor, C., White, J.D., 2015. Science 348, 1238-1241.

  5. Long-term changes in CO2 emissions in Austria and Czechoslovakia—Identifying the drivers of environmental pressures

    PubMed Central

    Gingrich, Simone; Kušková, Petra; Steinberger, Julia K.

    2011-01-01

    This study presents fossil-fuel related CO2 emissions in Austria and Czechoslovakia (current Czech Republic and Slovakia) for 1830–2000. The drivers of CO2 emissions are discussed by investigating the variables of the standard Kaya identity for 1920–2000 and conducting a comparative Index Decomposition Analysis. Proxy data on industrial production and household consumption are analysed to understand the role of the economic structure. CO2 emissions increased in both countries in the long run. Czechoslovakia was a stronger emitter of CO2 throughout the time period, but per-capita emissions significantly differed only after World War I, when Czechoslovakia and Austria became independent. The difference in CO2 emissions increased until the mid-1980s (the period of communism in Czechoslovakia), explained by the energy intensity and the composition effects, and higher industrial production in Czechoslovakia. Counterbalancing factors were the income effect and household consumption. After the Velvet revolution in 1990, Czechoslovak CO2 emissions decreased, and the energy composition effect (and industrial production) lost importance. Despite their different political and economic development, Austria and Czechoslovakia reached similar levels of per-capita CO2 emissions in the late 20th century. Neither Austrian “eco-efficiency” nor Czechoslovak restructuring have been effective in reducing CO2 emissions to a sustainable level. PMID:21461052

  6. Observations of Atmospheric Δ14CO2 at the Global and Regional Background Sites in China: Implication for Fossil Fuel CO2 Inputs.

    PubMed

    Niu, Zhenchuan; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-11-15

    Six months to more than one year of atmospheric Δ 14 CO 2 were measured in 2014-2015 at one global background site in Waliguan (WLG) and four regional background sites at Shangdianzi (SDZ), Lin'an (LAN), Longfengshan (LFS) and Luhuitou (LHT), China. The objectives of the study are to document the Δ 14 CO 2 levels at each site and to trace the variations in fossil fuel CO 2 (CO 2ff ) inputs at regional background sites. Δ 14 CO 2 at WLG varied from 7.1 ± 2.9‰ to 32.0 ± 3.2‰ (average 17.1 ± 6.8‰) in 2015, with high values generally in autumn/summer and low values in winter/spring. During the same period, Δ 14 CO 2 values at the regional background sites were found to be significantly (p < 0.05) lower than those at WLG, indicating different levels of CO 2ff inputs at those sites. CO 2ff concentrations at LAN (12.7 ± 9.6 ppm) and SDZ (11.5 ± 8.2 ppm) were significantly (p < 0.05) higher than those at LHT (4.6 ± 4.3 ppm) in 2015. There were no significant (p > 0.05) seasonal differences in CO 2ff concentrations for the regional sites. Regional sources contributed in part to the CO 2ff inputs at LAN and SDZ, while local sources dominated the trend observed at LHT. These data provide a preliminary understanding of atmospheric Δ 14 CO 2 and CO 2ff inputs for a range of Chinese background sites.

  7. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    NASA Astrophysics Data System (ADS)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  8. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological operation and soil moisture has stronger influence on the seasonal dynamics of soil and agroecosystem CO2 emissions. Obtained unique for Russian agriculture data are very useful for land-use practices environmental assessment, for soil organic carbon dynamics analysis and agroecological evaluation, and for food C-footprint calculation. Their system analysis together with the nearest forest eddy covariance stations helps us to understand better the land-use change impact on the GHG fluxes dynamics and ecosystem services.

  9. Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Siegriest, L. M.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1993-01-01

    In tightly closed environments used for human life support in space, carbon dioxide (CO2) partial pressures can reach 500 to 1000 Pa, which may be supraoptimal or toxic to plants used for life support. To study this, soybeans [Glycine max (L.) Merr. cvs. McCall and Pixie] were grown for 90 days at 50, 100, 200, and 500 Pa partial pressure CO2 (500, 1000, 2000, and 5000 ppm). Plants were grown using recirculating nutrient film technique with a 12-h photoperiod, a 26 degrees C/20 degrees C thermoperiod, and approximately 300 micromoles m-2 s-1 photosynthetic photon flux (PPF). Seed yield and total biomass were greatest at 100 Pa for cv. McCall, suggesting that higher CO2 levels were supraoptimal. Seed yield and total biomass for cv. Pixie showed little difference between CO2 treatments. Average stomatal conductance of upper canopy leaves at 50 Pa CO2 approximately 500 Pa > 200 Pa > 100 Pa. Total water use over 90 d for both cultivars (combined on one recirculating system) equalled 822 kg water for 100 Pa CO2, 845 kg for 50 Pa, 879 kg for 200 Pa, and 1194 kg for 500 Pa. Water use efficiences for both cultivars combined equalled 3.03 (g biomass kg-1 water) for 100 Pa CO2, 2.54 g kg-1 for 200 Pa, 2.42 g kg-1 for 50 Pa, and 1.91 g kg-1 for 500 Pa. The increased stomatal conductance and stand water use at the highest CO2 level (500 Pa) were unexpected and pose interesting considerations for managing plants in a tightly closed system where CO2 concentrations may reach high levels.

  10. Effect of water level changes in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites

    NASA Astrophysics Data System (ADS)

    Lv, Haibo; Zhang, Hong

    2018-04-01

    The purpose of this study was to investigate the effect of water level changes (WLC) in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites. The rate of CO2 emissions (RCE) from soil was measured in some Phragmites wetlands selected along the Yumenkou-Tongguan section in this river's middle reaches. An artificial recharge experiment was conducted and the data about this section's water levels for the past 15 years was analyzed. This study found that the water level of this river section changed frequently in the last 11 summers. The effect of WLC depended on air temperature. At low temperatures of between 18.0 and 28.0 °C, WLC contributed to a RCE change from 10.19 mmol.m-2.h-1 to 13.43 mmol.m-2.h-1. When the temperature fell within the normal range of 29.0-35.0 °C, the corresponding changes were from 4.07 mmol.m-2.h-1 to 7.35 mmol.m-2.h-1. When the temperature was higher than 35.0 °C, the corresponding changes increased slightly from 6.47 mmol.m-2.h-1 to 12.41 mmol.m-2.h-1. These suggest that WLC had a considerable effect on CO2 emissions at high and low temperatures. As the water level rose, the RCE increased and then decreased in both types of wetlands. At low temperatures, the most favorable water levels for CO2 emissions were -10 cm and 0 cm. At normal temperatures, the RCE from the two types of wetlands decreased with rising water level. At high temperatures, the most favorable water level was -60 cm for Phragmites wetlands. These results demonstrate that frequent WLC can slow CO2 release from Phragmites wetlands along the middle reaches of the Yellow River. Therefore, research on the effect of WLC on CO2 emissions has practical significance.

  11. Indoor thermal environment, air exchange rates, and carbon dioxide concentrations before and after energy retro fits in Finnish and Lithuanian multi-family buildings.

    PubMed

    Leivo, Virpi; Prasauskas, Tadas; Du, Liuliu; Turunen, Mari; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2018-04-15

    Impacts of energy retrofits on indoor thermal environment, i.e. temperature (T) and relative humidity (RH), as well as ventilation rates and carbon dioxide (CO 2 ) concentrations, were assessed in 46 Finnish and 20 Lithuanian multi-family buildings, including 39 retrofitted case buildings in Finland and 15 in Lithuania (the remaining buildings were control buildings with no retrofits). In the Finnish buildings, high indoor T along with low RH levels was commonly observed both before and after the retrofits. Ventilation rates (l/s per person) were higher after the retrofits in buildings with mechanical exhaust ventilation than the corresponding values before the retrofits. Measured CO 2 levels were low in vast majority of buildings. In Lithuania, average indoor T levels were low before the retrofits and there was a significant increase in the average T after the retrofits. In addition, average ventilation rate was lower and CO 2 levels were higher after the retrofits in the case buildings (N=15), both in apartments with natural and mixed ventilation. Based on the results, assessment of thermal conditions and ventilation rates after energy retrofits is crucial for optimal indoor environmental quality and energy use. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  13. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia.

    PubMed

    Alharbi, Talal; Alfaifi, Hussain; Almadani, Sattam A; El-Sorogy, Abdelbaset

    2017-11-13

    To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.

  14. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    NASA Astrophysics Data System (ADS)

    Fahnestock, J. T.; Jones, M. H.; Brooks, P. D.; Walker, D. A.; Welker, J. M.

    1998-11-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems.

  15. Leaf and plant water use efficiency of C{sub 4} species grown at glacial to elevated CO{sub 2} concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, H.W.; Johnson, H.B.; Mayeux, H.S.

    1996-03-01

    Leaf gas exchange was measured on C{sub 4} plants grown from near glacial to current CO{sub 2} concentrations (200-350 {mu}mol mol{sup -1}) and from the current concentration to possible future levels (near 700 and 1000 {mu}mol mol{sup -1}) to test the prediction that intrinsic water use efficiency (CO{sub 2} assimilation [A]/stomatal conductance to water [g]) would rise by a similar relative amount as CO{sub 2} concentration. Studied were species differing in growth form or life history, the perennial grass Schizachyrium scoparium (little bluestem), perennial shrub Atriplex canescens (four-wing saltbush), and annual grass Schizachyrium scoparium (little bluestem), leaf A/g of themore » C{sub 4} species examined was stimulated proportionally more by a given relative increase in CO{sub 2} over subambient than by elevated concentrations. The ratio of the relative increase in A/g to that in CO{sub 2} exceeded unity in S, scoparium and A. canescens as CO{sub 2} rose from 700 to 1000 {mu}mol mol{sup -1}. At higher CO{sub 2} concentrations, A/g of the C{sub 4} perennials was similar to that expected for C{sub 3} plants. Since much of the potential response of C{sub 4} plants to CO{sub 4} perennials was similar to that expected for C{sub 3} plants. Since much of the potential response of C{sub 4} plants to CO{sub 2} often derives from higher water use efficiency (WUE), these results indicated that potential productivity of some C{sub 4} plants increased relatively more since glaciation than it will in the future. There also were large (>100%) differences in A/g and plant WUE (production/transpiration) at a given CO{sub 2} level among the plants examined that could influence the relative productivities of C{sub 4} species or growth forms and their interactions with C{sub 3} plants. 34 refs., 3 figs., 3 tabs.« less

  16. Glycerolipid synthesis in Chlorella kessleri 11 h. II. Effect of the CO2 concentration during growth.

    PubMed

    Sato, Norihiro; Tsuzuki, Mikio; Kawaguchi, Akihiko

    2003-07-04

    In the accompanying paper, we demonstrated that Chlorella kessleri uses prokaryotic and eukaryotic pathways to synthesize sn-1-C18-sn-2-C16 (C18/C16, prokaryotic lipids) and sn-1-C18-sn-2-C18 (C18/C18, eukaryotic lipids) species, respectively, in chloroplast lipids such as monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG). In this study, to examine the effect of CO2 on lipid metabolism, we compared the fatty acid distributions at the sn-1 and sn-2 positions of each major lipid, i.e. MGDG, DGDG, phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and the patterns of incorporation of [14C]acetate into fatty acids and lipids in vivo between cells of C. kessleri grown under ordinary air (low-CO2 cells) and ones grown under CO2-enriched air (high-CO2 cells). Low-CO2 cells, as compared with high-CO2 cells, showed elevated contents of 18:3(9,12,15), especially at both the sn-1 and sn-2 positions of MGDG and DGDG, and also at the sn-2 position of PC and PE. When the cells were labeled with [14C]acetate, slower rates of 18:3 synthesis in the respective major lipids with lower incorporation of 14C into total membrane lipids were observed in low-CO2 cells than in high-CO2 cells. These results thus indicate that the higher unsaturation levels in low-CO2 cells are at least partially due to repressed fatty acid synthesis, which promotes the desaturation of pre-existing fatty acids, rather than to up-regulation of desaturation activity. It was also noted that, in both MGDG and DGDG, the contents of eukaryotic lipids were higher at the expense of prokaryotic lipids in low-CO2 cells than in high-CO2 cells, suggesting relatively greater metabolic flow in the eukaryotic pathway compared to the prokaryotic pathway for galactolipid synthesis in low-CO2 cells. We propose that, together with the repression of fatty acid synthesis, the increased synthesis of C18/C18 species of galactolipids, which are suitable substrates for chloroplast desaturation, through the eukaryotic pathway, contributes to the higher contents of 18:3 in low-CO2 cells than in high-CO2 cells.

  17. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf

    2016-11-01

    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.

  18. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    PubMed

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1), and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) of maize. Similarly, the stomatal conductance (Gs) and transpiration rate (Tr) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (Rd) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.

  19. Interactive Effects of Elevated CO2 Concentration and Irrigation on Photosynthetic Parameters and Yield of Maize in Northeast China

    PubMed Central

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol−1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5–9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (P n) and intercellular CO2 concentration (C i) of maize. Similarly, the stomatal conductance (G s) and transpiration rate (T r) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (P nmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (R d) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China. PMID:24848097

  20. The effects of CO2 on phytoplankton community structure in the Amazon River Plume

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Goes, J. I.; Gomes, H. R.; McKee, K. T.

    2013-12-01

    The Amazon River Plume results from an enormous discharge of freshwater and organic matter into the Atlantic Ocean. It is a unique environment with a natural pCO2 gradient in the surface waters of the plume that range from 130-950 μatm. The response of coastal marine phytoplankton to increased anthropogenic CO2 emission is still unknown, hence the Amazon River Plume gradient can serve as a natural laboratory to examine the potential influence of atmospheric CO2 increases and ocean acidification on phytoplankton community composition. A two pronged study was undertaken: the first in which shipboard samples from a 2010 cruise to the Amazon River Plume were analyzed to examine the distribution of 3 major phytoplankton groups (diatoms, diatom-diazotroph associations [DDAs], and the diazotroph Trichodesmium spp.) with respect to the natural pCO2 gradient; the second in which the growth response of Thalassiosira weisflogii, a representative diatom species, was examined under experimentally manipulated CO2 conditions. Cruise data analysis showed that diatoms were found with higher cell counts around 150 μatm; DDAs seemed to dominate waters within the narrow range of 350-400 μatm CO2; and the diazotroph Trichodesmium spp. grew in a wide range of pCO2 conditions, but with higher cell counts at upwards of 500 μatm. Phytoplankton group distributions along the CO2 gradient may be due to differences in their carbon-concentrating mechanism (CCMs) efficiencies. The CO2 manipulation apparatus was assembled such that the cells were grown under three different CO2 environments. Differential growth of T. weisflogii was observed at 150, 400, and 800 ppm CO2 treatment. T. weisflogii grew at all three CO2 concentrations, reflecting diatoms' physiological flexibility and efficient CCMs. Absorption spectra analysis of pigments and Fast Repetition Rate Fluorometer analysis indicate potential changes in photosynthetic machinery with different CO2 treatments. Future CO2 manipulation experiments on representative DDA and diazotroph species will be undertaken to compare the growth responses of the 3 major phytoplankton groups to changes in CO2. Additionally, analysis on fatty acid compositions with different CO2 treatments will be done to assess potential changes in nutritive value for higher trophic levels. Underway pCO2 measurements with overlaid cell counts from the 2010 cruise data CO2 manipulation experiment data- growth curve (in vivo chlorophyll a fluorescence) for the 3 CO2 treatments

  1. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    NASA Astrophysics Data System (ADS)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  2. Ammonia and Carbon Dioxide Concentrations in Disposable and Reusable Ventilated Mouse Cages

    PubMed Central

    Silverman, Jerald; Bays, David W; Cooper, Sheldon F; Baker, Stephen P

    2008-01-01

    This study compares resuable and disposable individually ventilated mouse cages in terms of the formation of intracage CO2 and NH3. Crl:CD-1(ICR) female mice were placed in either disposable or reusable ventilated cages in a positive pressure animal rack. Intracage CO2 and NH3 were measured once daily for 9 d; temperature and relative humidity were monitored for the first 7 d. Results indicated higher CO2 levels in the rear of the disposable cages and in the front of the reusable cages. This pattern corresponded to where the mice tended to congregate. However, CO2 concentrations did not differ significantly between the 2 cage types. Average CO2 levels in both cage types never exceeded approximately 3000 ppm. Intracage NH3 began to rise in the reusable cages on day 4, reached approximately 50 ppm by day 5 and by day 9 was greater than 150 ppm at the cages' rear sampling port while remaining at approximately 70 ppm at the front sampling port. Intracage NH3 levels in the disposable cages remained less than or equal to 3.2 ppm. Intracage temperature and relative humidity were approximately the same in both cage types. We concluded that the disposable ventilated cage performed satisfactorily under the conditions of the study. PMID:18351723

  3. Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO2 Reduction: A Case of ZnXCa1-XIn2S4.

    PubMed

    Zeng, Chao; Huang, Hongwei; Zhang, Tierui; Dong, Fan; Zhang, Yihe; Hu, Yingmo

    2017-08-23

    Photocatalytic CO 2 reduction into solar fuels illustrates huge charm for simultaneously settling energy and environmental issues. The photoreduction ability of a semiconductor is closely correlated to its conduction band (CB) position. A homogeneous-phase solid-solution with the same crystal system always has a monotonously changed CB position, and the high CB level has to be sacrificed to achieve a benign photoabsorption. Herein, we report the fabrication of heterogeneous-phase solid-solution Zn X Ca 1-X In 2 S 4 between trigonal ZnIn 2 S 4 and cubic CaIn 2 S 4 . The Zn X Ca 1-X In 2 S 4 solid solutions with orderly tuned photoresponsive range from 540 to 640 nm present a more negative CB level and highly enhanced charge-separation efficiency. Profiting from these merits, all of these Zn X Ca 1-X In 2 S 4 solid solutions exhibit remarkably strengthened photocatalytic CO 2 reduction performance under visible light (λ > 420 nm) irradiation. Zn 0.4 Ca 0.6 In 2 S 4 , bearing the most negative CB position and highest charge-separation efficiency, casts the optimal photocatalytic CH 4 and CO evolution rates, which reach 16.7 and 6.8 times higher than that of ZnIn 2 S 4 and 7.2 and 3.9 times higher than that of CaIn 2 S 4 , respectively. To verify the crucial role of the heterogeneous-phase solid solution in promoting the band structure and photocatalytic performance, another heterogeneous-phase solid-solution Zn X Cd 1-X In 2 S 4 has been synthesized. It also displays an upshifted CB level and promoted charge separation. This work may provide a new perspective into the development of an efficient visible-light driven photocatalyst for CO 2 reduction and other photoreduction reactions.

  4. Temperature-Dependent Lithium-Ion Diffusion and Activation Energy of Li1.2Co0.13Ni0.13Mn0.54O2 Thin-Film Cathode at Nanoscale by Using Electrochemical Strain Microscopy.

    PubMed

    Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang

    2017-04-26

    This paper presents the in situ mapping of temperature-dependent lithium-ion diffusion at the nanometer level in thin film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode using electrochemical strain microscopy. The thin-film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode exhibits higher lithium-ion diffusivities with increasing temperature, which explains the higher capacity observed in the lithium-ion batteries with a Li-rich cathode at elevated temperature. In addition, the activation energy for lithium-ion diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy; hence, it is the preferred diffusion path for lithium ions. This study has bridged the gap between atomistic calculations and traditional macroscopic experiments, showing direct evidence as well as mechanisms for ionic diffusion for Li-rich cathode material.

  5. CO2-dependent metabolic modulation in red blood cells stored under anaerobic conditions

    PubMed Central

    Dumont, Larry J.; D'Alessandro, Angelo; Szczepiorkowski, Zbigniew M.; Yoshida, Tatsuro

    2015-01-01

    Background Anaerobic RBC storage reduces oxidative damage, maintains ATP & 2,3-diphosphoglycerate (DPG) levels and has superior 24hr recovery at 6weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBC during anaerobic storage. Methods This is a matched 3 arm study (n=14): control, O2&CO2 depleted with Ar (AN), O2 depleted with 95%Ar/5%CO2 (AN[CO2]). RBC in additives AS-3 or OFAS3 were evenly divided into 3 bags, and anaerobic conditions were established by gas exchange. Bags were stored 1-6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. Results Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5%CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p>0.5, days0-21). ATP levels are higher in AN[CO2] (p<0.0001). DPG was maintained beyond 2 weeks in the AN arm (p<0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2] arms (p=0.6). Conclusion Maintenance of ATP in the AN[CO2] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBC. PMID:26477888

  6. New Co–Pd–Zn γ-Brasses with Dilute Ferrimagnetism and Co 2Zn 11 Revisited: Establishing the Synergism between Theory and Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei; Miller, Gordon J

    2014-04-22

    A synergism between electronic structure theory and the targeted synthesis of new ternary γ-brass compounds is demonstrated in the Co–Zn system. Co 2Zn 11, which adopts a cubic γ-brass structure, is shown to be at the Zn-rich end of a homogeneity range that varies from 15.4 to 22.1 atom % Co. Four samples were examined by single-crystal diffraction, all of which crystallize in space group I43¯m with the lattice parameter ranging from 8.9851(1) to 8.8809(1) Å as the Co content increases. In the 26-atom γ-brass clusters, Co atoms preferentially occupy the outer tetrahedron (OT) sites and then replace Zn atomsmore » at the octahedron (OH) sites at higher Co concentrations. In addition, a small fraction of vacancies occurs on the inner tetrahedron (IT) sites. The electronic structure of Co 2Zn 11 shows two distinct pseudogaps near the Fermi level: one at 292 valence electrons per primitive unit cell and the other at 302–304 valence electrons per primitive unit cell. Using molecular orbital arguments applied to the body-centered cubic packing of the 26-atom Co 4Zn 22 γ-brass cluster, these pseudogaps arise from (i) splitting among the valence s and p orbitals, which gives rise to the Hume–Rothery electron counting rule, and (ii) splitting within the manifold of Co 3d orbitals via Co–Zn orbital interactions. Co 2Zn 11 is Pauli paramagnetic, although the density of states at the Fermi level is large, whereas Curie–Weiss behavior emerges for higher Co concentrations. Because Pd has a size and an electronegativity similar to those of Zn, and inspired by the pseudogaps in the electronic density of states curve of Co 2Zn 11, Pd-doped γ-brass compounds were designed and two new γ-brass compounds were obtained: Co 0.92(2)Pd 1.08Zn 11 and Co 2.50(1)Pd 2.50Zn 8. In these, the site preferences for Co and Pd can be rationalized by electronic structure calculations. The densities of states indicate that Co 3d states are the major contributors near their Fermi levels, with the Pd 4d band lying ~2–3 eV below this. The magnetic properties of the Co–Pd–Zn γ-brasses are quite different from those of Co 2Zn 11: a giant magnetic moment on the Co atom is induced by the Pd atom, and Co 2.50(1)Pd 2.50Zn 8 shows magnetization consistent with a dilute ferrimagnet. The results of first-principles calculations on two different models of the 26-atom γ-brass clusters indicate that intracluster Co–Co exchange is ferromagnetic, whereas intercluster Co–Co exchange is antiferromagnetic. These different magnetic exchange interactions provide rationalization for the high-temperature magnetization behavior of Co 2.50(1)Pd 2.50Zn 8.« less

  7. Assessment of Indoor Air Pollution in Homes with Infants

    PubMed Central

    Pickett, Anna Ruth; Bell, Michelle L.

    2011-01-01

    Infants spend most of their indoor time at home; however, residential air quality is poorly understood. We investigated the air quality of infants’ homes in the New England area of the U.S. Participants (N = 53) were parents of infants (0–6 months) who completed telephone surveys to identify potential pollutant sources in their residence. Carbon monoxide (CO), carbon dioxide (CO2), particulate matter with aerodynamic diameter ≤0.5 µm (PM0.5), and total volatile organic compounds (TVOCs) were measured in 10 homes over 4–7 days, and levels were compared with health-based guidelines. Pollutant levels varied substantially across homes and within homes with overall levels for some homes up to 20 times higher than for other homes. Average levels were 0.85 ppm, 663.2 ppm, 18.7 µg/m3, and 1626 µg/m3 for CO, CO2, PM0.5, and TVOCs, respectively. CO2, TVOCs, and PM0.5 levels exceeded health-based indoor air quality guidelines. Survey results suggest that nursery renovations and related potential pollutant sources may be associated with differences in urbanicity, income, and presence of older children with respiratory ailments, which could potentially confound health studies. While there are no standards for indoor residential air quality, our findings suggest that additional research is needed to assess indoor pollution exposure for infants, which may be a vulnerable population. PMID:22408586

  8. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  9. Lingual, splanchnic, and systemic hemodynamic and carbon dioxide tension changes during endotoxic shock and resuscitation.

    PubMed

    Guzman, Jorge A; Dikin, Mathew S; Kruse, James A

    2005-01-01

    Sublingual and intestinal mucosal blood flow and Pco(2) were studied in a canine model of endotoxin-induced circulatory shock and resuscitation. Sublingual Pco(2) (Ps(CO(2))) was measured by using a novel fluorescent optrode-based technique and compared with lingual measurements obtained by using a Stowe-Severinghaus electrode [lingual Pco(2) (Pl(CO(2)))]. Endotoxin caused parallel changes in cardiac output, and in portal, intestinal mucosal, and sublingual blood flow (Q(s)). Different blood flow patterns were observed during resuscitation: intestinal mucosal blood flow returned to near baseline levels postfluid resuscitation and decreased by 21% after vasopressor resuscitation, whereas Q(s) rose to twice that of the preshock level and was maintained throughout the resuscitation period. Electrochemical and fluorescent Pco(2) measurements showed similar changes throughout the experiments. The shock-induced increases in Ps(CO(2)) and Pl(CO(2)) were nearly reversed after fluid resuscitation, despite persistent systemic arterial hypotension. Vasopressor administration induced a rebound of Ps(CO(2)) and Pl(CO(2)) to shock levels, despite higher cardiac output and Q(s), possibly due to blood flow redistribution and shunting. Changes in Pl(CO(2)) and Ps(CO(2)) paralleled gastric and intestinal Pco(2) changes during shock but not during resuscitation. We found that the lingual, splanchnic, and systemic circulations follow a similar pattern of blood flow variations in response to endotoxin shock, although discrepancies were observed during resuscitation. Restoration of systemic, splanchnic, and lingual perfusion can be accompanied by persistent tissue hypercarbia, mainly lingual and intestinal, more so when a vasopressor agent is used to normalize systemic hemodynamic variables.

  10. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO2 enrichment.

    PubMed

    Ikawa, Hiroki; Chen, Charles P; Sikma, Martin; Yoshimoto, Mayumi; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Ono, Keisuke; Maruyama, Atsushi; Watanabe, Tsutomu; Kuwagata, Tsuneo; Hasegawa, Toshihiro

    2018-03-01

    Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO 2 concentration ([CO 2 ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO 2 ] (A-CO 2 and E-CO 2 , respectively) via leaf ecophysiological parameters derived from a free-air CO 2 enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO 2 and E-CO 2 , and E-CO 2 decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO 2 ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO 2 ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use. © 2017 John Wiley & Sons Ltd.

  11. Rising CO2 widens the transpiration-photosynthesis optimality space

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype). Measurements of gs and V cmax were obtained with a portable photosynthesis system. Our empirical results support the prediction that the V cmax:gs-ratio increases with higher CO2 in both Solanum genotypes. The 'dry' genotype revealed a significantly higher Huber value and lower V cmax than the 'wet' genotype at each CO2 growth level. Moreover, we found that the down-regulation of V cmax under higher CO2 was stronger in the 'dry' genotype than in the 'wet' genotype, whereas no change in the Huber value was observed between CO2 levels. Consistent with the theoretical trade-off between the resulting costs of transpiration and photosynthesis, we found that the CO2-induced increase in the V cmax:gs-ratio was stronger in the 'wet' genotype than in the 'dry' genotype. Given the divergence of V cmax:gs relationships observed, we conclude that rising atmospheric CO2 may widen the V cmax - gs optimality space available for plants to achieve an optimal trade-off between photosynthesis and transpiration. References Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. and Wright, I. J.: Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology, Ecol. Lett., 17(1), 82-91, 2014.

  12. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.

    PubMed

    Martínez-Lüscher, J; Morales, F; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Gomès, E; Pascual, I

    2015-07-01

    The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    NASA Astrophysics Data System (ADS)

    Petchsang, N.; Pon-On, W.; Hodak, J. H.; Tang, I. M.

    2009-07-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3xFe 2xCo x(PO 4) 6(OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2O 4. Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+/Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe 2O 4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped ( x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2O 3 impurity phase seen in the XRD patterns.

  14. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level.

    PubMed

    Bendif, Hamdi; Adouni, Khaoula; Miara, Mohamed Djamel; Baranauskienė, Renata; Kraujalis, Paulius; Venskutonis, Petras Rimantas; Nabavi, Seyed Mohammad; Maggi, Filippo

    2018-09-15

    The aim of this study was to demonstrate the potential of extracts from Algerian Thymus munbyanus as a valuable source of antioxidants for use on an industrial level. To this end, a study was conducted on the composition and antioxidant activities of essential oils (EOs), pressurized liquid extracts (PLE) and supercritical fluid extracts (SFE-CO 2 ) obtained from Thymus munbyanus subsp. coloratus (TMC) and subsp. munbyanus (TMM). EOs and SFE-CO 2 extracts were analysed by GC-FID and GC×GC-TOFMS revealing significant differences. A successive extraction of the solid SFE-CO 2 residue by PLE extraction with solvents of increasing polarity such as acetone, ethanol and water, was carried out. The extracts were evaluated for total phenolic content by Folin-Ciocalteu assay, while the antioxidant power was assessed by DPPH, FRAP, and ORAC assays. SFE-CO 2 extracts were also analysed for their tocopherol content. The antioxidant activity of PLE extracts was found to be higher than that of SFE-CO 2 extracts, and this increased with solvent polarity (water > ethanol > acetone). Overall, these results support the use of T. munbyanus as a valuable source of substances to be used on an industrial level as preservative agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease.

    PubMed

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 ( 67 Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67 Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation.

  17. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2

    NASA Astrophysics Data System (ADS)

    Rivero-Calle, Sara; Gnanadesikan, Anand; Del Castillo, Carlos E.; Balch, William M.; Guikema, Seth D.

    2015-12-01

    As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling.

  18. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the earth

    NASA Technical Reports Server (NTRS)

    O'Keefe, John D.; Ahrens, Thomas J.

    1989-01-01

    Various observations and data demonstrate that sea level at the end of the Cretaceous was 150-200 m higher than at present, suggesting the possibility that the extinction bolide struck a shallow marine carbonate-rich sedimentary section. It is shown here that the impact of such a bolide (about 5 km in radius) onto a carbonate-rich terrane would increase the CO2 content of the atmosphere by a factor of two to ten. Additional dissolution of CO2 from the ocean's photic zone could release much larger quantities of CO2. The impact-induced release of CO2, by itself, would enhance atmospheric greenhouse heating and give rise to a worldwide increase in temperature from 2 K to 10 K for periods of 10,000 to 100,000 years.

  19. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.

    PubMed

    Singh, Shardendu K; Badgujar, Girish; Reddy, Vangimalla R; Fleisher, David H; Bunce, James A

    2013-06-15

    Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800μmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Continental-scale variation in controls of summer CO2 in United States lakes

    NASA Astrophysics Data System (ADS)

    Lapierre, Jean-Francois; Seekell, David A.; Filstrup, Christopher T.; Collins, Sarah M.; Emi Fergus, C.; Soranno, Patricia A.; Cheruvelil, Kendra S.

    2017-04-01

    Understanding the broad-scale response of lake CO2 dynamics to global change is challenging because the relative importance of different controls of surface water CO2 is not known across broad geographic extents. Using geostatistical analyses of 1080 lakes in the conterminous United States, we found that lake partial pressure of CO2 (pCO2) was controlled by different chemical and biological factors related to inputs and losses of CO2 along climate, topography, geomorphology, and land use gradients. Despite weak spatial patterns in pCO2 across the study extent, there were strong regional patterns in the pCO2 driver-response relationships, i.e., in pCO2 "regulation." Because relationships between lake CO2 and its predictors varied spatially, global models performed poorly in explaining the variability in CO2 for U.S. lakes. The geographically varying driver-response relationships of lake pCO2 reflected major landscape gradients across the study extent and pointed to the importance of regional-scale variation in pCO2 regulation. These results indicate a higher level of organization for these physically disconnected systems than previously thought and suggest that changes in climate and land use could induce shifts in the main pathways that determine the role of lakes as sources and sinks of atmospheric CO2.

  1. Environmental factors controlling transient and seasonal changes of trace gases within shallow vadose zone

    NASA Astrophysics Data System (ADS)

    Pla, Concepcion; Galiana-Merino, Juan Jose; Cuezva, Soledad; Fernandez-Cortes, Angel; Garcia-Anton, Elena; Cuevas, Jaime; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Benavente, David

    2014-05-01

    Shallow vadose environments below soil, mainly caves, show significant seasonal and even daily variations in gas composition of ground air, which involves the exchange of large amounts of gases, e.g. greenhouse gases (GHGs) as CO2 or CH4, with the lower troposphere. To understand better the role of caves as a sink or depot of GHGs, geochemical tracing of air (atmosphere, soil and ground air) was performed at Rull cave (southeast Spain) by monitoring CH4, CO2 and the stable carbon isotopic delta13C[CO2] using cavity ring-down spectroscopy (CRDS). A comprehensive microclimatic monitoring of exterior and cave atmosphere was simultaneously conducted to GHGs-tracking, including factors as temperature, barometric pressure, relative humidity and concentration of CO2 and 222Rn. The analysis of the measured data allows understanding outgassing and isolation processes taking place in the karst cavity. Annual patterns of gases behaviour can be distinguished, depending on the prevailing relationship between outer atmosphere, indoor atmosphere and soil system. Cave air temperature fluctuates around 15.7 ºC and relative humidity remains higher than 96% the whole annual cycle. The mean concentration of 222Rn is 1584 Bq m-3 while CO2 remains 1921 ppm. When external temperature is higher of indoor temperature (April-October), the highest levels of both trace gases are reached, while levels drop to its lowest values in the coldest months. Preliminary results obtained show an annual variation in concentration of CO2 inside the cave between 3300 ppm and 900 ppm, whereas corresponding isotopic signal delta13CO2 varies between -24‰ and -21‰. The results have been studied by Keeling model that approximates the isotopic signal of the source contribution in a resulting air mix. The values registered inside the cave were represented joined to results for exterior air (average values round 410 ppm of CO2 and -9 ‰ for delta13C). Value obtained is -27‰ pointing to a high influence of the soil produced CO2 (with a characteristic signal of -27‰ for C3 plants) in the cave atmosphere. The lowest levels of CO2 coincide with the highest of delta13C pointing to an input of exterior air during the degassing stage. Regarding the CH4 concentration inside the cave, higher values (0.3 ppm average concentration) are observed during outgassing stage than the isolation period (CH4 mean value of 0 ppm), confirming a major connection with the exterior atmosphere (average value of methane 1.8 ppm) during outgassing stage. By introducing wavelet analysis on obtained time series filtered signal of raw data show strong dependencies between trace gases and studied parameters. For instance, values of coherence between relative humidity and CO2 or 222Rn concentration are higher than 0.9. Results show that gas patterns dependence on relative humidity, atmospheric pressure and temperatures (indoor and outdoor) prevails throughout a year, determining the outgassing and isolation periods identified by statistical analyses. The measured of delta13C and CH4 concentration became a useful tool to understand processes affecting cave air and driving parameters variations inside the cave. Moreover, combining wavelet analysis, statistics and resemblance techniques, seasonal and transient behaviour of gases exchange can be highlighted in subterranean sites as Rull Cave.

  2. High-energy physics software parallelization using database techniques

    NASA Astrophysics Data System (ADS)

    Argante, E.; van der Stok, P. D. V.; Willers, I.

    1997-02-01

    A programming model for software parallelization, called CoCa, is introduced that copes with problems caused by typical features of high-energy physics software. By basing CoCa on the database transaction paradimg, the complexity induced by the parallelization is for a large part transparent to the programmer, resulting in a higher level of abstraction than the native message passing software. CoCa is implemented on a Meiko CS-2 and on a SUN SPARCcenter 2000 parallel computer. On the CS-2, the performance is comparable with the performance of native PVM and MPI.

  3. Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicata.

    PubMed

    Noisette, Fanny; Comtet, Thierry; Legrand, Erwann; Bordeyne, François; Davoult, Dominique; Martin, Sophie

    2014-01-01

    Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 μatm) and at elevated levels (750 and 1400 μatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 μatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 μatm and 1400 μatm pCO2, respectively, than at 390 μatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.

  4. Intramuscular injection of malignant hyperthermia trigger agents induces hypermetabolism in susceptible and nonsusceptible individuals.

    PubMed

    Metterlein, Thomas; Schuster, Frank; Kranke, Peter; Roewer, Norbert; Anetseder, Martin

    2010-01-01

    A new minimally invasive metabolic test for the diagnosis of susceptibility for malignant hyperthermia measuring intramuscular p(CO(2)) and lactate following local application of caffeine and halothane in humans was recently proposed. The present study tested the hypothesis that a more simplified test protocol allows a differentiation between malignant hyperthermia susceptible (MHS) and malignant hyperthermia nonsusceptible (MHN) and control individuals. With approval of the local ethics committee and informed consent, microdialysis and p(CO(2)) probes with attached microtubing were placed into the lateral vastus muscle of six MHS, seven MHN and seven control individuals. Following equilibration, boluses of 500 microl caffeine 80 mmol l(-1) and halothane 10 vol% dissolved in soybean oil were injected locally. p(CO(2)) and lactate were measured spectrophotometrically. The maximal rate of p(CO(2)) increase was significantly higher in MHS than in MHN and control individuals following application of halothane and caffeine, respectively. Intramuscular caffeine injection leads to a significantly higher increase of local lactate levels in MHS than in MHN and control individuals, whereas halothane increased local lactate levels in all investigated groups. Haemodynamic and systemic metabolic parameters did not differ between the investigated groups. Local caffeine and halothane injection increased intramuscular metabolism in MHS individuals significantly more than in the two other groups. In contrast to previous investigations, direct injection of the concentrations of halothane described here increased lactate and p(CO(2)) even in MHN skeletal muscle.

  5. The Role of Hydrogen Bonds Of The Azeotropic Hydrous Ethanol Fuel Composition To The Exhaust Emissions

    NASA Astrophysics Data System (ADS)

    Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu

    2018-01-01

    In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.

  6. Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-09-30

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO 2 and 100% CO 2 . The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm 2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO 2 is used as a shielding gas than when 100% CO 2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous.

  7. Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel

    PubMed Central

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Objectives: Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. Methods: We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. Results: The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. Conclusions: The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous. PMID:27488036

  8. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    PubMed

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    PubMed

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. A 40-million-year history of atmospheric CO(2).

    PubMed

    Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; Deconto, Robert

    2013-10-28

    The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the Neogene with low CO2 levels, algal carbon concentrating mechanisms and spontaneous biocarbonate-CO2 conversions are likely to play a more important role in algal carbon fixation, which provides a potential bias to the alkenone-pCO2 method.

  11. Effects of Chronic 2.0% and 0.7% CO2 Exposures on the Well-Being, Growth and Renal Function of Rats

    NASA Technical Reports Server (NTRS)

    Lang, C. K.; Alexander, R. A.; Steele, M. K.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    On the Space Shuttle and MIR, mean CO2 levels have been 0.3% which is ten times that of normal air. There have also been extended periods with levels of 0.7% CO2 with peak concentrations at 2.0%. The Space Station program had proposed that CO2 concentration levels be maintained, on average, at 0.7%, and not to exceed 1.0%. To ensure that these levels of CO2 would not compromise the integrity of the science performed on the Space Station, the effects of chronic exposure of rats to 2.0% and 0.7% CO2 were investigated. Ten male rats per group were placed in individual metabolic cages for monitoring of food and water consumption, as well as fecal and urine production. Cages were placed in a large (4W x 10L x 4H ft.) plexiglass chamber with a controlled atmospheric environment. Following 7 days of cage adaptation, animals were exposed to experimental (2.0% or 0.7% CO2) or control (ambient air) conditions for 30 days. Daily body weight, food and water intake, and fecal and urine excretions were measured for the last three days of adaptation and the first ten days of exposure and then every three to four days for the remaining three weeks. Urine was measured for pH and total CO2. During 2.0% and 0.7% CO2 exposures, animal growth, fecal production and food and water consumption were within normal ranges. Urine excretion was significantly (p less than 0.05) higher in both experimental groups compared to controls. Urine pH of animals exposed to 2.0% CO2 was decreased by 0.32 over the first 6 days of exposure, followed by a 0.63 increase by day 30. In animals exposed to 0.7% CO2, urine pH did not decrease early in the exposure period, but did increase by 0.37 by day 30. Urine CO2 excretion did not change the first 6 days of exposure, but significantly increased in both 2.0% and 0.7% CO2 by day 30 (897 and 402 mmol/day, respectively). These results of chronic exposure to 2.0% and 0.7% CO2 are consistent with renal compensation in response to an altered acid-base homeostasis. These findings may impact science conducted on the Space Shuttle or the Space Station if CO2 concentrations reach 0.7%.

  12. Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano

    NASA Astrophysics Data System (ADS)

    Tanner, Lawrence H.; Smith, David L.; Allan, Amanda

    2007-08-01

    The experimentally determined relationship between atmospheric pCO2 and plant stomata has been used to interpret large but transient changes in atmospheric composition, such as may have resulted from the eruptions of flood basalt. However, this relationship has not been tested in the field, i.e. in the vicinity of active volcanoes, to examine the specific effects of volcanogenic emissions. Moreover, the interpretation of paleoatmospheric pCO2 from fossil stomatal data assumes that the stomatal response resulted solely from variation in pCO2 and ignores the potential effect of outgassed SO2. We hypothesize that volcanogenic SO2 also has a significant effect on leaf stomata and test this hypothesis by measuring the stomatal index of the common swordfern (Nephrolepis exaltata) in the plumes of the actively outgassing vents of Kilauea volcano. We find that, compared to control locations, stomatal index is lowest at sample sites in the plume of Halema'uma'u Crater, where concentrations of both CO2 and SO2 are much higher than background. However, sites located directly in the plume of Pu'u O'o, where SO2 levels are high, but CO2 levels are not, also yield low values of stomatal index. We propose that shifts in the stomatal index of fossil leaves may record transient atmospheric increases in both SO2 and CO2, such as may be caused by eruptions of flood basalts. Calculations of pCO2 based on stomatal frequency are likely to be exaggerated.

  13. Sulphation of CaO-Based Sorbent Modified in CO2 Looping Cycles

    NASA Astrophysics Data System (ADS)

    Manovic, Vasilije; Anthony, Edward J.; Loncarevic, Davor

    CaO-based looping cycles for CO2 capture at high temperatures are based on cyclical carbonation of CaO and regeneration of CaCO3. The main limitation of natural sorbents is the loss of carrying capacity with increasing numbers of reaction cycles, resulting in spent sorbent ballast. Use of spent sorbent from CO2 looping cycles for SO2 capture is a possible solution investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain) and Katowice (Poland). Carbonation/calcination cycles were performed in a tube furnace with original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulphated in a thermogravimetric analyzer. Changes in the resulting pore structure were then investigated using mercury porosimetry. Final conversions of both spent and pretreated sorbents after longer sulphation times were comparable or higher than those observed for the original sorbents. Maximum sulphation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/cycling resulted in a loss of sorbent porosity (≤48%), which corresponds to maximum sulphation levels ˜55% for spent Kelly Rock and Katowice. However, this is ˜10% higher than for the original samples. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to lower porosity, <35%, resulting in sulphation conversion of spent samples <30%, significantly lower than for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention if significant porosity loss does not occur during CO2 reaction cycles. For spent Kelly Rock and Katowice samples final conversions are determined by the total pore volume available for the bulky CaSO4 product.

  14. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach.

    PubMed

    Boxhammer, Tim; Taucher, Jan; Bach, Lennart T; Achterberg, Eric P; Algueró-Muñiz, María; Bellworthy, Jessica; Czerny, Jan; Esposito, Mario; Haunost, Mathias; Hellemann, Dana; Ludwig, Andrea; Yong, Jaw C; Zark, Maren; Riebesell, Ulf; Anderson, Leif G

    2018-01-01

    Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.

  15. Nitrous Oxide Emissions in a Managed Grassland are Strongly Influenced by CO2 Concentrations Across a Range of Soil Moisture Levels

    NASA Astrophysics Data System (ADS)

    Brown, Z. A.; Hovenden, M. J.; Hunt, M.

    2017-12-01

    Though the atmosphere contains less nitrous oxide (N2O, 324 ppb) than carbon dioxide (CO2, 400 ppm­), N2O has 298 times the global warming potential of CO2 on a 100-year horizon. Nitrous oxide emissions tend to be greater in moist soils because denitrification is an anaerobic process. The rising concentration of CO2 in the atmosphere reduces plant stomatal aperture, thereby slowing transpiration and water use and leading to higher soil moisture levels. Thus, the rising CO2 concentration could stimulate N2O emissions indirectly via increasing soil moisture. Further, results from field experiments in which CO2 is elevated have demonstrated nitrification is accelerated at elevated CO2 concentrations (eCO2). Hence, N2O emissions could be substantially increased by the impacts of rising CO2 concentrations on plant and ecosystem physiology. However, the scale of this impact could be influenced by the amount of water supplied through irrigation or rainfall since both nitrification and denitrification are sensitive to soil moisture. Here, we use measurements of CO2 and N2O emissions from the TasFACE2 experiment to explore the ways in which the impact of CO2 concentration on greenhouse gas emissions is influenced by water supply in a managed temperate pasture. TasFACE2 is the world's only experiment that explicitly controls soil water availability at three different CO2 concentrations. Application of chemical nitrification inhibitor severely reduces N2O flux from soils regardless of CO2 level, water treatment and time following urea application. This inhibitor reduced soil respiration in plots exposed to ambient CO2 plots but not in eCO2 plots. N2O flux is stimulated by eCO2 but not consistently among watering treatments or seasons. Soil respiration is strongly enhanced by CO2 effect regardless of watering treatment. The results demonstrate that CO2 concentration has a sustained impact on CO2 and N2O flux across a range of water availabilities in this fertilised, ryegrass pasture. Thus, the impacts of rising CO2 concentrations on greenhouse gas emissions are not dependent upon soil water availability, with substantial impacts occurring even in drier soils. Thus, the impact of CO2 concentration on emissions might be stronger than has been believed to this point, with major ramifications for future climate.

  16. Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution

    NASA Astrophysics Data System (ADS)

    Olsen, A. A.; Morra, B.

    2016-12-01

    We ran a series of experiments to test the hypothesis that release of plant nutrients contained in apatite will be accelerated by the growth of Langstrath Stringless green bean in the presence of atmospheric CO2 meant to simulate possible future atmospheric conditions due a higher demand of nutrients and growth rate caused by elevated CO2. We hypothesize that elevated atmospheric CO2 will lead to both increased root growth and organic acid exudation. These two traits will lead to improved acquisition of P derived from apatite. Experiments were designed to investigate the effect of these changes on soil mineral weathering using plants grown under two conditions, ambient CO2 (400ppm) and elevated CO2 (1000ppm). Plants were grown in flow-through microcosms consisting of a mixture of quartz and apatite sands. Mini-greenhouses were utilized to control CO2 levels. Plant growth was sustained by a nutrient solution lacking in Ca and P. Calcium and P content of the leachate and plant tissue served as a proxy for apatite dissolution. Plants were harvested biweekly during the eight-week experiment and analyzed for Ca and P to calculate apatite dissolution kinetics. Preliminary results suggest that approximately four times more P and Ca are present in the leachate from experiments containing plants under both ambient and elevated CO2 levels than in abiotic experiments; however, the amounts of both P and Ca released in experiments conducted under both ambient and elevated CO2 levels are similar. Additionally, the amount of P in plant tissue grown under ambient and elevated CO2 conditions is similar. Plants grown in elevated CO2 had a greater root to shoot ratio. The planted microcosms were found to have a lower pH than abiotic controls most likely due to root respiration and exudation of organic acids.

  17. The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure

    PubMed Central

    Roces, Flavio

    2017-01-01

    Nest ventilation in the leaf-cutting ant Atta vollenweideri is driven via a wind-induced mechanism. On their nests, workers construct small turrets that are expected to facilitate nest ventilation. We hypothesized that the construction and structural features of the turrets would depend on the colony’s current demands for ventilation and thus might be influenced by the prevailing environmental conditions inside the nest. Therefore, we tested whether climate-related parameters, namely airflow, air humidity and CO2 levels in the outflowing nest air influenced turret construction in Atta vollenweideri. In the laboratory, we simulated a semi-natural nest arrangement with fungus chambers, a central ventilation tunnel providing outflow of air and an aboveground building arena for turret construction. In independent series, different climatic conditions inside the ventilation tunnel were experimentally generated, and after 24 hours, several features of the built turret were quantified, i.e., mass, height, number and surface area (aperture) of turret openings. Turret mass and height were similar in all experiments even when no airflow was provided in the ventilation tunnel. However, elevated CO2 levels led to the construction of a turret with several minor openings and a larger total aperture. This effect was statistically significant at higher CO2 levels of 5% and 10% but not at 1% CO2. The construction of a turret with several minor openings did not depend on the strong differences in CO2 levels between the outflowing and the outside air, since workers also built permeated turrets even when the CO2 levels inside and outside were both similarly high. We propose that the construction of turrets with several openings and larger opening surface area might facilitate the removal of CO2 from the underground nest structure and could therefore be involved in the control of nest climate in leaf-cutting ants. PMID:29145459

  18. The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure.

    PubMed

    Halboth, Florian; Roces, Flavio

    2017-01-01

    Nest ventilation in the leaf-cutting ant Atta vollenweideri is driven via a wind-induced mechanism. On their nests, workers construct small turrets that are expected to facilitate nest ventilation. We hypothesized that the construction and structural features of the turrets would depend on the colony's current demands for ventilation and thus might be influenced by the prevailing environmental conditions inside the nest. Therefore, we tested whether climate-related parameters, namely airflow, air humidity and CO2 levels in the outflowing nest air influenced turret construction in Atta vollenweideri. In the laboratory, we simulated a semi-natural nest arrangement with fungus chambers, a central ventilation tunnel providing outflow of air and an aboveground building arena for turret construction. In independent series, different climatic conditions inside the ventilation tunnel were experimentally generated, and after 24 hours, several features of the built turret were quantified, i.e., mass, height, number and surface area (aperture) of turret openings. Turret mass and height were similar in all experiments even when no airflow was provided in the ventilation tunnel. However, elevated CO2 levels led to the construction of a turret with several minor openings and a larger total aperture. This effect was statistically significant at higher CO2 levels of 5% and 10% but not at 1% CO2. The construction of a turret with several minor openings did not depend on the strong differences in CO2 levels between the outflowing and the outside air, since workers also built permeated turrets even when the CO2 levels inside and outside were both similarly high. We propose that the construction of turrets with several openings and larger opening surface area might facilitate the removal of CO2 from the underground nest structure and could therefore be involved in the control of nest climate in leaf-cutting ants.

  19. Accumulation mechanism of γ-aminobutyric acid in tomatoes (Solanum lycopersicum L.) under low O2 with and without CO2.

    PubMed

    Mae, Nobukazu; Makino, Yoshio; Oshita, Seiichi; Kawagoe, Yoshinori; Tanaka, Atsushi; Aoki, Koh; Kurabayashi, Atsushi; Akihiro, Takashi; Akama, Kazuhito; Koike, Satoshi; Takayama, Mariko; Matsukura, Chiaki; Ezura, Hiroshi

    2012-02-01

    The storage of ripe tomatoes in low-O(2) conditions with and without CO(2) promotes γ-aminobutyric acid (GABA) accumulation. The activities of glutamate decarboxylase (GAD) and α-ketoglutarate-dependent GABA transaminase (GABA-TK) were higher and lower, respectively, following storage under hypoxic (2.4 or 3.5% O(2)) or adjusted aerobic (11% O(2)) conditions compared to the activities in air for 7 days at 25 °C. GAD activity was consistent with the expression level of mRNA for GAD. The GABA concentration in tomatoes stored under hypoxic conditions and adjusted aerobic conditions was 60-90% higher than that when they are stored in air on the same day. These results demonstrate that upregulation of GAD activity and downregulation of GABA-TK activity cause GABA accumulation in tomatoes stored under low-O(2) conditions. Meanwhile, the effect of CO(2) on GABA accumulation is probably minimal.

  20. Nondestructive and continuous monitoring of oxygen levels in modified atmosphere packaged ready-to-eat mixed salad products using optical oxygen sensors, and its effects on sensory and microbiological counts during storage.

    PubMed

    Hempel, A; O'Sullivan, M G; Papkovsky, D B; Kerry, J P

    2013-07-01

    The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready-to-eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2 , 5% CO2 , 90% N2 (MAPC-commercial control), 21% O2 , 5% CO2 , 74% N2 (MAP 1), 45% O2 , 5% CO2 , 50% N2 (MAP 2), and 60% O2 , 5% CO2 , 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf-life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf-life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf-life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products. © 2013 Institute of Food Technologists®

  1. Capnography in patients with severe neurological impairment.

    PubMed

    Jacob, Ron; Nelkenbaum, Annette; Merrick, Joav; Brik, Riva

    2014-06-01

    Respiratory disease is a common reason for hospitalization and mortality in persons with severe intellectual and developmental disability. Capnography is the measurement and numerical display of end-tidal carbon dioxide (EtCO2). This was a prospective, case controlled, cross sectional study to assess differences of baseline EtCO2 values between neurologically impaired patients and healthy individuals. 86 neurologically impaired patients were evaluated in the study group. Their mean age ± SD was 25.65 ± 10.48 years with 41% males. 53 healthy children and young adults were evaluated in the control group. Their mean age ± SD was 21.95 ± 10.38 years with 54.7% males. Patients with severe neurological impairment had higher baseline EtCO2 values than healthy individuals. Kyphoscoliosis and the use of antipsychotic drugs were the major factors to increase EtCO2 levels. Knowing the patient's baseline EtCO2 value, as well as baseline oximetry, could guide treatment decisions, when assessing the patient's oxygenation and ventilation during acute respiratory illness, and can potentially prevent unnecessary laboratory and imaging investigations as well as over treatment. Future research can shed light on the utility of capnometry and clinical implications of higher baseline EtCO2 values among neurologically impaired patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. CO 2-scrubbing and methanation as purification system for PEFC

    NASA Astrophysics Data System (ADS)

    Ledjeff-Hey, K.; Roes, J.; Wolters, R.

    Hydrogen is usually produced by steam reforming of natural gas in large-scale processes. The reformate consists of hydrogen, carbon dioxide, carbon monoxide, and residues of hydrocarbons. Since the anode catalyst of a polymer electrolyte membrane fuel cell (PEFC) is usually based on platinum, which is easily poisoned by carbon monoxide, the conditioned feed gas should contain less than 100 ppmv CO, and preferably, less than 10 ppmv. Depending on the design and operating conditions of the hydrogen production process, the CO content of a typical reformate gas, even after the CO shift reactor may be in the range of 0.2-1.0 vol.%; this is far higher than a PEFC can tolerate. A CO management system is required to lower the CO concentration to acceptable levels. In many cases, the CO purification system consists of a combination of physical or chemical processes to achieve the necessary reduction in CO content. A promising alternative for hydrogen purification is a combined process consisting of a carbon dioxide scrubber with subsequent methanation to reduce the carbon monoxide content to an acceptable level of less than 10 ppmv.

  3. Long-term response of a Mojave Desert winter annual plant community to a whole-ecosystem atmospheric CO2 manipulation (FACE).

    PubMed

    Smith, Stanley D; Charlet, Therese N; Zitzer, Stephen F; Abella, Scott R; Vanier, Cheryl H; Huxman, Travis E

    2014-03-01

    Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2 ) because of their high potential growth rates and flexible phenology. During the 10-year life of the Nevada Desert FACE (free-air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long-term elevated (CO2 ) exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated (CO2 ) in a wet El Niño year near the beginning of the experiment. However, a multiyear dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated (CO2 ) gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated (CO2 ). This long-term experiment resulted in two primary conclusions: (i) elevated (CO2 ) does not increase productivity of annuals in most years; and (ii) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots. © 2013 John Wiley & Sons Ltd.

  4. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    PubMed Central

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  5. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean.

    PubMed

    van Woesik, Robert; Cacciapaglia, Christopher William

    2018-01-01

    Coral reefs protect islands from tropical storm waves and provide goods and services for millions of islanders worldwide. Yet it is unknown how coral reefs in general, and carbonate production in particular, will respond to sea-level rise and thermal stress associated with climate change. This study compared the reef-building capacity of different shallow-water habitats at twenty-four sites on each of two islands, Palau and Yap, in the western Pacific Ocean. We were particularly interested in estimating the inverse problem of calculating the value of live coral cover at which net carbonate production becomes negative, and whether that value varied across habitats. Net carbonate production varied among habitats, averaging 10.2 kg CaCO3 m-2 y-1 for outer reefs, 12.7 kg CaCO3 m-2 y-1 for patch reefs, and 7.2 kg CaCO3 m-2 y-1 for inner reefs. The value of live coral cover at which net carbonate production became negative varied across habitats, with highest values on inner reefs. These results suggest that some inner reefs tend to produce less carbonate, and therefore need higher coral cover to produce enough carbonate to keep up with sea-level rise than outer and patch reefs. These results also suggest that inner reefs are more vulnerable to sea-level rise than other habitats, which stresses the need for effective land-use practices as the climate continues to change. Averaging across all reef habitats, the rate of carbonate production was 9.7 kg CaCO3 m-2 y-1, or approximately 7.9 mm y-1 of potential vertical accretion. Such rates of vertical accretion are higher than projected averages of sea-level rise for the representative concentration pathway (RCP) climate-change scenarios 2.6, 4.5, and 6, but lower than for the RCP scenario 8.5.

  6. Translating crustacean biological responses from CO2 bubbling experiments into population-level predictions

    EPA Science Inventory

    Many studies of animal responses to ocean acidification focus on uniformly conditioned age cohorts that lack complexities typically found in wild populations. These studies have become the primary data source for predicting higher level ecological effects, but the roles of intras...

  7. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.

    PubMed

    Satagopan, Sriram; Tabita, F Robert

    2016-08-01

    Recapturing atmospheric CO2 is key to reducing global warming and increasing biological carbon availability. Ralstonia eutropha is a biotechnologically useful aerobic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) for CO2 utilization, suggesting that it may be a useful host to bioselect RubisCO molecules with improved CO2 -capture capabilities. A host strain of R. eutropha was constructed for this purpose after deleting endogenous genes encoding two related RubisCOs. This strain could be complemented for CO2 -dependent growth by introducing native or heterologous RubisCO genes. Mutagenesis and suppressor selection identified amino acid substitutions in a hydrophobic region that specifically influences RubisCO's interaction with its substrates, particularly O2 , which competes with CO2 at the active site. Unlike most RubisCOs, the R. eutropha enzyme has evolved to retain optimal CO2 -fixation rates in a fast-growing host, despite the presence of high levels of competing O2 . Yet its structure-function properties resemble those of several commonly found RubisCOs, including the higher plant enzymes, allowing strategies to engineer analogous enzymes. Because R. eutropha can be cultured rapidly under harsh environmental conditions (e.g., with toxic industrial flue gas), in the presence of near saturation levels of oxygen, artificial selection and directed evolution studies in this organism could potentially impact efforts toward improving RubisCO-dependent biological CO2 utilization in aerobic environments. d-ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39; phosphoribulokinase, EC 2.7.1.19. © 2016 Federation of European Biochemical Societies.

  8. Experimental evidence of nitrogen control on pCO(2) in phosphorus-enriched humic and clear coastal lagoon waters.

    PubMed

    Peixoto, Roberta B; Marotta, Humberto; Enrich-Prast, Alex

    2013-01-01

    Natural and human-induced controls on carbon dioxide (CO(2)) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO(2) (pCO(2)) that are still poorly understood. Here we assessed the strength of N control on pCO(2) in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments. In humic coastal lagoons waters, a persistent CO(2) supersaturation was reported in controls and all nutrient-enriched treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both humic and clear coastal lagoons waters only showed significant decreases in pCO(2) in relation to the controlled microcosms in the two treatments with higher N addition levels. Additionally, clear coastal lagoons water microcosms showed a shift from CO(2) sources to CO(2) sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did pCO(2) substantially decrease, from 650 µatm in controls and less N-enriched treatments to 10 µatm in more N-enriched microcosms. Humic substrates and N inputs can modulate pCO(2) even in P-enriched coastal lagoons waters, thereby being important drivers on CO(2) outgassing from inland waters.

  9. Experimental evidence of nitrogen control on pCO2 in phosphorus-enriched humic and clear coastal lagoon waters

    PubMed Central

    Peixoto, Roberta B.; Marotta, Humberto; Enrich-Prast, Alex

    2013-01-01

    Natural and human-induced controls on carbon dioxide (CO2) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO2 (pCO2) that are still poorly understood. Here we assessed the strength of N control on pCO2 in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments. In humic coastal lagoons waters, a persistent CO2 supersaturation was reported in controls and all nutrient-enriched treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both humic and clear coastal lagoons waters only showed significant decreases in pCO2 in relation to the controlled microcosms in the two treatments with higher N addition levels. Additionally, clear coastal lagoons water microcosms showed a shift from CO2 sources to CO2 sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did pCO2 substantially decrease, from 650 µatm in controls and less N-enriched treatments to 10 µatm in more N-enriched microcosms. Humic substrates and N inputs can modulate pCO2 even in P-enriched coastal lagoons waters, thereby being important drivers on CO2 outgassing from inland waters. PMID:23390422

  10. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  11. Inter-seasonal and spatial distribution of ground-level greenhouse gases (CO2, CH4, N2O) over Nagpur in India and their management roadmap.

    PubMed

    Majumdar, Deepanjan; Rao, Padma; Maske, Nilam

    2017-03-01

    Ground-level concentrations of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) were monitored over three seasons, i.e., post-monsoon (September-October), winter (January-February), and summer (May-June) for 1 year during 2013-2014 in Nagpur City in India. The selected gases had moderate to high variation both spatially (residential, commercial, traffic intersections, residential cum commercial sites) and temporally (at 7:00, 13:00, 18:00, and 23:00 hours in all three seasons). Concentrations of gases were randomly distributed diurnally over city in all seasons, and there was no specific increasing or decreasing trend with time in a day. Average CO 2 and N 2 O concentrations in winter were higher over post-monsoon and summer while CH 4 had highest average concentration in summer. Observed concentrations of CO 2 were predominantly above global average of 400 ppmv while N 2 O and CH 4 concentrations frequently dropped down below global average of 327 ppbv and 1.8 ppmv, respectively. Two-tailed Student's t test indicated that post-monsoon CO 2 concentrations were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). CH 4 concentrations in all seasons were statistically at par to each other. In case of N 2 O, concentrations in post-monsoon were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). Average ground-level concentrations of the gases calculated for three seasons together were higher in commercial areas. Environmental management priorities vis a vis greenhouse gas emissions in the city are also discussed.

  12. A Clinically Relevant Variant of the Human Hydrogen Sulfide-Synthesizing Enzyme Cystathionine β-Synthase: Increased CO Reactivity as a Novel Molecular Mechanism of Pathogenicity?

    PubMed Central

    Malagrinò, Francesca; Santo, Paulo E.; Gutierres, André; Bandeiras, Tiago M.; Leandro, Paula

    2017-01-01

    The human disease classical homocystinuria results from mutations in the gene encoding the pyridoxal 5′-phosphate- (PLP-) dependent cystathionine β-synthase (CBS), a key enzyme in the transsulfuration pathway that controls homocysteine levels, and is a major source of the signaling molecule hydrogen sulfide (H2S). CBS activity, contributing to cellular redox homeostasis, is positively regulated by S-adenosyl-L-methionine (AdoMet) but fully inhibited upon CO or NO• binding to a noncatalytic heme moiety. Despite extensive studies, the molecular basis of several pathogenic CBS mutations is not yet fully understood. Here we found that the ferrous heme of the reportedly mild p.P49L CBS variant has altered spectral properties and markedly increased affinity for CO, making the protein much more prone than wild type (WT) CBS to inactivation at physiological CO levels. The higher CO affinity could result from the slightly higher flexibility in the heme surroundings revealed by solving at 2.80-Å resolution the crystallographic structure of a truncated p.P49L. Additionally, we report that p.P49L displays impaired H2S-generating activity, fully rescued by PLP supplementation along the purification, despite a minor responsiveness to AdoMet. Altogether, the results highlight how increased propensity to CO inactivation of an otherwise WT-like variant may represent a novel pathogenic mechanism in classical homocystinuria. PMID:28421128

  13. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    USGS Publications Warehouse

    Fahnestock, J.T.; Jones, M.H.; Brooks, P.D.; Walker, D.A.; Welker, J.M.

    1998-01-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems. Copyright 1998 by the American Geophysical Union.

  14. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widory, D., E-mail: d.widory@brgm.fr; Proust, E.; Bellenfant, G.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through amore » landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.« less

  15. The effects of clouds on CO2 forcing

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    The cloud radiative forcing (CRF) is the difference between the radiative flux (at the top of the atmosphere) which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. The CO2 forcing is defined, in analogy with the cloud forcing, as the difference in fluxes and/or infrared heating rates obtained by instantaneously changing CO2 concentration (doubling it) without changing anything else, i.e., without allowing any feedback. An increased CO2 concentration leads to a reduced net upward longwave flux at the Earth's surface. This induced net upward flux is due to an increased downward emission by the CO2 in the atmosphere above. The negative increment to the net upward flux becomes more intense at higher levels in the troposphere, reaching a peak intensity roughly at the tropopause. It then weakens with height in the stratosphere. This profile implies a warming of the troposphere and cooling of the stratosphere. The CSU GCM was recently used to make some preliminary CO2 forcing calculations, for a single simulated, for July conditions. The longwave radiation routine was called twice, to determine the radiative fluxes and heating rates for both 2 x CO2 and 1 x CO2. As diagnostics, the 2-D distributions of the longwave fluxes at the surface and the top of atmosphere, as well as the 3-D distribution of the longwave cooling in the interior was saved. In addition, the pressure was saved (near the tropopause) where the difference in the longwave flux due to CO2 doubling has its largest magnitude. For convenience, this level is referred to as the CO2 tropopause. The actual difference in the flux at that level was also saved. Finally, all of these fields were duplicated for the hypothetical case of no cloudiness (clear sky), so that the effects of the clouds can be isolated.

  16. Indoor Air Quality in the Metro System in North Taiwan

    PubMed Central

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-01-01

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460

  17. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours.

    PubMed

    Dekker, Teun; Geier, Martin; Cardé, Ring T

    2005-08-01

    Female mosquitoes are noted for their ability to use odours to locate a host for a blood meal. Two sensory organs contribute to their sense of smell: the maxillary palps, which measure the level of CO2, and the antennae, which detect other host-released odours. To establish the relative importance and interactions of CO2 and other body emissions in freely flying mosquitoes, we presented female yellow fever mosquitoes Aedes aegypti L. with broad plumes of human skin odour and CO2 at natural concentrations and dilutions thereof in a wind tunnel. 3-D video-recorded flight tracks were reconstructed. Activation, flight velocity, upwind turning and source finding waned quickly as skin odours were diluted, whereas in the presence of CO2 these parameters remained unchanged over more than a 100-fold dilution from exhaled concentrations. Although mosquitoes were behaviourally less sensitive to skin odours than to CO2, their sensitivity to skin odours increased transiently by at least fivefold immediately following a brief encounter with a filament of CO2. This sensitization was reflected in flight velocity, track angle, turning rate upon entering and exiting the broad odour plume and, ultimately, in the source-finding rate. In Ae. aegypti, CO2 thus functions as a ;releaser' for a higher sensitivity and responsiveness to skin odours. The initially low responsiveness of mosquitoes to skin odours, their high sensitivity to CO2, and the sensitization of the olfactory circuitry by CO2 are ecologically relevant, because rapidly fluctuating CO2 levels reliably signal a potential host. Possible mechanisms of the instantaneous sensitization are considered.

  18. Impact of 1-methylcyclopropene and controlled atmosphere storage on polyamine and 4-aminobutyrate levels in “Empire” apple fruit

    PubMed Central

    Deyman, Kristen L.; Brikis, Carolyne J.; Bozzo, Gale G.; Shelp, Barry J.

    2014-01-01

    1-Methylcyclopropene (1-MCP) delays ethylene-meditated ripening of apple (Malus domestica Borkh.) fruit during controlled atmosphere (CA) storage. Here, we tested the hypothesis that 1-MCP and CA storage enhances the levels of polyamines (PAs) and 4-aminobutyrate (GABA) in apple fruit. A 46-week experiment was conducted with “Empire” apple using a split-plot design with four treatment replicates and 3°C, 2.5 kPa O2, and 0.03 or 2.5 kPa CO2 with or without 1 μL L-1 1-MCP. Total PA levels were not elevated by the 1-MCP treatment. Examination of the individual PAs revealed that: (i) total putrescine levels tended to be lower with 1-MCP regardless of the CO2 level, and while this was mostly at the expense of free putrescine, large transient increases in soluble conjugated putrescine were also evident; (ii) total spermidine levels tended to be lower with 1-MCP, particularly at 2.5 kPa CO2, and this was mostly at the expense of soluble conjugated spermidine; (iii) total spermine levels at 2.5 kPa CO2 tended to be lower with 1-MCP, and this was mostly at the expense of both soluble and insoluble conjugated spermine; and (iv) total spermidine and spermine levels at 0.03 kPa were relatively unaffected, compared to 2.5 kPa CO2, but transient increases in free spermidine and spermine were evident. These findings might be due to changes in the conversion of putrescine into higher PAs and the interconversion of free and conjugated forms in apple fruit, rather than altered S-adenosylmethionine availability. Regardless of 1-MCP and CO2 treatments, the availability of glutamate showed a transient peak initially, probably due to protein degradation, and this was followed by a steady decline over the remainder of the storage period which coincided with linear accumulation of GABA. This pattern has been attributed to the stimulation of glutamate decarboxylase activity and inhibition of GABA catabolism, rather than a contribution of PAs to GABA production. PMID:24782882

  19. Seasonal, inter-annual and decadal changes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the Scheldt estuary (Belgium, The Netherlands)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Middelburg, Jack J. B.; Chou, Lei; Kromkamp, Jacco; Houtekamer, Marco; Harlay, Jérôme

    2014-05-01

    We carried out monthly cruises to study the seasonal and spatial variations of the partial pressure of carbon dioxide CO2 (pCO2), methane (CH4) and nitrous oxide (N2O) concentrations in the Scheldt estuary, a strongly human impacted system located in Belgium and the Netherlands. This survey was initiated in 2008 for pCO2, and from 2009 onwards for methane (CH4) and nitrous oxide (N2O). In the lower estuary, pCO2 strongly decreased and oxygen saturation level (%O2) strongly increased during the spring phytoplankton bloom. In the upper estuary, two yearly maxima of pCO2 coinciding with minima of %O2 occurred in spring and fall due to enhanced nitrification and/or net heterotrophy. In the upper estuary, pCO2 decreased in winter due to lower temperature (affecting solubility and inhibiting biological activity). pCO2 also decreased in summer due to increase in primary production and decrease of net heterotrophy. In the upper estuary, maxima of CH4 were observed in winter due to enhanced river inputs (high discharge) while in the lower estuary higher CH4 was observed in summer. This was probably due to inputs of CH4 from inter-tidal areas at the mouth of estuary that increased in summer due to higher temperatures and higher organic matter availability. N2O also showed higher values during winter in the upper estuary, but in summer N2O was low in the lower estuary due to decreased solubility due to higher temperature. During winter 2009, extremely high N2O values were observed in the upper estuary, up to 3257 nM (23738% saturation). This was related to the problems encountered by the Brussels North waste water treatment plant (WWTP) in late 2009. One of the collectors of the station was shut down in 25 November 2009, and by 8 December 2009, the whole WWTP was shut down and the waste-water was delivered directly to the Rupel. Extremely high N2O values were observed in the upper estuary on 7 December 2009, and abnormally high N2O values (compared to other years) persisted until April 6 2010. The comparison of present day N2O values with historical data obtained in 1993-1997 and 1978 shows a spectacular decrease of N2O levels from maximal values of about 350 nmol L-1 in the 1990's to 50 nmol L-1 in 2009-2012. This decrease reflects the collapse of NH4+ concentrations in the estuary due to the overall improvement of water quality in relation to the implementation of WWTPs, leading to a decrease of nitrification rates. The maximum of N2O concentration in 1978 was located between salinities 10-15, in the 1990's it was located between salinities 2 and 5, and nowadays it is located at salinities < 2.5. This suggests that the maximum of nitrification has migrated upstream in the estuary.

  20. Indoor air quality in Portuguese schools: levels and sources of pollutants.

    PubMed

    Madureira, J; Paciência, I; Pereira, C; Teixeira, J P; Fernandes, E de O

    2016-08-01

    Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Impact of nitrogen fertilization on soil-Atmosphere greenhouse gas exchanges in eucalypt plantations with different soil characteristics in southern China.

    PubMed

    Zhang, Kai; Zheng, Hua; Chen, Falin; Li, Ruida; Yang, Miao; Ouyang, Zhiyun; Lan, Jun; Xiang, Xuewu

    2017-01-01

    Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We conducted a two-year N fertilization experiment (control [CK], low N [LN], middle N [MN] and high N [HN] fertilization) in two eucalypt plantations with different soil characteristics (higher and lower soil organic carbon sites [HSOC and LSOC]) in Guangxi, China, and assessed soil-atmosphere greenhouse gas exchanges. The annual mean fluxes of soil CO2, CH4, and N2O were separately 153-266 mg m-2 h-1, -55 --40 μg m-2 h-1, and 11-95 μg m-2 h-1, with CO2 and N2O emissions showing significant seasonal variations. N fertilization significantly increased soil CO2 and N2O emissions and decreased CH4 uptake at both sites. There were significant interactions of N fertilization and SOC level on soil CO2 and N2O emissions. At the LSOC site, the annual mean flux of soil CO2 emission was only significantly higher than the CK treatment in the HN treatment, but, at the HSOC site, the annual mean flux of soil CO2 emission was significantly higher for both the LN (or MN) and HN treatments in comparison to the CK treatment. Under the CK and LN treatments, the annual mean flux of N2O emission was not significantly different between HSOC and LSOC sites, but under the HN treatment, it was significantly higher in the HSOC site than in the LSOC site. Correlation analysis showed that changes in soil CO2 and N2O emissions were significantly related to soil dissolved organic carbon, ammonia, nitrate and pH. Our results suggested significant interactions of N fertilization and soil characteristics existed in soil-atmosphere greenhouse gas exchanges, which should be considered in assessing greenhouse gas budgets and scientific fertilization strategies in eucalypt plantations.

  2. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    PubMed

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  3. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    PubMed Central

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  4. Hypercarbic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): the role of branchial CO2 chemoreceptors.

    PubMed

    de Lima Boijink, Cheila; Florindo, Luiz Henrique; Leite, Cleo A Costa; Kalinin, Ana Lúcia; Milsom, William K; Rantin, Francisco Tadeu

    2010-08-15

    The aim of the present study was to determine the roles that externally versus internally oriented CO(2)/H(+)-sensitive chemoreceptors might play in promoting cardiorespiratory responses to environmental hypercarbia in the air-breathing fish, Hoplerythrinus unitaeniatus (jeju). Fish were exposed to graded hypercarbia (1, 2.5, 5, 10 and 20% CO(2)) and also to graded levels of environmental acidosis (pH approximately 7.0, 6.0, 5.8, 5.6, 5.3 and 4.7) equal to the pH levels of the hypercarbic water to distinguish the relative roles of CO(2) versus H(+). We also injected boluses of CO(2)-equilibrated solutions (5, 10 and 20% CO(2)) and acid solutions equilibrated to the same pH as the CO(2) boluses into the caudal vein (internal) and buccal cavity (external) to distinguish between internal and external stimuli. The putative location of the chemoreceptors was determined by bilateral denervation of branches of cranial nerves IX (glossopharyngeal) and X (vagus) to the gills. The data indicate that the chemoreceptors eliciting bradycardia, hypertension and gill ventilatory responses (increased frequency and amplitude) to hypercarbia are exclusively branchial, externally oriented and respond specifically to changes in CO(2) and not H(+). Those involved in producing the cardiovascular responses appeared to be distributed across all gill arches while those involved in the gill ventilatory responses were located primarily on the first gill arch. Higher levels of aquatic CO(2) depressed gill ventilation and stimulated air breathing. The chemoreceptors involved in producing air breathing in response to hypercarbia also appeared to be branchial, distributed across all gill arches and responded specifically to changes in aquatic CO(2). This would suggest that chemoreceptor groups with different orientations (blood versus water) are involved in eliciting air-breathing responses to hypercarbia in jeju.

  5. A deep-time CO2 barometer based on triple oxygen isotope compositions of dinosaurian eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Hu, H.; Passey, B. H.; Montanari, S.; Levin, N.; Li, S.

    2013-12-01

    Photochemical reactions in the stratosphere lead to mass independent fractionation of oxygen isotopes: oxygen exchange among O2, O3, and CO2 produces 17O-enriched O3 and CO2, and 17O-depleted O2. This effect increases with increasing atmospheric CO2 concentration, and thus the 17O anomaly of O2, Δ17O (O2), is reflective of pCO2. Animals incorporate this signal into body water via respiration, and minerals such as bioapatite and eggshell calcite forming in equilibrium with body water can preserve the signal for millions of years. We contribute to the development of this new pCO2 barometer by developing analytical methods for high-precision triple oxygen isotope analysis of carbonates, by developing an ecophysiological model of body water triple oxygen isotopes, and by applying the method to eggshell from modern birds and late Cretaceous (Campanian and Maastrichtian) dinosaur eggshells. Our findings include the following: (1) If animal ecophysiology and climatic context are perfectly known, the sensitivity of Δ17O (body water) to atmospheric CO2 is on the order of 0.01 ‰ per 100 ppm CO2; our analytical precision is ~ 0.01 ‰, thus ultimately permitting sub -100 ppm - level pCO2 reconstructions. (2) However, the effect of ecophysiology and climate can lead to a range in Δ17O (body water) of about 0.15 ‰ for animals living under the same Δ17O (O2); this prediction, confirmed by analyses of eggshells and body water of modern birds, translates to an apparent pCO2 range of about 1500 ppm. (3) Animals that are highly dependent on unevaporated free surface water ('drinking water') and live in humid climates have Δ17O (body water) signals that mimic low pCO2, whereas animals that consume primarily evaporated water (e.g., leaf water) and living in arid environments have Δ17O (body water) signals that mimic high pCO2. (4) There is an upper limit to this 'evaporation / aridity' effect mimicking high pCO2, so Δ17O (fossil eggshell) can be modeled assuming such upper limits to produce conservative lower limits on estimates of past pCO2. (5) We find that late Cretaceous Δ17O (fossil eggshell) is generally lower than modern Δ17O (eggshell), implying generally higher pCO2 during the late Cretaceous. The lowest observed Δ17O (fossil eggshell) value implies CO2 levels of at least 1200 ppm, and probably closer to 2000 ppm, for at least a short interval of Campanian time. Overall, this triple oxygen isotope approach shows promise for placing constraints on past CO2 levels. While somewhat limited in precision, it has the benefits of little appreciable loss of sensitivity with increasing pCO2, no presently-known mechanism for generating 'false positive' estimates of high pCO2 (except for extremely low atmospheric O2 levels and low primary productivity), and a basis that is fundamentally different from existing methods, thus allowing for independent new constraints on past CO2 levels.

  6. [Co-infections of HIV, syphilis and HSV-2 among men who have sex with men at the voluntary HIV counseling and testing clinics in Shanghai].

    PubMed

    Liu, Y; Tang, H F; Ning, Z; Zheng, H; He, N; Zhang, Y Y

    2017-10-10

    Objective: To understand the prevalence rates of HIV-syphilis and HIV-herpes simplex virus 2 (HSV-2) co-infections and related factors among men having sex with men (MSM) who had visited the voluntary HIV counseling and testing (VCT) clinics in Shanghai, China. Methods: 756 eligible MSM who attended the VCT clinics of Shanghai Municipality and Putuo district during March to August, 2015 were recruited to participate in a cross-sectional survey with questionnaire interview and blood testing for HIV, syphilis and HSV-2. Results: A total of 732 participants completed a valid questionnaire survey. The prevalence rates were 3.3 % (24/732) for HIV/Syphilis co-infection, 1.9 % (14/732) for HIV/HSV-2 co-infection, and 0.7 % (5/732) for HIV/Syphilis/HSV-2 co-infection, respectively. HIV prevalence appeared significantly higher among syphilis-infected participants (45.3 % , 24/53) than those without Syphilis (7.2 % , 61/679) (χ(2)=63.11, P <0.001), and was also significantly higher among HSV-2 infected participants (34.1 % , 14/41) than those without the HSV-2 infection (10.3 % , 71/691) (χ(2)=21.49, P <0.001). Results from the Multivariate regression analysis indicated that participants who were migrants ( OR =3.50, 95 %CI : 1.01-12.17), having had middle school or lower levels of education ( OR =4.46, 95 %CI : 1.54-12.87) or ever used illicit drugs ( OR =4.25, 95 %CI : 1.67-10.82, P =0.002) were under possible risks on HIV and Syphilis co-infection. Those participants who had high middle school or lower levels of education ( OR =6.87, 95 %CI : 1.86-25.42; OR =9.82, 95 %CI : 2.25-42.85) were under risk on HIV and HSV-2 co-infection. Conclusion: HIV/Syphilis and HIV/HSV-2 co-infection were seen among MSM who attended the VCT clinics in Shanghai that called for special attention, especially on migrants, those with low education or illicit drug users.

  7. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    PubMed

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells.

    PubMed

    Mussá, Tufária; Rodríguez-Cariño, Carolina; Sánchez-Chardi, Alejandro; Baratelli, Massimiliano; Costa-Hurtado, Mar; Fraile, Lorenzo; Domínguez, Javier; Aragon, Virginia; Montoya, María

    2012-11-16

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  9. Investigation of air pollutants in rural nursery school - a case study

    NASA Astrophysics Data System (ADS)

    Mainka, Anna; Zajusz-Zubek, Elwira; Kozielska, Barbara; Brągoszewska, Ewa

    2018-01-01

    Children's exposure to air pollutants is an important public health challenge. Indoor air quality (IAQ) in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to evaluate the indoor air quality (IAQ) at naturally ventilated rural nursery schools located in Upper Silesia, Poland. We investigated the concentrations of volatile organic compounds (VOCs), particulate matter (PM), bacterial and fungal bioaerosols, as well as carbon dioxide (CO2) concentrations in younger and older children's classrooms during the winter and spring seasons. The concentration of the investigated pollutants in indoor environments was higher than those in outdoor air. The results indicate the problem of elevated concentrations of PM2.5 and PM10 inside the examined classrooms, as well as that of high levels of CO2 exceeding 1,000 ppm in relation to outdoor air. The characteristics of PM and CO2 levels were significantly different, both in terms of classroom occupation (younger or older children) and of season (winter or spring).

  10. Functional implications of muscle co-contraction during gait in advanced age.

    PubMed

    Lo, Justine; Lo, On-Yee; Olson, Erin A; Habtemariam, Daniel; Iloputaife, Ikechukwu; Gagnon, Margaret M; Manor, Brad; Lipsitz, Lewis A

    2017-03-01

    Older adults often exhibit high levels of lower extremity muscle co-contraction, which may be the cause or effect of age-related impairments in gait and associated falls. Normal gait requires intact executive function and thus can be slowed by challenging executive resources available to the neuromuscular system through the performance of a dual task. We therefore investigated associations between lower limb co-contraction and gait characteristics under normal and dual task conditions in healthy older adults (85.4±5.9years). We hypothesized that greater co-contraction is associated with slower gait speed during dual task conditions that stress executive and attentional abilities. Co-contraction was quantified during different phases of the gait cycle using surface electromyography (EMG) signals obtained from the anterior tibialis and lateral gastrocnemius while walking at preferred speed during normal and dual task conditions. Variables included the time difference to complete the Trail Making Test A and B (ΔTMT) and gait measures during normal or dual task walking. Higher co-contraction levels during the swing phase of both normal and dual task walking were associated with longer ΔTMT (normal: R 2 =0.25, p=0.02; dual task: R 2 =0.27, p=0.01). Co-contraction was associated with gait measures during dual task walking only; greater co-contraction levels during stride and stance were associated with slower gait speed (stride: R 2 =0.38, p=0.04; stance: R 2 =0.38, p=0.04), and greater co-contraction during stride was associated with longer stride time (R 2 =0.16, p=0.03). Our results suggest that relatively high lower limb co-contraction may explain some of the mobility impairments associated with the conduct of executive tasks in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of sub-seabed CO2 leakage: Short- and medium-term responses of benthic macrofaunal assemblages.

    PubMed

    Amaro, T; Bertocci, I; Queiros, A M; Rastelli, E; Borgersen, G; Brkljacic, M; Nunes, J; Sorensen, K; Danovaro, R; Widdicombe, S

    2018-03-01

    The continued rise in atmospheric carbon dioxide (CO 2 ) levels is driving climate change and temperature shifts at a global scale. CO 2 Capture and Storage (CCS) technologies have been suggested as a feasible option for reducing CO 2 emissions and mitigating their effects. However, before CCS can be employed at an industrial scale, any environmental risks associated with this activity should be identified and quantified. Significant leakage of CO 2 from CCS reservoirs and pipelines is considered to be unlikely, however direct and/or indirect effects of CO 2 leakage on marine life and ecosystem functioning must be assessed, with particular consideration given to spatial (e.g. distance from the source) and temporal (e.g. duration) scales at which leakage impacts could occur. In the current mesocosm experiment we tested the potential effects of CO 2 leakage on macrobenthic assemblages by exposing infaunal sediment communities to different levels of CO 2 concentration (400, 1000, 2000, 10,000 and 20,000 ppm CO 2 ), simulating a gradient of distance from a hypothetic leakage, over short-term (a few weeks) and medium-term (several months). A significant impact on community structure, abundance and species richness of macrofauna was observed in the short-term exposure. Individual taxa showed idiosyncratic responses to acidification. We conclude that the main impact of CO 2 leakage on macrofaunal assemblages occurs almost exclusively at the higher CO 2 concentration and over short time periods, tending to fade and disappear at increasing distance and exposure time. Although under the cautious perspective required by the possible context-dependency of the present findings, this study contributes to the cost-benefit analysis (environmental risk versus the achievement of the intended objectives) of CCS strategies. Copyright © 2018. Published by Elsevier Ltd.

  12. The PEMFC-integrated CO oxidation — a novel method of simplifying the fuel cell plant

    NASA Astrophysics Data System (ADS)

    Rohland, Bernd; Plzak, Vojtech

    Natural gas and methanol are the most economical fuels for residential fuel cell power generators as well as for mobile PEM-fuel cells. However, they have to be reformed with steam into hydrogen, which is to be cleaned from CO by shift-reaction and by partial oxidation to a level of no more than 30 ppm CO. This level is set by the Pt/Ru-C-anode of the PEMFC. A higher partial oxidation reaction rate for CO than those of Pt/Ru-C can be achieved in an oxidic Au-catalyst system. In the Fe 2O 3-Au system, a reaction rate of 2·10 -3 mol CO/s g Au at 1000 ppm CO and 5% "air bleed" at 80°C is achieved. This high rate allows to construct a catalyst-sheet for each cell within a PEMFC-stack. Practical and theoretical current/voltage characteristics of PEMFCs with catalyst-sheet are presented at 1000 ppm CO in hydrogen with 5% "air bleed". This gives the possibility of simplifying the gas processor of the plant.

  13. Reduced carbon sequestration potential of biochar in acidic soil.

    PubMed

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Methylene chloride exposure and carboxyhemoglobin levels in cabinetmakers.

    PubMed

    Banjoko, Sunny O; Sridhar Mynapelli, K C; Ogunkola, Isiah O; Masheyi, Olatunde O

    2007-05-01

    Methylene chloride (MeCl(2)) is a clear colorless volatile sweet smelling lipophilic solvent used as a constituent of wood vanishes and paints. Human exposure is mainly due to inhalation and its biotransformation by the hepatic mixed function oxidases (MFO) leads to formation of carbon monoxide (CO). Simultaneous exposure to MeCl(2) and increased ambient CO results in undesirably increased carboxyhemoglobin (COHb) formation, which predisposes to carboxyhemoglobinaemia with the central nervous system as the primary target organ of toxicity.In this study, ambient CO levels were determined using a CO personal monitor in different pasts of Ibadan Nigeria and work place microenvironment of 50 Cabinet makers (test group) and 50 volunteer (control) in non-furniture making occupations. Mann Whitney U and Kruskaal Wallis were the statistical methods of analysis used.Questionnaires were administered to both groups carboxyhaemoglobin levels were determined in venous blood drawn from individuals in the two groups by differential spectrophotometric method.Ambient CO levels in Ibadan were observed to be between 4 and 52 ppm with a mean of 20 ppm. Work environment CO levels were significantly higher in test subjects than controls at 5.2 ± 1.08 ppm and 2.08 ± 0.91 ppm respectively (P <0.001). COHb in cabinetmakers with mean working hours of 9.48 ± 2.9 per day was 3.95 ± 1.35 (%) while that of controls with mean working hours of 8.0 ± 0.8 per day was 2.08 ± 0.91 ppm (P <0.001). Smoking however did not significantly affect the COHb levels within the two groups (P >0.05).It is therefore imperative to substitute MeCl(2) for safer chemicals in wood vanish and paints and the use of protective gas masks and adequate ventilation should be mandatory whenever MeCl(2) is used.

  15. Methylene chloride exposure and carboxyhemoglobin levels in cabinetmakers

    PubMed Central

    Banjoko, Sunny O.; Sridhar Mynapelli, K. C.; Ogunkola, Isiah O.; Masheyi, Olatunde O.

    2007-01-01

    Methylene chloride (MeCl2) is a clear colorless volatile sweet smelling lipophilic solvent used as a constituent of wood vanishes and paints. Human exposure is mainly due to inhalation and its biotransformation by the hepatic mixed function oxidases (MFO) leads to formation of carbon monoxide (CO). Simultaneous exposure to MeCl2 and increased ambient CO results in undesirably increased carboxyhemoglobin (COHb) formation, which predisposes to carboxyhemoglobinaemia with the central nervous system as the primary target organ of toxicity. In this study, ambient CO levels were determined using a CO personal monitor in different pasts of Ibadan Nigeria and work place microenvironment of 50 Cabinet makers (test group) and 50 volunteer (control) in non-furniture making occupations. Mann Whitney U and Kruskaal Wallis were the statistical methods of analysis used. Questionnaires were administered to both groups carboxyhaemoglobin levels were determined in venous blood drawn from individuals in the two groups by differential spectrophotometric method. Ambient CO levels in Ibadan were observed to be between 4 and 52 ppm with a mean of 20 ppm. Work environment CO levels were significantly higher in test subjects than controls at 5.2 ± 1.08 ppm and 2.08 ± 0.91 ppm respectively (P <0.001). COHb in cabinetmakers with mean working hours of 9.48 ± 2.9 per day was 3.95 ± 1.35 (%) while that of controls with mean working hours of 8.0 ± 0.8 per day was 2.08 ± 0.91 ppm (P <0.001). Smoking however did not significantly affect the COHb levels within the two groups (P >0.05). It is therefore imperative to substitute MeCl2 for safer chemicals in wood vanish and paints and the use of protective gas masks and adequate ventilation should be mandatory whenever MeCl2 is used. PMID:21938216

  16. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    NASA Astrophysics Data System (ADS)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but variable GHG emissions or even occasional sinks. The risk of large GHG emissions is higher for eutrophic than mesotrophic peatlands. Nevertheless, flooding of eutrophic temperate fens still represents a safe GHG mitigation option because even the hotspot of our study, the floating tall sedge - Typha latifolia reeds, did not exceed the typical range of GHG emissions from drained fen grasslands and the spatially dominant Phragmites australis reed emitted by far less GHG than drained fens.

  17. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura

    2017-09-01

    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  18. Red fox (Vulpes vulpes Linnaeus, 1758) as biological indicator for environmental pollution in Hungary.

    PubMed

    Heltai, Miklós; Markov, Georgi

    2012-10-01

    Our aim were to establish the metal (Cu, Ni, Zn, Co, Cd, and Pb) levels of red fox liver and the kidney samples (n = 10) deriving from central part of Hungary and compare the results with other countries' data. According to our results the concentrations of residues of the targeted elements (mg/kg dry weight) in liver and kidney samples were, respectively in liver: Cu: 21.418, Zn: 156.928, Ni: 2.079, Co: 1.611, Pb: 1.678 and Cd: 0.499; and kidney samples: Cu: 9.236; Zn: 87.159; Ni: 2.514; Co: 2.455; Pb: 2.63 and Cd: 0.818. Pb levels of Hungarian red fox liver samples significantly exceed the values of Italian specimens' samples, whilst the same element's concentrations of Hungarian red fox kidney samples were higher than the results published in Germany.

  19. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen

    PubMed Central

    2014-01-01

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  20. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen.

    PubMed

    Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul

    2014-02-20

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H 2 ), with and without carbon dioxide (CO 2 ) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO 2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO 2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO 2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO 2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H 2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency.

  1. Partial pressure of arterial carbon dioxide and survival to hospital discharge among patients requiring acute mechanical ventilation: A cohort study.

    PubMed

    Fuller, Brian M; Mohr, Nicholas M; Drewry, Anne M; Ferguson, Ian T; Trzeciak, Stephen; Kollef, Marin H; Roberts, Brian W

    2017-10-01

    To describe the prevalence of hypocapnia and hypercapnia during the earliest period of mechanical ventilation, and determine the association between P a CO 2 and mortality. A cohort study using an emergency department registry of mechanically ventilated patients. P a CO 2 was categorized: hypocapnia (<35mmHg), normocapnia (35-45mmHg), and hypercapnia (>45mmHg). The primary outcome was survival to hospital discharge. A total of 1,491 patients were included. Hypocapnia occurred in 375 (25%) patients and hypercapnia in 569 (38%). Hypercapnia (85%) had higher survival rate compared to normocapnia (74%) and hypocapnia (66%), P<0.001. P a CO 2 was an independent predictor of survival to hospital discharge [hypocapnia (aOR 0.65 (95% confidence interval [CI] 0.48-0.89), normocapnia (reference category), hypercapnia (aOR 1.83 (95% CI 1.32-2.54)]. Over ascending ranges of P a CO 2 , there was a linear trend of increasing survival up to a P a CO 2 range of 66-75mmHg, which had the strongest survival association, aOR 3.18 (95% CI 1.35-7.50). Hypocapnia and hypercapnia occurred frequently after initiation of mechanical ventilation. Higher P a CO 2 levels were associated with increased survival. These data provide rationale for a trial examining the optimal P a CO 2 in the critically ill. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. An assessment of indoor air quality in recent Mexican immigrant housing in Commerce City, Colorado

    NASA Astrophysics Data System (ADS)

    Miller, Shelly L.; Scaramella, Peter; Campe, Joseph; Goss, Cynthia W.; Diaz-Castillo, Sandra; Hendrikson, Ed; DiGuiseppi, Carolyn; Litt, Jill

    An indoor air quality assessment was conducted on 100 homes of recent Mexican immigrants in Commerce City, Colorado, an urban industrial community north of Denver. Head of households were administered a family health survey, filled out an activity diary, and participated in a home inspection. Carbon monoxide (CO) and carbon dioxide (CO 2) were measured for 24 h inside the main living area and outside of the homes. Harvard Impactors were used to collect 24-h samples of PM 2.5 at the same locations for gravimetric analysis. Dust samples were collected by vacuuming carpeting and flooring at four locations within the home and analyzed by ELISA for seven allergens. Mean indoor and outdoor PM 2.5 levels were 27.2 and 8.5 μg m -3, respectively. Indoor PM 2.5 and CO 2 were elevated in homes for which the number of hours with door/window open was zero compared to homes in which the number of hours was high (>15 h). Indoor PM 2.5 levels did not correlate with outdoor levels and tended to increase with number of inhabitants, and results indicate that the source of indoor particles were occupants and their activities, excluding smoking and cooking. Mean indoor CO 2 and CO levels were 1170 and 2.4 ppm, respectively. Carbon monoxide was higher than the 24-h National Ambient Air Quality Standard in 3 of the homes. The predominant allergens were cat ( Fel d 1) and mouse ( Mus m 1) allergens, found in 20 and 34 homes, respectively.

  3. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  4. Effect of Ocean Acidification on the Food Quality of the Coccolithophore Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Maine, J. E.; White, M. M.; Balch, W. M.; Milke, L. M.

    2016-02-01

    The anthropogenic burning of fossil fuels has doubled atmospheric carbon dioxide (CO2) levels over the last 200 years. Atmospheric CO2 diffuses into the ocean, changing the chemistry and decreasing the pH of seawater in a process called Ocean Acidification (OA). Calcifying marine phytoplankton, coccolithophores, are vulnerable to OA. Emiliania huxleyi is a lipid-dense and globally-abundant species of coccolithophore, therefore it is a vital food source for higher marine trophic levels. The objective of this project was to determine how OA affects the lipid profile and calcification of E. huxleyi CCMP #371. Gas chromatography was used to determine how the proportions of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) in E. huxleyi varied with increasing pCO2. Flow cytometry was used to measure how the distribution of highly calcified cells, partially calcified cells, and un-calcified cells changed with increasing pCO2. The proportion of MUFA increased with pCO2. The proportion of un-calcified and partially calcified cells increased with increasing pCO2, however, the results varied across two experimental runs. In conclusion, the lipid-profile and calcification properties of E. huxleyi, and likely its food quality to predators, are affected by OA.

  5. Bundle Sheath Diffusive Resistance to CO2 and Effectiveness of C4 Photosynthesis and Refixation of Photorespired CO2 in a C4 Cycle Mutant and Wild-Type Amaranthus edulis1

    PubMed Central

    Kiirats, Olavi; Lea, Peter J.; Franceschi, Vincent R.; Edwards, Gerald E.

    2002-01-01

    A mutant of the NAD-malic enzyme-type C4 plant, Amaranthus edulis, which lacks phosphoenolpyruvate carboxylase (PEPC) in the mesophyll cells was studied. Analysis of CO2 response curves of photosynthesis of the mutant, which has normal Kranz anatomy but lacks a functional C4 cycle, provided a direct means of determining the liquid phase-diffusive resistance of atmospheric CO2 to sites of ribulose 1,5-bisphosphate carboxylation inside bundle sheath (BS) chloroplasts (rbs) within intact plants. Comparisons were made with excised shoots of wild-type plants fed 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate, an inhibitor of PEPC. Values of rbs in A. edulis were 70 to 180 m2 s−1 mol−1, increasing as the leaf matured. This is about 70-fold higher than the liquid phase resistance for diffusion of CO2 to Rubisco in mesophyll cells of C3 plants. The values of rbs in A. edulis are sufficient for C4 photosynthesis to elevate CO2 in BS cells and to minimize photorespiration. The calculated CO2 concentration in BS cells, which is dependent on input of rbs, was about 2,000 μbar under maximum rates of CO2 fixation, which is about six times the ambient level of CO2. High re-assimilation of photorespired CO2 was demonstrated in both mutant and wild-type plants at limiting CO2 concentrations, which can be explained by high rbs. Increasing O2 from near zero up to ambient levels under low CO2, resulted in an increase in the gross rate of O2 evolution measured by chlorophyll fluorescence analysis in the PEPC mutant; this increase was simulated from a Rubisco kinetic model, which indicates effective refixation of photorespired CO2 in BS cells. PMID:12376660

  6. Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes.

    PubMed

    Villar-Argaiz, Manuel; Cabrerizo, Marco J; González-Olalla, Juan Manuel; Valiñas, Macarena S; Rajic, Sanja; Carrillo, Presentación

    2018-05-17

    Rising levels of CO 2 can boost plant biomass but reduce its quality as a food source for herbivores. However, significant uncertainties remain as to the degree to which the effect is modulated by other environmental factors and the underlying processes causing these responses in nature. To address these questions, we carried out CO 2 -manipulation experiments using natural seston from three lakes under nutrient-enriched conditions (mimicking eutrophication and atmospheric dust-input processes) as a food source for the planktonic Daphnia pulicaria. Contrary to expectations, there were no single effects of rising CO 2 on herbivorous growth. Instead, synergistic CO 2  × nutrient interactions indicated that CO 2 did not support higher zooplankton growth rates unless supplemented with dust or inorganic nutrients (nitrogen, N; phosphorus, P) in two of three studied lakes. The overall positive correlation between zooplankton growth and seston carbon (C), but not seston C:P, suggested that this was a food quantity-mediated response. In addition, we found that this correlation improved when the data were grouped according to the nutrient treatments, and that the response was largest for dust. The synergistic CO 2  × nutrient effects reported here imply that the effects of rising CO 2 levels on herbivorous growth may be strongly influenced by eutrophication processes and the increase in dust deposition predicted for the Mediterranean region. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  8. Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells

    PubMed Central

    Zhao, Jiangsha; Li, Jieran; Fan, Teresa W.M.; Hou, Steven X.

    2017-01-01

    Tumor-initiating cells (TICs) play important roles in tumor progression and metastasis. Identifying the factors regulating TICs may open new avenues in cancer therapy. Here, we show that TIC-enriched prostate cancer cell clones use more glucose and secrete more lactate than TIC-low clones. We determined that elevated levels of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) are critical for the metabolic switch and the maintenance of TICs in prostate cancer. Information from prostate cancer patient databases revealed that higher PCK2 levels correlated with more aggressive tumors and lower survival rates. PCK2 knockdown resulted in low TIC numbers, increased cytosolic acetyl-CoA and cellular protein acetylation. Our data suggest PCK2 promotes tumor initiation by lowering acetyl-CoA level through reducing the mitochondrial tricarboxylic acid (TCA) cycle. Thus, PCK2 is a potential therapeutic target for aggressive prostate tumors. PMID:29137367

  9. Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species

    PubMed Central

    Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Fu, Chengxin; Dong, Ming

    2017-01-01

    To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits. PMID:28644876

  10. Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species.

    PubMed

    Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Li, Junmin; Fu, Chengxin; Dong, Ming

    2017-01-01

    To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits.

  11. Boosted food web productivity through ocean acidification collapses under warming.

    PubMed

    Goldenberg, Silvan U; Nagelkerken, Ivan; Ferreira, Camilo M; Ullah, Hadayet; Connell, Sean D

    2017-10-01

    Future climate is forecast to drive bottom-up (resource driven) and top-down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over-reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three-level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO 2 and elevated temperature boosted primary production. Under elevated CO 2 , the enhanced bottom-up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO 2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO 2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. © 2017 John Wiley & Sons Ltd.

  12. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    PubMed

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P < 0.01) in EUp (132.6 mg/(m2 x hr)) and ACp (139.8 mg/(m2 x hr)) than in Tp (94.0 mg/(m2 x hr)) and THp (102.9 mg/(m2 x hr)). Soil CO2 fluxes in UR and CA were significantly higher (P < 0.01) among the four treatments, with values of 105.7, 120.4, 133.6 and 112.2 mg/(m2 x hr) for UR+CA, UR, CA and CK, respectively. Soil CO2 fluxes were positively correlated with soil temperature (P < 0.01), soil moisture (P < 0.01), NO3(-)-N (P < 0.05), and litterfall (P < 0.01), indicating that all these factors might be important controlling variables for soil CO2 fluxes. This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices.

  13. Understanding complete oxidation of methane on spinel oxides at a molecular level

    DOE PAGES

    Tao, Franklin Feng; Shan, Jun-jun; Nguyen, Luan; ...

    2015-08-04

    It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo 2O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. Finally, in situ studies of complete oxidation of methane on NiCo 2Omore » 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3O with a following dehydrogenation to -CH 2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.« less

  14. Carboxyhemoglobin Formation in Preterm Infants Is Related to the Subsequent Development of Bronchopulmonary Dysplasia

    PubMed Central

    Tokuriki, Shuko; Okuno, Takashi; Ohta, Genrei

    2015-01-01

    Objective. To evaluate the usefulness of carboxyhemoglobin (CO-Hb) levels as a biomarker to predict the development and severity of bronchopulmonary dysplasia (BPD). Methods. Twenty-five infants born at <33 wk of gestational age or with a birth weight of <1,500 g were enrolled. CO-Hb levels were measured between postnatal days 5 and 8, 12 and 15, 19 and 22, and 26 and 29. Urinary levels of 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products, and Nε-(hexanoyl) lysine were measured between postnatal days 5 and 8 and 26 and 29. Receiver operating characteristic (ROC) analysis was used to compare the biomarkers' predictive values. Results. Compared with infants in the no-or-mild BPD group, infants with moderate-to-severe BPD exhibited higher CO-Hb levels during the early postnatal period and higher 8-OHdG levels between postnatal days 5 and 8. Using ROC analysis to predict the development of moderate-to-severe BPD, the area under the curve (AUC) for CO-Hb levels between postnatal days 5 and 8 was higher than AUCs for the urinary markers. Conclusions. CO-Hb levels during the early postnatal period may serve as a practical marker for evaluating oxidative stress and the severity of subsequently developing BPD. PMID:26294808

  15. Carboxyhemoglobin Formation in Preterm Infants Is Related to the Subsequent Development of Bronchopulmonary Dysplasia.

    PubMed

    Tokuriki, Shuko; Okuno, Takashi; Ohta, Genrei; Ohshima, Yusei

    2015-01-01

    To evaluate the usefulness of carboxyhemoglobin (CO-Hb) levels as a biomarker to predict the development and severity of bronchopulmonary dysplasia (BPD). Twenty-five infants born at <33 wk of gestational age or with a birth weight of <1,500 g were enrolled. CO-Hb levels were measured between postnatal days 5 and 8, 12 and 15, 19 and 22, and 26 and 29. Urinary levels of 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products, and Nε-(hexanoyl) lysine were measured between postnatal days 5 and 8 and 26 and 29. Receiver operating characteristic (ROC) analysis was used to compare the biomarkers' predictive values. Compared with infants in the no-or-mild BPD group, infants with moderate-to-severe BPD exhibited higher CO-Hb levels during the early postnatal period and higher 8-OHdG levels between postnatal days 5 and 8. Using ROC analysis to predict the development of moderate-to-severe BPD, the area under the curve (AUC) for CO-Hb levels between postnatal days 5 and 8 was higher than AUCs for the urinary markers. CO-Hb levels during the early postnatal period may serve as a practical marker for evaluating oxidative stress and the severity of subsequently developing BPD.

  16. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment.

    PubMed

    Algueró-Muñiz, María; Alvarez-Fernandez, Santiago; Thor, Peter; Bach, Lennart T; Esposito, Mario; Horn, Henriette G; Ecker, Ursula; Langer, Julia A F; Taucher, Jan; Malzahn, Arne M; Riebesell, Ulf; Boersma, Maarten

    2017-01-01

    Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females' condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.

  17. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment

    PubMed Central

    Algueró-Muñiz, María; Alvarez-Fernandez, Santiago; Thor, Peter; Bach, Lennart T.; Esposito, Mario; Horn, Henriette G.; Ecker, Ursula; Langer, Julia A. F.; Taucher, Jan; Malzahn, Arne M.; Riebesell, Ulf; Boersma, Maarten

    2017-01-01

    Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future. PMID:28410436

  18. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonardi, Roberta; Zhang, Yong-Mei; Lykidis, Athanasios

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  19. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    NASA Astrophysics Data System (ADS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-05-01

    Carbon dioxide (CO2) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO2 emissions.

  20. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-08-01

    While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  1. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    PubMed

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  2. Coenzyme Q supplementation in pulmonary arterial hypertension

    PubMed Central

    Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.

    2014-01-01

    Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165

  3. Gaseous emissions from Canadian boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1990-01-01

    CO2-normalized emission ratios for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were determined from smoke samples collected during low-altitude helicopter flights over two prescribed fires in northern Ontario, Canada. The emission ratios determined from these prescribed boreal forest fires are compared to emission ratios determined over two graminoid (grass) wetlands fires in central Florida and are found to be substantially higher (elevated levels of reduced gas production relative to CO2) during all stages of combustion. These results argue strongly for the need to characterize biomass burning emissions from the major global vegetation/ecosystems in order to couple combustion emissions to their vegetation/ecosystem type.

  4. The comparison of psychological adjustment of patients with cleft lip and palate after maxillary distraction osteogenesis and conventional orthognathic surgery.

    PubMed

    Chua, Hannah Daile P; Ho, Samuel M Y; Cheung, Lim Kwong

    2012-11-01

    The objective of this study was to compare the psychological changes of patients with cleft lip and palate (CLP) undergoing maxillary Le Fort I advancement by distraction osteogenesis (DO) and conventional orthognathic surgery (CO). Prospective randomized controlled study. Participants completed a set of questionnaires to measure their psychological states preoperatively and postoperatively. When compared with CO, CLP patients treated with DO had lower social self-esteem and higher social avoidance and distress levels during the first 3 postoperative months. Their self-esteem, social avoidance, and distress levels improved after the distractors were removed. Both CO and DO patients had similar levels of self-esteem, social avoidance, and distress levels 2 years postoperatively. The CLP patients treated with DO were more satisfied with their lives after 2 years. DO may induce short-term distress to patients up to 3 months but CLP patients who received DO were more satisfied with their lives in the long term. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Calcification by juvenile corals under heterotrophy and elevated CO2

    NASA Astrophysics Data System (ADS)

    Drenkard, E. J.; Cohen, A. L.; McCorkle, D. C.; de Putron, S. J.; Starczak, V. R.; Zicht, A. E.

    2013-09-01

    Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 μatm) or significantly elevated (1,311 μatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 μatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; ∆ calcification/∆Ω was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.

  6. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage

    PubMed Central

    Mai, Hien Duy; Kang, Philjae; Kim, Jin Kyung; Yoo, Hyojong

    2017-01-01

    We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms. PMID:28262690

  7. CO2 -dependent metabolic modulation in red blood cells stored under anaerobic conditions.

    PubMed

    Dumont, Larry J; D'Alessandro, Angelo; Szczepiorkowski, Zbigniew M; Yoshida, Tatsuro

    2016-02-01

    Anaerobic red blood cell (RBC) storage reduces oxidative damage, maintains adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) levels, and has superior 24-hour recovery at 6 weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBCs during anaerobic storage. This is a matched three-arm study (n = 14): control, O2 and CO2 depleted with Ar (AN), and O2 depleted with 95%Ar/5%CO2 (AN[CO2 ]). RBCs in additives AS-3 or OFAS-3 were evenly divided into three bags, and anaerobic conditions were established by gas exchange. Bags were stored at 1 to 6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9 weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5% CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p > 0.5, Days 0-21). ATP levels are higher in AN[CO2 ] (p < 0.0001). DPG was maintained beyond 2 weeks in the AN arm (p < 0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2 ] arms (p = 0.6). Maintenance of ATP in the AN[CO2 ] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBCs. © 2015 AABB.

  8. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    PubMed

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  9. Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q(10) in elderly men and women.

    PubMed

    Yubero-Serrano, Elena M; Gonzalez-Guardia, Lorena; Rangel-Zuñiga, Oriol; Delgado-Casado, Nieves; Delgado-Lista, Javier; Perez-Martinez, Pablo; Garcia-Rios, Antonio; Caballero, Javier; Marin, Carmen; Gutierrez-Mariscal, Francisco M; Tinahones, Francisco J; Villalba, Jose M; Tunez, Isaac; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2013-02-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. We have investigated whether the quality of dietary fat alters postprandial gene expression and protein levels involved in oxidative stress and whether the supplementation with coenzyme Q(10) (CoQ) improves this situation in an elderly population. Twenty participants were randomized to receive three isocaloric diets each for 4 weeks: Mediterranean diet supplemented with CoQ (Med + CoQ diet), Mediterranean diet (Med diet), saturated fatty acid-rich diet (SFA diet). After 12-h fast, volunteers consumed a breakfast with a fat composition similar to that consumed in each of the diets. Nrf2, p22(phox) and p47(phox), superoxide dismutase 1 and 2 (SOD1 and SOD2), glutathione peroxidase 1 (GPx1), thiorredoxin reductase (TrxR) gene expression and Kelch-like ECH associating protein 1 (Keap-1) and citoplasmic and nuclear Nrf2 protein levels were determined. Med and Med + CoQ diets induced lower Nrf2, p22(phox), p47(phox), SOD1, SOD2 and TrxR gene expression and higher cytoplasmic Nrf2 and Keap-1 protein levels compared to the SFA diet. Moreover, Med + CoQ diet produced lower postprandial Nrf2 gene expression and lower nuclear Nrf2 protein levels compared to the other diets and lower GPx1 gene expression than the SFA diet. Our results support the antioxidant effect of a Med diet and that exogenous CoQ supplementation has a protective effects against free radical overgeneration through the lowering of postprandial oxidative stress modifying the postprandial antioxidant protein levels and reducing the postprandial expression of antioxidant genes in peripheral blood mononuclear cells.

  10. Cigarette taxes and respiratory cancers: new evidence from panel co-integration analysis.

    PubMed

    Liu, Echu; Yu, Wei-Choun; Hsieh, Hsin-Ling

    2011-01-01

    Using a set of state-level longitudinal data from 1954 through 2005, this study investigates the "long-run equilibrium" relationship between cigarette excise taxes and the mortality rates of respiratory cancers in the United States. Statistical tests show that both cigarette excise taxes in real terms and mortality rates from respiratory cancers contain unit roots and are co-integrated. Estimates of co-integrating vectors indicated that a 10 percent increase in real cigarette excise tax rate leads to a 2.5 percent reduction in respiratory cancer mortality rate, implying a decline of 3,922 deaths per year, on a national level in the long run. These effects are statistically significant at the one percent level. Moreover, estimates of co-integrating vectors show that higher cigarette excise tax rates lead to lower mortality rates in most states; however, this relationship does not hold for Alaska, Florida, Hawaii, and Texas.

  11. El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades

    PubMed Central

    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades. PMID:25521299

  12. Growth in elevated CO(2) can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition.

    PubMed

    Hymus, G J; Baker, N R; Long, S P

    2001-11-01

    Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Gauri S; Romagnoli, Simona; Verberkmoes, Nathan C

    Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO{sub 2} or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO{sub 2} in the medium to support growth. These proteins weremore » not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription.« less

  14. Elevated Carbon Dioxide in the Atmosphere: What Might It Mean for Loblolly Pine Plantation Forestry

    Treesearch

    John W. Groninger; Kurt H. Johnsen; John. R. Seiler; Rodney E. Will; David S. Ellsworth; Chris A. Maier

    1999-01-01

    Research with loblolly pine suggests that projected increases in atmospheric CO2 concentration will accelerate early growth and could result in shorter rotation length, reduced time until first commercial thinning, higher optimal planting density, and possibly higher maximum stocking level in managed stands. We discuss some of the physiological...

  15. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  16. Atmospheric evidence for a global secular increase in isotopic discrimination of land photosynthesis

    NASA Astrophysics Data System (ADS)

    Keeling, R. F.; Graven, H. D.; Welp, L.; Piper, S. C.; Bollenbacher, A.; Resplandy, L.; Meijer, H. A. J.

    2016-12-01

    A decrease in the 13C/12C ratio of atmospheric CO2 owing to the addition of fossil-fuel derived CO2, known as the 13C-Suess effect, has been documented by direct observations since 1977 and from ice-core measurements since the industrial revolution. Measurements of this decrease have previously been used to constrain land and ocean carbon sinks. Here we show, however, that no plausible combination of land and ocean sinks can explain the 13C/12C decrease unless an increase has occurred in the isotopic discrimination of land photosynthesis, i.e. the tendency of land plants to preferentially assimilate 12CO2 compared to 13CO2. A trend toward greater discrimination at higher CO2 levels is broadly consistent with geological evidence for the response of C3 plants at times of altered atmospheric CO2 as well as with tree-ring studies over the past century. The discrimination trend will be discussed in the context of theories for optimal stomatal behavior under changing atmospheric CO2.

  17. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment.

    PubMed

    Seo, Dong Cheol; DeLaune, Ronald D

    2010-08-01

    Fungal and bacterial carbon dioxide (CO2) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, +100, +250 and +400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C15H23NO4) was used as the fungal inhibitor and streptomycin (C21H39N7O12) as the bacterial inhibitor. Under moderately reducing conditions (Eh > +250 mV), fungi contributed more than bacteria to the CO2 production. Under highly reducing conditions (Eh < or = 0 mV), bacteria contributed more than fungi to the total CO2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh > or = +100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh < or = 0 mV). In moderately reducing conditions (Eh > or = +100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh < or = 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO2 production to bacteria rather than fungi. 2010 Elsevier B.V. All rights reserved.

  18. Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni.

    PubMed

    Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner

    2017-09-01

    The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3  NaCl while C50 was between 50 and 100 mol m -3  NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Dissolution Rates of Biogenic Carbonate Sediments from the Bermuda Platform

    NASA Astrophysics Data System (ADS)

    Finlay, A. J.; Andersson, A. J.

    2016-02-01

    The contribution of biogenic carbonate sediment dissolution rates to overall net reef accretion/erosion (under both present and future oceanic pCO2 levels) has been strikingly neglected, despite experimental results indicating that sediment dissolution might be more sensitive to ocean acidification (OA) than calcification. Dissolution of carbonate sediments could impact net reef accretion rates as well as the formation and preservation of valuable marine and terrestrial ecosystems. Bulk sediment dissolution rates of samples from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3500 μatm to 9000 μatm. This range of pCO2 levels incorporates values currently observed in porewaters on the Bermuda carbonate platform as well as a potential future increase in porewater pCO2 levels due to OA. Sediment samples from two different stations on the reef platform were analyzed for grain size and mineralogy. Dissolution rates of sediments in the dominant grain size fraction of the platform (500-1000 μm) from both stations ranged between 16.25 and 47.19 (± 0.27 to 0.79) μmoles g-1 hr-1 and are comparable to rates previously obtained from laboratory experiments on other natural carbonate sediments. At a pCO2 of 3500 μatm, rates from both samples were similar, despite their differing mineralogy. However, at pCO2 levels above 3500 μatm, the sediment sample with a greater weight percent of Mg-calcite had slightly higher dissolution rates. Despite many laboratory studies on biogenic carbonate dissolution, a significant disparity still exists between laboratory measurements and field observations. Performing additional controlled, laboratory experiments on natural sediment may help to elucidate the reasons for this disparity.

  20. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2017-05-01

    Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Supercritical carbon dioxide extraction of 2,4-dichlorophenol from food crop tissues.

    PubMed

    Thomson, C A; Chesney, D J

    1992-04-15

    Supercritical fluid extraction with carbon dioxide has been found to be effective for the isolation of residue levels (0.1-1 ppm) of 2,4-dichlorophenol from selected plant tissues. The 2,4-dichlorophenol residues were incompletely extracted with supercritical CO2 alone, since a substantial fraction of the 2,4-dichlorophenol was covalently attached to the plant matrix. An acid pretreatment procedure was developed to partially hydrolyze the plant tissue prior to extraction, releasing the bound 2,4-dichlorophenol residues. Steam distillation showed higher residue levels for field-treated straw samples. This is attributed to the greater degree of hydrolysis inherent in the steam distillation procedure. Supercritical CO2 extraction of field-treated seed samples showed higher levels of 2,4-dichlorophenol residues than did steam distillation. The supercritical fluid extractant was able to solvate 2,4-dichlorophenol residues in the interior of the seed and transport them to the surface for collection. The aqueous medium used in steam distillation was unable to penetrate the hydrophobic seed matrix to the same degree. While the actual extraction time experienced in supercritical fluid extraction was far less than that of steam distillation (45 min vs 6 h, respectively), the total sample preparation time was similar in both methods.

  2. HIV and intestinal parasite co-infections among a Chinese population: an immunological profile

    PubMed Central

    2013-01-01

    Background Parasite infections often result in a switch of the human body’s predominant immune reaction from T-helper 1 (Th1)-type to Th2-type. Hence, parasite infections are widely expected to accelerate the progression of human immunodeficiency virus (HIV) infections to acquired immunodeficiency syndrome (AIDS). In the People’s Republic of China, both parasitic diseases and AIDS are epidemic in certain rural areas, and co-infections are relatively common. However, no population-based studies have yet investigated the frequency of HIV and parasite co-infections, and its effects on immune responses. We studied (1) the immune status of an HIV-infected population, and (2) the effect of co-infection of HIV and intestinal parasites on selected parameters of the human immune system. Methods A total of 309 HIV-infected individuals were recruited and compared to an age-matched and sex-matched control group of 315 local HIV-negative individuals. Questionnaires were administered to all participants to obtain information on sociodemographic characteristics, sanitation habits, family income, and recent clinical manifestations. Two consecutive stool samples and 10 ml samples of venous blood were also collected from each individual for the diagnosis of parasite infections and quantitative measurements of selected cytokines and CD4+ T-lymphocytes, respectively. Results During the study period, 79 HIV-infected individuals were not under highly active antiretroviral therapy (HAART) and were thus included in our analysis; the prevalence of intestinal helminth infections was 6.3% and that of protozoa was 22.8%. The most common protozoan infections were Blastocystis hominis (B. hominis) (13.9%) and Cryptosporidium spp. (10.1%). The prevalence of Cryptosporidium spp. in HIV-infected individuals was significantly higher than that in HIV negative individuals (P < 0.05). Compared to the non-co-infected population, no significant difference was found for any of the measured immunological indicators (P > 0.05). However, the following trends were observed: IFN-γ levels were lower, but the IL-4 level was higher, in the population co-infected with HIV and helminths. In the population co-infected with HIV and B. hominis, the IL-2 level was higher. The population co-infected with HIV and Cryptosporidium spp. had markedly lower CD4+ T-lymphocyte counts. Conclusion According to the immunologic profile, co-infection with helminths is disadvantageous to HIV-infected individuals. It was associated with a shift in the Th1/Th2 balance in the same direction as that caused by the virus itself, which might indicate an acceleration of the progress from an HIV infection to AIDS. Co-infection with Cryptosporidium spp. was not associated with a significant change in immune factors but co-infection with Cryptosporidium spp. was associated with a reduced level of CD4 + T-lymphocytes, confirming the opportunistic nature of such infections. Co-infection with B. hominis, on the other hand, was associated with an antagonistic shift in the immunological profile compared to an HIV infection. PMID:23971713

  3. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    PubMed

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  4. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2014-01-01

    The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3−. Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3−/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ∼9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi. Using higher CO2/HCO3− levels, i.e., 5%/33 mM HCO3− or 10%/66 mM HCO3−, increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA—consuming entering CO2 or replenishing exiting CO2—increases CO2 fluxes across the cell membrane. PMID:24965587

  5. Leaf Photosynthesis and Respiration of High CO2-Grown Tobacco Plants Selected for Survival under CO2 Compensation Point Conditions 1

    PubMed Central

    Delgado, Esteban; Azcón-Bieto, Joaquim; Aranda, Xavier; Palazón, Javier; Medrano, Hipólito

    1992-01-01

    Four self-pollinated, doubled-haploid tobacco, (Nicotiana tabacum L.) lines (SP422, SP432, SP435, and SP451), selected as haploids by survival in a low CO2 atmosphere, and the parental cv Wisconsin-38 were grown from seed in a growth room kept at high CO2 levels (600-700 parts per million). The selected plants were much larger (especially SP422, SP432, and SP451) than Wisconsin-38 nine weeks after planting. The specific leaf dry weight and the carbon (but not nitrogen and sulfur) content per unit area were also higher in the selected plants. However, the chlorophyll, carotenoid, and alkaloid contents and the chlorophyll a/b ratio varied little. The net CO2 assimilation rate per unit area measured in the growth room at high CO2 was not higher in the selected plants. The CO2 assimilation rate versus intercellular CO2 curve and the CO2 compensation point showed no substantial differences among the different lines, even though these plants were selected for survival under CO2 compensation point conditions. Adult leaf respiration rates were similar when expressed per unit area but were lower in the selected lines when expressed per unit dry weight. Leaf respiration rates were negatively correlated with specific leaf dry weight and with the carbon content per unit area and were positively correlated with nitrogen and sulfur content of the dry matter. The alternative pathway was not involved in respiration in the dark in these leaves. The better carbon economy of tobacco lines selected for low CO2 survival was not apparently related to an improvement of photosynthesis rate but could be related, at least partially, to a significantly reduced respiration (mainly cytochrome pathway) rate per unit carbon. ImagesFigure 1 PMID:16668769

  6. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    PubMed

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  7. Warming and Ocean Acidification Effects on Phytoplankton--From Species Shifts to Size Shifts within Species in a Mesocosm Experiment.

    PubMed

    Sommer, Ulrich; Paul, Carolin; Moustaka-Gouni, Maria

    2015-01-01

    While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15 °C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.

  8. Observations of carbon monoxide mixing ratios at a mountain site in central Taiwan during the Asian biomass burning season

    NASA Astrophysics Data System (ADS)

    Lin, Yu Chi; Lin, Chuan Yao; Hsu, Wei Ting

    2010-02-01

    Carbon monoxide (CO) mixing ratios were observed from 30 January to 7 April 2008 at Mt. Lulin (23.51°N, 120.92°E, 2862 m asl) in central Taiwan to investigate characteristics of CO during biomass burning periods. During the sampling campaign, the average mixing ratio of CO was 234 ± 63 ppb with higher levels observed in March. The elevated CO in March can, on the basis of backward trajectories and satellite fire spots analyses, possibly be attributed to biomass burning activities in the Asian continent. Significant diurnal variations of CO mixing ratios were observed at the remote site. The higher CO levels in the afternoon were influenced by the transport of boundary layer pollution to the site during daytime upslope flow. Backward trajectory analysis showed that air masses mainly originated from India (ID), the Indochina Peninsula (IP) and South Coastal China (SC), which together accounted for 85% of the total trajectories. Higher mixing ratios of CO were found in the ID, IP, and SC categories, indicating significant impacts of anthropogenic emissions on the Pacific region. Furthermore, the air parcels were divided into two categories, those that passed over the fire regions and those that did not. The result showed that the average difference of CO levels between the two categories was approximately 79 ppb, suggesting that Asian biomass burning plays an important role in CO levels at this remote site during the springtime.

  9. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2005-05-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the difficulties encountered and some preliminary results. We will then compare our results to the traditional fossil/industrial CO2 emissions based on national sale/consumption statistics.

  10. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the difficulties encountered and some preliminary results. We will then compare our results to the traditional fossil/industrial CO2 emissions based on national sale/consumption statistics.

  11. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells

    PubMed Central

    2012-01-01

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection. PMID:23157617

  12. Comparison of two approaches to quantify anthropogenic CO2 in the ocean: Results from the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Coatanoan, C.; Goyet, C.; Gruber, N.; Sabine, C. L.; Warner, M.

    2001-03-01

    This study compares two recent estimates of anthropogenic CO2 in the northern Indian Ocean along the World Ocean Circulation Experiment cruise II [Goyet et al., 1999; Sabine et al., 1999]. These two studies employed two different approaches to separate the anthropogenic CO2 signal from the large natural background variability. Sabine et al. [1999] used the ΔC* approach first described by Gruber et al. [1996], whereas Goyet et al. [1999] used an optimum multiparameter mixing analysis referred to as the MIX approach. Both approaches make use of similar assumptions in order to remove variations due to remineralization of organic matter and the dissolution of calcium carbonates (biological pumps). However, the two approaches use very different hypotheses in order to account for variations due to physical processes including mixing and the CO2 solubility pump. Consequently, substantial differences exist in the upper thermocline approximately between 200 and 600 m. Anthropogenic CO2 concentrations estimated using the ΔC* approach average 12 ± 4 μmol kg-1 higher in this depth range than concentrations estimated using the MIX approach. Below ˜800 m, the MIX approach estimates slightly higher anthropogenic CO2 concentrations and a deeper vertical penetration. Despite this compensatory effect, water column inventories estimated in the 0-3000 m depth range by the ΔC* approach are generally ˜20% higher than those estimated by the MIX approach, with this difference being statistically significant beyond the 0.001 level. We examine possible causes for these differences and identify a number of critical additional measurements that will make it possible to discriminate better between the two approaches.

  13. Quality changes of highbush blueberries fruit stored in CA with different CO levels.

    PubMed

    Duarte, Carolina; Guerra, María; Daniel, Peter; Camelo, Andrés López; Yommi, Alejandra

    2009-01-01

    Quality changes of blueberries (Vacccinium corymbosum L. cv Brigitta) were evaluated during CA storage (0 degrees C) with different concentrations of CO(2) (5%, 10%, and 15%) combined with 5% O(2), respectively. Atmospheric air (20.9% O(2)+ 0.03% CO(2)) was used as control. From samples taken at 0, 24, and 48 d of storage, unmarketable fruits and weight loss were recorded as well as color (h), firmness (g), soluble solid content (%), titratable acidity (% citric acid), ratio, and the monomeric anthocyanin content (ppm). At each sampling time, additional units were kept for 3 d at 10 degrees C to simulate retail holding conditions. Irrespective of gas concentration, 0.9% of the initial fresh weight was lost after 48 d at 0 degrees C. CA fruit had better quality than control at the 24 d sampling but due to the high number of unmarketable fruits, this advantage was not observed at 48 d at 0 degrees C. After 24 d of storage, fruits for CA treatments were more firm and had better color, with higher anthocyanin and acidity levels. Soluble solid content showed no significant differences throughout the cold storage period. Residual effect of CA storage was observed at the retail holding condition yielding better firmness, acidity, and ratio. However, the CO(2) level tested increased the number of unmarketable fruit in long-term storage (48 d). Response of "Brigitta" blueberries to the different CO(2) levels studied was moderate and could be related to the high storage potential of this cultivar.

  14. Acculturation and Depressive Symptoms among Turkish Immigrants in Germany

    PubMed Central

    Morawa, Eva; Erim, Yesim

    2014-01-01

    The present study explores the impact of acculturation on depressive symptoms among Turkish immigrants in Germany, taking into account different dimensions of cultural orientation. A total of 471 patients from two selected samples (254 primary care patients and 217 outpatients of a psychosomatic department) participated. Levels of acculturation were measured as orientation towards culture of origin (CO), and orientation towards the host culture (HC). Acculturation strategies (integration, assimilation, separation, and marginalization) were also assessed as well as their association with depressive symptoms (BDI). Furthermore, gender- and migration-related differences in terms of acculturation and levels of depressive symptomatology were analyzed. Integration was the acculturation strategy associated with the lowest level of depressive symptoms (M = 14.6, SD = 11.9), while marginalization was associated with the highest (M = 23.5, SD = 14.7). Gender was not found to have a significant impact on acculturation but influenced depressive symptoms, with women (M = 21.8, SD = 13.3) reporting higher levels of depressive symptomatology than men (M = 15.1, SD = 14.0; p < 0.001). In first generation immigrants, significantly higher CO (M = 46.6, SD = 8.3; p < 0.001), lower HC (M = 31.0, SD = 9.6; p < 0.001), and higher levels of depressive symptoms (M = 20.2, SD = 14.1; p < 0.001) were found in comparison to second generation immigrants (CO: M = 41.3, SD = 7.4; HC: M = 36.2, SD = 8.8; depressive symptoms: M = 14.0, SD = 12.9). Our results suggest that orientation towards both the heritage and the host culture has a positive effect on the mental health status of immigrants. Future research needs to include representative samples of migrants from different cultures to further explore the association between acculturation and mental health. PMID:25222474

  15. Acculturation and depressive symptoms among Turkish immigrants in Germany.

    PubMed

    Morawa, Eva; Erim, Yesim

    2014-09-12

    The present study explores the impact of acculturation on depressive symptoms among Turkish immigrants in Germany, taking into account different dimensions of cultural orientation. A total of 471 patients from two selected samples (254 primary care patients and 217 outpatients of a psychosomatic department) participated. Levels of acculturation were measured as orientation towards culture of origin (CO), and orientation towards the host culture (HC). Acculturation strategies (integration, assimilation, separation, and marginalization) were also assessed as well as their association with depressive symptoms (BDI). Furthermore, gender- and migration-related differences in terms of acculturation and levels of depressive symptomatology were analyzed. Integration was the acculturation strategy associated with the lowest level of depressive symptoms (M = 14.6, SD = 11.9), while marginalization was associated with the highest (M = 23.5, SD = 14.7). Gender was not found to have a significant impact on acculturation but influenced depressive symptoms, with women (M = 21.8, SD = 13.3) reporting higher levels of depressive symptomatology than men (M = 15.1, SD = 14.0; p < 0.001). In first generation immigrants, significantly higher CO (M = 46.6, SD = 8.3; p < 0.001), lower HC (M = 31.0, SD = 9.6; p < 0.001), and higher levels of depressive symptoms (M = 20.2, SD = 14.1; p < 0.001) were found in comparison to second generation immigrants (CO: M = 41.3, SD = 7.4; HC: M = 36.2, SD = 8.8; depressive symptoms: M = 14.0, SD = 12.9). Our results suggest that orientation towards both the heritage and the host culture has a positive effect on the mental health status of immigrants. Future research needs to include representative samples of migrants from different cultures to further explore the association between acculturation and mental health.

  16. Quantifying spatially and temporally explicit CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shaoqing; Zhuang, Qianlai; Chen, Min

    Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less

  17. Quantifying spatially and temporally explicit CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics

    DOE PAGES

    Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...

    2016-07-25

    Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less

  18. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease

    PubMed Central

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K. Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 (67Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation. PMID:28321059

  19. Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions.

    PubMed

    Kumari, Sumita; Agrawal, Madhoolika

    2014-03-01

    The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Splanchnic and renal deterioration during and after laparoscopic cholecystectomy: a comparison of the carbon dioxide pneumoperitoneum and the abdominal wall lift method.

    PubMed

    Koivusalo, A M; Kellokumpu, I; Ristkari, S; Lindgren, L

    1997-10-01

    Carbon dioxide (CO2) pneumoperitoneum together with an increased intraabdominal pressure (IAP) induces a hemodynamic stress response, diminishes urine output, and may compromise splanchnic perfusion. A new retractor method may be less traumatic. Accordingly, 30 ASA physical status I or II patients undergoing laparoscopic cholecystectomy were randomly allocated to a CO2 pneumoperitoneum (IAP 12-13 mm Hg) (control) or to a gasless abdominal wall lift method (retractor) group. Anesthesia and intravascular fluids were standardized. Direct mean arterial pressure (MAP), urine output, urine-N-acetyl-beta-D-glucosaminidase (U-NAG), arterial blood gases, gastric mucosal PCO2, and intramucosal pH (pHi) were measured. Normoventilation was instituted in all patients. MAP increased (P < 0.001) only with CO2 pneumoperitoneum. Minute volume of ventilation had to be increased by 35% with CO2 insufflation. PaCO2 was significantly higher (P < 0.05) for 3 h postoperatively in the control group. Diuresis was less (P < 0.01) and U-NAG levels (P < 0.01) higher in the control group. The pHi decreased after induction of pneumoperitoneum up to three hours postoperatively and remained intact in the retractor group. We conclude that the retractor method for laparoscopic cholecystectomy ensures stable hemodynamics, prevents respiratory acidosis, and provides protection against biochemical effects, which reveal the renal and splanchic ischemia caused by CO2 insufflation. A mechanical retractor method (gasless) was compared with conventional CO2 pneumoperitoneum for laparoscopic cholestectomy. The gasless method ensured stable hemodynamics, prevented respiratory acidosis, and provided protection against the renal and splanchnic ischemia seen with CO2 pneumoperitoneum.

  1. Is rapid growth in Internet usage environmentally sustainable for Australia? An empirical investigation.

    PubMed

    Salahuddin, Mohammad; Alam, Khorshed; Ozturk, Ilhan

    2016-03-01

    This study estimates the short- and long-run effects of Internet usage and economic growth on carbon dioxide (CO2) emissions using annual time series macro data for Australia for the period 1985-2012. Autoregressive distributive lag (ARDL) bounds and Gregory-Hansen structural break cointegration tests are applied. ARDL estimates indicate no significant long-run relationship between Internet usage and CO2 emissions, which implies that the rapid growth in Internet usage is still not an environmental threat for Australia. The study further indicates that higher level of economic growth is associated with lower level of CO2 emissions; however, Internet usage and economic growth have no significant short-run relationship with CO2 emissions. Financial development has both short-run and long-run significant positive association with CO2 emissions. The findings offer support in favor of energy efficiency gains and a reduction in energy intensity in Australia. However, impulse response and variance decomposition analysis suggest that Internet usage, economic growth and financial development will continue to impact CO2 emissions in the future, and as such, this study recommends that in addition to the existing measures to combat CO2 emissions, Australia needs to exploit the potential of the Internet not only to reduce its own carbon footprint but also to utilize information and communication technology (ICT)-enabled emissions abatement potential to reduce emissions in various other sectors across the economy, such as, power, renewable energy especially in solar and wind energy, agriculture, transport and service.

  2. Impact of nitrogen fertilization on soil–Atmosphere greenhouse gas exchanges in eucalypt plantations with different soil characteristics in southern China

    PubMed Central

    Zhang, Kai; Zheng, Hua; Chen, Falin; Li, Ruida; Yang, Miao; Ouyang, Zhiyun; Lan, Jun; Xiang, Xuewu

    2017-01-01

    Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We conducted a two-year N fertilization experiment (control [CK], low N [LN], middle N [MN] and high N [HN] fertilization) in two eucalypt plantations with different soil characteristics (higher and lower soil organic carbon sites [HSOC and LSOC]) in Guangxi, China, and assessed soil–atmosphere greenhouse gas exchanges. The annual mean fluxes of soil CO2, CH4, and N2O were separately 153–266 mg m-2 h-1, -55 –-40 μg m-2 h-1, and 11–95 μg m-2 h-1, with CO2 and N2O emissions showing significant seasonal variations. N fertilization significantly increased soil CO2 and N2O emissions and decreased CH4 uptake at both sites. There were significant interactions of N fertilization and SOC level on soil CO2 and N2O emissions. At the LSOC site, the annual mean flux of soil CO2 emission was only significantly higher than the CK treatment in the HN treatment, but, at the HSOC site, the annual mean flux of soil CO2 emission was significantly higher for both the LN (or MN) and HN treatments in comparison to the CK treatment. Under the CK and LN treatments, the annual mean flux of N2O emission was not significantly different between HSOC and LSOC sites, but under the HN treatment, it was significantly higher in the HSOC site than in the LSOC site. Correlation analysis showed that changes in soil CO2 and N2O emissions were significantly related to soil dissolved organic carbon, ammonia, nitrate and pH. Our results suggested significant interactions of N fertilization and soil characteristics existed in soil–atmosphere greenhouse gas exchanges, which should be considered in assessing greenhouse gas budgets and scientific fertilization strategies in eucalypt plantations. PMID:28192496

  3. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    PubMed Central

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  4. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua.

    PubMed

    Hu, Marian Y; Michael, Katharina; Kreiss, Cornelia M; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid-base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na(+)/K(+)-ATPase (NKA), Na(+)/H(+)-exchanger 3 (NHE3), Na(+)/[Formula: see text] cotransporter (NBC1), pendrin-like Cl(-)/[Formula: see text] exchanger (SLC26a6), V-type H(+)-ATPase subunit a (VHA), and Cl(-) channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal [Formula: see text] secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood [Formula: see text] levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  5. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    PubMed

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO 2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO 2 levels (390 μL L -1 and 1000 μL L -1 ), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO 2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO 2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO 2 , P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.

    PubMed

    Mulat, Daniel Girma; Mosbæk, Freya; Ward, Alastair James; Polag, Daniela; Greule, Markus; Keppler, Frank; Nielsen, Jeppe Lund; Feilberg, Anders

    2017-10-01

    Biological reduction of CO 2 into CH 4 by exogenous addition of H 2 is a promising technology for upgrading biogas into higher CH 4 content. The aim of this work was to study the feasibility of exogenous H 2 addition for an in situ biogas upgrading through biological conversion of the biogas CO 2 into CH 4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH 4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H 2 into the headspace resulted in a completely consumption of CO 2 and a concomitant increase in CH 4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH 4 content. Excess H 2 was also supplied to evaluate its effect on overall process performance. The results show that excess H 2 addition resulted in accumulation of H 2 , depletion of CO 2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H 2 supply led to an increase in dissolved H 2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO 2 and H 2 . The inhibition was a temporary effect and acetate degradation resumed when the excess H 2 was removed as well as in the presence of stoichiometric amount of H 2 and CO 2 . This inhibition mechanism underlines the importance of carefully regulating the H 2 addition rate and gas retention time to the CO 2 production rate, H 2 -uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH 4 content without the accumulation of acetate and other VFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats.

    PubMed

    Orem, J; Lovering, A T; Dunin-Barkowski, W; Vidruk, E H

    2000-09-01

    A putative endogenous excitatory drive to the respiratory system in rapid eye movement (REM) sleep may explain many characteristics of breathing in that state, e.g. its irregularity and variable ventilatory responses to chemical stimuli. This drive is hypothetical, and determinations of its existence and character are complicated by control of the respiratory system by the oscillator and its feedback mechanisms. In the present study, endogenous drive was studied during apnoea caused by mechanical hyperventilation. We reasoned that if there was a REM-dependent drive to the respiratory system, then respiratory activity should emerge out of the background apnoea as a manifestation of the drive. Diaphragmatic muscle or medullary respiratory neuronal activity was studied in five intact, unanaesthetized adult cats who were either mechanically hyperventilated or breathed spontaneously in more than 100 REM sleep periods. Diaphragmatic activity emerged out of a background apnoea caused by mechanical hyperventilation an average of 34 s after the onset of REM sleep. Emergent activity occurred in 60 % of 10 s epochs in REM sleep and the amount of activity per unit time averaged approximately 40 % of eupnoeic activity. The activity occurred in episodes and was poorly related to pontogeniculo-occipital waves. At low CO2 levels, this activity was non-rhythmic. At higher CO2 levels (less than 0.5 % below eupnoeic end-tidal percentage CO2 levels in non-REM (NREM) sleep), activity became rhythmic. Medullary respiratory neurons were recorded in one of the five animals. Nineteen of twenty-seven medullary respiratory neurons were excited in REM sleep during apnoea. Excited neurons included inspiratory, expiratory and phase-spanning neurons. Excitation began about 43 s after the onset of REM sleep. Activity increased from an average of 6 impulses s-1 in NREM sleep to 15.5 impulses s-1 in REM sleep. Neuronal activity was non-rhythmic at low CO2 levels and became rhythmic when levels were less than 0.5 % below eupnoeic end-tidal levels in NREM sleep. The level of CO2 at which rhythmic neuronal activity developed corresponded to eupnoeic end-tidal CO2 levels in REM sleep. These results demonstrate an endogenous excitatory drive to the respiratory system in REM sleep and account for rapid and irregular breathing and the lower set-point to CO2 in that state.

  8. Electronic Structure, Phonon Dynamical Properties, and CO 2 Capture Capability of Na 2 - x M x Zr O 3 ( M = Li ,K): Density-Functional Calculations and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng

    2015-04-22

    The electronic structural and phonon properties of Na 2-αM αZrO 3 (M ¼ Li,K, α = ¼ 0.0,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO 2 absorption and desorption in these materials are also analyzed. With increasing doping level α, the binding energies of Na 2-αLi αZrO 3 are increased while the binding energies of Na 2-α K αZrO 3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties.more » The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO 2 pressure, and the temperature of the CO 2 capture reactions by Na 2-αM αZrO 3, and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na 2-αM αZrO 3 have lower turnover temperatures (T t) and higher CO 2 capture capacities, compared to pure Na 2ZrO 3. The Li-doped systems have a larger T t decrease than the K-doped systems. When increasing the Li-doping level α, the T t of the corresponding mixture Na 2-αLi αZrO 3 decreases further to a low-temperature range. However, in the case of K-doped systems Na 2-αK αZrO 3, although doping K into Na 2ZrO 3 initially shifts its T t to lower temperatures, further increases of the K-doping level α causes T t to increase. Therefore, doping Li into Na 2ZrO 3 has a larger influence on its CO 2 capture performance than the K-doped Na 2ZrO 3. Compared with pure solidsM 2ZrO 3, after doping with other elements, these doped systems’ CO 2 capture performances are improved.« less

  9. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach

    PubMed Central

    Taucher, Jan; Bach, Lennart T.; Achterberg, Eric P.; Algueró-Muñiz, María; Bellworthy, Jessica; Czerny, Jan; Esposito, Mario; Haunost, Mathias; Hellemann, Dana; Ludwig, Andrea; Yong, Jaw C.; Zark, Maren; Riebesell, Ulf; Anderson, Leif G.

    2018-01-01

    Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web. PMID:29799856

  10. Climate change reverses the competitive balance of ash and beech seedlings under simulated forest conditions.

    PubMed

    Saxe, H; Kerstiens, G

    2005-07-01

    This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change.

  11. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH.

    PubMed

    Caballero, Francisco; Fernández, Anna; De Lacy, Antonio M; Fernández-Checa, Jose C; Caballería, Juan; García-Ruiz, Carmen

    2009-04-01

    Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains unknown. Due to the emerging role of free cholesterol (FC) in NAFLD, our aim was to examine the correlation between FC accumulation in patients with NAFLD and the expression of enzymes that regulate cholesterol homeostasis. Filipin staining, indicative of FC accumulation, and real-time PCR analyses were performed in 31 NAFLD patients and in seven controls. All NASH patients (n=14) and 4 out of 17 patients with steatosis exhibited filipin staining compared to controls (0 out of 7 subjects with normal liver histology and BMI). Sterol regulatory element-binding protein-2 (SREBP-2) mRNA levels were 7- and 3-fold higher in NASH and steatosis patients, respectively, compared to controls. Since hydroxymethylglutaryl-CoA (HMG-CoA) reductase is the key enzyme in cholesterol synthesis and transcriptionally controlled by SREBP-2 we measured its mRNA levels, being 3- to 4-fold higher in NAFLD compared to controls, without any difference between NASH and steatosis patients. Fatty acid synthase (FAS) and SREBP-1c expression were not significantly induced in NAFLD, while ATP-binding cassette sub-family G member 1 (ABCG1), a transporter involved in cholesterol egress, and acyl-CoA-cholesterol acyltransferase mRNA levels were modestly increased (1.5- to 2.5-fold, p<0.05), regardless of fibrosis. Interestingly, mRNA levels of steroidogenic acute regulatory protein (StAR), a mitochondrial-cholesterol transporting polypeptide, increased 7- and 15-fold in steatosis and NASH patients, respectively, compared to controls. FC increases in NASH and correlates with SREBP-2 induction. Moreover, StAR overexpression in NASH suggests that mitochondrial FC may be a player in disease progression and a novel target for intervention.

  12. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.

    PubMed

    Way, Danielle A; Ghirardo, Andrea; Kanawati, Basem; Esperschütz, Jürgen; Monson, Russell K; Jackson, Robert B; Schmitt-Kopplin, Philippe; Schnitzler, Jörg-Peter

    2013-10-01

    Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem.

    PubMed

    Wang, Minjuan; Xie, Beizhen; Fu, Yuming; Dong, Chen; Hui, Liu; Guanghui, Liu; Liu, Hong

    2015-12-01

    Although terrestrial CO2 concentrations [CO2] are not expected to reach 1000 μmol mol(-1) (or ppm) for many decades, CO2 levels in closed systems such as growth chambers and greenhouses can easily exceed this concentration. CO2 levels in life support systems (LSS) in space can exceed 10,000 ppm (1 %). In order to understand how photosynthesis in C4 plants may respond to elevated CO2, it is necessary to determine if leaves of closed artificial ecosystem grown plants have a fully developed C4 photosynthetic apparatus, and whether or not photosynthesis in these leaves is more responsive to elevated [CO2] than leaves of C3 plants. To address this issue, we evaluated the response of gas exchange, water use efficiency, and photosynthetic efficiency of PSII by soybean (Glycine max (L.) Merr., 'Heihe35') of a typical C3 plant and maize (Zea mays L., 'Susheng') of C4 plant under four CO2 concentrations (500, 1000, 3000, and 5000 ppm), which were grown under controlled environmental conditions of Lunar Palace 1. The results showed that photosynthetic pigment by the C3 plants of soybean was more sensitive to elevated [CO2] below 3000 ppm than the C4 plants of maize. Elevated [CO2] to 1000 ppm induced a higher initial photosynthetic rate, while super-elevated [CO2] appeared to negate such initial growth promotion for C3 plants. The C4 plant had the highest ETR, φPSII, and qP under 500-3000 ppm [CO2], but then decreased substantially at 5000 ppm [CO2] for both species. Therefore, photosynthetic down-regulation and a decrease in photosynthetic electron transport occurred by both species in response to super-elevated [CO2] at 3000 and 5000 ppm. Accordingly, plants can be selected for and adapt to the efficient use of elevated CO2 concentration in LSS.

  14. What Are Normal Metal Ion Levels After Total Hip Arthroplasty? A Serologic Analysis of Four Bearing Surfaces.

    PubMed

    Barlow, Brian T; Ortiz, Philippe A; Boles, John W; Lee, Yuo-Yu; Padgett, Douglas E; Westrich, Geoffrey H

    2017-05-01

    The recent experiences with adverse local tissue reactions have highlighted the need to establish what are normal serum levels of cobalt (Co), chromium (Cr), and titanium (Ti) after hip arthroplasty. Serum Co, Cr, and Ti levels were measured in 80 nonconsecutive patients with well-functioning unilateral total hip arthroplasty and compared among 4 bearing surfaces: ceramic-on-ceramic (CoC); ceramic-on-polyethylene (CoP); metal-on-polyethylene (MoP), and dual mobility (DM). The preoperative and most recent University of California, Los Angeles (UCLA) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared among the different bearing surfaces. No significant difference was found among serum Co and Cr levels between the 4 bearing surface groups (P = .0609 and P = .1577). Secondary analysis comparing metal and ceramic femoral heads demonstrated that the metal group (MoP, modular dual mobility (Stryker Orthopedics, Mahwah, NJ) [metal]) had significant higher serum Co levels compared with the ceramic group (CoC, CoP, MDM [ceramic]) (1.05 mg/L ± 1.25 vs 0.59 mg/L ± 0.24; P = .0411). Spearman coefficient identified no correlation between metal ion levels and patient-reported outcome scores. No serum metal ion level differences were found among well-functioning total hip arthroplasty with modern bearing couples. Significantly higher serum Co levels were seen when comparing metal vs ceramic femoral heads in this study and warrants further investigation. Metal ion levels did not correlate with patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Detection of carboxyhemoglobin in patients with hepatic encephalopathy due to hepatitis B virus-related cirrhosis.

    PubMed

    Sun, Xiao-yu; Duan, Zhi-jun; Li, Yan-lian; Chang, Qing-shan

    2012-11-01

    The heme oxygenase/carbon monoxide (HO/CO) system plays an important role in the development of hepatic fibrosis. The level of the HO/CO can be directly obtained by determining the carboxyhemoglobin (COHb) level. The aims of this study were to reveal the significance of COHb in patients with hepatitis B virus-related cirrhosis (HBC) complicated by hepatic encephalopathy (HE), and to further investigate the influence of the HO/CO pathway on the end-stage cirrhosis, hoping to find a reliable indicator to evaluate the course of HBC. According to the diagnostic criteria, 63 HBC inpatients with HE were enrolled in group H. Patients regaining awareness with current therapies were categorized into group P-H. Comparisons were made with a control group (group N) consisting of 20 health volunteers. The levels of COHb, partial pressure of oxygen (PaO2) and oxygen saturation (SaO2) were determined by arterial blood gas analysis method. The incidences of hepatorenal syndrome (HRS), upper gastrointestinal bleeding, esophagogastric varices and spontaneous bacterial peritonitis (SBP) in group H were recorded. COHb levels in different groups were compared, and the correlations of COHb levels with HE grades (I, II, III, and IV), PaO2, SaO2 and hypoxemia were analyzed. The COHb level in group P-H ((1.672 ± 0.761)%) was significantly higher than that in group N ((0.983 ± 0.231)%) (P < 0.01), and the level in group H ((2.102 ± 1.021)%) was significantly higher than groups P-H and N (P < 0.01). A positive correlation was observed between the COHb concentration and the grade of HE (r(s) = 0.357, P = 0.004). There were no significant differences of COHb levels between HE patients with and without complications such as esophagogastric varices ((2.302 ± 1.072)% vs. (1.802 ± 1.041)%, P > 0.05) or the occurrence of SBP ((2.960 ± 0.561)% vs. (2.030 ± 1.021)%, P > 0.05). Compared with HE patients with HRS, the level of COHb was significantly higher in HE patients without HRS ((2.502 ± 1.073)% vs. (1.981 ± 1.020)%, P = 0.029). The COHb level had a negative correlation with PaO2 (r = -0.335, P = 0.007) while no statistically significant relationship was found with SaO2 (r = -0.071, P > 0.05). However, when the above two parameters met the diagnostic criteria of hypoxemia, the COHb concentration increased ((2.621 ± 0.880)% vs. (1.910 ± 0.931)%, P = 0.011). COHb is a potential candidate to estimate the severity and therapeutic effect of HE. The levels of COHb may be tissue-specific in cirrhotic patients with different complications.

  16. Predation of freshwater fish in environments with elevated carbon dioxide

    USGS Publications Warehouse

    Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.

    2017-01-01

    Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.

  17. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations.

    PubMed

    Moradshahi, A; Vines, H M; Black, C C

    1977-02-01

    The effects of temperature, O(2), and CO(2) on titratable acid content and on CO(2) exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO(2)-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO(2) uptake in air and slightly increased the total CO(2) released into CO(2)-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol(-1), but at lower temperatures the activation energy was much greater.Increasing O(2) or decreasing the CO(2) concentration decreased the total CO(2) fixation in air, whereas the total CO(2) released in CO(2)-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO(2)-free air. The total acid content at 30 C remained constant in 2% O(2) irrespective of CO(2) concentration. The total acid content decreased in 21 and 50% O(2) as the CO(2) increased from 0 to 300, and 540 mul/l of CO(2). The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O(2) suggests that light deacidification is dependent upon respiration and that higher O(2) concentrations are required to saturate deacidification.

  18. Effects of bezafibrate and of 2 HMG-CoA reductase inhibitors on lipoprotein (a) level in hypercholesterolemic patients.

    PubMed

    Branchi, A; Rovellini, A; Fiorenza, A M; Sommariva, D

    1995-06-01

    Lp(a) level is relatively stable in each individual and is mainly under genetic control. Attempts made to lower Lp(a) with pharmacological means gave conflicting results. In order to further evaluate the effect of hypocholesterolemic drugs on Lp(a) level, 66 patients with primary hypercholesterolemia were selected. The vast majority of the patients had Lp(a) concentration at the low end of the range of distribution, 7 had undetectable Lp(a) levels and only 2 had Lp(a) higher than 30 mg/dl. No relationship was found between Lp(a) level and serum and lipoprotein lipids. In 12 patients serum cholesterol was well controlled by diet alone and the patients continued the diet for up to 8 months. The other patients were randomly subdivided into 3 groups of therapy. The first group received slow release bezafibrate 400 mg once a day, the second one pravastatin 20 mg once a day and the third one simvastatin 10-40 mg once a day. Drug therapy lasted for 8 months. At the end of the period, 22 of 29 patients treated with the 2 HMG-CoA reductase inhibitors had Lp(a) higher than baseline. The difference was statistically significant in both groups of patients. No significant change in Lp(a) was observed in diet and in bezafibrate group. Serum and LDL cholesterol significantly decreased in all the 3 drug groups. The increase in Lp(a) after the 2 HMG-CoA reductase was small enough to have negligible effects on cardiovascular risk, but raises the problem of the role of LDL receptor in the catabolism of Lp(a).

  19. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  20. Young People's Burden: Requirement of Negative CO2 Emissions

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Von Schuckmann, Karina; Beerling, David J.; Cao, Junji; Marcott, Shaun; Masson-Delmotte, Valerie; Prather, Michael J.; Rohling, Eelco J.; hide

    2017-01-01

    Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1 C relative to the 1880 - 1920 mean and annual 2016 global temperature was almost +1.3 C. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as it was during the prior (Eemian) interglacial period, when sea level reached 6 - 9 m higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying that more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict, but is dependent on the magnitude of warming. Targets for limiting global warming thus, at minimum, should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets now require "negative emissions", i.e., extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices, including reforestation and steps to improve soil fertility and increase its carbon content, may provide much of the necessary CO2 extraction. In that case, the magnitude and duration of global temperature excursion above the natural range of the current interglacial (Holocene) could be limited and irreversible climate impacts could be minimized. In contrast, continued high fossil fuel emissions today place a burden on young people to undertake massive technological CO2 extraction if they are to limit climate change and its consequences. Proposed methods of extraction such as bioenergy with carbon capture and storage (BECCS) or air capture of CO2 have minimal estimated costs of USD 89 - 535 trillion this century and also have large risks and uncertain feasibility. Continued high fossil fuel emissions unarguably sentences young people to either a massive, implausible cleanup or growing deleterious climate impacts or both.

  1. Young people's burden: requirement of negative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; von Schuckmann, Karina; Beerling, David J.; Cao, Junji; Marcott, Shaun; Masson-Delmotte, Valerie; Prather, Michael J.; Rohling, Eelco J.; Shakun, Jeremy; Smith, Pete; Lacis, Andrew; Russell, Gary; Ruedy, Reto

    2017-07-01

    Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1 °C relative to the 1880-1920 mean and annual 2016 global temperature was almost +1.3 °C. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as it was during the prior (Eemian) interglacial period, when sea level reached 6-9 m higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying that more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict, but is dependent on the magnitude of warming. Targets for limiting global warming thus, at minimum, should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets now require negative emissions, i.e., extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices, including reforestation and steps to improve soil fertility and increase its carbon content, may provide much of the necessary CO2 extraction. In that case, the magnitude and duration of global temperature excursion above the natural range of the current interglacial (Holocene) could be limited and irreversible climate impacts could be minimized. In contrast, continued high fossil fuel emissions today place a burden on young people to undertake massive technological CO2 extraction if they are to limit climate change and its consequences. Proposed methods of extraction such as bioenergy with carbon capture and storage (BECCS) or air capture of CO2 have minimal estimated costs of USD 89-535 trillion this century and also have large risks and uncertain feasibility. Continued high fossil fuel emissions unarguably sentences young people to either a massive, implausible cleanup or growing deleterious climate impacts or both.

  2. Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions.

    PubMed

    Chitarra, Walter; Siciliano, Ilenia; Ferrocino, Ilario; Gullino, Maria Lodovica; Garibaldi, Angelo

    2015-01-01

    The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400-450 ppm CO2, 18-22°C; 2) 800-850 ppm CO2, 18-22°C; 3) 400-450 ppm CO2, 22-26°C, 4) 800-850 ppm CO2, 22-26°C, 5) 400-450 ppm CO2, 26-30°C; 6) 800-850 ppm CO2, 26-30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens.

  3. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. [Pisolithus tinctorius, Pinus virginiana Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; O'Neill, E.G.; Ells, J.M.

    One-year-old Virgina pine (Pinus virginiana Mill.) seedlings with native or Pisolithus tinctorius mycorrhizal associations were grown in pots with soil low in organic matter and in cation exchange capacity and were exposed to one of five atmospheric CO/sub 2/ levels in the range of 340 to 940 ..mu..L/L in open-top field chambers. The mean dry weight of the seedlings increased from 4.4 to 11.0 g/plant during the 122-d exposure period. Significant increases in dry weight and uptake of N, Ca, Al, Fe, Zn, and Sr occurred with CO/sub 2/ enrichment. Greater chemical uptake was associated with greater root weight. Specificmore » absorption rates for chemicals (uptake per gram of root per day) were generally not affected by CO/sub 2/ enrichment. The uptake of P and K was not increased with elevated CO/sub 2/, and these elements showed the greater nutrient-use efficiency (C gain per element uptake). The nutrient-use efficiency for N and Ca was not influenced by atmospheric CO/sub 2/ enrichment. Large increases in Zn uptake at high CO'' suggested an increase in rhizosphere acidification, which may have resulted from the release of protons from the roots, since it was estimated that cation uptake increasingly exceeded anion uptake with CO/sub 2/ enrichment. Potassium, P, and NO/sub 3//sup -/ concentrations in the pot leachate decreased with higher CO/sub 2/ levels, and a similar trend was found for Al and Mg. These results suggest that soil-plant systems may exhibit increased nutrient and chemical retention at elevated atmospheric CO/sub 2/.« less

  4. Comparison of indoor air quality in electrified and un-electrified dwellings in rural South African villages.

    PubMed

    Röllin, H B; Mathee, A; Bruce, N; Levin, J; von Schirnding, Y E R

    2004-06-01

    A feasibility study was undertaken to assess the suitability of South African rural villages due to be electrified, for the purposes of undertaking a large-scale study of the impact of reductions in indoor air pollution on acute lower respiratory infections. As part of the feasibility study, quantitative assessments of indoor air pollution in non-electrified and electrified dwellings were performed. Concurrent measurements were made of levels of respirable particulate matter (RSP-stationary), and carbon monoxide (CO) (personal on children <18 months), as well as a stationary co-located with RSP) over a 24-h period in 52 un-electrified and 53 electrified dwellings. The proportion of dwellings with a detectable 24-h concentration of RSP was significantly higher in un-electrified (48.1%) than electrified dwellings (24.5%) (chi(2) = 6.30 on 1 d.f., P = 0.012). In addition a Kruskal-Wallis test (adjusted for ties) showed that the distribution of RSP differed between un-electrified and electrified areas (Kruskal-Wallis chi(2) = 8.20 on 1 d.f., P = 0.014). In those dwellings where some RSP was detected, the amount was on average higher in the un-electrified areas (mean 162 microg/m(3), median 107 microg/m(3)) than in the electrified areas (mean 77 microg/m(3), median 37.5 microg/m(3)). Stationary (kitchen CO) levels in un-electrified dwellings ranged from 0.36 to 20.95 p.p.m. However, in electrified dwellings, kitchen levels ranged from 0 to 11.8 p.p.m. When mean concentrations of CO were compared between electrified and un-electrified dwellings using a two-sample t-test (on log-transformed data), there was overwhelming evidence (P = 0.0004) that the mean level of log (CO) in the kitchen was higher in the un-electrified areas (1.25 vs. 0.69) and also overwhelming evidence (P < 0.0001) that the mean level of log (CO) on the child was higher in the un-electrified areas (0.83 vs. 0.34). Of importance in terms of both policy and for a potential future large-scale study, is that measurable significant differences in indoor pollutants between electrified and un-electrified dwellings during summer were found in spite of only partial transition to electricity use for cooking in electrified villages. It is estimated that at least two-thirds of all households in the developing world are still primary dependent on biomass fuels and coal. This situation applies to 59% of rural households in South Africa. In the last decade a program of providing electricity to three million homes has been underway in South Africa. Among others this intervention aims to reduce exposure to pollutants from burning biomass fuels and reduce detrimental health effects, especially in young children. This study provides scientific evidence that electrified homes in South African villages have lower levels of air pollution (RSP and CO) relative to their non-electrified counterparts.

  5. Insight to Marine Isotope Stage 13 using Late Pleistocene relaxation models of ice volume and carbon cycle change

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.; Herrero, C.; García-Olivares, A.

    2016-12-01

    The Marine Isotope Stage (MIS) 13 interglacial is unusual in that warm Northern Hemisphere conditions were accompanied by relatively cool Southern Hemisphere conditions and because it was preceded by a mild glaciation (MIS 14) with less ice volume and higher CO2 levels than the two preceding glacial maxima. Here we investigate Late Pleistocene glacial cycles, and MIS 13 in particular, using two relaxation models from García-Olivares & Herrero [2013] that describe the relationships between global ice volume (V), atmospheric CO2 (C) and the extent of the Antarctic ice shelves (A). The two models differ in parameterizing deep ocean stratification as either a function of V and A (model 3τ) or as a function of C and A (model LS). Note that global ice volume, V, is most closely related to Northern hemisphere climate, whereas C and A are most closely related to Antarctic climate. Here we present the results of using a sea level stack [Spratt & Lisiecki, 2016] as the ice volume tuning target instead of benthic δ18O. We find that tuning to the sea level stack dramatically improves the simulation of MIS 13 in the 3τ model. With the sea level stack, 3τ correctly reproduces the weak amplitudes of MIS 13 and 14 and a double peak in CO2 during MIS 13, whereas the LS model does not reproduce these features using either tuning target. The first peak in CO2 follows a minor ice volume decrease at 530 kyr but significantly precedes a second, larger sea level rise at 500 kyr. The later sea level rise coincides with a second benthic δ18O decrease and likely triggered the second CO2 peak. This two-step transition to peak interglacial conditions might be caused by deep ocean stratification and Antarctic ice cover acting out of phase: weakened stratification produced an initial pulse of CO2 from the deep ocean, but because Antarctic warming was unusually weak, the Antarctic ice shelf remained relatively wide and less CO2 than usual was released from the deep ocean. Because ocean stratification in the 3τ model is affected by both hemispheres, hemispheric asymmetry during MIS 13 produced a less stable stratification that allowed for a second CO2 pulse. Thus, the unusual hemispheric asymmetry during MIS 13 allows us to identify the influences of both Northern and Southern hemisphere climate on deep ocean stratification and its role in regulating atmospheric CO2.

  6. Techno-Economic Analysis of a Secondary Air Stripper Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, J.R.; Nikolic, Heather; Thompson, Jesse

    We present results of an initial techno-economic assessment on a post-combustion CO2 capture process developed by the Center for Applied Energy Research (CAER) at the University of Kentucky using Mitsubishi Hitachi Power Systems’ H3-1 aqueous amine solvent. The analysis is based on data collected at a 0.7 MWe pilot unit combined with laboratory data and process simulations. The process adds a secondary air stripper to a conventional solvent process, which increases the cyclic loading of the solvent in two ways. First, air strips additional CO2 from the solvent downstream of the conventional steam-heated thermal stripper. This extra stripping of CO2more » reduces the lean loading entering the absorber. Second, the CO2-enriched air is then sent to the boiler for use as secondary air. This recycling of CO2 results in a higher concentration of CO2 in the flue gas sent to the absorber, and hence a higher rich loading of the solvent exiting the absorber. A process model was incorporated into a full-scale supercritical pulverized coal power plant model to determine the plant performance and heat and mass balances. The performance and heat and mass balance data were used to size equipment and develop cost estimates for capital and operating costs. Lifecycle costs were considered through a levelized cost of electricity (LCOE) assessment based on the capital cost estimate and modeled performance. The results of the simulations show that the CAER process yields a regeneration energy of 3.12 GJ/t CO2, a $53.05/t CO2 capture cost, and LCOE of $174.59/MWh. This compares to the U.S. Department of Energy’s projected costs (Case 10) of regeneration energy of 3.58 GJ/t CO2 , a $61.31/t CO2 capture cost, and LCOE of $189.59/MWh. For H3-1, the CAER process results in a regeneration energy of 2.62 GJ/tCO2 with a stripper pressure of 5.2 bar, a capture cost of $46.93/t CO2, and an LCOE of $164.33/MWh.« less

  7. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO₂.

    PubMed

    Rivero-Calle, Sara; Gnanadesikan, Anand; Del Castillo, Carlos E; Balch, William M; Guikema, Seth D

    2015-12-18

    As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling. Copyright © 2015, American Association for the Advancement of Science.

  8. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-12-01

    While a majority of global climate models project drier and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC (Interaction Soil-Biosphere-Atmosphere Carbon Cycle) land surface model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent throughfall exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different water stress functions (WSFs) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentrations, the increased water-use efficiency (WUE) mitigates the sensitivity of ISBACC to drought. While one of the proposed WSF formulations improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  9. Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)

    NASA Astrophysics Data System (ADS)

    Mu, J.; Jin, F.; Wang, J.; Zheng, N.; Cong, Y.

    2015-01-01

    The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.

  10. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification.

    PubMed

    Pansch, Christian; Schaub, Iris; Havenhand, Jonathan; Wahl, Martin

    2014-03-01

    Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2 , regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2 , irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus. © 2013 John Wiley & Sons Ltd.

  11. Synergies of wind power and electrified space heating: case study for Beijing.

    PubMed

    Chen, Xinyu; Lu, Xi; McElroy, Michael B; Nielsen, Chris P; Kang, Chongqing

    2014-01-01

    Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

  12. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    NASA Astrophysics Data System (ADS)

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-03-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3-). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  13. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.

    PubMed

    Ow, Y X; Vogel, N; Collier, C J; Holtum, J A M; Flores, F; Uthicke, S

    2016-03-15

    Seagrasses are often considered "winners" of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3(-)). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  14. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    PubMed Central

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-01-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3−). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions. PMID:26976685

  15. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic microcosms inoculated with substrates (80:20 H2/CO2, 30 mM acetate or methanol) were prepared from replicate samples of D2 and D3 and monitored for CH4 and CO2 production during incubation at either 4° or 22o C for 60-80 days. Both CH4 and CO2 production were highest at 22o C and using the CO2/H2 substrate. 16S pyrosequencing analyses of the archaeal diversity indicated Thermoproteales dominated in all microcosms (80-90% of reads) while methanogens belonging to Methanobacteriaceae were also found (0.6 to 11.5%), with the highest amount in the D3 amended with methanol at 22o C. This sample had the highest CH4 production (2.8 nmol g-1 day-1) as well as the only appearance of Methanosarcinaceae (1.4%). Twelve microcosms unresponsive to amendments were transferred to aerobic conditions with a subsequent increase in respiration rate up to 0.4 mmol CO2 g-1 day-1. The current study indicates that increase in temperature, changes in oxygen and nutrition availability enhances metabolic activity in permafrost microbial communities.

  16. Determinants of CO{sub 2} emissions in ASEAN countries using energy and mining indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah

    Carbon dioxide (CO{sub 2}) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO{sub 2} in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO{sub 2} level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuelmore » that contribute to CO{sub 2} emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO{sub 2} emissions.« less

  17. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

    NASA Astrophysics Data System (ADS)

    Garilli, Vittorio; Rodolfo-Metalpa, Riccardo; Scuderi, Danilo; Brusca, Lorenzo; Parrinello, Daniela; Rastrick, Samuel P. S.; Foggo, Andy; Twitchett, Richard J.; Hall-Spencer, Jason M.; Milazzo, Marco

    2015-07-01

    Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.

  18. Personal PM2.5 and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Kang, Shichang; Chen, Pengfei; Zhang, Qianggong; Guo, Junming; Mi, Jue; Basang, Puchi; Luosang, Quzhen; Smith, Kirk R.

    2012-11-01

    Yak dung is the primary source of energy for cooking and heating of nomadic Tibetan herders. Personal PM2.5 and indoor CO concentrations and time-activity patterns were investigated in nomadic tents with open stoves and locally available chimney stoves. Personal PM2.5 monitoring using a light-scattering datalogger was performed with women in five tents with open fires and four with chimney stoves over 3 days. Meanwhile, indoor CO variation was also measured. Results showed that 24 h average concentrations of PM2.5 and CO in the tents with open stoves were 1.42 mg m-3 (n = 5, SD = 3.26) and 6.69 mg m-3 (n = 4; SD = 9.11), respectively, which were significantly higher than the tents with chimney stoves having 0.14 mg m-3 (n = 4; SD = 0.65) and 0.12 mg m-3 (n = 4; SD = 1.01) of PM2.5 and CO, respectively. Although chimney stoves significantly reduced indoor air pollution, the concentration of PM2.5 was still higher than annual WHO Air Quality Guideline (0.035 mg m-3). Diurnal variability of PM2.5 and CO was similar and had multiple peaks. This phenomenon was closely connected with behaviors of the participants within the tents. Average 1-h peak concentrations of PM2.5 and CO exceed 24-h mean values by a factor of 5.0 and 4.3, respectively. Significant correlation between hourly PM2.5 and CO concentrations was revealed. Generally, women and children spent 7 h longer than other family members within the tent each day and were thus exposed to higher levels of pollutants. Secondhand tobacco smoke and burning of yak oil lamps are also present in many households, but are much smaller contributors to the exposures. Therefore, yak dung combustion contributes substantially to the personal exposure of householders in this setting even during the warmest time of year in this setting and that although exposures are greatly reduced with chimney stoves; they are still high by comparison to national standards or WHO guidelines.

  19. Solvent-driven reductive activation of carbon dioxide by gold anions.

    PubMed

    Knurr, Benjamin J; Weber, J Mathias

    2012-11-14

    Catalytic activation and electrochemical reduction of CO(2) for the formation of chemically usable feedstock and fuel are central goals for establishing a carbon neutral fuel cycle. The role of solvent molecules in catalytic processes is little understood, although solvent-solute interactions can strongly influence activated intermediate species. We use vibrational spectroscopy of mass-selected Au(CO(2))(n)(-) cluster ions to probe the solvation of AuCO(2)(-) as a model for a reactive intermediate in the reductive activation of a CO(2) ligand by a single-atom catalyst. For the first few solvent molecules, solvation of the complex preferentially occurs at the CO(2) moiety, enhancing reductive activation through polarization of the excess charge onto the partially reduced ligand. At higher levels of solvation, direct interaction of additional solvent molecules with the Au atom diminishes reduction. The results show how the solvation environment can enhance or diminish the effects of a catalyst, offering design criteria for single-atom catalyst engineering.

  20. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    NASA Astrophysics Data System (ADS)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  1. Contribution of solid fuel, gas combustion or tobacco smoke to indoor air pollutant concentrations in Irish and Scottish homes

    PubMed Central

    Semple, S; Garden, C; Coggins, M; Galea, KS; Whelan, P; Cowie, H; Sánchez-Jimenéz, A; Thorne, PS; Hurley, JF; Ayres, JG

    2012-01-01

    There are limited data describing pollutant levels inside homes that burn solid fuel within developed country settings with most studies describing test conditions or the effect of interventions. This study recruited homes in Ireland and Scotland where open combustion processes take place. Open combustion was classified as coal, peat or wood fuel burning, use of a gas cooker or stove, or where there is at least one resident smoker. 24-hour data on airborne concentrations of particulate matter less than 2.5 microns in size (PM2.5), carbon monoxide (CO), endotoxin in inhalable dust and carbon dioxide (CO2), together with 2–3 week averaged concentrations of nitrogen dioxide (NO2) were collected in 100 houses during the winter and spring of 2009–2010. The geometric mean of the 24-hour time-weighted-average (TWA) PM2.5 concentration was highest in homes with resident smokers (99μg/m3 – much higher than the WHO 24-hour guidance value of 25 μg/m3. Lower geometric mean 24-hour TWA levels were found in homes that burned coal (7 μg/m3) or wood (6 μg/m3) and in homes with gas cookers (7 μg/m3). In peat-burning homes the average 24-hourPM2.5 level recorded was 11 μg/m3. Airborne endotoxin, CO, CO2 and NO2 concentrations were generally within indoor air quality guidance levels. PMID:22007695

  2. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares)

    NASA Astrophysics Data System (ADS)

    Bromhead, Don; Scholey, Vernon; Nicol, Simon; Margulies, Daniel; Wexler, Jeanne; Stein, Maria; Hoyle, Simon; Lennert-Cody, Cleridy; Williamson, Jane; Havenhand, Jonathan; Ilyina, Tatiana; Lehodey, Patrick

    2015-03-01

    Anthropogenic carbon dioxide (CO2) emissions are resulting in increasing absorption of CO2 by the earth's oceans, which has led to a decline in ocean pH, a process known as ocean acidification (OA). Evidence suggests that OA may have the potential to affect the distribution and population dynamics of many marine organisms. Early life history processes (e.g. fertilization) and stages (eggs, larvae, juveniles) may be relatively more vulnerable to potential OA impacts, with implications for recruitment in marine populations. The potential impact of OA upon tuna populations has not been investigated, although tuna are key components of pelagic ecosystems and, in the Pacific Ocean, form the basis of one of the largest and most valuable fisheries in the world. This paper reviews current knowledge of potential OA impacts on fish and presents results from a pilot study investigating how OA may affect eggs and larvae of yellowfin tuna, Thunnus albacares. Two separate trials were conducted to test the impact of pCO2 on yellowfin egg stage duration, larval growth and survival. The pCO2 levels tested ranged from present day ( 400 μatm) to levels predicted to occur in some areas of the spawning habitat within the next 100 years (<2500 μatm) to 300 years ( <5000 μatm) to much more extreme levels ( 10,000 μatm). In trial 1, there was evidence for significantly reduced larval survival (at mean pCO2 levels≥4730 μatm) and growth (at mean pCO2 levels≥2108 μatm), while egg hatch time was increased at extreme pCO2 levels≥10,000 μatm (*intermediate levels were not tested). In trial 2, egg hatch times were increased at mean pCO2 levels≥1573 μatm, but growth was only impacted at higher pCO2 (≥8800 μatm) and there was no relationship with survival. Unstable ambient conditions during trial 2 are likely to have contributed to the difference in results between trials. Despite the technical challenges with these experiments, there is a need for future empirical work which can in turn support modeling-based approaches to assess how OA will affect the ecologically and economically important tropical tuna resources.

  3. X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Bujakiewicz-Koronska, R.; Vasylechko, L.; Markiewicz, E.; Nalecz, D. M.; Kalvane, A.

    2017-01-01

    The crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 - x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 - x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskite structure. This effect almost vanished in the (1 - x)BaTiO3 + xCo2O3 samples with nominal Co content higher than ∼1 wt.%, in which precipitation of parasitic Co-containing phases CoO and Co2TiO4 has been observed. Based on the results, the solubility limit of Co in Ti sub-lattice in the (1 - x)BaTiO3 + xCo2O3 series is estimated as x = 0.75 wt.%.

  4. Capture-ready power plants - options, technologies and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, M.C.

    2006-06-15

    A plant can be considered to be capture-ready if at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The first part of the thesis outlines the two major designs that are being considered for construction in the near-term - pulverized coal (PC) and integrated gasification/combined cycle (IGCC). It details the steps that are necessary to retrofit each of these plants for CO{sub 2} capture and sequestration and assesses the steps that can be taken to reduce the costs and output de-rating of the plant after a retrofit. The second part of the thesis evaluates the lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO{sub 2} capture. Three scenarios are evaluated - a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. The results of this thesis show that a baseline PC plant is the most economical choice under low CO{sub 2} tax rates, and IGCC plants are preferable at higher tax rates. The third part of this thesis evaluates the concept of CO{sub 2} 'lock-in'. CO{sub 2} lock-in occurs when a newly built plant is so prohibitively expensive to retrofit for CO{sub 2} capture that it will never be retrofitted for capture, and offers no economic opportunity to reduce the CO{sub 2} emissions from the plant, besides shutting down or rebuilding. The results show that IGCC plants are expected to have lower lifetime CO{sub 2} emissions than a PC plant, given moderate (10-35more » $$/ton CO{sub 2}) initial tax rates. Higher 4 (above $$40) or lower (below $7) initial tax rates do not result in significant differences in lifetime CO{sub 2} emissions from these plants. Little difference is seen in the lifetime CO{sub 2} emissions between the IGCC plants with and without pre-investment for CO{sub 2} capture. 32 refs., 22 figs., 20 tabs., 1 app.« less

  5. Co-rumination via cellphone moderates the association of perceived interpersonal stress and psychosocial well-being in emerging adults.

    PubMed

    Murdock, Karla Klein; Gorman, Sarah; Robbins, Maia

    2015-01-01

    Adolescents' and emerging adults' social interactions increasingly revolve around cellphone use, but little research has investigated the psychological properties of cellphone interactions. The current study explored co-rumination via cellphone; that is, the use of cellphone functions to excessively communicate about problems or negative feelings. Face-to-face co-rumination and co-rumination via cellphone were examined as potential moderators of the association between perceived interpersonal stress and psychosocial well-being (i.e., positive mental health and social burnout) in a sample of 142 college students. Face-to-face co-rumination was not a moderator. However, co-rumination via cellphone was a significant moderator such that higher levels of perceived interpersonal stress were associated with lower levels of well-being only among college students who reported higher levels of co-rumination via cellphone. Co-rumination via cellphone should be further investigated to elucidate its developmental trajectory and mental health correlates. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of submarine atmospheres: effects of carbon monoxide, carbon dioxide and oxygen on general toxicology, neurobehavioral performance, reproduction and development in rats. I. Subacute exposures.

    PubMed

    Hardt, Daniel J; James, R Arden; Gut, Chester P; McInturf, Shawn M; Sweeney, Lisa M; Erickson, Richard P; Gargas, Michael L

    2015-02-01

    The inhalation toxicity of submarine contaminants is of concern to ensure the health of men and women aboard submarines during operational deployments. Due to a lack of adequate prior studies, potential general, neurobehavioral, reproductive and developmental toxicity was evaluated in male and female rats exposed to mixtures of three critical submarine atmospheric components: carbon monoxide (CO) and carbon dioxide (CO2; levels elevated above ambient), and oxygen (O2; levels decreased below ambient). In a 14-day, 23 h/day, whole-body inhalation study of exposure to clean air (0.4 ppm CO, 0.1% CO2 and 20.6% O2), low-dose, mid-dose and high-dose gas mixtures (high dose of 88.4 ppm CO, 2.5% CO2 and 15.0% O2), no adverse effects on survival, body weight or histopathology were observed. Reproductive, developmental and neurobehavioral performance were evaluated after a 28-day exposure in similar atmospheres. No adverse effects on estrus phase, mating, gestation or parturition were observed. No developmental or functional deficits were observed in either exposed parents or offspring related to motor activity, exploratory behavior or higher-level cognitive functions (learning and memory). Only minimal effects were discovered in parent-offspring emotionality tests. While statistically significant increases in hematological parameters were observed in the offspring of exposed parents compared to controls, these parameters remained within normal clinical ranges for blood cells and components and were not considered adverse. In summary, subacute exposures to elevated concentrations of the submarine atmosphere gases did not affect the ability of rats to reproduce and did not appear to have any significant adverse health effects.

  7. Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Dickinson, Gary H; Matoo, Omera B; Bagwe, Rita; Dickinson, Ashley; Beniash, Elia; Sokolova, Inna M

    2013-09-01

    The continuing increase of carbon dioxide (CO2) levels in the atmosphere leads to increases in global temperatures and partial pressure of CO2 (PCO2) in surface waters, causing ocean acidification. These changes are especially pronounced in shallow coastal and estuarine waters and are expected to significantly affect marine calcifiers including bivalves that are ecosystem engineers in estuarine and coastal communities. To elucidate potential effects of higher temperatures and PCO2 on physiology and biomineralization of marine bivalves, we exposed two bivalve species, the eastern oysters Crassostrea virginica and the hard clams Mercenaria mercenaria to different combinations of PCO2 (~400 and 800μatm) and temperatures (22 and 27°C) for 15weeks. Survival, bioenergetic traits (tissue levels of lipids, glycogen, glucose and high energy phosphates) and biomineralization parameters (mechanical properties of the shells and activity of carbonic anhydrase, CA) were determined in clams and oysters under different temperature and PCO2 regimes. Our analysis showed major inter-species differences in shell mechanical traits and bioenergetics parameters. Elevated temperature led to the depletion of tissue energy reserves indicating energy deficiency in both species and resulted in higher mortality in oysters. Interestingly, while elevated PCO2 had a small effect on the physiology and metabolism of both species, it improved survival in oysters. At the same time, a combination of high temperature and elevated PCO2 lead to a significant decrease in shell hardness in both species, suggesting major changes in their biomineralization processes. Overall, these studies show that global climate change and ocean acidification might have complex interactive effects on physiology, metabolism and biomineralization in coastal and estuarine marine bivalves. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2008-10-01

    Effect of different photosynthetic photon flux densities (0, 500, 1000, 1500 and 2000 μmol m(-2)s(-1)), temperatures (20, 25, 30, 35 and 40 °C) and CO2 concentrations (250, 350, 450, 550, 650 and 750 μmol mol(-1)) on gas and water vapour exchange characteristics of Cannabis sativa L. were studied to determine the suitable and efficient environmental conditions for its indoor mass cultivation for pharmaceutical uses. The rate of photosynthesis (PN) and water use efficiency (WUE) of Cannabis sativa increased with photosynthetic photon flux densities (PPFD) at the lower temperatures (20-25 °C). At 30 °C, PN and WUE increased only up to 1500 μmol m(-2)s(-1) PPFD and decreased at higher light levels. The maximum rate of photosynthesis (PN max) was observed at 30 °C and under 1500 μmol m(-2)s(-1) PPFD. The rate of transpiration (E) responded positively to increased PPFD and temperature up to the highest levels tested (2000 μmol m(-2)s(-1) and 40 °C). Similar to E, leaf stomatal conductance (gs) also increased with PPFD irrespective of temperature. However, gs increased with temperature up to 30 °C only. Temperature above 30 °C had an adverse effect on gs in this species. Overall, high temperature and high PPFD showed an adverse effect on PN and WUE. A continuous decrease in intercellular CO2 concentration (Ci) and therefore, in the ratio of intercellular CO2 to ambient CO2 concentration (Ci/Ca) was observed with the increase in temperature and PPFD. However, the decrease was less pronounced at light intensities above 1500 μmol m(-2)s(-1). In view of these results, temperature and light optima for photosynthesis was concluded to be at 25-30 °C and ∼1500 μmol m(-2)s(-1) respectively. Furthermore, plants were also exposed to different concentrations of CO2 (250, 350, 450, 550, 650 and 750 μmol mol(-1)) under optimum PPFD and temperature conditions to assess their photosynthetic response. Rate of photosynthesis, WUE and Ci decreased by 50 %, 53 % and 10 % respectively, and Ci/Ca, E and gs increased by 25 %, 7 % and 3 % respectively when measurements were made at 250 μmol mol-1 as compared to ambient CO2 (350 μmol mol(-1)) level. Elevated CO2 concentration (750 μmol mol(-1)) suppressed E and gs ∼ 29% and 42% respectively, and stimulated PN, WUE and Ci by 50 %, 111 % and 115 % respectively as compared to ambient CO2 concentration. The study reveals that this species can be efficiently cultivated in the range of 25 to 30 °C and ∼1500 μmol m(-2)s(-1) PPFD. Furthermore, higher PN, WUE and nearly constant Ci/Ca ratio under elevated CO2 concentrations in C. sativa, reflects its potential for better survival, growth and productivity in drier and CO2 rich environment.

  9. [Influence of sterilization treatments on continuous carbon-fiber reinforced polyolefin composite].

    PubMed

    Guan, Shi-bing; Hou, Chun-lin; Chen, Ai-min; Zhang, Wei; Wang, Ji-e

    2007-08-21

    To evaluate the influence of sterilization treatment on continuous carbon-fiber reinforced polyolefin composite (CFRP) so as to provide experimental reference for selection of sterilization method for CFRP. Seventy bars of CFRP were divided into 7 equal groups to undergo sterilization by autoclave, 2% glutaraldehyde soaking, 75% alcohol soaking, ethylene oxide sterilization, and Co-60 gamma ray irradiation of the dosages 11 kGy, 25 kGy, and 18 kGy respectively, and another 10 bars were used as blank controls. Then the bars underwent three-point bending test and longitudinal compression test so as to measure the biomechanical changes after sterilization treatment, including the maximum load, ultimate strength, and elastic modulus. Three-point bending test showed that the levels of maximum load of the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 irradiation groups were significantly lower than that of the control group and that Co-60 radiation lowered the level of maximum load dose-dependently; and that the levels of ultimate strength of all the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 groups were significantly lower than that of the control group and that the higher the dosage of Co-60 radiation the lower the level of ultimate strength, however, not dose-dependently. The elastic modulus of the Co-60 25 KGy group was significantly higher than that of the control group, and there was no significant difference in the level of ultimate strength among the other groups. Longitudinal compression test showed that the levels of maximum load and ultimate strength of the 3 Co-60 irradiation groups, autoclave group, and circular ethylene groups were significantly lower than that of the control group, and there was no significant difference in elastic modulus among different groups. During sterilized package of CFRP products produced in quantity autoclave sterilization and Co-60 gamma ray irradiation sterilization should be avoided. Ethylene oxide is proposed as the best sterilization method. If gamma ray irradiation is to be used further technology improvement is necessary.

  10. Monitoring Gaseous CO2 and Ethanol above Champagne Glasses: Flute versus Coupe, and the Role of Temperature

    PubMed Central

    Liger-Belair, Gérard; Bourget, Marielle; Pron, Hervé; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    In champagne tasting, gaseous CO2 and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO2 and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO2 was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO2 visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO2 found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO2 escaping the liquid phase into the form of bubbles. PMID:22347390

  11. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    PubMed

    Liger-Belair, Gérard; Bourget, Marielle; Pron, Hervé; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2) and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2) was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2) visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2) found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2) escaping the liquid phase into the form of bubbles.

  12. Replenishment of fish populations is threatened by ocean acidification

    PubMed Central

    Munday, Philip L.; Dixson, Danielle L.; McCormick, Mark I.; Meekan, Mark; Ferrari, Maud C. O.; Chivers, Douglas P.

    2010-01-01

    There is increasing concern that ocean acidification, caused by the uptake of additional CO2 at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO2 predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO2, with many individuals becoming attracted to the smell of predators. At 850 ppm CO2, the ability to sense predators was completely impaired. Larvae exposed to elevated CO2 were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5–9 times higher mortality from predation than current-day controls, with mortality increasing with CO2 concentration. Our results show that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations. PMID:20615968

  13. Comparative performance of CO2 measuring methods: marine aquaculture recirculation system application

    USGS Publications Warehouse

    Pfeiffer, T.J.; Summerfelt, S.T.; Watten, B.J.

    2011-01-01

    Many methods are available for the measurement of dissolved carbon dioxide in an aqueous environment. Standard titration is the typical field method for measuring dissolved CO2 in aquaculture systems. However, titrimetric determination of dissolved CO2 in marine water aquaculture systems is unsuitable because of the high dissolved solids, silicates, and other dissolved minerals that interfere with the determination. Other methods used to measure dissolved carbon dioxide in an aquaculture water included use of a wetted CO2 probe analyzer, standard nomographic methods, and calculation by direct measurements of the water's pH, temperature, and alkalinity. The determination of dissolved CO2 in saltwater based on partial pressure measurements and non-dispersive infra-red (NDIR) techniques with a CO2 gas analyzer are widely employed for oceanic surveys of surface ocean CO2 flux and are similar to the techniques employed with the head space unit (HSU) in this study. Dissolved carbon dioxide (DC) determination with the HSU using a infra-red gas analyzer (IRGA) was compared with titrimetric, nomographic, calculated, and probe measurements of CO2 in freshwater and in saltwater with a salinity ranging from 5.0 to 30 ppt, and a CO2 range from 8 to 50 mg/L. Differences in CO2 measurements between duplicate HSUs (0.1–0.2 mg/L) were not statistically significant different. The coefficient of variation for the HSU readings averaged 1.85% which was better than the CO2 probe (4.09%) and that for the titrimetric method (5.84%). In all low, medium and high salinity level trials HSU precision was good, averaging 3.39%. Differences existed between comparison testing of the CO2 probe and HSU measurements with the CO2 probe readings, on average, providing DC estimates that were higher than HSU estimates. Differences between HSU and titration based estimates of DC increased with salinity and reached a maximum at 32.2 ppt. These differences were statistically significant (P < 0.05) at all salinity levels greater than 0.3 ppt. Results indicated reliable replicated results from the head space unit with varying salinity and dissolved carbon dioxide concentrations.

  14. A closer look at co-rumination: gender, coping, peer functioning and internalizing/externalizing problems.

    PubMed

    Tompkins, Tanya L; Hockett, Ashlee R; Abraibesh, Nadia; Witt, Jody L

    2011-10-01

    Co-rumination, defined as repetitive, problem-focused talk explains higher levels of friendship quality in youth (Rose, 2002) and increased levels of anxiety/depression in females. Middle adolescents (N = 146) participated in a study of co-rumination, individual coping, externalizing/internalizing problems, and peer functioning. Consistent with past research, girls reported higher levels of co-rumination and internalizing symptoms. Co-rumination was also positively correlated with self-reports, but not teacher reports, of anxiety/depression and aggressive behavior. Both self-reported number of friends and teacher-rated social acceptance were negatively associated with co-rumination. Co-rumination partially accounted for the significant indirect effect of gender on internalizing symptoms. Additionally, co-rumination was associated with internalizing and externalizing symptoms but not individual coping efforts. Finally, co-rumination accounted for a unique amount of variance in internalizing symptoms, controlling for externalizing problems and secondary control coping. Theoretical implications and the importance of including broad domains of adjustment and peer functioning in future investigations of co-rumination are discussed. Copyright © 2011 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  15. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles

    NASA Astrophysics Data System (ADS)

    Retallack, Gregory J.

    2001-05-01

    To understand better the link between atmospheric CO2 concentrations and climate over geological time, records of past CO2 are reconstructed from geochemical proxies. Although these records have provided us with a broad picture of CO2 variation throughout the Phanerozoic eon (the past 544Myr), inconsistencies and gaps remain that still need to be resolved. Here I present a continuous 300-Myr record of stomatal abundance from fossil leaves of four genera of plants that are closely related to the present-day Ginkgo tree. Using the known relationship between leaf stomatal abundance and growing season CO2 concentrations, I reconstruct past atmospheric CO2 concentrations. For the past 300Myr, only two intervals of low CO2 (<1,000p.p.m.v.) are inferred, both of which coincide with known ice ages in Neogene (1-8Myr) and early Permian (275-290Myr) times. But for most of the Mesozoic era (65-250Myr), CO2 levels were high (1,000-2,000p.p.m.v.), with transient excursions to even higher CO2 (>2,000p.p.m.v.) concentrations. These results are consistent with some reconstructions of past CO2 (refs 1, 2) and palaeotemperature records, but suggest that CO2 reconstructions based on carbon isotope proxies may be compromised by episodic outbursts of isotopically light methane. These results support the role of water vapour, methane and CO2 in greenhouse climate warming over the past 300Myr.

  16. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources

    NASA Astrophysics Data System (ADS)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting

    2014-02-01

    Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.

  17. High levels of opioid analgesic co-prescription among methadone maintenance treatment clients in British Columbia, Canada: Results from a population-level retrospective cohort study

    PubMed Central

    Nosyk, Bohdan; Fischer, Benedikt; Sun, Huiying; Marsh, David C.; Kerr, Thomas; Rehm, Juergen T.; Anis, Aslam H.

    2014-01-01

    Background and Objectives The nonmedical use of prescription opioids (PO) has increased dramatically in North America. Special consideration for PO prescription is required for individuals in methadone maintenance treatment (MMT). Our objective is to describe the prevalence and correlates of PO use among British Columbia (BC) MMT clients from 1996-2007. Methods This study was based on a linked, population-level medication dispensation database. All individuals receiving 30 days of continuous MMT for opioid dependence were included in the study. Key measurements included the proportion of clients receiving >7 days of a PO other than methadone during MMT from 1996 to 2007. Factors independently associated with PO co-prescription during MMT were assessed using generalized linear mixed effects regression. Results 16,248 individuals with 27,919 MMT episodes at least 30 days in duration were identified for the study period. Among them, 5,552 individuals (34.2%) received a total of 290,543 PO co-prescriptions during MMT. The majority (74.3%) of all PO dispensations >7 days originated from non-MMT physicians. The number of PO prescriptions per person-year nearly doubled between 1996 and 2006, driven by increases in morphine, hydromorphone and oxycodone dispensations. PO co-prescription was positively associated with female gender, older age, higher levels of medical co-morbidity as well as higher MMT dosage, adherence, and retention. Conclusion and Scientific Significance A large proportion of MMT clients in BC received co-occurring PO prescriptions, often from physicians and pharmacies not delivering MMT. Experimental evidence for the treatment of pain in MMT clients is required to guide clinical practice. PMID:24724883

  18. Metabolic efficiency and turnover of soil microbial communities in biodegradation tests.

    PubMed Central

    Shen, J; Bartha, R

    1996-01-01

    Biodegradability screening tests of soil commonly measure 14CO2 evolution from radiolabeled test compounds, and glucose has often served as a positive control. When constant amounts of radiolabel were added to soil in combination with increasing amounts of unlabeled substrates, glucose and some related hexoses behaved in an anomalous manner. In contrast to that of formate, benzoate, n-hexadecane, or bis(2-ethylhexyl) phthalate, dilution of glucose radiocarbon with unlabeled glucose increased rather than decreased the rate and extent of 14CO2 evolution. [14C]glucose incorporation into biomass and Vmax values were consistent with the interpretation that application of relatively high concentrations of glucose to soil shifts the balance of the soil microbial community from the autochthonous (humus-degrading) to the zymogeneous (opportunistic) segment. The higher growth and turnover rates that define zymogeneous microorganisms, combined with a lower level of carbon incorporation into their biomass, result in the evolution of disproportionate percentages of 14CO2. When used as positive controls, glucose and related hexoses may raise the expectations for percent 14CO2 evolution to levels that are not realistic for other biodegradable compounds. PMID:8779580

  19. Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study

    PubMed Central

    2012-01-01

    Background Motorised travel and associated carbon dioxide (CO2) emissions generate substantial health costs; in the case of motorised travel, this may include contributing to rising obesity levels. Obesity has in turn been hypothesised to increase motorised travel and/or CO2 emissions, both because heavier people may use motorised travel more and because heavier people may choose larger and less fuel-efficient cars. These hypothesised associations have not been examined empirically, however, nor has previous research examined associations with other health characteristics. Our aim was therefore to examine how and why weight status, health, and physical activity are associated with transport CO2 emissions. Methods 3463 adults completed questionnaires in the baseline iConnect survey at three study sites in the UK, reporting their health, weight, height and past-week physical activity. Seven-day recall instruments were used to assess travel behaviour and, together with data on car characteristics, were used to estimate CO2 emissions. We used path analysis to examine the extent to which active travel, motorised travel and car engine size explained associations between health characteristics and CO2 emissions. Results CO2 emissions were higher in overweight or obese participants (multivariable standardized probit coefficients 0.16, 95% CI 0.08 to 0.25 for overweight vs. normal weight; 0.16, 95% CI 0.04 to 0.28 for obese vs. normal weight). Lower active travel and, particularly for obesity, larger car engine size explained 19-31% of this effect, but most of the effect was directly explained by greater distance travelled by motor vehicles. Walking for recreation and leisure-time physical activity were associated with higher motorised travel distance and therefore higher CO2 emissions, while active travel was associated with lower CO2 emissions. Poor health and illness were not independently associated with CO2 emissions. Conclusions Establishing the direction of causality between weight status and travel behaviour requires longitudinal data, but the association with engine size suggests that there may be at least some causal effect of obesity on CO2 emissions. More generally, transport CO2 emissions are associated in different ways with different health-related characteristics. These include associations between health goods and environmental harms (recreational physical activity and high emissions), indicating that environment-health ‘co-benefits’ cannot be assumed. Instead, attention should also be paid to identifying and mitigating potential areas of tension, for example by promoting low-carbon recreational physical activity. PMID:22862811

  20. Heightened circulating levels of antimicrobial peptides in tuberculosis—Diabetes co-morbidity and reversal upon treatment

    PubMed Central

    Kumar, Nathella Pavan; Moideen, Kadar; Viswanathan, Vijay; Sivakumar, Shanmugam; Menon, Pradeep A.; Kornfeld, Hardy

    2017-01-01

    Background The association of antimicrobial peptides (AMPs) with tuberculosis—diabetes comorbidity (PTB-DM) is not well understood. Methods To study the association of AMPs with PTB-DM, we examined the systemic levels of cathelicidin (LL37), human beta defensin– 2 (HBD2), human neutrophil peptides 1–3, (HNP1-3) and granulysin in individuals with either PTB-DM, PTB, latent TB (LTB) or no TB infection (NTB). Results Circulating levels of cathelicidin and HBD2 were significantly higher and granulysin levels were significantly lower in PTB-DM compared to PTB, LTB or NTB, while the levels of HNP1-3 were significantly higher in PTB-DM compared to LTB or NTB individuals. Moreover, the levels of cathelicidin and/or HBD2 were significantly higher in PTB-DM or PTB individuals with bilateral and cavitary disease and also exhibited a significant positive relationship with bacterial burden. Cathelidin, HBD2 and HNP1-3 levels exhibited a positive relationship with HbA1c and/or fasting blood glucose levels. Finally, anti-tuberculosis therapy resulted in significantly diminished levels of cathelicidin, HBD2, granulysin and significantly enhanced levels of HNP1-3 and granulysin in PTB-DM and/or PTB individuals. Conclusion Therefore, our data demonstrate that PTB-DM is associated with markedly enhanced levels of AMPs and diminished levels of granulysin. PMID:28910369

  1. A Closer Look at Co-Rumination: Gender, Coping, Peer Functioning and Internalizing/Externalizing Problems

    ERIC Educational Resources Information Center

    Tompkins, Tanya L.; Hockett, Ashlee R.; Abraibesh, Nadia; Witt, Jody L.

    2011-01-01

    Co-rumination, defined as repetitive, problem-focused talk explains higher levels of friendship quality in youth (Rose, 2002) and increased levels of anxiety/depression in females. Middle adolescents (N = 146) participated in a study of co-rumination, individual coping, externalizing/internalizing problems, and peer functioning. Consistent with…

  2. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.

    PubMed

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2 leakage from geologic storage sites.

  3. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites

    PubMed Central

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F.; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II) and one control site with low CO2 content (group III). Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO2 leakage from geologic storage sites. PMID:29170659

  4. Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic.

    PubMed

    Sharp, Elizabeth D; Sullivan, Patrick F; Steltzer, Heidi; Csank, Adam Z; Welker, Jeffrey M

    2013-06-01

    The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m(-2) ) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ(13) C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2 -C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain. © 2013 Blackwell Publishing Ltd.

  5. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  6. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    PubMed

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Leaf physiological responses of mature Norway Spruce trees exposed to elevated carbon dioxide and temperature

    NASA Astrophysics Data System (ADS)

    Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran

    2014-05-01

    Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated [CO2]-induced increase in CO2 uptake is partly counteracted by substantial increases in autotrophic respiration in boreal spruce. Furthermore, stomatal results suggest conservative leaf-level water use of spruce under rising [CO2] and temperature.

  8. Committed CO2 Emissions of China's Coal-fired Power Plants

    NASA Astrophysics Data System (ADS)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed emissions. The national and provincial CO2 emission mitigation objectives might be greatly restricted by existing and planned power plants in China. The policy implications of our results have also been discussed.

  9. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  10. The carbon cycle since the LGM in the University of Victoria Earth System Climate Model: Implications of marine ice shelves and late-Holocene deforestation

    NASA Astrophysics Data System (ADS)

    Simmons, C. T.; Mysak, L. A.; Matthews, D.

    2012-12-01

    The University of Victoria Earth System Climate Model (version v.9) is used to investigate carbon cycle dynamics from the Last Glacial Maximum (21000 years Before Present (BP)) to the beginning of the Industrial Revolution (150 BP). A series of simulations with prescribed and freely-evolving CO2 infer that a combination of two factors, a faster overturning of the oceans during the interglacial and a release of carbon from deep-sea sediments, are likely responsible for a substantial proportion of the glacial-interglacial CO2 increase from 190 (23000 BP) to 280 ppm (150 BP). The simulations also indicate that a realistic glacial-interglacial change in the meridional overturning circulation can be generated without accounting for runoff from melting ice sheets. A series of model experiments also investigated the mechanisms behind the Holocene increase in CO2 after 8000 BP. Without the explicit representation of peatlands, permafrost, coral reefs, or human land use, the UVic model simulation of the natural carbon cycle over the period produced a decline in the atmospheric CO2 from 260 to around 250 ppm, in contrast to the increase from 260 to 280 ppm actually observed. Surprisingly, sensitivity simulations with global deforestation actually yielded lower CO2 concentrations (249-254 ppm) at 150 BP than the same simulations with no deforestation; however, deforestation of certain vegetation types lead to higher concentrations (~270 ppm). Even without deforestation, the decrease in CO2 is highly sensitive to the configuration of land ice shelves near Antarctica, with more extensive land ice leading to deeper local circulation in the Southern Ocean, less Antarctic-generated bottom waters globally, and a higher atmospheric CO2 concentrations (260 ppm) at 150 BP. The 5-8 ppm contribution of ice shelf extent may well be an important contributor to the higher analogue CO2 levels during the Holocene interglacial, as current data and reconstructions suggests that these ice shelves are indeed more extensive today than during many previous interglacial periods.

  11. [Gastric mucosa tonometry in routine monitoring in the surgical intensive care unit].

    PubMed

    Pestel, G; Uhlig, T; Götschl, A; Schmucker, P; Rothhammer, A

    1998-06-01

    Monitoring tissue oxygenation in the splanchnic region could be helpful for critically ill patients. In this study the postoperative course of gastric mucosal CO2 (prCO2) in 40 patients is shown. Following approval of the ethics committee, 24 patients schedulded for surgery with an expected large fluid turnover and 16 multiple injured patients were monitored with a gas tonometry device in addition to standard monitoring (ECG, pulse oximetry, capnometry, CVP, arterial pressure). Normoventilated patients with prCO2 > 50 for more than 30 minutes were treated with fluid therapy, followed by catecholamine therapy, followed by transfusion (fig. 1). All patients were admitted to the SICU post-operatively. The variation of prCO2-values was greater in multiple injured patients. Their prCO2-values began in a lower range compared to patients with scheduled operation, became higher at the end of the first SICU-day and remained higher thereafter. They had a higher fluid turnover and needed more catecholamines. Multiple injured patients with an arterio-intestinal CO2-Difference (CO2-Gap) > 10 had a higher ISS-Score, were longer mechanically ventilated, had a longer SICU-stay and a higher incidence of complications in comparison to patients with aCO2-Gap < 10. Perhaps a CO2-Gap > 10 could be predictive for a more severe course in intensive care patients.

  12. A comparison of personal exposure to air pollutants in different travel modes on national highways in India.

    PubMed

    Kolluru, Soma Sekhara Rao; Patra, Aditya Kumar; Sahu, Satya Prakash

    2018-04-01

    People often travel a long distance on highways to the nearest city for professional/business activities. However, relatively few publications on passenger exposure to pollutants on highways in India or elsewhere are available. The aim of this study was to examine the contribution of different travel modes to passengers' pollutant exposure for a long distance travel on a national highway in India. We measured PM 2.5 and CO exposure levels of the passengers over 200km on a national highway using two portable air monitors, EVM-7 and EPAM-5000. Personal concentration exposures and per min-, per hour-, per trip- and round trip mass exposures for three travel modes were calculated for 9 trips. Association between pollutants and weather variables were evaluated using levels Spearman correlation. ANOVA was carried out to evaluate the influence of travel mode, the timing of trips, temperature and RH on personal exposures. On an average, PM 2.5 personal concentration exposure levels were highest in the car (85.41±61.85μgm -3 ), followed by the bus (75.08±55.39μgm -3 ) and lowest in the car (ac) (54.43±34.09μgm -3 ). In contrast, CO personal exposure was highest in the car (ac) (1.81±1.3ppm). Travel mode explained the highest variability for CO (18.1%), CO 2 (9.9%), PM 2.5 (1.2%) exposures. In-city mass exposures were higher than trip averages; PM 2.5 :1.21-1.22, 1.13-1.19 and 1.03-1.28 times; CO: 1.20-1.57, 1.37-2.10 and 1.76-2.22 times for bus, car and car (ac) respectively. Traveling by car (ac) results in the lowest PM 2.5 exposures, although it exposes the passenger to high CO level. Avoiding national highways passing through cities can reduce up to 25% PM 2.5 and 50% CO mass exposures. This information can be useful for increasing environmental awareness among the passengers and for framing better pollution control strategies on highways. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli

    PubMed Central

    Rock, Charles O.; Park, Hee-Won; Jackowski, Suzanne

    2003-01-01

    Pantothenate kinase (CoaA) is a key regulator of coenzyme A (CoA) biosynthesis in Escherichia coli, and its activity is controlled by feedback inhibition by CoA and its thioesters. The importance of feedback inhibition in the control of the intracellular CoA levels was tested by constructing three site-directed mutants of CoaA that were predicted to be feedback resistant based on the crystal structure of the CoaA-CoA binary complex. CoaA[R106A], CoaA[H177Q], and CoaA[F247V] were purified and shown to retain significant catalytic activity and be refractory to inhibition by CoA. CoaA[R106A] retained 50% of the catalytic activity of CoaA, whereas the CoaA[H177Q] and CoaA[F247V] mutants were less active. The importance of feedback control of CoaA to the intracellular CoA levels was assessed by expressing either CoaA or CoaA[R106A] in strain ANS3 [coaA15(Ts) panD2]. Cells expressing CoaA[R106A] had significantly higher levels of phosphorylated pantothenate-derived metabolites and CoA in vivo and excreted significantly more 4′-phosphopantetheine into the medium compared to cells expressing the wild-type protein. These data illustrate the key role of feedback regulation of pantothenate kinase in the control of intracellular CoA levels. PMID:12754240

  14. Transcriptional alterations of ET-1 axis and DNA damage in lung tissue of a rat obesity model.

    PubMed

    Del Ry, Silvia; Cabiati, Manuela; Salvadori, Costanza; Guiducci, Letizia; Caselli, Chiara; Prescimone, Tommaso; Facioni, Maria Sole; Azzarà, Alessia; Chiaramonte, Anna; Mazzoni, Stefano; Bruschi, Fabrizio; Giannessi, Daniela; Scarpato, Roberto

    2015-03-01

    Obesity has been implicated in the development of many cancers. This can lead to genome damage, especially in the form of double-strand break, the presence of which is now easily detected through nuclear phosphorylation of histone H2AX (γ-H2AX) focus assay. Recently, the endothelin (ET) axis has also been shown to have a role in the growth and progression of several tumors, including lung cancer. The aim of this study was to evaluate the ET-1 system transcriptional alterations and γ-H2AX in lung tissue of Zucker rats subdivided into obese (O, n=22) and controls (CO, n=18) rats: under either fasting conditions (CO(fc)-O(fc)) or acute hyperglycemia (CO(AH)-O(AH)). Significantly higher prepro-ET-1 (p=0.05) and ET-converting enzyme (ECE)-2 mRNA expression was observed in O with respect to CO. A significant positive association was observed between prepro-ET-1 and ET-A in the whole rat population (p=0.009) or in the obese group alone (p=0.007). The levels of γ-H2AX in O and in O(AH) rats were significantly higher (p=0.019) than in the corresponding CO and CO(AH) rats (p=0.038). The study shows an inappropriate secretion of ET-1 in O animals with a parallel DNA damage in their lungs, providing novel mechanisms by which ET receptor antagonist may exert organ protection.

  15. Tuning Micellar Structures in Supercritical CO2 Using Surfactant and Amphiphile Mixtures.

    PubMed

    Peach, Jocelyn; Czajka, Adam; Hazell, Gavin; Hill, Christopher; Mohamed, Azmi; Pegg, Jonathan C; Rogers, Sarah E; Eastoe, Julian

    2017-03-14

    For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO 2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO 2 -philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO 2 -phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO 2 . These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO 2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.

  16. Effects of ocean acidification on salinity tolerance and seawater growth of Atlantic salmon Salmo salar smolts.

    PubMed

    Mccormick, S D; Regish, A M

    2018-06-23

    Human activity has resulted in increasing atmospheric carbon dioxide (CO 2 ), which will result in reduced pH and higher levels of CO 2 in the ocean, a process known as ocean acidification. Understanding the effects of ocean acidification (OA) on fishes will be important to predicting and mitigating its consequences. Anadromous species such as salmonids may be especially at risk because of their rapid movements between fresh water and seawater, which could minimize their ability to acclimate. In the present study, we examine the effect of future OA on the salinity tolerance and early seawater growth of Atlantic salmon Salmo salar smolts. Exposure to 61.81 Pa and 102.34 Pa CO 2 did not alter salinity tolerance but did result in slightly lower plasma chloride levels in smolts exposed to seawater compared with controls (39.59 Pa). Gill Na + -K + -ATPase activity, plasma cortisol, glucose and haematocrit after seawater exposure were not altered by elevated CO 2 . Growth rate in the first 2 weeks of seawater exposure was greater at 102.34 Pa CO 2 than under control conditions. This study of the effects of OA on S. salar during the transition from fresh water to seawater indicates that elevated CO 2 is not likely to affect osmoregulation negatively and may improve early growth in seawater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Vacancy-induced brittle to ductile transition of W-M co-doped Al3Ti (M=Si, Ge, Sn and Pb).

    PubMed

    Zhu, Mingke; Wu, Ping; Li, Qiulin; Xu, Ben

    2017-10-25

    We investigated the effect of vacancy formation on brittle (D0 22 ) to ductile (L1 2 -like) transition in Al 3 Ti using DFT calculations. The well-known pseudogap on the density of states of Al 3 Ti migrates towards its Fermi level from far above, via a W - M co-doping strategy, where M is Si, Ge, Sn or Pb respectively. In particular, by a W - M co-doping the underline electronic structure of the pseudogap approaches an octahedral (L1 2 : t 2g , e g ) from the tetragonal (D0 22 : e g , b 2g , a 1g , b 1g ) crystal field. Our calculations demonstrated that (1) a W-doping is responsible for the close up of the energy gap between a 1g and b 1g so that they tend to merge into an e g symmetry, and (2) all M-doping lead to a narrower gap between e g and b 2g (moving towards a t 2g symmetry). Thus, a brittle to ductile transition in Al 3 Ti is possible by adopting this W - M co-doping strategy. We further recommend the use of W-Pb co-doped Al 3 Ti to replace the less anodic Al electrode in Al-battery, due to its improved ductility and high Al diffusivity. Finally this study opens a new field in physics to tailor mechanical properties by manipulating electron energy level(s) towards higher symmetry via vacancy optimization.

  18. Controlled environments alter nutrient content of soybeans

    NASA Astrophysics Data System (ADS)

    Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.

    1997-01-01

    Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.

  19. Wood CO(2) efflux and foliar respiration for Eucalyptus in Hawaii and Brazil.

    PubMed

    Ryan, Michael G; Cavaleri, Molly A; Almeida, Auro C; Penchel, Ricardo; Senock, Randy S; Luiz Stape, José

    2009-10-01

    We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined approximately 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 micromol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by approximately 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 micromol C mol N(-1) s(-1) at 20 degrees C).

  20. Ce Core-Level Spectroscopy, and Magnetic and Electrical Transport Properties of Lightly Ce-Doped YCoO3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo

    2016-11-01

    We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.

  1. The impacts of meeting a tight CO2 performance standard on the electric power sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Donald; Schmalzer, David; Nichols, Christopher

    This paper presents innovative modeling of complex interactions among gas-fired generators, coal-fired power plants, and renewables (wind and solar) when pushed hard to reduce CO2 emissions. A hypothetical CO2 technology performance standard, giving rise to a shadow price on CO2 emissions, was specified as part of the study design. In this work we see gas generation rapidly replacing coal generation. To understand the fate of coal based generation, it is important to examine trends at a granular level. An important feature of our model, the Electricity Supply and Investment Model (ESIM) is that it contains a unit inventory with unitmore » characteristics and a memory of how each unit is operated over time. Cycling damages that individual coal units incur are a function of cumulative wear and tear over time. The expected remaining life of a cycled coal unit will depend on the severity of the cycling and for how many years. Deteriorating operating characteristics of a cycled unit over time results in higher operating costs, slipping down the dispatch loading order, and hence an acceleration of cycling damage, that is, a viscous circle of decline. The rate of CFPP retirements will increase for lower gas prices, higher price on CO2 emissions, and greater penetration of variable and intermittent renewables. Published by Elsevier B.V.« less

  2. Mitochondrial Ubiquinone Homologues, Superoxide Radical Generation, and Longevity in Different Mammalian Species*

    PubMed Central

    Lass, Achim; Agarwal, Sanjiv; Sohal, Rajindar S.

    2010-01-01

    Rates of mitochondrial superoxide anion radical ( O2·¯) generation are known to be inversely correlated with the maximum life span potential of different mammalian species. The objective of this study was to understand the possible mechanism(s) underlying such variations in the rate of O2·¯ generation. The hypothesis that the relative amounts of the ubiquinones or coenzyme Q (CoQ) homologues, CoQ9 and CoQ10, are related with the rate of O2·¯ generation was tested. A comparison of nine different mammalian species, namely mouse, rat, guinea pig, rabbit, pig, goat, sheep, cow, and horse, which vary from 3.5 to 46 years in their maximum longevity, indicated that the rate of O2·¯ generation in cardiac submitochondrial particles (SMPs) was directly related to the relative amount of CoQ9 and inversely related to the amount of CoQ10, extractable from their cardiac mitochondria. To directly test the relationship between CoQ homologues and the rate of O2·¯ generation, rat heart SMPs, naturally containing mainly CoQ9 and cow heart SMPs, with high natural CoQ10 content, were chosen for depletion/reconstitution experiments. Repeated extractions of rat heart SMPs with pentane exponentially depleted both CoQ homologues while the corresponding rates of O2·¯ generation and oxygen consumption were lowered linearly. Reconstitution of both rat and cow heart SMPs with different amounts of CoQ9 or CoQ10 caused an initial increase in the rates of O2·¯ generation, followed by a plateau at high concentrations. Within the physiological range of CoQ concentrations, there were no differences in the rates of O2·¯ generation between SMPs reconstituted with CoQ9 or CoQ10. Only at concentrations that were considerably higher than the physiological level, the SMPs reconstituted with CoQ9 exhibited higher rates of O2·¯ generation than those obtained with CoQ10. These in vitro findings do not support the hypothesis that differences in the distribution of CoQ homologues are responsible for the variations in the rates of mitochondrial O2·¯ generation in different mammalian species. PMID:9235911

  3. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry.

    PubMed

    Lavola, Anu; Nybakken, Line; Rousi, Matti; Pusenius, Jyrki; Petrelius, Mari; Kellomäki, Seppo; Julkunen-Tiitto, Riitta

    2013-12-01

    Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future. © 2013 Scandinavian Plant Physiology Society.

  4. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae).

    PubMed

    Yifei, Zhang; Yang, Dai; Guijun, Wan; Bin, Liu; Guangnan, Xing; Fajun, Chen

    2018-04-25

    Atmospheric CO2 level arising is an indisputable fact in the future climate change, as predicted, it could influence crops and their herbivorous insect pests. The growth and development, reproduction, and consumption of Spodoptera litura (F.) (Lepidoptera: Noctuidae) fed on resistant (cv. Lamar) and susceptible (cv. JLNMH) soybean grown under elevated (732.1 ± 9.99 μl/liter) and ambient (373.6 ± 9.21 μl/liter) CO2 were examined in open-top chambers from 2013 to 2015. Elevated CO2 promoted the above- and belowground-biomass accumulation and increased the root/shoot ratio of two soybean cultivars, and increased the seeds' yield for Lamar. Moreover, elevated CO2 significantly reduced the larval and pupal weight, prolonged the larval and pupal life span, and increased the feeding amount and excretion amount of two soybean cultivars. Significantly lower foliar nitrogen content and higher foliar sugar content and C/N ratio were observed in the sampled foliage of resistant and susceptible soybean cultivars grown under elevated CO2, which brought negative effects on the growth of S. litura, with the increment of foliar sugar content and C/N ratio were greater in the resistant soybean in contrast to the susceptible soybean. Furthermore, the increment of larval consumption was less than 50%, and the larval life span was prolonged more obvious of the larvae fed on resistant soybean compared with susceptible soybean under elevated CO2. It speculated that the future climatic change of atmospheric CO2 level arising would likely cause the increase of the soybean yield and the intake of S. litura, but the resistant soybean would improve the resistance of the target Lepidoptera pest, S. litura.

  5. Willingness to engage in energy conservation and CO2 emissions reduction: An empirical investigation

    NASA Astrophysics Data System (ADS)

    Eluwa, S. E.; Siong, H. C.

    2014-02-01

    Africa's response to climate change has largely been focused on adaptation rather than mitigation. The reason for this is based on the fact that the continent contributes very little to global CO2 emission. Again, mitigation policies like carbon tax as being practised in developed countries may be costly and difficult to implement in a continent where most economies are fragile. Using behavioural change as an adaptation approach, we examined the opinion of Ibadan city residents towards energy conservation and CO2 emissions reduction. A total of 822 respondents were sampled across the three residential neighbourhoods of the city. Results from the study showed that female and male respondents differed in their opinion towards energy conservation. However, the female respondents tended to record higher mean scores on majority of the items used to capture energy conservation behaviour than their male counterparts. Also, those with higher level of education seemed to be more conscious of the environmental consequences arising from energy use at home than those with lower educational background. However, very slight variations were recorded in the mean value score across the different age groups, those respondents above 50 years scored a bit higher than other age groups.

  6. An experimental study on effects of increased ventilation flow on students' perception of indoor environment in computer classrooms.

    PubMed

    Norbäck, D; Nordström, K

    2008-08-01

    The effects of ventilation in computer classrooms were studied with university students (n = 355) in a blinded study, 31% were women and 3.8% had asthma. Two classrooms had a higher air exchange (4.1-5.2 ac/h); two others had a lower air exchange (2.3-2.6 ac/h). After 1 week, ventilation conditions were shifted. The students reported environmental perceptions during the last hour. Room temperature, RH, CO2, PM10 and ultra-fine particles were measured simultaneously. Mean CO2 was 1185 ppm at lower and 922 ppm at higher air exchange. Mean temperature was 23.2 degrees C at lower and 22.1 degrees C at higher air exchange. After mutual adjustment (temperature, RH, CO2, air exchange), measured temperature was associated with a perception of higher temperature (P < 0.001), lower air movement (P < 0.001), and poorer air quality (P < 0.001). Higher air exchange was associated with a perception of lower temperature (P < 0.001), higher air movement (P = 0.001), and better air quality (P < 0.001). In the longitudinal analysis (n = 83), increased air exchange caused a perception of lower temperature (P = 0.002), higher air movement (P < 0.001), better air quality (P = 0.001), and less odor (P = 0.02). In conclusion, computer classrooms have CO2 levels above 1000 ppm and temperatures above 22 degrees C. Increased ventilation from 7 l/s per person to 10-13 l/s per person can improve thermal comfort and air quality. Computer classrooms are crowded indoor environments with a high thermal load from both students and computer equipment. It is important to control room temperature either by air conditioning, sun shields, or sufficiently high ventilation flow. A high ventilation flow is also crucial to achieving good perceived air quality. Personal ventilation flow should be at least 10 l/s. Possible loss of learning ability due to poor indoor air quality in university buildings deserves more attention.

  7. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Rui; Song, Min; Zhang, Shuai

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasifiedmore » with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)« less

  8. Variations in gas emissions in correlation with lava lake level changes at Nyiragono volcano, DR Congo

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Tedesco, D.; Arellano, S.; Galle, B.; Aiuppa, A.

    2012-04-01

    Between 2007 and 2011 four measurement campaigns (June 2007, July 2010, June 2011 and December 2011) were carried out at the crater rim of Nyiragongo volcano (1° 31'S, 29°15'E, 3470 m.a.s.l.). Nyiragongo volcano is located 15 km north of the million inhabitants strong city of Goma, North Kivu region (DRC) and belongs to the Virunga volcanic chain which is associated with the western branch of the Great Rift Valley. The volcanic activity of Niyragongo is the result caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Nyiragongo is considered one of the most active volcanoes in Africa. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight and a Multi-gas-instrument have been simultaneously applied during all field trips and among others BrO/SO2 and CO2/SO2 ratios were determined. At the various field trips we could observe that the lava lake level frequently changes in height (in the order of minutes up to days and also between the years) and also our measured gas ratios showed variations. Higher CO2/SO2 and BrO2/SO2 levels were generally observed at higher lava lake levels and a decrease of the lava lake was accompanied by a decrease in the BrO/SO2 as well as CO2/SO2 ratio. Ideas to explain the correlation of gas ratios and the lava lake level will be discussed in this presentation and we will especially focus on the June 2011 campaign, because it contains the largest changes, observed during these campaigns. Gas emission changes in correlation with a change in the lava lake level might help to give insights within the magma plumbing system of Nyiragongo volcano and therefore leading to a better understanding of the volcanic behavior and improving the possibilities of forecasting a future eruption.

  9. Study of cation magnetic moment directions in Cr (Co) doped nickel ferrites

    NASA Astrophysics Data System (ADS)

    Lang, L. L.; Xu, J.; Qi, W. H.; Li, Z. Z.; Tang, G. D.; Shang, Z. F.; Zhang, X. Y.; Wu, L. Q.; Xue, L. C.

    2014-09-01

    Powder samples of the ferrites MxNi1-xFe2O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) were prepared using a chemical co-precipitation method. X-ray diffraction analysis showed that the two series of samples had a single-phase cubic spinel structure. It was found that the magnetic moments (μexp) per formula of samples measured at 10 K decreased when Cr substituted for Ni, but increased when Co substituted for Ni, in spite of the fact that the magnetic moments of Cr2+ (4 μB) and Co2+ (3 μB) are higher than that of Ni2+ (2 μB). With the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the Fe, Co, and Ni cations in the same sublattices of spinel ferrites, the dependences on the Cr (Co) doping level of the sample magnetic moments at 10 K were fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. For the two series of samples, the fitted magnetic moments are close to the experimental results.

  10. Increased urinary prostaglandin E2 metabolite: A potential therapeutic target of Gitelman syndrome.

    PubMed

    Peng, Xiaoyan; Jiang, Lanping; Chen, Chen; Qin, Yan; Yuan, Tao; Wang, Ou; Xing, Xiaoping; Li, Xuemei; Nie, Min; Chen, Limeng

    2017-01-01

    Gitelman syndrome (GS), an inherited autosomal recessive salt-losing renal tubulopathy caused by mutations in SLC12A3 gene, has been associated with normal prostaglandin E2 (PGE2) levels since 1995 by a study involving 11 clinically diagnosed patients. However, it is difficult to explain why cyclooxygenase-2 (COX2) inhibitors, which pharmacologically reduce PGE2 synthesis, are helpful to patients with GS, and few studies performed in the last 20 years have measured PGE2 levels. The relationships between the clinical manifestations and PGE2 levels were never thoroughly analyzed. This study involved 39 GS patients diagnosed by SLC12A3 gene sequencing. Plasma and 24-h urine samples as well as the clinical data were collected at admission. PGE2 and PGEM levels were detected in plasma and urine samples by enzyme immunoassays. The in vivo function of the sodium-chloride co-transporter (NCC) in GS patients was evaluated using a modified thiazide test. The association among PGE2 levels, clinical manifestations and the function of NCC in GS patients were analyzed. Significantly higher levels of urinary and plasma PGEM were observed in GS patients than in the healthy volunteers. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction estimated by the increase of Cl- clearance. A higher PGEM level was found in male GS patients, who showed earlier onset age and more severe hypokalemia, hypochloremia and metabolic alkalosis than female GS patients. No relationship between renin angiotensin aldosterone system activation and PGEM level was observed. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction in GS patients. COX2 inhibition might be a potential therapeutic target in GS patients with elevated PGEM levels.

  11. Relationship Between Circulating Fatty Acids and Fatty Acid Ethanolamide Levels After a Single 2-h Dietary Fat Feeding in Male Sprague-Dawley Rats : Elevated levels of oleoylethanolamide, palmitoylethanolamide, linoleoylethanolamide, arachidonoylethanolamide and docosahexanoylethanolamide after a single 2 h dietary fat feeding in male Sprague Dawley rats.

    PubMed

    Olatinsu, Anthonia O; Sihag, Jyoti; Jones, Peter J H

    2017-11-01

    Previous studies show that long term variations in dietary fat consumption impact circulating fatty acid ethanolamide (FAE) concentrations, however, few studies have investigated short term effects of dietary fat feeding on FAE levels. The trial's objective was to explore the effect of acute feeding of varying amounts of dietary n-9 and n-3 fatty acids on plasma and organ levels of FAE. Sixty-four rats were assigned to four groups fed meals containing 40% of energy as either safflower oil (control), canola oil (CO), or DHA rich oil (DRO), each consumed as a bolus within a 2-h window. Plasma and tissue FAE levels were measured at 3, 6, 12 and 24 h following the bolus. FAE profiles over time exhibited patterns that were specific both to FAE and to dietary fat type provided. At 3 h, plasma and liver OEA levels were higher (p < 0.05) in the 95% CO:5% DRO compared with other groups. At 12 h, plasma PEA levels were lower (p < 0.05) in the 50% CO:50% DRO group compared to the 95% CO group. Plasma DEA levels showed an increase (p < 0.05) only after 24 h of feeding. All four dietary groups manifested increased DEA levels in a dose-dependent manner. Data demonstrate that a single meal feeding of diets with different ratios of fat types impacts tissue levels of FAE within a short time frame, which could further influence the physiological roles of FAE on appetite regulation and energy expenditure.

  12. Tuning the Kondo effect in Yb(Fe 1-xCo x) 2Zn 20

    DOE PAGES

    Kong, Tai; Taufour, Valentin; Bud'ko, Sergey L.; ...

    2017-04-03

    We study the evolution of the Kondo effect in heavy fermion compounds, Yb(Fe 1-xCo x) 2Zn 20 (0 ≲ x ≲ 1), by means of temperature-dependent electric resistivity and speci c heat. The ground state of YbFe 2Zn 20 can be well described by a Kondo model with degeneracy N = 8 and a T K ~30 K. In the presence of a very similar total CEF splitting with YbFe 2Zn 20, the ground state of YbCo 2Zn 20 is close to a Kondo state with degeneracy N = 2 and a much lower TK ~ 2 K. Upon Comore » substitution, the coherence temperature of YbFe 2Zn 20 is suppressed, accompanied by an emerging Schottky-like feature in speci c heat associated with the thermal depopulation of CEF levels upon cooling. For 0.4 ≲ x ≲ 0.9, the ground state remains roughly the same which can be qualitatively understood by Kondo effect in the presence of CEF splitting. There is no clear indication of Kondo coherence observable in resistivity within this substitution range down to 500 mK. The coherence re-appears at around x≳ 0.9 and the coherence temperature increases with higher Co concentration levels.« less

  13. Increased CO2 stimulates reproduction in a coral reef fish.

    PubMed

    Miller, Gabrielle M; Watson, Sue-Ann; McCormick, Mark I; Munday, Philip L

    2013-10-01

    Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO(2)) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO(2) on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO(2) treatments [Current-day Control (430 μatm), Moderate (584 μatm) and High (1032 μatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO(2) dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO(2) treatment. Pairs in the High CO(2) group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO(2) group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO(2). However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined. © 2013 John Wiley & Sons Ltd.

  14. Effects of castration on expression of lipid metabolism genes in the liver of korean cattle.

    PubMed

    Baik, Myunggi; Nguyen, Trang Hoa; Jeong, Jin Young; Piao, Min Yu; Kang, Hyeok Joong

    2015-01-01

    Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

  15. Second-hand smoking and carboxyhemoglobin levels in children: a prospective observational study.

    PubMed

    Yee, Branden E; Ahmed, Mohammed I; Brugge, Doug; Farrell, Maureen; Lozada, Gustavo; Idupaganthi, Raghu; Schumann, Roman

    2010-01-01

    To establish baseline noninvasive carboxyhemoglobin (COHb) levels in children and determine the influence of exposure to environmental sources of carbon monoxide (CO), especially environmental tobacco smoke, on such levels. Second-hand smoking may be a risk factor for adverse outcomes following anesthesia and surgery in children (1) and may potentially be preventable. Parents and their children between the ages of 1-12 were enrolled on the day of elective surgery. The preoperative COHb levels of the children were assessed noninvasively using a CO-Oximeter (Radical-7 Rainbow SET Pulse CO-Oximeter; Masimo, Irvine, CA, USA). The parents were asked to complete an environmental air-quality questionnaire. The COHb levels were tabulated and correlated with responses to the survey in aggregate analysis. Statistical analyses were performed using the nonparametric Mann-Whitney and Kruskal-Wallis tests. P < 0.05 was statistically significant. Two hundred children with their parents were enrolled. Children exposed to parental smoking had higher COHb levels than the children of nonsmoking controls. Higher COHb values were seen in the youngest children, ages 1-2, exposed to parental cigarette smoke. However, these trends did not reach statistical significance, and confidence intervals were wide. This study revealed interesting trends of COHb levels in children presenting for anesthesia and surgery. However, the COHb levels measured in our patients were close to the error margin of the device used in our study. An expected improvement in measurement technology may allow screening children for potential pulmonary perioperative risk factors in the future.

  16. Carbon dioxide catastrophes: Past and future menace

    NASA Technical Reports Server (NTRS)

    Baur, Mario E.

    1988-01-01

    Carbon dioxide is important in its role as coupler of the terrestrial biosphere to inorganic chemical processes and as the principal greenhouse gas controlling Earth's surface temperature. The hypothesis that atmospheric CO2 levels have diminished with time, with the resulting cooling effect offsetting an increase in the solar constant, seems firmly established, and it is shown that feedback mechanisms exist which can maintain the terrestrial surface in a relatively narrow temperature range over geological time. Of the factors involved in such CO2 variation, the oceanic reservoir appears the most important. Surface waters are probably in approximate equilibrium with regard to CO2 exchange with the ambient atmosphere in most regions, but data from deep-ocean water sampling indicates that such waters are somewhat undersaturated in the sense that they would tend to absorb CO2 from the atmosphere if brought to the surface without change in composition or temperature. If major impacts into the ocean can result in loss of a substantial portion of the atmospheric CO2 reservoir, then any such future event could imperil the continuation of most higher forms of life on Earth. The most likely candidate for an inverse Nyos global event in previous Earth history is the Cretaceous-Tertiary terminal extinction event. The Cretaceous was characterized by warm, equable temperatures presumably indicative of relatively high CO2 levels and an intense greenhouse heating. Cooling of the oceans in absence of massive transfer of CO2 to the oceanic reservoir in itself would promote a condition of CO2 undersaturation in abyssal waters, and this is made even more extreme by the pattern of ocean water circulation. It is possible to envision a situation in which deep ocean waters were at least occasionally profoundly undersaturated with regard to CO2. Turnover of a major fraction of such an ocean would then remove, on a very short time scale, as much as 90 percent of the atmospheric CO2 inventory.

  17. Identification of a Key Gene Involved in Branched-Chain Short Fatty Acids Formation in Natto by Transcriptional Analysis and Enzymatic Characterization in Bacillus subtilis.

    PubMed

    Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan

    2017-03-01

    Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.

  18. Sensitivity of gas filter correlation instrument to variations in optical balance. [computer program simulated the response of the GFCR to changing pollutant levels

    NASA Technical Reports Server (NTRS)

    Orr, H. D., III; Campbell, S. A.

    1975-01-01

    A computer program was used to simulate the response of the Gas Filter Correlation Radiometer (GFCR) to changing pollutant levels of CO, SO2, CH4, and NH3 in two model atmospheres. Positive and negative deviations of tau sub alpha of magnitudes 0.01, 0.1, and 1 percent were imposed upon the simulation and the resulting deviations in inferred concentrations were determined. For the CO, CH4, and the higher pressure cell of the NH3 channel, the deviations are less than + or - 12 percent for deviations in tau sub alpha of + or - 0.1 percent, but increase to significantly higher values for larger deviations. For the lower pressure cell of NH3 and for SO2, the deviations in inferred concentration begin to rise sharply between 0.01 and 0.1 percent deviation in tau sub alpha, suggesting that a tighter control on tau sub alpha may be required for these channels.

  19. Analysis cluster of differentiation 4 number and c-reactive protein concentration in patient with human immunodeficiency virus with or without lung tuberculosis

    NASA Astrophysics Data System (ADS)

    Nur, M. J.; Kuhuwael, F.; Katu, S.; Mubin, H.; Halim, R.

    2018-03-01

    HIV infected patients characterized by decrease CD4 cell count, where lower CD4 count, has higher infection risk. In HIV patients with Lung, Tuberculosis co-infection showed increase CRP level concomitant with disease severity. This study attempts to analyze TB incidence in HIV cases by looking at CD4 cell count and CRP levels in HIV-infected subjects. For analyzing the CD4 cell count and CRP levels in HIV patient with and without Lung Tuberculosis co-infection in Wahidin Sudirohusodo Hospital. Conducted observational study with cross-sectional design on HIV subjects withand without Lung Tuberculosis co-infection in Wahidin Sudirohusodo Hospital from September 2016 to June 2017. Patients divided into HIV group without TB co-infection, and with TB co-infection. Each group will be assessed CRP levels, which considered low <5 mg/L and high >5 mg/L, whereas CD4 cell count, considered low <200 cell/mm3 and normal >200 cell/mm3. Results are considered significant if p-value<0.05. There were a significantly higher CRP levels (p<0.02) and lower CD4 counts (p<0.02) in HIV with TB co-infection and no significant relationship between CRP levels with aCD4 count in both groups.

  20. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats.

    PubMed

    Hwang, Jinah; Chang, Yun-Hee; Park, Jung Hwa; Kim, Soo Yeon; Chung, Haeyon; Shim, Eugene; Hwang, Hye Jin

    2011-10-20

    Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO), olive oil (OO), and beef tallow (BT) on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Male Sprague-Dawley rats were fed 15% (wt/wt) CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg), samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  1. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle

    NASA Astrophysics Data System (ADS)

    Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.

    2014-01-01

    This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.

  2. NIR luminescence studies on Er{sup 3+}:Yb{sup 3+} co-doped sodium telluroborate glasses for lasers and optical amplifer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annapoorani, K.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com; Murthy, N. Suriya

    2016-05-23

    Er{sup 3+}:Yb{sup 3+} co-doped Sodium telluroborate glasses were prepared with the chemical composition (49.5–x)B{sub 2}O{sub 3}+25TeO{sub 2}+5Li{sub 2}CO{sub 3}+10ZnO+10NaF+0.5Er{sub 2}O{sub 3}+xYb{sub 2}O{sub 3} (where x= 0.1, 0.5, 1.0 and 2.0 in mol %) following the melt quenching technique. With the addition of Yb{sup 3+} ions into Er{sup 3+} ions in the prepared glasses, the absorption cross-section values were found to increase due to the effective energy transfer from {sup 2}F{sub 5/2} level of Yb{sup 3+} ions to the {sup 4}I{sub 11/2} level of Er{sup 3+} ions. The fluorescence around 1550 nm correspond to the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition wasmore » observed under 980 nm pumping. Among the present glasses, integrated intensity was found to be higher for 1.0 mol% Yb{sup 3+} ion glass. The parameters such as stimulated emission cross- section, Gain bandwidth and quantum efficiency of the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was found to be higher for the NTBE1.0Y glass and the same is suggested for potential NIR lasers and optical amplifier applications.« less

  3. Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the Indo-Gangetic Plain.

    PubMed

    Kumari, Sonal; Verma, Nidhi; Lakhani, Anita; Tiwari, Suresh; Kandikonda, Maharaj Kumari

    2018-05-01

    In the present study, surface ozone (O 3 ), nitrogen oxides (NO x ), and carbon monoxide (CO) levels were measured at two sites downwind of fire active region in the Indo-Gangetic Plain (IGP): Agra (27.16° N, 78.08° E) and Delhi (28.37° N, 77.12° E) to study the impact of post-harvest crop-residue fires. The study period was classified into two groups: Pre-harvest period and Post-harvest period. During the post-harvest period, an enhancement of 17.3 and 31.7 ppb in hourly averaged O 3 mixing ratios was observed at Agra and Delhi, respectively, under similar meteorological conditions. The rate of change of O 3 was also higher in the post-harvest period by 56.2% in Agra and 39.5% in Delhi. Relatively higher O 3 episodic days were observed in the post-harvest period. Fire hotspots detected by Moderate Resolution Imaging Spectroradiometer (MODIS) along with backward air-mass trajectory analysis suggested that the enhanced O 3 and CO levels at the study sites during the post-harvest period could be attributed to crop-residue burning over the North-West IGP (NW-IGP). Satellite observations of surface CO mixing ratios and tropospheric formaldehyde (HCHO) column also showed higher levels during the post-harvest period. Graphical abstract.

  4. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong.

    PubMed

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-03-27

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  5. Inhibition effect of isopropanol on acetyl-CoA synthetase expression level of acetoclastic methanogen, Methanosaeta concilii.

    PubMed

    Ince, Bahar; Koksel, Gozde; Cetecioglu, Zeynep; Oz, Nilgun Ayman; Coban, Halil; Ince, Orhan

    2011-11-10

    Isopropanol is a widely found solvent in industrial wastewaters, which have commonly been treated using anaerobic systems. In this study, inhibitory effect of isopropanol on the key microbial group in anaerobic bioreactors, acetoclastic methanogens, was investigated. Anaerobic sludges in serum bottles were repeatedly fed with acetate and isopropanol; and quantitative real-time PCR was used for determining effect of isopropanol on the expression level of a key enzyme in acetoclastic methane production, acetyl-CoA synthetase of Methanosaeta concilii. Active Methanosaeta spp. cells were also quantified using Fluorescent in situ hybridization (FISH). Transcript abundance of acetyl-CoA synthetase was 1.23±0.62×10(6) mRNAs/mL in the uninhibited reactors with 222 mL cumulative methane production. First exposure to isopropanol resulted in 71.2%, 84.7%, 89.2% and 94.6% decrease in mRNA level and 35.0%, 65.0%, 91.5% and 100.0% reduction in methane production for isopropanol concentrations of 0.1 M, 0.5 M, 1.0 M and 2.0 M, respectively. Repeated exposures resulted in higher inhibitions; and at the end of test, fluorescent intensities of active Methanosaeta cells were significantly decreased due to isopropanol. The overall results indicated that isopropanol has an inhibitory effect on acetoclastic methanogenesis; and the inhibition can be detected by monitoring level of acetyl-CoA transcripts and rRNA level. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    NASA Astrophysics Data System (ADS)

    Schlotter, D.; Schack-Kirchner, H.

    2013-02-01

    CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  7. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions.

    PubMed

    Comeau, Steeve; Jeffree, Ross; Teyssié, Jean-Louis; Gattuso, Jean-Pierre

    2010-06-29

    Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO(2) emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO(2) levels of 280, 380, 550, 760 and 1020 microatm and at control (0 degrees C) and elevated (4 degrees C) temperatures. The respiration rate was unaffected by pCO(2) at control temperature, but significantly increased as a function of the pCO(2) level at elevated temperature. pCO(2) had no effect on the gut clearance rate at either temperature. Precipitation of CaCO(3), measured as the incorporation of (45)Ca, significantly declined as a function of pCO(2) at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.

  8. Response of the Arctic Pteropod Limacina helicina to Projected Future Environmental Conditions

    PubMed Central

    Comeau, Steeve; Jeffree, Ross; Teyssié, Jean-Louis; Gattuso, Jean-Pierre

    2010-01-01

    Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems. PMID:20613868

  9. Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release

    PubMed Central

    Jiang, G.M.

    2013-01-01

    The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure. PMID:23378379

  10. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway.

    PubMed

    Bae, Ju Yong; Shin, Ki Ok; Woo, Jinhee; Woo, Sang Heon; Jang, Ki Soeng; Lee, Yul Hyo; Kang, Sunghwun

    2016-06-01

    The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p <.05). Protein levels of insulin receptor subunit-1 (IRS-1), IRS-2, and p-Akt were significantly higher in the HFT, HFND, and HFNDT groups, as compared with HF group. In addition, the protein levels of the mammalian target of rapamycin complex 1 (mTORC1) and ribosomal S6 protein kinase 1 were significantly decreased by exercise and dietary change (p <.05). However, mTORC2 and phosphoinositide 3-kinase were significantly increased (p <.05). In summary, despite the negative impact of continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels.

  11. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    PubMed

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  12. Continuously Monitoring the Micrometeorology of a Natural Cave System: Hollow Ridge Speleoclimatology

    NASA Astrophysics Data System (ADS)

    Kowalczk, A.; Gaffka, C.; Froelich, P.

    2008-05-01

    A study of cave microclimatology has been underway since October 2007 in a protected karst cave system near Marianna Florida. We are monitoring cave air, drip water and climatology at Hollow Ridge Cave to help calibrate isotopic and chemical paleoproxies incorporated into actively growing speleothems in Northwest Florida. Multiple monitoring stations positioned in the interior and above the overburden of this 1000 m long cave continuously record temperature (T), relative humidity (RH), barometric pressure (BP), drip rates (precipitation), acoustic airflow (wind) direction and velocity, 222Rn activities and CO2 concentrations. Air samples for 13CO2 analyses are collected periodically along the cave axis. Positively correlated 13CO2 vs. 1/ CO2 indicate soil gas (δ13C= -22 ‰) is the dominant CO2 source. Rn-222 is likely sourced from decay of 226Ra (U-series) in the limestone bedrock. In general, this cave inhales and exhales diurnally. All cave parameters reflect the intensity and longitudinal gradients of each breath modulated by frontal passages and seasonal changes. The diurnal amplitudes of T, RH, 222Rn and CO2 are highest nearest the entrance and almost disappear at the back of the cave, which mostly senses small amplitude frontal and seasonal changes. Radon-222 (20-340 dpm/L) and CO2 (400-1500 ppm) rise and fall coherently. Both gases are higher in the poorly ventilated portions of the cave, but each shows temporal and spatial patterns that reflect different sources - emanation from the enclosing limestone vs. soil gas and dripwater infusion from above. A flooding event due to a rise of the adjacent Chipola River inadvertently sealed the cave entrances, allowing 222Rn to grow in nearly to secular equilibrium (steady-state) in the air trapped inside the cave. Rn-222 peaked at 1200 dpm/L, over three-fold higher than previously measured, while CO2 peaked at 1400 ppm, similar to the highest CO2 values observed during normal conditions. As airflow was fully restricted, decay of 222Rn is balanced only by 222Rn emanation into the cave. Assuming 222Rn emanation into the cave is constant and represented by the secular equilibrium value, we use a simple radon- deficiency model to estimate air exchange rates (fractional tidal air volumes) and CO2 exhalation rates to compare wet (rainy) and dry periods. Daily air exchange rates vary from 18 to 26% of the cave volume. Radon/ CO2 ratios are four-times higher during wet periods than during dry periods, indicating stronger CO2 sources during dry periods. This suggests the cave ventilation system may be entraining soil gas CO2 from overhead fissures when the overlying soil cap is not waterlogged. This is counter to presumptions that wet periods with faster drips and more CO2 degassing from dripwater might increase cave air CO2 levels.

  13. Effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver: study in the experimental model of Zucker rats.

    PubMed

    Ragusa, Rosetta; Cabiati, Manuela; Guzzardi, Maria Angela; D'Amico, Andrea; Giannessi, Daniela; Del Ry, Silvia; Caselli, Chiara

    2017-04-01

    Suppression of tumorigenicity 2 (ST2) mediates the effect of Interleukin-33 (IL-33). Few data are reported on the relationship between IL-33/ST2 and obesity. We aimed to investigate effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver in a rodent model of obesity. The relationship of cardiac expression of IL-33/ST2 system with natriuretic peptides (NPs) system and inflammatory mediators was also studied. mRNA expression of IL-33/ST2 system was evaluated in cardiac, adipose and hepatic biopsies from obese Zucker rats (O) and controls (CO). Expression levels of sST2 was significantly lower in O rats compared with CO (p<0.05) in all tissues. Besides, the mRNA levels of IL-33 decreased significant in fat of O respect to CO, while, expression levels of ST2L was significantly higher in liver of CO than in O. A strong relationship of IL-33/ST2 with NPs and classical inflammatory mediators was observed in cardiac tissue. Expression of sST2 in cardiac, adipose and liver tissue decreased in O compared with controls, suggesting an involvement for IL-33/ST2 system in molecular mechanisms of obesity. The strong relationships with NP systems and inflammatory mediators could suggest an involvement for IL-33/ST2 in molecular pathways leading to cardiac dysfunction and inflammation associated with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Acclimation of two tomato species to high atmospheric CO sub 2 : I. Sugar and starch concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelle, S.; Beeson, R.C. Jr.; Trudel, M.J.

    Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA1028, were exposed to two CO{sub 2} concentrations for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO{sub 2}. Carbon exchange rates were significantly higher in CO{sub 2}-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO{sub 2}. This indicates that the long-term decline of photosynthetic efficiency of leaf 5more » cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO{sub 2} when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO{sub 2} concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO{sub 2} cannot entirely explain the loss of photosynthetic efficiency of high CO{sub 2}-grown plants.« less

  15. The Role of Low-coordinate Oxygen on Co3O4(110) in Catalytic Oxidation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Deen; Dai, Sheng

    2011-01-01

    A complete catalytic cycle for carbon monoxide (CO) oxidation to carbon dioxide (CO{sub 2}) by molecular oxygen on the Co{sub 3}O{sub 4}(110) surface was obtained by density functional theory plus the on-site Coulomb repulsion (DFT + U). Previously observed high activity of Co{sub 3}O{sub 4} to catalytically oxidize CO at very low temperatures is explained by a unique twofold-coordinate oxygen site on Co{sub 3}O{sub 4}(110). The CO molecule extracts this oxygen with a computed barrier of 27 kJ/mol. The extraction leads to CO{sub 2} formation and an oxygen vacancy on Co{sub 3}O{sub 4}(110). Then, the O{sub 2} molecule dissociates withoutmore » a barrier between two neighboring oxygen vacancies (which are shown to have high surface mobility), thereby replenishing the twofold-coordinate oxygen sites on the surface and enabling the catalytic cycle. In contrast, extracting the threefold-coordinate oxygen site on Co{sub 3}O{sub 4}(110) has a higher barrier. Our work furnishes a molecular-level mechanism of Co{sub 3}O{sub 4}'s catalytic power, which may help understand previous experimental results and oxidation catalysis by transition metal oxides.« less

  16. Exploring the limits of crop productivity: beyond the limits of tipburn in lettuce

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Ritchie, Glen; Cometti, Nilton N.; Robinson, Justin; Bugbee, Bruce

    2004-01-01

    The productivity of lettuce in a combination of high light, high temperature, and elevated CO2 has not been commonly studied because rapid growth usually causes a calcium deficiency in meristems called tipburn, which greatly reduces quality and marketability. We eliminated tipburn by blowing air directly onto the meristem, which allowed us to increase the photosynthetic photon flux (PPF) to 1000 micromoles m-2 s-1 (57.6 mol m-2 d-1); two to three times higher than normally used for lettuce. Eliminating tipburn doubled edible yield at the highest PPF level. In addition to high PPF, CO2 was elevated to 1200 micromoles m-2 mol-1, which increased the temperature optimum from 25 to 30 degrees C. The higher temperature increased leaf expansion rate, which improved radiation capture and more than doubled yield. Photosynthetic efficiency, measured as canopy quantum yield in a whole-plant gas exchange system, steadily increased up to the highest temperature of 32 degrees C in high CO2. The highest productivity was 19 g m-2 d-1 of dry biomass (380 g d-1 fresh mass) averaged over the 23 days the plants received light. Without the limitation of tipburn, the combination of high PPF, high temperature, and elevated CO2 resulted in a 4-fold increase in growth rate over productivity in conventional environments.

  17. Continuous atmospheric CO2 and its δ13C measurements (2012-2014) at Environment Research Station Schneefernerhaus, Germany

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Homa; Yuan, Ye; Luepke, Marvin; Chen, Jia; Ries, Ludwig; Menzel, Annette

    2017-04-01

    This study presents continuous measurement of atmospheric CO2 and δ13C by PICARRO Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS, G1101- i) for a period of two and a half years at the remote Global Atmosphere Watch (GAW) site Environment Research Station Schneefernerhaus (UFS, Germany, 2650 m a.s.l). Both water vapor and methane concentration show spectroscopic interferences with CO2 and δ13C in this measuring device. Without analyzer upgrade to account automatically for these effects, we present approaches for corrections for δ13C and CO2 mixing ratio as well as test the precision and stability of the device. The mean annual cycle from May 2012 to November 2014 exhibited peak-to-peak amplitudes of 13.34 ppm for CO2 and 1.82 ‰ for δ13C. Regarding CO2 mean diurnal cycle, daily maxima occurred around noon and daily minima in the afternoon. However, clear seasonal differences can be observed. For δ13C, the minimum of diurnal cycle occurred in the morning and the maximum in the afternoon with peak-to peak amplitude of around 0.4 ‰ in summer, 0.2 ‰ both in spring and autumn and no diurnal cycle in winter. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) was used to calculate 96 hours backward trajectories reaching at UFS with an altitude of 1500 m a.g.l to characterize the origin of air masses transported to the site. Trajectories clustering resulted in five major directions, which were from west (41.2 %), southwest (14.8 %), northwest (19.7 %), southeast (12.5 %) and northeast (11.8 %). Wind speed and wind direction showed clear influences on CO2 mixing ratio. Higher levels of CO2 mixing ratio were measured at wind speeds higher than 6 m s-1 from the northwest, northeast and southwest. The research is financed by the Bavarian State Ministry of the Environment and Consumer Protection.

  18. Comparison of porcine circovirus type 2 (PCV2)-associated lesions produced by co-infection between two genotypes of PCV2 and two genotypes of porcine reproductive and respiratory syndrome virus.

    PubMed

    Park, Changhoon; Seo, Hwi Won; Park, Su-Jin; Han, Kiwon; Chae, Chanhee

    2014-11-01

    The objective of this study was to compare the virulence and pathogenicity of a combination of concurrent infections of two genotypes of porcine circovirus type 2 (PCV2) and two genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) in terms of PCV2 viraemia, and PCV2-associated lesions and antigens in co-infected pigs. Pigs with PCV2a (or 2b)/type 1 (or type 2) PRRSV had significantly (P<0.05) higher mean clinical respiratory scores and lower average daily weight gain compared with pigs with PCV2a (or 2b). Co-infection induced significantly lower levels of anti-PCV2 and anti-PRRSV IgG antibodies than infection with one genotype alone, regardless of the genotype of the two viruses. Pigs with PCV2a (or 2b)/type 2 PRRSV had significantly (P<0.05) higher levels of PCV2 viraemia, more severe PCV2-associated lesions, and more PCV2 DNA within the lesions compared with pigs with PCV2a (or 2b)/type 1 PRRSV. However, there was no significant difference in these parameters in pigs with PCV2a/type 2 PRRSV or PCV2b/type 2 PRRSV. The results of this study demonstrate significant differences in the virulence and pathogenicity of type 1 and type 2 PRRSV but no significant differences in the virulence and pathogenicity of PCV2a and PCV2b with respect to the production of PCV2-associated lesions. © 2014 The Authors.

  19. Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Rani, Sanju; Bao, Ningzhong; Roy, Somnath C.

    2014-01-01

    A viable option for recycling carbon dioxide is through the sunlight-powered photocatalytic conversion of CO2 and water vapor into hydrocarbon fuels over highly active nanocatalysts. With photocatalytic CO2 reduction sunlight, a renewable energy source as durable as the sun, is used to drive the catalytic reaction with the resultant fuel products compatible with the current hydrocarbon-based energy infrastructure. The use of co-catalyst (Cu, Pt)-sensitized TiO2 nanoparticle wafers in the photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, with optimal humidity levels and exposure times established. We also attempted to increase product formation by sputtering both co-catalysts on the nanoparticle wafer's surface, with the resulting product rates significantly higher than that of either the Cu or Pt coated samples. When the TiO2 nanoparticle wafers are used in a flow-through membrane implementation we find a significant increase in product rates of formation, including methane, hydrogen, and carbon monoxide. We believe that nanocatalyst-based flow-through membranes are a viable route for achieving large-scale and low cost photocatalytic solar fuel production.

  20. Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, Junjun; Peng, Changhui; Zhu, Qiuan; Xue, Wei; Shen, Yan; Yang, Yanzheng; Shi, Guohua; Shi, Shengwei; Wang, Meng

    2016-10-01

    An incubation experiment was conducted at three temperature levels (8, 18 and 28 °C) to quantify the response of soil CO2 and N2O emissions to temperature in three ecosystems (pine forest, oak forest, and meadow) located in the Qinling Mountains of China, which are considered to be susceptible to disturbance and climate changes, especially global warming. The soil CO2 emission rates increased with temperature and decreased with soil depth; they were the highest in the oak forest (broadleaf forest) and were lower in the pine forest (coniferous forest) and the meadow ecosystem. However, there was no significant difference in the soil N2O emission rates among the three ecosystems. The temperature sensitivity of CO2 and N2O was higher in the forest than in the meadow ecosystem. The Q10 values (temperature sensitivity coefficient) for CO2 and N2O were 1.07-2.25 and 0.82-1.22, respectively, for the three ecosystems. There was also evidence that the CO2 and N2O emission rates were positively correlated. The soil characteristics exhibited different effects on CO2 and N2O emissions among different ecosystems at the three temperature levels. Moreover, the soil dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA) and nitrate (NO3-) were important factors for CO2 emissions, whereas the soil ammonium (NH4+) and pH were the major controllers of N2O emissions. Unexpectedly, our results indicated that CO2 emissions are more sensitive to increasing temperature than N2O, noting the different feedback of CO2 and N2O emissions to global warming in this region. The different responses of greenhouse gas emissions in different forest types and a meadow ecosystem suggest that it is critical to conduct a comprehensive investigation of the complex mountain forest and meadow ecosystem in the transitional climate zone under global warming. Our research results provide new insight and advanced understanding of the variations in major greenhouse gas emissions (CO2 and N2O) and soil characteristics in response to warming.

Top