Sample records for higher compression ratios

  1. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2018-07-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  2. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  3. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

    PubMed

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-12-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.

  4. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2017-03-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  5. Edge-preserving image compression for magnetic-resonance images using dynamic associative neural networks (DANN)-based neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Tat C.; Kabuka, Mansur R.

    1994-05-01

    With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.

  6. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  7. Observer performance assessment of JPEG-compressed high-resolution chest images

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David

    1999-05-01

    The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.

  8. MP3 compression of Doppler ultrasound signals.

    PubMed

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  9. Compression of next-generation sequencing quality scores using memetic algorithm

    PubMed Central

    2014-01-01

    Background The exponential growth of next-generation sequencing (NGS) derived DNA data poses great challenges to data storage and transmission. Although many compression algorithms have been proposed for DNA reads in NGS data, few methods are designed specifically to handle the quality scores. Results In this paper we present a memetic algorithm (MA) based NGS quality score data compressor, namely MMQSC. The algorithm extracts raw quality score sequences from FASTQ formatted files, and designs compression codebook using MA based multimodal optimization. The input data is then compressed in a substitutional manner. Experimental results on five representative NGS data sets show that MMQSC obtains higher compression ratio than the other state-of-the-art methods. Particularly, MMQSC is a lossless reference-free compression algorithm, yet obtains an average compression ratio of 22.82% on the experimental data sets. Conclusions The proposed MMQSC compresses NGS quality score data effectively. It can be utilized to improve the overall compression ratio on FASTQ formatted files. PMID:25474747

  10. Compression mechanisms in the plasma focus pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Ali, Jalil

    2017-03-01

    The compression of the plasma focus pinch is a dynamic process, governed by the electrodynamics of pinch elongation and opposed by the negative rate of change of current dI/dt associated with the current dip. The compressibility of the plasma is influenced by the thermodynamics primarily the specific heat ratio; with greater compressibility as the specific heat ratio γ reduces with increasing degree of freedom f of the plasma ensemble due to ionization energy for the higher Z (atomic number) gases. The most drastic compression occurs when the emitted radiation of a high-Z plasma dominates the dynamics leading in extreme cases to radiative collapse which is terminated only when the compressed density is sufficiently high for the inevitable self-absorption of radiation to occur. We discuss the central pinch equation which contains the basic electrodynamic terms with built-in thermodynamic factors and a dQ/dt term; with Q made up of a Joule heat component and absorption-corrected radiative terms. Deuterium is considered as a thermodynamic reference (fully ionized perfect gas with f = 3) as well as a zero-radiation reference (bremsstrahlung only; with radiation power negligible compared with electrodynamic power). Higher Z gases are then considered and regimes of thermodynamic enhancement of compression are systematically identified as are regimes of radiation-enhancement. The code which incorporates all these effects is used to compute pinch radius ratios in various gases as a measure of compression. Systematic numerical experiments reveal increasing severity in radiation-enhancement of compressions as atomic number increases. The work progresses towards a scaling law for radiative collapse and a generalized specific heat ratio incorporating radiation.

  11. FRESCO: Referential compression of highly similar sequences.

    PubMed

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  12. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  13. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; hide

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  14. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    PubMed

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  15. The compression and storage method of the same kind of medical images: DPCM

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Wei, Jingyuan; Zhai, Linpei; Liu, Hong

    2006-09-01

    Medical imaging has started to take advantage of digital technology, opening the way for advanced medical imaging and teleradiology. Medical images, however, require large amounts of memory. At over 1 million bytes per image, a typical hospital needs a staggering amount of memory storage (over one trillion bytes per year), and transmitting an image over a network (even the promised superhighway) could take minutes--too slow for interactive teleradiology. This calls for image compression to reduce significantly the amount of data needed to represent an image. Several compression techniques with different compression ratio have been developed. However, the lossless techniques, which allow for perfect reconstruction of the original images, yield modest compression ratio, while the techniques that yield higher compression ratio are lossy, that is, the original image is reconstructed only approximately. Medical imaging poses the great challenge of having compression algorithms that are lossless (for diagnostic and legal reasons) and yet have high compression ratio for reduced storage and transmission time. To meet this challenge, we are developing and studying some compression schemes, which are either strictly lossless or diagnostically lossless, taking advantage of the peculiarities of medical images and of the medical practice. In order to increase the Signal to Noise Ratio (SNR) by exploitation of correlations within the source signal, a method of combining differential pulse code modulation (DPCM) is presented.

  16. Real-time compression of raw computed tomography data: technology, architecture, and benefits

    NASA Astrophysics Data System (ADS)

    Wegener, Albert; Chandra, Naveen; Ling, Yi; Senzig, Robert; Herfkens, Robert

    2009-02-01

    Compression of computed tomography (CT) projection samples reduces slip ring and disk drive costs. A lowcomplexity, CT-optimized compression algorithm called Prism CTTM achieves at least 1.59:1 and up to 2.75:1 lossless compression on twenty-six CT projection data sets. We compare the lossless compression performance of Prism CT to alternative lossless coders, including Lempel-Ziv, Golomb-Rice, and Huffman coders using representative CT data sets. Prism CT provides the best mean lossless compression ratio of 1.95:1 on the representative data set. Prism CT compression can be integrated into existing slip rings using a single FPGA. Prism CT decompression operates at 100 Msamp/sec using one core of a dual-core Xeon CPU. We describe a methodology to evaluate the effects of lossy compression on image quality to achieve even higher compression ratios. We conclude that lossless compression of raw CT signals provides significant cost savings and performance improvements for slip rings and disk drive subsystems in all CT machines. Lossy compression should be considered in future CT data acquisition subsystems because it provides even more system benefits above lossless compression while achieving transparent diagnostic image quality. This result is demonstrated on a limited dataset using appropriately selected compression ratios and an experienced radiologist.

  17. Strength development of pervious concrete containing engineered biomass aggregate

    NASA Astrophysics Data System (ADS)

    Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd

    2017-11-01

    Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, B.B.

    The object of the study reported in this paper was to investigate the possibility of using the blend of kerosene with petrol in a gasoline engines, without much losses in performance. The authors carried out experiments on a four-stroke cycle Briggs and Stratton S. I. Engine using five blends of kerosene with petrol at a compression ratios 5.3 and 7.47 to 1 with and without surge chambers, at a constant engine speed of 1500 rev/min with the following conclusions: 1. At part-load and the lower compression ratio the brake thermal efficiency is improved with percentage increase of kerosene but atmore » the higher compression ratio it is improved only upto 50% kerosene blend with petrol. 2. The knock-free maximum bhp is reduced with (a) the percentage increase of kerosene, (b) the increase of compression ratio. 3. Use of a surge chamber increase the knock-free maximum bhp, and reduces the brake thermal efficiency.« less

  19. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  20. A real-time ECG data compression and transmission algorithm for an e-health device.

    PubMed

    Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho

    2011-09-01

    This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.

  1. Cooled-Spool Piston Compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  2. Mid-IR soliton compression in silicon optical fibers and fiber tapers.

    PubMed

    Peacock, Anna C

    2012-03-01

    Numerical simulations are used to investigate soliton compression in silicon core optical fibers at 2.3 μm in the mid-infrared waveguide regime. Compression in both standard silicon fibers and fiber tapers is compared to establish the relative compression ratios for a range of input pulse conditions. The results show that tapered fibers can be used to obtain higher levels of compression for moderate soliton orders and thus lower input powers. © 2012 Optical Society of America

  3. Turbulence intensity and spatial integral scale during compression and expansion strokes in a four-cycle reciprocating engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikegami, M.; Shioji, M.; Nishimoto, K.

    1987-01-01

    A laser homodyne technique is applied to measure turbulence intensities and spatial scales during compression and expansion strokes in a non-fired engine. By using this technique, relative fluid motion in a turbulent flow is detected directly without cyclic variation biases caused by fluctuation in the main flow. Experiments are performed at different engine speeds, compression ratios, and induction swirl ratios. In no-swirl cases the turbulence field near the compression end is almost uniform, whereas in swirled cases both the turbulence intensity and the scale near the cylinder axis are higher than those in the periphery. In addition, based on themore » measured results, the k-epsilon two-equation turbulence model under the influence of compression is discussed.« less

  4. Compressed air-assisted solvent extraction (CASX) for metal removal.

    PubMed

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  5. CNES studies for on-board implementation via HLS tools of a cloud-detection module for selective compression

    NASA Astrophysics Data System (ADS)

    Camarero, R.; Thiebaut, C.; Dejean, Ph.; Speciel, A.

    2010-08-01

    Future CNES high resolution instruments for remote sensing missions will lead to higher data-rates because of the increase in resolution and dynamic range. For example, the ground resolution improvement has induced a data-rate multiplied by 8 from SPOT4 to SPOT5 [1] and by 28 to PLEIADES-HR [2]. Innovative "smart" compression techniques will be then required, performing different types of compression inside a scene, in order to reach higher global compression ratios while complying with image quality requirements. This socalled "selective compression", allows important compression gains by detecting and then differently compressing the regions-of-interest (ROI) and non-interest in the image (e.g. higher compression ratios are assigned to the non-interesting data). Given that most of CNES high resolution images are cloudy [1], significant mass-memory and transmission gain could be reached by just detecting and suppressing (or compressing significantly) the areas covered by clouds. Since 2007, CNES works on a cloud detection module [3] as a simplification for on-board implementation of an already existing module used on-ground for PLEIADES-HR album images [4]. The different steps of this Support Vector Machine classifier have already been analyzed, for simplification and optimization, during this on-board implementation study: reflectance computation, characteristics vector computation (based on multispectral criteria) and computation of the SVM output. In order to speed up the hardware design phase, a new approach based on HLS [5] tools is being tested for the VHDL description stage. The aim is to obtain a bit-true VDHL design directly from a high level description language as C or Matlab/Simulink [6].

  6. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  7. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  8. Experimental study on compressive strength of sediment brick masonry

    NASA Astrophysics Data System (ADS)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  9. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Szybist, James P

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios withmore » high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less

  11. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heywood, John; Jo, Young Suk; Lewis, Raymond

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving themore » efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.« less

  12. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  13. A database for assessment of effect of lossy compression on digital mammograms

    NASA Astrophysics Data System (ADS)

    Wang, Jiheng; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2018-03-01

    With widespread use of screening digital mammography, efficient storage of the vast amounts of data has become a challenge. While lossless image compression causes no risk to the interpretation of the data, it does not allow for high compression rates. Lossy compression and the associated higher compression ratios are therefore more desirable. The U.S. Food and Drug Administration (FDA) currently interprets the Mammography Quality Standards Act as prohibiting lossy compression of digital mammograms for primary image interpretation, image retention, or transfer to the patient or her designated recipient. Previous work has used reader studies to determine proper usage criteria for evaluating lossy image compression in mammography, and utilized different measures and metrics to characterize medical image quality. The drawback of such studies is that they rely on a threshold on compression ratio as the fundamental criterion for preserving the quality of images. However, compression ratio is not a useful indicator of image quality. On the other hand, many objective image quality metrics (IQMs) have shown excellent performance for natural image content for consumer electronic applications. In this paper, we create a new synthetic mammogram database with several unique features. We compare and characterize the impact of image compression on several clinically relevant image attributes such as perceived contrast and mass appearance for different kinds of masses. We plan to use this database to develop a new objective IQM for measuring the quality of compressed mammographic images to help determine the allowed maximum compression for different kinds of breasts and masses in terms of visual and diagnostic quality.

  14. Compression of high-density EMG signals for trapezius and gastrocnemius muscles.

    PubMed

    Itiki, Cinthia; Furuie, Sergio S; Merletti, Roberto

    2014-03-10

    New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR CONCLUSIONS: The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles.

  15. Compression of high-density EMG signals for trapezius and gastrocnemius muscles

    PubMed Central

    2014-01-01

    Background New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. Methods HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Results Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR Conclusions The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles. PMID:24612604

  16. The Basic Principles and Methods of the System Approach to Compression of Telemetry Data

    NASA Astrophysics Data System (ADS)

    Levenets, A. V.

    2018-01-01

    The task of data compressing of measurement data is still urgent for information-measurement systems. In paper the basic principles necessary for designing of highly effective systems of compression of telemetric information are offered. A basis of the offered principles is representation of a telemetric frame as whole information space where we can find of existing correlation. The methods of data transformation and compressing algorithms realizing the offered principles are described. The compression ratio for offered compression algorithm is about 1.8 times higher, than for a classic algorithm. Thus, results of a research of methods and algorithms showing their good perspectives.

  17. Compression of surface myoelectric signals using MP3 encoding.

    PubMed

    Chan, Adrian D C

    2011-01-01

    The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).

  18. CoGI: Towards Compressing Genomes as an Image.

    PubMed

    Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong

    2015-01-01

    Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.

  19. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    DTIC Science & Technology

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  20. Observer detection of image degradation caused by irreversible data compression processes

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David

    1991-05-01

    Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.

  1. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.

    2017-06-01

    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.

  2. Mechanical properties of palm oil based bio-polyurethane foam of free rise and various densities

    NASA Astrophysics Data System (ADS)

    Hilmi, Hazmi; Zainuddin, Firuz; Cheng, Teoh Siew; Lan, Du Ngoc Uy

    2017-12-01

    Bio-foam was produced from palm oil-based polyol (POBP) and methylene diphenyl diisocyanate (MDI) with weight ratio of 1:1. The effect of opened mould (as free rise) and closed mould (control expansion) was investigated. Different densities of bio-polyurethane foam (0.3, 0.4 and 0.5 g.cm-3) were prepared using the closed mould system. The effect of density on morphology and compressive properties of bio-foam was studied. Results showed that bio-foam prepared by closed mould method possessed homogeneous cell structure and cell size compared to bio-foam prepared by opened mould. In addition, bio-foam using closed mould system had higher compression strength (0.47 MPa) than that of bio-foam using opened mould system (0.13 MPa). With higher density and lesser porosity, the compressive modulus and compressive strength of bio foams will be higher. The increase in compressive properties is due to the decrease in the cells size, more homogeneous cell structure and reduction in porosity content.

  3. Highly Efficient Compression Algorithms for Multichannel EEG.

    PubMed

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  4. Nonlinear pulse compression in pulse-inversion fundamental imaging.

    PubMed

    Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi

    2007-04-01

    Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.

  5. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  6. An image assessment study of image acceptability of the Galileo low gain antenna mission

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Haines, R. F.; Grant, T.; Gold, Yaron; Cheung, Kar-Ming

    1994-01-01

    This paper describes a study conducted by NASA Ames Research Center (ARC) in collaboration with the Jet Propulsion Laboratory (JPL), Pasadena, California on the image acceptability of the Galileo Low Gain Antenna mission. The primary objective of the study is to determine the impact of the Integer Cosine Transform (ICT) compression algorithm on Galilean images of atmospheric bodies, moons, asteroids and Jupiter's rings. The approach involved fifteen volunteer subjects representing twelve institutions involved with the Galileo Solid State Imaging (SSI) experiment. Four different experiment specific quantization tables (q-table) and various compression stepsizes (q-factor) to achieve different compression ratios were used. It then determined the acceptability of the compressed monochromatic astronomical images as evaluated by Galileo SSI mission scientists. Fourteen different images were evaluated. Each observer viewed two versions of the same image side by side on a high resolution monitor, each was compressed using a different quantization stepsize. They were requested to select which image had the highest overall quality to support them in carrying out their visual evaluations of image content. Then they rated both images using a scale from one to five on its judged degree of usefulness. Up to four pre-selected types of images were presented with and without noise to each subject based upon results of a previously administered survey of their image preferences. Fourteen different images in seven image groups were studied. The results showed that: (1) acceptable compression ratios vary widely with the type of images; (2) noisy images detract greatly from image acceptability and acceptable compression ratios; and (3) atmospheric images of Jupiter seem to have higher compression ratios of 4 to 5 times that of some clear surface satellite images.

  7. Survey Of Lossless Image Coding Techniques

    NASA Astrophysics Data System (ADS)

    Melnychuck, Paul W.; Rabbani, Majid

    1989-04-01

    Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.

  8. Relationship between weight of rescuer and quality of chest compression during cardiopulmonary resuscitation

    PubMed Central

    2014-01-01

    Background According to the guidelines for cardiopulmonary resuscitation (CPR), the rotation time for chest compression should be about 2 min. The quality of chest compressions is related to the physical fitness of the rescuer, but this was not considered when determining rotation time. The present study aimed to clarify associations between body weight and the quality of chest compression and physical fatigue during CPR performed by 18 registered nurses (10 male and 8 female) assigned to light and heavy groups according to the average weight for each sex in Japan. Methods Five-minute chest compressions were then performed on a manikin that was placed on the floor. Measurement parameters were compression depth, heart rate, oxygen uptake, integrated electromyography signals, and rating of perceived exertion. Compression depth was evaluated according to the ratio (%) of adequate compressions (at least 5 cm deep). Results The ratio of adequate compressions decreased significantly over time in the light group. Values for heart rate, oxygen uptake, muscle activity defined as integrated electromyography signals, and rating of perceived exertion were significantly higher for the light group than for the heavy group. Conclusion Chest compression caused increased fatigue among the light group, which consequently resulted in a gradual fall in the quality of chest compression. These results suggested that individuals with a lower body weight should rotate at 1-min intervals to maintain high quality CPR and thus improve the survival rates and neurological outcomes of victims of cardiac arrest. PMID:24957919

  9. Performance of a Space-Based Wavelet Compressor for Plasma Count Data on the MMS Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.

    2017-01-01

    Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.

  10. Three dimensional range geometry and texture data compression with space-filling curves.

    PubMed

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  11. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.

    PubMed

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-30

    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  12. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  13. Anisotropy, size, and aspect ratio effects on micropillar compression of Al-SiC nanolaminate composites

    DOE PAGES

    Mayer, C. R.; Yang, L. W.; Singh, S. S.; ...

    2016-05-20

    Metal-ceramic nanolaminate composites show promise as high strength and toughness materials. Micropillar compression was used to characterize the mechanical behavior of AlSiC multilayers in different orientations including loading at 0°, 45° and 90° with respect to the direction of the layers. The 0° orientation showed the highest strength while the 45° orientation showed the lowest strength. Each orientation showed unique deformation behavior. Effects of pillar size and aspect ratio were also studied. Higher compressive strengths were observed in smaller pillars for all orientations. This effect was shown to be due to a lower probability of flaws using Weibull statistics. Additionally,more » changes in the aspect ratio was shown to have no significant effect on the behavior except an increase in the strain to failure in the 0° orientation. In conclusion, finite element analysis (FEA) was used to simulate and understand the effect of these parameters on the deformation behavior.« less

  14. Remote Sensing Image Quality Assessment Experiment with Post-Processing

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.

    2018-04-01

    This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  15. First-principles equation of state and shock compression predictions of warm dense hydrocarbons

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-07-10

    We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07–22.4gcm –3 and 6.7 × 10 3 – 1.29 × 10 8K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativisticmore » effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Lastly, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.« less

  16. First-principles equation of state and shock compression predictions of warm dense hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Driver, Kevin P.; Soubiran, François; Militzer, Burkhard

    2017-07-01

    We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07 -22.4 g cm-3 and 6.7 ×103-1.29 ×108K . The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K -shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K - and L -shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L -shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.

  17. Parameter studies of sediments in the Storegga Slide region

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Kvalstad, T.; Solheim, A.; Forsberg, C. F.

    2006-09-01

    Based on classification tests, oedometer tests, fall-cone tests and triaxial tests, physical and mechanical properties of sediments in the Storegga Slide region were analysed to assess parameter interrelationships. The data show good relationships between a number of physical and mechanical parameters. Goodness of fit between compression index and various physical parameters can be improved by multiple regression analysis. The interclay void ratio and liquidity index correlate well with the undrained shear strength of clay. Sediments with higher water content, liquid limit, activity, interclay void ratio, plasticity index and liquidity index showed higher compression index and/or lower undrained shear strength. Some relationships between parameters were tested by using data from two other sites south of the Storegga Slide. A better understanding of properties of sediments in regions such as that of the Storegga Slide can be obtained through this approach.

  18. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel

    NASA Astrophysics Data System (ADS)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.

    2017-03-01

    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  19. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  20. Using a visual discrimination model for the detection of compression artifacts in virtual pathology images.

    PubMed

    Johnson, Jeffrey P; Krupinski, Elizabeth A; Yan, Michelle; Roehrig, Hans; Graham, Anna R; Weinstein, Ronald S

    2011-02-01

    A major issue in telepathology is the extremely large and growing size of digitized "virtual" slides, which can require several gigabytes of storage and cause significant delays in data transmission for remote image interpretation and interactive visualization by pathologists. Compression can reduce this massive amount of virtual slide data, but reversible (lossless) methods limit data reduction to less than 50%, while lossy compression can degrade image quality and diagnostic accuracy. "Visually lossless" compression offers the potential for using higher compression levels without noticeable artifacts, but requires a rate-control strategy that adapts to image content and loss visibility. We investigated the utility of a visual discrimination model (VDM) and other distortion metrics for predicting JPEG 2000 bit rates corresponding to visually lossless compression of virtual slides for breast biopsy specimens. Threshold bit rates were determined experimentally with human observers for a variety of tissue regions cropped from virtual slides. For test images compressed to their visually lossless thresholds, just-noticeable difference (JND) metrics computed by the VDM were nearly constant at the 95th percentile level or higher, and were significantly less variable than peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. Our results suggest that VDM metrics could be used to guide the compression of virtual slides to achieve visually lossless compression while providing 5-12 times the data reduction of reversible methods.

  1. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllablemore » and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.« less

  2. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  3. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  4. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    PubMed Central

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950

  5. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  6. Effect of Kollidon VA®64 particle size and morphology as directly compressible excipient on tablet compression properties.

    PubMed

    Chaudhary, R S; Patel, C; Sevak, V; Chan, M

    2018-01-01

    The study evaluates use of Kollidon VA ® 64 and a combination of Kollidon VA ® 64 with Kollidon VA ® 64 Fine as excipient in direct compression process of tablets. The combination of the two grades of material is evaluated for capping, lamination and excessive friability. Inter particulate void space is higher for such excipient due to the hollow structure of the Kollidon VA ® 64 particles. During tablet compression air remains trapped in the blend exhibiting poor compression with compromised physical properties of the tablets. Composition of Kollidon VA ® 64 and Kollidon VA ® 64 Fine is evaluated by design of experiment (DoE). A scanning electron microscopy (SEM) of two grades of Kollidon VA ® 64 exhibits morphological differences between coarse and fine grade. The tablet compression process is evaluated with a mix consisting of entirely Kollidon VA ® 64 and two mixes containing Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23 and 65:35. A statistical modeling on the results from the DoE trials resulted in the optimum composition for direct tablet compression as combination of Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23. This combination compressed with the predicted parameters based on the statistical modeling and applying main compression force between 5 and 15 kN, pre-compression force between 2 and 3 kN, feeder speed fixed at 25 rpm and compression range of 45-49 rpm produced tablets with hardness ranging between 19 and 21 kp, with no friability, capping, or lamination issue.

  7. Influence of crystal habit on the compression and densification mechanism of ibuprofen

    NASA Astrophysics Data System (ADS)

    Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante

    2002-08-01

    Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.

  8. Numerical Study on Section Constitutive Relations of Members Reinforced by Steel-BFRP Composite Bars

    NASA Astrophysics Data System (ADS)

    Xiao, Tongliang; Qiu, Hongxing

    2017-06-01

    Steel-Basalt FRP Composite Bar (S-BFCB) is a new kind of substitute material for longitudinal reinforcement, with high elastic modulus, stable post-yield stiffness and excellent corrosive resistance. Based on mechanical properties of S-BFCB and the plane cross-section assumption, the moment-curvature curves of beam and column members are simulated. Some parameters such as equivalent rebar ratio, postyeild stiffness, concrete strength and axial compression ratio of column were discussed. Results show that the constitutive relation of the cross section is similar with RC member in elastic and cracking stages, while different in post-yield stage. With the increase of postyeild stiffness ratio of composite bar, the ultimate bearing capacity of component improved observably, member may turn out over-reinforced phenomenon, concrete crushing may appear before the fibersarefractured. The effect of concrete strength increase in lower postyeild stiffness ratio is not obvious than in higher. The increase of axial compression ratio has actively influence on bearing capacity of column, but decreases on the ductility.

  9. Asphalt dust waste material as a paste volume in developing sustainable self compacting concrete (SCC)

    NASA Astrophysics Data System (ADS)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Self-compacting concrete (SCC) mixtures are usually designed to have high workability during the fresh state through the influence of higher volumes of paste in concrete mixtures. Asphalt dust waste (ADW) is one of disposed materials obtained during the production of asphalt premix. These fine powder wastes contribute to environmental problems today. However, these waste materials can be utilized in the development of sustainable and economical SCC. This paper focuses on the preliminary evaluations of the fresh properties and compressive strength of developed SCC for 7 and 28 days only. 144 cube samples from 24 mixtures with varying water binder ratios (0.2, 0.3 and 0.4) and ADW volume (0% to 100%) were prepared. MD940 and MD950 showed a satisfactory performance for the slump flow, J-Ring, L-Box and V-Funnel tests at fresh state. The compressive strength after 28 days for MD940 and MD950 was 36.9 MPa and 28.0 MPa respectively. In conclusion, the use of ADW as paste volume should be limited and a higher water binder ratio will significantly reduce the compressive strength.

  10. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  11. The effect on quality of chest compressions and exhaustion of a compression--ventilation ratio of 30:2 versus 15:2 during cardiopulmonary resuscitation--a randomised trial.

    PubMed

    Deschilder, Koen; De Vos, Rien; Stockman, Willem

    2007-07-01

    Recent cardio pulmonary resuscitation (CPR) guidelines changed the compression:ventilation ratio in 30:2. To compare the quality of chest compressions and exhaustion using the ratio 30:2 versus 15:2. A prospective, randomised crossover design was used. Subjects were recruited from the H.-Hart hospital personnel and the University College Katho for nurses and bio-engineering. Each participant performed 5min of CPR using either the ratio 30:2 or 15:2, then after a 15min rest switched to the other ratio. The data were collected using a questionnaire and an adult resuscitation manikin. The outcomes included exhaustion as measured by a visual analogue scale (VAS) score, depth of chest compressions, rates of chest compressions, total number of chest compressions, number of correct chest compressions and incomplete release. Data were compared using the Wilcoxon Signed Ranks Test. The results are presented as medians and interquartile ranges (IQR). One hundred and thirty subjects completed the study. The exhaustion-score using the VAS was 5.9 (IQR 2.25) for the ratio 30:2 and 4.5 (IQR 2.88) for the ratio 15:2 (P<0.001). The compression depth was 40.5mm (IQR 15.75) for 30:2 and 41mm (IQR 15.5) for 15:2 (P=0.5). The compression rate was 118beats/min (IQR 29) for 30:2 and 115beats/min (IQR 32) for 15:2 (P=0.02). The total number of compressions/5min was 347 (IQR 79) for 30:2 and 244compressions/5min (IQR 72.5) for 15:2 (P<0.001). The number of correct compression/5min was 61.5 (IQR 211.75) for 30:2 and 55.5 (IQR 142.75) for 15:2 (P=0.001). The relative risk (RR) of incomplete release in 30:2 versus 15:2 was 1.087 (95% CI=0.633-1.867). Although the 30:2 ratio is rated to be more exhausting, the 30:2 technique delivers more chest compressions and the quality of chest compressions remains unchanged.

  12. Data Compression Techniques for Maps

    DTIC Science & Technology

    1989-01-01

    Lempel - Ziv compression is applied to the classified and unclassified images as also to the output of the compression algorithms . The algorithms ...resulted in a compression of 7:1. The output of the quadtree coding algorithm was then compressed using Lempel - Ziv coding. The compression ratio achieved...using Lempel - Ziv coding. The unclassified image gave a compression ratio of only 1.4:1. The K means classified image

  13. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  14. Computational Simulation of Breast Compression Based on Segmented Breast and Fibroglandular Tissues on Magnetic Resonance Images

    PubMed Central

    Shih, Tzu-Ching; Chen, Jeon-Hor; Liu, Dongxu; Nie, Ke; Sun, Lizhi; Lin, Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying

    2010-01-01

    This study presents a finite element based computational model to simulate the three-dimensional deformation of the breast and the fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and the craniocaudal and mediolateral oblique compression as used in mammography was applied. The geometry of whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo® 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the non-linear elastic tissue deformation under compression, using the MSC.Marc® software package. The model was tested in 4 cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these 4 cases at 60% compression ratio was in the range of 5-7 cm, which is the typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at 60% compression ratio was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on MRI, which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density measurements needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities – such as MRI, mammography, whole breast ultrasound, and molecular imaging – that are performed using different body positions and different compression conditions. PMID:20601773

  15. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images.

    PubMed

    Shih, Tzu-Ching; Chen, Jeon-Hor; Liu, Dongxu; Nie, Ke; Sun, Lizhi; Lin, Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying

    2010-07-21

    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under different compression conditions.

  16. Loaded delay lines for future RF pulse compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.M.; Wilson, P.B.; Kroll, N.M.

    1995-05-01

    The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less

  17. Laryngoscopic and spectral analysis of laryngeal and pharyngeal configuration in non-classical singing styles.

    PubMed

    Guzman, Marco; Lanas, Andres; Olavarria, Christian; Azocar, Maria Josefina; Muñoz, Daniel; Madrid, Sofia; Monsalve, Sebastian; Martinez, Francisca; Vargas, Sindy; Cortez, Pedro; Mayerhoff, Ross M

    2015-01-01

    The present study aimed to assess three different singing styles (pop, rock, and jazz) with laryngoscopic, acoustic, and perceptual analysis in healthy singers at different loudness levels. Special emphasis was given to the degree of anterior-posterior (A-P) laryngeal compression, medial laryngeal compression, vertical laryngeal position (VLP), and pharyngeal compression. Prospective study. Twelve female trained singers with at least 5 years of voice training and absence of any voice pathology were included. Flexible and rigid laryngeal endoscopic examinations were performed. Voice recording was also carried out. Four blinded judges were asked to assess laryngoscopic and auditory perceptual variables using a visual analog scale. All laryngoscopic parameters showed significant differences for all singing styles. Rock showed the greatest degree for all of them. Overall A-P laryngeal compression scores demonstrated significantly higher values than overall medial compression and VLP. High loudness level produced the highest degree of A-P compression, medial compression, pharyngeal compression, and the lowest VLP for all singing styles. Additionally, rock demonstrated the highest values for alpha ratio (less steep spectral slope), L1-L0 ratio (more glottal adduction), and Leq (more vocal intensity). Statistically significant differences between the three loudness levels were also found for these acoustic parameters. Rock singing seems to be the style with the highest degree of both laryngeal and pharyngeal activity in healthy singers. Although, supraglottic activity during singing could be labeled as hyperfunctional vocal behavior, it may not necessarily be harmful, but a strategy to avoid vocal fold damage. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  19. Temporal compressive imaging for video

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Zhang, Linxia; Ke, Jun

    2018-01-01

    In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.

  20. A comparative study of SAR data compression schemes

    NASA Technical Reports Server (NTRS)

    Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.

    1994-01-01

    The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.

  1. Fuels for high-compression engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1926-01-01

    From theoretical considerations one would expect an increase in power and thermal efficiency to result from increasing the compression ratio of an internal combustion engine. In reality it is upon the expansion ratio that the power and thermal efficiency depend, but since in conventional engines this is equal to the compression ratio, it is generally understood that a change in one ratio is accompanied by an equal change in the other. Tests over a wide range of compression ratios (extending to ratios as high as 14.1) have shown that ordinarily an increase in power and thermal efficiency is obtained as expected provided serious detonation or preignition does not result from the increase in ratio.

  2. Shear transfer in concrete reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  3. [Study of the strength of compacts of mixed dry binders consisting of powdered cellulose and directly compressible lactose].

    PubMed

    Muzíková, J; Hájková, P; Vinklarová, S

    2004-07-01

    The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.

  4. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  5. Influence of Pore Structure on Compressive Strength of Cement Mortar

    PubMed Central

    Zhao, Haitao; Xiao, Qi; Huang, Donghui

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  6. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  7. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    PubMed

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  8. Lossless medical image compression with a hybrid coder

    NASA Astrophysics Data System (ADS)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  9. High load operation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  10. Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

    EPA Science Inventory

    Low-pressure loop exhaust gas recirculation (LPL- EGR) combined with a higher compression ratio is a technology package that has been the focus of significant research to increase engine thermal efficiency of downsized, turbocharged GDI engines. Research shows that the addition ...

  11. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    NASA Astrophysics Data System (ADS)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  12. Changes of strength characteristics of pervious concrete due to variations in water to cement ratio

    NASA Astrophysics Data System (ADS)

    Kovac, M.; Sicakova, A.

    2017-10-01

    Pervious concrete is considered to be a sustainable pavement material due to high water permeability. The experiment presented in this paper was aimed at study the influence of water to cement ratio on both the compressive and splitting tensile strength of pervious concrete. Typically, less water content in concrete mixture leads to less porosity of cement paste and thus it provides desirable mechanical properties. In case of conventional dense concrete, the lower is the water to cement ratio, the higher or better is the strength, density and durability of concrete. This behaviour is not quite clear in case of pervious concrete because of low amount of cement paste present. Results of compressive and splitting tensile strength of pervious concrete are discussed in the paper while taking into account values measured after 2 and 28 days of hardening and variations in water to cement ratio. The results showed that changes of water to cement ratio from 0.25 to 0.35 caused only slight differences in strength characteristics, and this applied to both types of tested strength.

  13. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  14. Effects of compression force on elasticity index and elasticity ratio in ultrasound elastography

    PubMed Central

    Sasaki, Y; Sakamoto, J; Kamio, T; Nishikawa, K; Otonari-Yamamoto, M; Wako, M

    2014-01-01

    Objectives: The purpose of this study was to investigate the relationship between compression force and hardness values in ultrasound elastography. Methods: Ultrasound elastography was performed using an elastography phantom, comprising inclusions with different elasticities and echogenicities. The compression force was set to approximately 100 gw (light force) and approximately 500 gw (heavy force). The elasticity index (EI) of the inclusion was measured. The EI was a relative hardness value of a structure within an elastographic image. Similarly, the EI of the background was measured as a reference. The elasticity ratio (ER) was calculated as the EI of the inclusion divided by the EI of the reference. Results: The hardness of the phantom could be discerned with both the EI and ER, regardless of the compression force. The EI and ER with heavy force tended to be higher than those with light force, but the difference was not significant. A strong correlation was observed between the EI and ER of soft structures, whereas the correlation between the EI and ER of hard structures was weak, and the ER values varied widely. Conclusions: The EI offers potential as a good indicator for assessing the hardness. PMID:24592929

  15. Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar

    NASA Astrophysics Data System (ADS)

    Nan, Qin; Hongwei, Wang; Yongyan, Wang

    2018-03-01

    Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.

  16. Subjective evaluation of compressed image quality

    NASA Astrophysics Data System (ADS)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  17. The effect of changes in compression ratio upon engine performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)

  18. Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard

    2017-08-01

    Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.

  19. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  20. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.

    PubMed

    Benoit, Gaëtan; Lemaitre, Claire; Lavenier, Dominique; Drezen, Erwan; Dayris, Thibault; Uricaru, Raluca; Rizk, Guillaume

    2015-09-14

    Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method. We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies. Our approach, implemented in the software LEON, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. LEON was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, LEON showed higher overall compression ratios than state-of-the-art compression software. On a C. elegans whole genome sequencing dataset, LEON divided the original file size by more than 20. LEON is an open source software, distributed under GNU affero GPL License, available for download at http://gatb.inria.fr/software/leon/.

  1. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  2. In-cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, R.F.; Yang, H.S.; Yeh, C.-N.

    2008-04-15

    The temporal and spatial evolution processes of the in-cylinder flow structures and turbulence intensities in the symmetry and offset planes of a motored four-valve, four-stroke engine during the intake and compression strokes are diagnosed by using a particle image velocimeter. Two pistons of different crown shapes (flat-crown and slightly concave-crown pistons) are studied. The inception, establishment, and evolution of the tumbling vortical flow structures during the intake and compression strokes are clearly depicted. Quantitative strengths of the rotating vortical flow motions are presented by a dimensionless parameter, the tumble ratio, which can represent the mean angular velocity of the vorticesmore » in the target plane. The turbulence intensity of the in-cylinder flow is also calculated by using the measured time-varying velocity data. The results show that the flat-crown piston induces higher bulk-averaged tumble ratio and turbulence intensity than the slightly concave-crown piston does because the tumble ratio and turbulence generated by the flat-crown piston in the offset planes during the compression stroke are particularly large. The engine with the flat-crown piston also presents larger torque and power outputs and lower hydrocarbon emission than that with the slightly concave-crown piston. This might be caused by the enhanced combustion in the engine cylinder due to the stronger tumble ratio and turbulence intensity. (author)« less

  3. An investigation of the effect of aspect and compression ratios on sediment dispersion using discrete element modelling

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tan, Danielle S.

    2017-12-01

    We use discrete element modelling to simulate a system of sand being released underwater, similar to the process of releasing sediment tailings back into the sea in nodule harvesting, in 2D. The force model includes concentration-dependent drag, buoyancy, `added mass' and Stokeslet disturbance. For a fixed number of uniform-sized particles, we vary the aspect ratio and the compression ratio of the rectangular mass of granular media pre-release. We observed that the spreading leads to a nonlinear increase with aspect ratio. On the other hand, when the compression ratio is increased, the total spreading increases; however the spread of the bulk of the sand decreases at small aspect ratios and increases at large aspect ratios. We proposed a simple theoretical model for the horizontal spreading which depends on both the aspect and compression ratios.

  4. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  5. Postbuckling response of long thick plates loaded in compression including higher order transverse shearing effects

    NASA Technical Reports Server (NTRS)

    Stein, Manuel; Sydow, P. Daniel; Librescu, Liviu

    1990-01-01

    Buckling and postbuckling results are presented for compression-loaded simply-supported aluminum plates and composite plates with a symmetric lay-up of thin + or - 45 deg plies composed of many layers. Buckling results for aluminum plates of finite length are given for various length-to-width ratios. Asymptotes to the curves based on buckling results give N(sub xcr) for plates of infinite length. Postbuckling results for plates with transverse shearing flexibility are compared to results from classical theory for various width-to-thickness ratios. Characteristic curves indicating the average longitudinal direct stress resultant as a function of the applied displacements are calculated based on four different theories: Classical von Karman theory using the Kirchoff assumptions, first-order shear deformation theory, higher-order shear deformation theory, and 3-D flexibility theory. Present results indicate that the 3-D flexibility theory gives the lowest buckling loads. The higher-order shear deformation theory has fewer unknowns than the 3-D flexibility theory but does not take into account through-the-thickness effects. The figures presented show that small differences occur in the average longitudinal direct stress resultants from the four theories that are functions of applied end-shortening displacement.

  6. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  7. Prediction and optimization of CI engine performance fuelled with Calophyllum inophyllum diesel blend using response surface methodology (RSM).

    PubMed

    Venugopal, Paramaguru; Kasimani, Ramesh; Chinnasamy, Suresh

    2018-06-21

    The transportation demand in India is increasing tremendously, which arouses the energy consumption by 4.1 to 6.1% increases each year from 2010 to 2050. In addition, the private vehicle ownership keeps on increasing almost 10% per year during the last decade and reaches 213 million tons of oil consumption in 2016. Thus, this makes India the third largest importer of crude oil in the world. Because of this problem, there is a need of promoting the alternative fuels (biodiesel) which are from different feedstocks for the transportation. This alternative fuel has better emission characteristics compared to neat diesel, hence the biodiesel can be used as direct alternative for diesel and it can also be blended with diesel to get better performance. However, the effect of compression ratio, injection timing, injection pressure, composition-blend ratio and air-fuel ratio, and the shape of the cylinder may affect the performance and emission characteristics of the diesel engine. This article deals with the effect of compression ratio in the performance of the engine while using Honne oil diesel blend and also to find out the optimum compression ratio. So the experimentations are conducted using Honne oil diesel blend-fueled CI engine at variable load conditions and at constant speed operations. In order to find out the optimum compression ratio, experiments are carried out on a single-cylinder, four-stroke variable compression ratio diesel engine, and it is found that 18:1 compression ratio gives better performance than the lower compression ratios. Engine performance tests were carried out at different compression ratio values. Using experimental data, regression model was developed and the values were predicted using response surface methodology. Then the predicted values were validated with the experimental results and a maximum error percentage of 6.057 with an average percentage of error as 3.57 were obtained. The optimum numeric factors for different responses were also selected using RSM.

  8. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions

    DOE PAGES

    Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...

    2016-11-03

    In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less

  9. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.

    In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less

  10. Wrinkling of solidifying polymeric coatings

    NASA Astrophysics Data System (ADS)

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.

  11. Effect of one-rescuer compression/ventilation ratios on cardiopulmonary resuscitation in infant, pediatric, and adult manikins.

    PubMed

    Srikantan, Shoba Krishnan; Berg, Robert A; Cox, Tim; Tice, Lisa; Nadkarni, Vinay M

    2005-05-01

    Optimal chest compression to ventilation ratio (C:V) for one-rescuer cardiopulmonary resuscitation (CPR) is not known, with current American Heart Association recommendations 3:1 for newborns, 5:1 for children, and 15:2 for adults. C:V ratios influence effectiveness of CPR, but memorizing different ratios is educationally cumbersome. We hypothesized that a 10:2 ratio might provide adequate universal application for all age arrest victims. Clinical study. Tertiary care children's hospital. Thirty-five health care providers. Thirty-five health care providers performed 5-min epochs of one-rescuer CPR at C:V ratios of 3:1, 5:1, 10:2, and 15:2 in random order on infant, pediatric, and adult manikins. Compressions were paced at 100/min by metronome. The number of effective compressions and ventilations delivered per minute was recorded by a trained basic life support instructor. Subjective assessments of fatigue (self-report) and exertion (change in rescuer pulse rate compared with baseline) were assessed. Analysis was by repeated measures analysis of variance and paired Student's t-test. Effective infant compressions per minute did not differ by C:V ratio, but ventilations per minute were greater at 3:1 vs. 5:1, 10:2, and 15:2 (p < .05). Effective pediatric compressions per minute were less at 3:1 vs. 5:1, 10:2, and 15:2 (p < .05) and not different between 5:1, 10:2, and 15:2 ratios. Effective pediatric ventilations per minute were greater at 3:1 than all other ratios and both 5:1 and 10:2 were >15:2 (p < .05). Effective adult compressions per minute were progressively greater with 3:1 vs. 5:1 vs. 10:2 vs. 15:2 (p < .05). Self-efficacy was assessed, and rescuers always subjectively rated 10:2 and 15:2 ratios as easier than 5:1 or 3:1 ratios for all manikins. Rescuer pulse change (exertion) was greater after pediatric and adult vs. infant CPR (p < .05), with no significant difference by C:V ratio. C:V ratio and manikin size have a significant influence on the number of effective compressions and ventilations delivered during ideal, metronome-paced, one-rescuer CPR. Low ratios of 3:1, 5:1, and 10:2 favor ventilation, and high ratios of 15:2 favor compression, especially in adult manikins. Rescuers subjectively preferred C:V ratios of 10:2 and 15:2 over 3:1 or 5:1. Infant CPR caused less exertion and subjective fatigue than pediatric or adult CPR technique, without significant difference by C:V ratio. We speculate that a universal 10:2 C:V ratio for one-rescuer layperson CPR is physiologically reasonable but warrants further study with particular attention to educational value and technique retention.

  12. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.

  13. Comparison of lossless compression techniques for prepress color images

    NASA Astrophysics Data System (ADS)

    Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.

    1998-12-01

    In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.

  14. KungFQ: a simple and powerful approach to compress fastq files.

    PubMed

    Grassi, Elena; Di Gregorio, Federico; Molineris, Ivan

    2012-01-01

    Nowadays storing data derived from deep sequencing experiments has become pivotal and standard compression algorithms do not exploit in a satisfying manner their structure. A number of reference-based compression algorithms have been developed but they are less adequate when approaching new species without fully sequenced genomes or nongenomic data. We developed a tool that takes advantages of fastq characteristics and encodes them in a binary format optimized in order to be further compressed with standard tools (such as gzip or lzma). The algorithm is straightforward and does not need any external reference file, it scans the fastq only once and has a constant memory requirement. Moreover, we added the possibility to perform lossy compression, losing some of the original information (IDs and/or qualities) but resulting in smaller files; it is also possible to define a quality cutoff under which corresponding base calls are converted to N. We achieve 2.82 to 7.77 compression ratios on various fastq files without losing information and 5.37 to 8.77 losing IDs, which are often not used in common analysis pipelines. In this paper, we compare the algorithm performance with known tools, usually obtaining higher compression levels.

  15. Effect of rapid set binder on early strength and permeability of HES latex modified road repair pre-packed concrete

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.

    2015-12-01

    The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.

  16. Effect of blade-surface-roughness on the pumping performance of a turbomolecular pump

    NASA Astrophysics Data System (ADS)

    Sawada, T.; Yabuki, M.; Sugiyama, W.; Watanabe, M.

    2005-11-01

    Turbomolecular pumps (TMPs) are widely used in the semiconductor and other thin film industries. Some semiconductor processes form corrosive gases such as HCl or HF as byproducts. The elements of a TMP are sometimes coated with ceramic (SiO2) film for the purpose of preventing corrosion of the TMP. The blades coated with SiO2 have relatively rough surfaces. The effect of the surface roughness of the blades on the pumping performance has been studied experimentally and theoretically. Experimental results for TMPs with two rotor disks and one stator disk show that the TMP coated with SiO2 film gives about 11% to 13% higher maximum-compression ratio than the noncoated TMP when the blade speed ratio is 0.47. The theory based on the conic peak/dimple-surface-roughness model that has been proposed by the authors explains the change in the compression ratio with the surface roughness shown in the experiment.

  17. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    PubMed

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  18. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.

    PubMed

    Gagnon-Turcotte, Gabriel; LeChasseur, Yoan; Bories, Cyril; Messaddeq, Younes; De Koninck, Yves; Gosselin, Benoit

    2017-02-01

    This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105 minutes, and uses a lightweight (2.8 g) and compact [Formula: see text] rigid-flex printed circuit board.

  19. Effect of silica fume on the characterization of the geopolymer materials

    NASA Astrophysics Data System (ADS)

    Khater, Hisham M.

    2013-12-01

    The influence of silica fume (SF) addition on properties of geopolymer materials produced from alkaline activation of alumino-silicates metakaolin and waste concrete produced from demolition works has been studied through the measurement of compressive strength, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM) analysis. Alumino-silicate materials are coarse aggregate included waste concrete and fired kaolin (metakaolin) at 800°C for 3 h, both passing a sieve of 90 μm. Mix specimens containing silica fume were prepared at water/binder ratios in a range of 0.30 under water curing. The used activators are an equal mix of sodium hydroxide and silicate in the ratio of 3:3 wt.%. The control geopolymer mix is composed of metakaolin and waste concrete in an equal mix (50:50, wt.%). Waste concrete was partially replaced by silica fume by 1 to 10 wt.%. The results indicated that compressive strengths of geopolymer mixes incorporating SF increased up to 7% substitution and then decreased up to 10% but still higher than that of the control mix. Results indicated that compressive strengths of geopolymer mixes incorporating SF increases up to 7% substitution and then decreases up to 10% but still higher than the control mix, where 7% SF-digested calcium hydroxide (CH) crystals, decreased the orientation of CH crystals, reduced the crystal size of CH gathered at the interface, and improved the interface more effectively.

  20. Possibility of reducing CO2 emissions from internal combustion engines

    NASA Astrophysics Data System (ADS)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  1. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  2. Correlation between magnetic resonance T2 image signal intensity ratio and cell apoptosis in a rabbit spinal cord cervical myelopathy model.

    PubMed

    Ma, Lei; Zhang, Di; Chen, Wei; Shen, Yong; Zhang, Yingze; Ding, Wenyuan; Zhang, Wei; Wang, Linfeng; Yang, Dalong

    2014-01-01

    Cervical spondylotic myelopathy (CSM) is a common cause of disability in elderly patients. Previous studies have shown that spinal cord cell apoptosis due to spinal cord compression plays an important role in the pathology of myelopathy. Although changes in magnetic resonance imaging (MRI) T2 signal intensity ratio (SIR) are considered to be an indicator of CSM, little information is published supporting the correlation between changes in MRI signal and pathological changes. This study aims to testify the correlation between MRI T2 SIR changes and cell apoptosis using a CSM animal model. Forty-eight rabbits were randomly assigned to four groups: one control group and three experimental chronic compression groups, with each group containing 12 animals. Chronic compression of the cervical spinal cord was implemented in the experimental groups by implanting a screw in the C3 vertebra. The control group underwent sham surgery. Experimental groups were observed for 3, 6, or 9 months after surgery. MRI T2-weighted SIR Tarlov motor scores and cortical somatosensory-evoked potentials (CSEPs) were periodically monitored. At each time point, rabbits from one group were sacrificed to determine the level of apoptosis by histology (n = 6) and Western blotting (n = 6). Tarlov motor scores in the compression groups were lower at all time points than the control group scores, with the lowest score at 9 months (P < 0.001). Electrophysiological testing showed a significantly prolonged latency in CSEP in the compression groups compared with the control group. All rabbits in the compression groups showed higher MRI T2 SIR in the injury epicenter compared with controls, and higher SIR was also found at 9 months compared with 3 or 6 months. Histological analysis showed significant apoptosis in the spinal cord tissue in the compression groups, but not in the control group. There were significant differences in apoptosis degree over time (P < 0.001), with the 9-month group displaying the most severe spinal cord apoptosis. Spearman's rank correlation test showed that there was close relation between MRI SIR and degree of caspase-3 expression in Western blotting (r = 0.824. P < 0.001). Clear apoptosis of spinal cord tissue was observed during chronic focal spinal compression. Changes in MRI T2 SIR may be related to the severity of the apoptosis in cervical spinal cord.

  3. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  4. Biological sequence compression algorithms.

    PubMed

    Matsumoto, T; Sadakane, K; Imai, H

    2000-01-01

    Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.

  5. The effect of hydraulic bed movement on the quality of chest compressions.

    PubMed

    Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki

    2017-08-01

    The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A comparison of select image-compression algorithms for an electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.

  7. Adaptive Integration of the Compressed Algorithm of CS and NPC for the ECG Signal Compressed Algorithm in VLSI Implementation

    PubMed Central

    Tseng, Yun-Hua; Lu, Chih-Wen

    2017-01-01

    Compressed sensing (CS) is a promising approach to the compression and reconstruction of electrocardiogram (ECG) signals. It has been shown that following reconstruction, most of the changes between the original and reconstructed signals are distributed in the Q, R, and S waves (QRS) region. Furthermore, any increase in the compression ratio tends to increase the magnitude of the change. This paper presents a novel approach integrating the near-precise compressed (NPC) and CS algorithms. The simulation results presented notable improvements in signal-to-noise ratio (SNR) and compression ratio (CR). The efficacy of this approach was verified by fabricating a highly efficient low-cost chip using the Taiwan Semiconductor Manufacturing Company’s (TSMC) 0.18-μm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The proposed core has an operating frequency of 60 MHz and gate counts of 2.69 K. PMID:28991216

  8. Cast Stone Formulation At Higher Sodium Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, includingmore » production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.« less

  9. Cast Stone Formulation At Higher Sodium Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, includingmore » production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.« less

  10. Cast Stone Formulation At Higher Sodium Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, includingmore » production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.« less

  11. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  12. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  13. Production and construction technology of C100 high strength concrete filled steel tube

    NASA Astrophysics Data System (ADS)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  14. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  15. A tabulation of pipe length to diameter ratios as a function of Mach number and pressure ratios for compressible flow

    NASA Technical Reports Server (NTRS)

    Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.

    1975-01-01

    Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.

  16. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  17. Compressing DNA sequence databases with coil.

    PubMed

    White, W Timothy J; Hendy, Michael D

    2008-05-20

    Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression - an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression - the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  18. Compressing DNA sequence databases with coil

    PubMed Central

    White, W Timothy J; Hendy, Michael D

    2008-01-01

    Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794

  19. Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation.

    PubMed

    Chao, Wan-Tien; Lin, Yuan-Yao; Peng, Jin-Long; Huang, Chen-Bin

    2014-02-15

    Adiabatic soliton spectral compression in a dispersion-increasing fiber (DIF) with a linear dispersion ramp is studied both numerically and experimentally. The anticipated maximum spectral compression ratio (SCR) would be limited by the ratio of the DIF output to the input dispersion values. However, our numerical analyses indicate that SCR greater than the DIF dispersion ratio is feasible, provided the input pulse duration is shorter than a threshold value along with adequate pulse energy control. Experimentally, a SCR of 28.6 is achieved in a 1 km DIF with a dispersion ratio of 22.5.

  20. The NORDA MC&G Map Data Formatting Facility: Development of a Digital Map Data Base

    DTIC Science & Technology

    1989-12-01

    Lempel - Ziv compression . extract such features as roads, water, urban areas, and Also investigated were various transform encoding text from the scanned... Compression Ratios scanned maps revealed a small number of color classes and lar .e homogeneous regions. The original 24-bit Lempel Ziv Lempel Ziv pixel...Various high performance, lossless compression tech- Table 6. Compression ratios for VQ classification niques were tried. followed by Lempel Ziv

  1. Influence of extensive compressed natural gas (CNG) usage on air quality

    NASA Astrophysics Data System (ADS)

    Suthawaree, Jeeranut; Sikder, Helena Akhter; Jones, Charlotte Emily; Kato, Shungo; Kunimi, Hitoshi; Mohammed Hamidul Kabir, Abu Naser; Kajii, Yoshizumi

    2012-07-01

    Compressed Natural Gas (CNG) is an inexpensive, indigenous energy resource which currently accounts for the majority of automobile and domestic energy consumption in Bangladesh. This extensive CNG usage, particularly within the capital city, Dhaka, heavily influences the atmospheric composition (and hence air quality), yet to date measurements of trace gases in regions dominated by CNG emissions are relatively limited. Here we report continuous observations of the atmospherically important trace gases O3, CO, SO2, NOx and volatile organic compounds (VOC), in ambient air in Dhaka City, Bangladesh, during May 2011. The average mixing ratios of O3, CO, SO2, and NOx for the measurement period were 18.9, 520.9, 7.6 and 21.5 ppbv, respectively. The ratios of CO to NO reveal that emissions from gasoline and CNG-fuelled vehicles were dominant during the daytime (slope of ˜26), while in contrast, owing to restrictions imposed on diesel fuelled vehicles entering Dhaka City, emissions from these vehicles only became significant during the night (slope of ˜10). The total VOC mixing ratio in Dhaka was ˜5-10 times higher than the levels reported in more developed Asian cities such as Tokyo and Bangkok, which consequently gives rise to a higher ozone formation potential (OFP). However, the most abundant VOC in Dhaka were the relatively long-lived ethane and propane (with mean mixing ratios of ˜115 and ˜30 ppbv, respectively), and as a consequence, the ozone formation potential per ppb carbon (ppbC) was lower in Dhaka than in Tokyo and Bangkok. Thus the atmospheric composition of air influenced by extensive CNG combustion may be characterized by high VOC mixing ratios, yet mixing ratios of the photochemical pollutant ozone do not drastically exceed the levels typical of Asian cities with considerably lower VOC levels.

  2. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  3. The Performance of Wavelets for Data Compression in Selected Military Applications

    DTIC Science & Technology

    1990-02-23

    reported. 14. SUBJECT TERMS IS. NUMBER OF PAGES 56 16. PRICE CODE 17. SICURITY CLASSIFICATION I lL SECURITY CLASSIFICATION 19. SECURITY CLASSIF4CATION 20...compression ratio is conservative in the sense that it understates the theoretical compression ratio by taking into account the actual memory...effect of reducing the compresion ratios quoted in the table by the factor 7.8/8.0 = 0.975. AWARE, Inc. 14 registration was then calculated for each

  4. High-speed real-time image compression based on all-optical discrete cosine transformation

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Chen, Hongwei; Wang, Yuxi; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2017-02-01

    In this paper, we present a high-speed single-pixel imaging (SPI) system based on all-optical discrete cosine transform (DCT) and demonstrate its capability to enable noninvasive imaging of flowing cells in a microfluidic channel. Through spectral shaping based on photonic time stretch (PTS) and wavelength-to-space conversion, structured illumination patterns are generated at a rate (tens of MHz) which is three orders of magnitude higher than the switching rate of a digital micromirror device (DMD) used in a conventional single-pixel camera. Using this pattern projector, high-speed image compression based on DCT can be achieved in the optical domain. In our proposed system, a high compression ratio (approximately 10:1) and a fast image reconstruction procedure are both achieved, which implicates broad applications in industrial quality control and biomedical imaging.

  5. Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions

    NASA Technical Reports Server (NTRS)

    Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina

    2002-01-01

    OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.

  6. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

  7. Evaluation of image compression for computer-aided diagnosis of breast tumors in 3D sonography

    NASA Astrophysics Data System (ADS)

    Chen, We-Min; Huang, Yu-Len; Tao, Chi-Chuan; Chen, Dar-Ren; Moon, Woo-Kyung

    2006-03-01

    Medical imaging examinations form the basis for physicians diagnosing diseases, as evidenced by the increasing use of digital medical images for picture archiving and communications systems (PACS). However, with enlarged medical image databases and rapid growth of patients' case reports, PACS requires image compression to accelerate the image transmission rate and conserve disk space for diminishing implementation costs. For this purpose, JPEG and JPEG2000 have been accepted as legal formats for the digital imaging and communications in medicine (DICOM). The high compression ratio is felt to be useful for medical imagery. Therefore, this study evaluates the compression ratios of JPEG and JPEG2000 standards for computer-aided diagnosis (CAD) of breast tumors in 3-D medical ultrasound (US) images. The 3-D US data sets with various compression ratios are compressed using the two efficacious image compression standards. The reconstructed data sets are then diagnosed by a previous proposed CAD system. The diagnostic accuracy is measured based on receiver operating characteristic (ROC) analysis. Namely, the ROC curves are used to compare the diagnostic performance of two or more reconstructed images. Analysis results ensure a comparison of the compression ratios by using JPEG and JPEG2000 for 3-D US images. Results of this study provide the possible bit rates using JPEG and JPEG2000 for 3-D breast US images.

  8. Preliminary feasibility analysis of a pressure modulator radiometer for remote sensing of tropospheric constituents

    NASA Technical Reports Server (NTRS)

    Orr, H. D., III; Rarig, P. L.

    1981-01-01

    A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.

  9. Compression techniques in tele-radiology

    NASA Astrophysics Data System (ADS)

    Lu, Tianyu; Xiong, Zixiang; Yun, David Y.

    1999-10-01

    This paper describes a prototype telemedicine system for remote 3D radiation treatment planning. Due to voluminous medical image data and image streams generated in interactive frame rate involved in the application, the importance of deploying adjustable lossy to lossless compression techniques is emphasized in order to achieve acceptable performance via various kinds of communication networks. In particular, the compression of the data substantially reduces the transmission time and therefore allows large-scale radiation distribution simulation and interactive volume visualization using remote supercomputing resources in a timely fashion. The compression algorithms currently used in the software we developed are JPEG and H.263 lossy methods and Lempel-Ziv (LZ77) lossless methods. Both objective and subjective assessment of the effect of lossy compression methods on the volume data are conducted. Favorable results are obtained showing that substantial compression ratio is achievable within distortion tolerance. From our experience, we conclude that 30dB (PSNR) is about the lower bound to achieve acceptable quality when applying lossy compression to anatomy volume data (e.g. CT). For computer simulated data, much higher PSNR (up to 100dB) is expectable. This work not only introduces such novel approach for delivering medical services that will have significant impact on the existing cooperative image-based services, but also provides a platform for the physicians to assess the effects of lossy compression techniques on the diagnostic and aesthetic appearance of medical imaging.

  10. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.

    PubMed

    ElShaer, Amr; Kaialy, Waseem; Akhtar, Noreen; Iyire, Affiong; Hussain, Tariq; Alany, Raid; Mohammed, Afzal R

    2015-10-01

    The acceleration of solid dosage form product development can be facilitated by the inclusion of excipients that exhibit poly-/multi-functionality with reduction of the time invested in multiple excipient optimisations. Because active pharmaceutical ingredients (APIs) and tablet excipients present diverse densification behaviours upon compaction, the involvement of these different powders during compaction makes the compaction process very complicated. The aim of this study was to assess the macrometric characteristics and distribution of surface charges of two powders: indomethacin (IND) and arginine (ARG); and evaluate their impact on the densification properties of the two powders. Response surface modelling (RSM) was employed to predict the effect of two independent variables; Compression pressure (F) and ARG percentage (R) in binary mixtures on the properties of resultant tablets. The study looked at three responses namely; porosity (P), tensile strength (S) and disintegration time (T). Micrometric studies showed that IND had a higher charge density (net charge to mass ratio) when compared to ARG; nonetheless, ARG demonstrated good compaction properties with high plasticity (Y=28.01MPa). Therefore, ARG as filler to IND tablets was associated with better mechanical properties of the tablets (tablet tensile strength (σ) increased from 0.2±0.05N/mm(2) to 2.85±0.36N/mm(2) upon adding ARG at molar ratio of 8:1 to IND). Moreover, tablets' disintegration time was shortened to reach few seconds in some of the formulations. RSM revealed tablet porosity to be affected by both compression pressure and ARG ratio for IND/ARG physical mixtures (PMs). Conversely, the tensile strength (σ) and disintegration time (T) for the PMs were influenced by the compression pressure, ARG ratio and their interactive term (FR); and a strong correlation was observed between the experimental results and the predicted data for tablet porosity. This work provides clear evidence of the multi-functionality of ARG as filler, binder and disintegrant for directly compressed tablets. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  12. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.

  13. Is breast compression associated with breast cancer detection and other early performance measures in a population-based breast cancer screening program?

    PubMed

    Moshina, Nataliia; Sebuødegård, Sofie; Hofvind, Solveig

    2017-06-01

    We aimed to investigate early performance measures in a population-based breast cancer screening program stratified by compression force and pressure at the time of mammographic screening examination. Early performance measures included recall rate, rates of screen-detected and interval breast cancers, positive predictive value of recall (PPV), sensitivity, specificity, and histopathologic characteristics of screen-detected and interval breast cancers. Information on 261,641 mammographic examinations from 93,444 subsequently screened women was used for analyses. The study period was 2007-2015. Compression force and pressure were categorized using tertiles as low, medium, or high. χ 2 test, t tests, and test for trend were used to examine differences between early performance measures across categories of compression force and pressure. We applied generalized estimating equations to identify the odds ratios (OR) of screen-detected or interval breast cancer associated with compression force and pressure, adjusting for fibroglandular and/or breast volume and age. The recall rate decreased, while PPV and specificity increased with increasing compression force (p for trend <0.05 for all). The recall rate increased, while rate of screen-detected cancer, PPV, sensitivity, and specificity decreased with increasing compression pressure (p for trend <0.05 for all). High compression pressure was associated with higher odds of interval breast cancer compared with low compression pressure (1.89; 95% CI 1.43-2.48). High compression force and low compression pressure were associated with more favorable early performance measures in the screening program.

  14. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalita, B. C., E-mail: bckalita123@gmail.com; Choudhury, M., E-mail: choudhurymamani@gmail.com

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causesmore » the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.« less

  15. Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds.

    PubMed

    Wang, Daming; Liu, Wei; Feng, Qian; Dong, Chaoqun; Liu, Qisong; Duan, Li; Huang, Jianghong; Zhu, Weimin; Li, Zemeng; Xiong, Jianyi; Liang, Yujie; Chen, Jielin; Sun, Rong; Bian, Liming; Wang, Daping

    2017-01-01

    Inorganic/organic hybrid scaffolds have great potential for tissue engineering applications due to controllable mechanical properties and tailorable biodegradation. Here, silica/chitosan hybrid scaffolds were fabricated through the sol-gel method with a freeze drying process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) were used as the covalent inorganic/organic coupling agent and the separate inorganic source, respectively. Hybrid scaffolds with various inorganic/organic weight ratios (I/Os) and molar ratios of chitosan and GPTMS (GCs) were examined and compared in this study. FTIR showed that higher GPTMS content resulted in the increased covalent cross-linking of the chitosan and the silica network in hybrids. Compression testing indicated that increasing the GPTMS content greatly improved the compressive strength of scaffold. LIVE/DEAD assay showed that enhanced cytocompatibility was obtained as the silica content increased. Therefore, the results confirmed that the two parameters I/O and GC can largely influence the scaffold performance, which can be used to tailor the hybrid properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  17. Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT data sets.

    PubMed

    Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon

    2008-06-01

    The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.

  18. A new efficient method for color image compression based on visual attention mechanism

    NASA Astrophysics Data System (ADS)

    Shao, Xiaoguang; Gao, Kun; Lv, Lily; Ni, Guoqiang

    2010-11-01

    One of the key procedures in color image compression is to extract its region of interests (ROIs) and evaluate different compression ratios. A new non-uniform color image compression algorithm with high efficiency is proposed in this paper by using a biology-motivated selective attention model for the effective extraction of ROIs in natural images. When the ROIs have been extracted and labeled in the image, the subsequent work is to encode the ROIs and other regions with different compression ratios via popular JPEG algorithm. Furthermore, experiment results and quantitative and qualitative analysis in the paper show perfect performance when comparing with other traditional color image compression approaches.

  19. Four-dimensional wavelet compression of arbitrarily sized echocardiographic data.

    PubMed

    Zeng, Li; Jansen, Christian P; Marsch, Stephan; Unser, Michael; Hunziker, Patrick R

    2002-09-01

    Wavelet-based methods have become most popular for the compression of two-dimensional medical images and sequences. The standard implementations consider data sizes that are powers of two. There is also a large body of literature treating issues such as the choice of the "optimal" wavelets and the performance comparison of competing algorithms. With the advent of telemedicine, there is a strong incentive to extend these techniques to higher dimensional data such as dynamic three-dimensional (3-D) echocardiography [four-dimensional (4-D) datasets]. One of the practical difficulties is that the size of this data is often not a multiple of a power of two, which can lead to increased computational complexity and impaired compression power. Our contribution in this paper is to present a genuine 4-D extension of the well-known zerotree algorithm for arbitrarily sized data. The key component of our method is a one-dimensional wavelet algorithm that can handle arbitrarily sized input signals. The method uses a pair of symmetric/antisymmetric wavelets (10/6) together with some appropriate midpoint symmetry boundary conditions that reduce border artifacts. The zerotree structure is also adapted so that it can accommodate noneven data splitting. We have applied our method to the compression of real 3-D dynamic sequences from clinical cardiac ultrasound examinations. Our new algorithm compares very favorably with other more ad hoc adaptations (image extension and tiling) of the standard powers-of-two methods, in terms of both compression performance and computational cost. It is vastly superior to slice-by-slice wavelet encoding. This was seen not only in numerical image quality parameters but also in expert ratings, where significant improvement using the new approach could be documented. Our validation experiments show that one can safely compress 4-D data sets at ratios of 128:1 without compromising the diagnostic value of the images. We also display some more extreme compression results at ratios of 2000:1 where some key diagnostically relevant key features are preserved.

  20. Learning random networks for compression of still and moving images

    NASA Technical Reports Server (NTRS)

    Gelenbe, Erol; Sungur, Mert; Cramer, Christopher

    1994-01-01

    Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.

  1. Effect of Aspect Ratio on Electrical, Rheological and Glass Transition Properties of PC/MWCNT Nanocomposites.

    PubMed

    Cruz, Heidy; Son, Younggon

    2018-02-01

    Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.

  2. High bit depth infrared image compression via low bit depth codecs

    NASA Astrophysics Data System (ADS)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  3. An Image Processing Technique for Achieving Lossy Compression of Data at Ratios in Excess of 100:1

    DTIC Science & Technology

    1992-11-01

    5 Lempel , Ziv , Welch (LZW) Compression ............... 7 Lossless Compression Tests Results ................. 9 Exact...since IBM holds the patent for this technique. Lempel , Ziv , Welch (LZW) Compression The LZW compression is related to two compression techniques known as... compression , using the input stream as data . This step is possible because the compression algorithm always outputs the phrase and character components of a

  4. Basic life support with four different compression/ventilation ratios in a pig model: the need for ventilation.

    PubMed

    Kill, Clemens; Torossian, Alexander; Freisburger, Christian; Dworok, Sebastian; Massmann, Martin; Nohl, Thorsten; Henning, Ronald; Wallot, Pascal; Gockel, Andreas; Steinfeldt, Thorsten; Graf, Jürgen; Eberhart, Leopold; Wulf, Hinnerk

    2009-09-01

    During cardiac arrest the paramount goal of basic life support (BLS) is the oxygenation of vital organs. Current recommendations are to combine chest compressions with ventilation in a fixed ratio of 30:2; however the optimum compression/ventilation ratio is still debatable. In our study we compared four different compression/ventilation ratios and documented their effects on the return of spontaneous circulation (ROSC), gas exchange, cerebral tissue oxygenation and haemodynamics in a pig model. Study was performed on 32 pigs under general anaesthesia with endotracheal intubation. Arterial and central venous lines were inserted. For continuous cerebral tissue oxygenation a Licox PtiO(2) probe was implanted. After 3 min of cardiac arrest (ventricular fibrillation) animals were randomized to a compression/ventilation-ratio 30:2, 100:5, 100:2 or compressions-only. Subsequently 10 min BLS, Advanced Life Support (ALS) was performed (100%O(2), 3 defibrillations, 1mg adrenaline i.v.). Data were analyzed with 2-factorial ANOVA. ROSC was achieved in 4/8 (30:2), 5/8 (100:5), 2/8 (100:2) and 0/8 (compr-only) pigs. During BLS, PaCO(2) increased to 55 mm Hg (30:2), 68 mm Hg (100:5; p=0.0001), 66 mm Hg (100:2; p=0.002) and 72 mm Hg (compr-only; p<0.0001). PaO(2) decreased to 58 mmg (30:2), 40 mm Hg (100:5; p=0.15), 43 mm Hg (100:2; p=0.04) and 26 mm Hg (compr-only; p<0.0001). PtiO(2) baseline values were 12.7, 12.0, 11.1 and 10.0 mm Hg and decreased to 8.1 mm Hg (30:2), 4.1 mm Hg (100:5; p=0.08), 4.3 mm Hg (100:2; p=0.04), and 4.5 mm Hg (compr-only; p=0.69). During BLS, a compression/ventilation-ratio of 100:5 seems to be equivalent to 30:2, while ratios of 100:2 or compressions-only detoriate peripheral arterial oxygenation and reduce the chance for ROSC.

  5. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  6. Parametric study on the compressive strength geopolymer paving block

    NASA Astrophysics Data System (ADS)

    Aman; Awaluddin, A.; Ahmad, A.; Olivia, M.

    2018-04-01

    This paper reported about the investigated of sodium hidroxida concentration, effect of ratio liquid to solid (L/S), temperature and time on the compressive strength of geopolymer paving block using fly ash and fine aggregate as base material and combination of sodium hidroxida and sodium silicate as alkaline activator and the ratio of Na2SiO3/NaOH was 2 and fly ash to aggregate of 1: 3. The experiments were conducted with variation of the sodium hidroxida concentration of (10-16 M) liquid to solid (L/S) 0.1- 0.7 ratio, curing temperature 30-100 °C and curing time (7-28 day). The main evaluation techniques in this experimental were Compressive strength, X-ray diffraction (XRD),and Scaning Electron Microscope (SEM). The result showed that the compressive strength of Geopolymer Paving block has increased with an increasing of concentration, liquid to solid ratio, curing temperature and curing time.

  7. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  8. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    NASA Astrophysics Data System (ADS)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  9. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    PubMed Central

    Solevåg, Anne Lee; Schmölzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to ventilation (C:V) ratio, and applied force, which are influenced by the CC provider. Thus, provider performance should be taken into account. Neonatal resuscitation guidelines recommend a 3:1 C:V ratio. CCs should be delivered at a rate of 90/min synchronized with ventilations at a rate of 30/min to achieve a total of 120 events/min. Despite a lack of scientific evidence supporting this, the investigation of alternative CC interventions in human neonates is ethically challenging. Also, the infrequent occurrence of extensive CPR measures in the DR make randomized controlled trials difficult to perform. Thus, many biomechanical aspects of CC have been investigated in animal and manikin models. Despite mathematical and physiological rationales that higher rates and uninterrupted CC improve CPR hemodynamics, studies indicate that provider fatigue is more pronounced when CC are performed continuously compared to when a pause is inserted after every third CC as currently recommended. A higher rate (e.g., 120/min) is also more fatiguing, which affects CC quality. In post-transitional piglets with asphyxia-induced cardiac arrest, there was no benefit of performing continuous CC at a rate of 90/min. Not only rate but duty cycle, i.e., the duration of CC/total cycle time, is a known determinant of CC effectiveness. However, duty cycle cannot be controlled with manual CC. Mechanical/automated CC in neonatal CPR has not been explored, and feedback systems are under-investigated in this population. Evidence indicates that providers perform CC at rates both higher and lower than recommended. Video recording of DR CRP has been increasingly applied and observational studies of what is actually done in relation to outcomes could be useful. Different CC rates and ratios should also be investigated under controlled experimental conditions in animals during perinatal transition. PMID:28168185

  10. Optimum SNR data compression in hardware using an Eigencoil array.

    PubMed

    King, Scott B; Varosi, Steve M; Duensing, G Randy

    2010-05-01

    With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.

  11. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    NASA Astrophysics Data System (ADS)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  12. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  13. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    PubMed

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  14. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes.

    PubMed

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching

    2016-08-29

    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40-0.50) decreased the filling ability and led to an increased T 50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC.

  15. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes

    PubMed Central

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching

    2016-01-01

    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40–0.50) decreased the filling ability and led to an increased T50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC. PMID:28773857

  16. High-speed and high-ratio referential genome compression.

    PubMed

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes <30 min to compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Correlation of radiologists' image quality perception with quantitative assessment parameters: just-noticeable difference vs. peak signal-to-noise ratios

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khan M.; Siegel, Eliot L.; Reiner, Bruce I.; Johnson, Jeffrey P.

    2005-04-01

    The authors identify a fundamental disconnect between the ways in which industry and radiologists assess and even discuss product performance. What is needed is a quantitative methodology that can assess both subjective image quality and observer task performance. In this study, we propose and evaluate the use of a visual discrimination model (VDM) that assesses just-noticeable differences (JNDs) to serve this purpose. The study compares radiologists' subjective perceptions of image quality of computer tomography (CT) and computed radiography (CR) images with quantitative measures of peak signal-to-noise ratio (PSNR) and JNDs as measured by a VDM. The study included 4 CT and 6 CR studies with compression ratios ranging from lossless to 90:1 (total of 80 sets of images were generated [n = 1,200]). Eleven radiologists reviewed the images and rated them in terms of overall quality and readability and identified images not acceptable for interpretation. Normalized reader scores were correlated with compression, objective PSNR, and mean JND values. Results indicated a significantly higher correlation between observer performance and JND values than with PSNR methods. These results support the use of the VDM as a metric not only for the threshold discriminations for which it was calibrated, but also as a general image quality metric. This VDM is a highly promising, reproducible, and reliable adjunct or even alternative to human observer studies for research or to establish clinical guidelines for image compression, dose reductions, and evaluation of various display technologies.

  18. A new approach of objective quality evaluation on JPEG2000 lossy-compressed lung cancer CT images

    NASA Astrophysics Data System (ADS)

    Cai, Weihua; Tan, Yongqiang; Zhang, Jianguo

    2007-03-01

    Image compression has been used to increase the communication efficiency and storage capacity. JPEG 2000 compression, based on the wavelet transformation, has its advantages comparing to other compression methods, such as ROI coding, error resilience, adaptive binary arithmetic coding and embedded bit-stream. However it is still difficult to find an objective method to evaluate the image quality of lossy-compressed medical images so far. In this paper, we present an approach to evaluate the image quality by using a computer aided diagnosis (CAD) system. We selected 77 cases of CT images, bearing benign and malignant lung nodules with confirmed pathology, from our clinical Picture Archiving and Communication System (PACS). We have developed a prototype of CAD system to classify these images into benign ones and malignant ones, the performance of which was evaluated by the receiver operator characteristics (ROC) curves. We first used JPEG 2000 to compress these cases of images with different compression ratio from lossless to lossy, and used the CAD system to classify the cases with different compressed ratio, then compared the ROC curves from the CAD classification results. Support vector machine (SVM) and neural networks (NN) were used to classify the malignancy of input nodules. In each approach, we found that the area under ROC (AUC) decreases with the increment of compression ratio with small fluctuations.

  19. Origin of texture development in orthorhombic uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  20. Origin of texture development in orthorhombic uranium

    DOE PAGES

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...

    2016-04-09

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  1. Supernova Driving. II. Compressive Ratio in Molecular-cloud Turbulence

    NASA Astrophysics Data System (ADS)

    Pan, Liubin; Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2016-07-01

    The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.

  2. Effect of angle-ply orientation on compression strength of composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeTeresa, S J; Hoppel, C P

    1999-03-01

    An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less

  3. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    PubMed

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  4. Toward an image compression algorithm for the high-resolution electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    Taking pictures with a camera that uses a digital recording medium instead of film has the advantage of recording and transmitting images without the use of a darkroom or a courier. However, high-resolution images contain an enormous amount of information and strain data-storage systems. Image compression will allow multiple images to be stored in the High-Resolution Electronic Still Camera. The camera is under development at Johnson Space Center. Fidelity of the reproduced image and compression speed are of tantamount importance. Lossless compression algorithms are fast and faithfully reproduce the image, but their compression ratios will be unacceptably low due to noise in the front end of the camera. Future efforts will include exploring methods that will reduce the noise in the image and increase the compression ratio.

  5. Effect of Metakaolin on Strength and Efflorescence Quantity of Cement-Based Composites

    PubMed Central

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight. PMID:23737719

  6. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    NASA Astrophysics Data System (ADS)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  7. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    PubMed

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  8. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  9. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    NASA Technical Reports Server (NTRS)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  10. Two-thumb technique is superior to two-finger technique during lone rescuer infant manikin CPR.

    PubMed

    Udassi, Sharda; Udassi, Jai P; Lamb, Melissa A; Theriaque, Douglas W; Shuster, Jonathan J; Zaritsky, Arno L; Haque, Ikram U

    2010-06-01

    Infant CPR guidelines recommend two-finger chest compression with a lone rescuer and two-thumb with two rescuers. Two-thumb provides better chest compression but is perceived to be associated with increased ventilation hands-off time. We hypothesized that lone rescuer two-thumb CPR is associated with increased ventilation cycle time, decreased ventilation quality and fewer chest compressions compared to two-finger CPR in an infant manikin model. Crossover observational study randomizing 34 healthcare providers to perform 2 min CPR at a compression rate of 100 min(-1) using a 30:2 compression:ventilation ratio comparing two-thumb vs. two-finger techniques. A Laerdal Baby ALS Trainer manikin was modified to digitally record compression rate, compression depth and compression pressure and ventilation cycle time (two mouth-to-mouth breaths). Manikin chest rise with breaths was video recorded and later reviewed by two blinded CPR instructors for percent effective breaths. Data (mean+/-SD) were analyzed using a two-tailed paired t-test. Significance was defined qualitatively as p< or =0.05. Mean % effective breaths were 90+/-18.6% in two-thumb and 88.9+/-21.1% in two-finger, p=0.65. Mean time (s) to deliver two mouth-to-mouth breaths was 7.6+/-1.6 in two-thumb and 7.0+/-1.5 in two-finger, p<0.0001. Mean delivered compressions per minute were 87+/-11 in two-thumb and 92+/-12 in two-finger, p=0.0005. Two-thumb resulted in significantly higher compression depth and compression pressure compared to the two-finger technique. Healthcare providers required 0.6s longer time to deliver two breaths during two-thumb lone rescuer infant CPR, but there was no significant difference in percent effective breaths delivered between the two techniques. Two-thumb CPR had 4 fewer delivered compressions per minute, which may be offset by far more effective compression depth and compression pressure compared to two-finger technique. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. In Vitro Quantification of Gutter Formation and Chimney Graft Compression in Chimney EVAR Stent-Graft Configurations Using Electrocardiography-Gated Computed Tomography.

    PubMed

    Overeem, Simon P; Donselaar, Esmé J; Boersen, Jorrit T; Groot Jebbink, Erik; Slump, Cornelis H; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2018-03-01

    To assess the dynamic behavior of chimney grafts during the cardiac cycle. Three chimney endovascular aneurysm repair (EVAR) stent-graft configurations (Endurant and Advanta V12, Endurant and Viabahn, and Endurant and BeGraft) were placed in silicone aneurysm models and subjected to physiologic flow. Electrocardiography (ECG)-gated contrast-enhanced computed tomography was used to visualize geometric changes during the cardiac cycle. Endograft and chimney graft surface, gutter volume, chimney graft angulation over the center lumen line, and the D-ratio (the ratio between the lengths of the major and minor axes) were independently assessed by 2 observers at 10 time points in the cardiac cycle. Both gutter volumes and chimney graft geometry changed significantly during the cardiac cycle in all 3 configurations (p<0.001). Gutters and endoleaks were observed in all configurations. The largest gutter volume (232.8 mm 3 ) and change in volume (20.7 mm 3 ) between systole and diastole were observed in the Endurant-Advanta configuration. These values were 2.7- and 3.0-fold higher, respectively, compared to the Endurant-Viabahn configuration and 1.7- and 1.6-fold higher as observed in the Endurant-BeGraft configuration. The Endurant-Viabahn configuration had the highest D-ratio (right, 1.26-1.35; left, 1.33-1.48), while the Endurant-BeGraft configuration had the lowest (right, 1.11-1.17; left, 1.08-1.15). Assessment of the interobserver variability showed a high correlation (intraclass correlation >0.935) between measurements. Gutter volumes and stent compression are dynamic phenomena that reshape during the cardiac cycle. Compelling differences were observed during the cardiac cycle in all configurations, with the self-expanding (Endurant-Viabahn) chimney EVAR configurations having smaller gutters and less variation in gutter volume during the cardiac cycle yet more stent compression without affecting the chimney graft surface.

  12. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  13. Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

    PubMed Central

    Słapa, Rafał Z.; Jakubowski, Wiesław S.; Migda, Bartosz; Dmowski, Tadeusz

    2014-01-01

    Aim Sonoelastography is a technique that assesses tissue hardness/compressibility. Utility and sensitivity of the method in prostate cancer diagnostics were assessed compared to the current gold standard in prostate cancer diagnostics i.e. systematic biopsy. Material and methods The study involved 84 patients suspected of prostate cancer based on elevated PSA levels or abnormal per rectal examination findings. Sonoelastography was used to evaluate the prostate gland. In the case of regions with hardness two-fold greater than that of symmetric prostate area (strain ratio >2), targeted biopsy was used; which was followed by an ultrasound-guided 8- or 10-core systematic biopsy (regardless of sonoelastography-indicated sites) as a reference point. Results The mean age of patients was 69 years. PSA serum levels ranged between 1.02 and 885 ng/dl. The mean prostate volume was 62 ml (19–149 ml). Prostate cancer was found in 39 out of 84 individuals. Statistically significant differences in strain ratios between cancers and benign lesions were shown. Sonoelastography guided biopsy revealed 30 lesions – overall sensitivity 77% (sensitivity of the method – 81%). Sonoelastographic sensitivity increased depending on cancer stage according to the Gleason grading system: 6–60%, 7–75%, 8–83%, 9/10–100%. The estimated sensitivity of systematic biopsy was 92%. Conclusions Sonoelastography shows higher diagnostic sensitivity in prostate cancer diagnostics compared to conventional imaging techniques, i.e. grey-scale TRUS, Doppler ultrasound. It allows to reduce the number of collected tissue cores, and thus limit the incidence of complications as well as the costs involved. Sonoelastography using the determination of compressibility ratio for symmetrical prostatic regions may prove useful in the detection of clinically significant prostate cancer. PMID:26674065

  14. Impact of physical fitness and biometric data on the quality of external chest compression: a randomised, crossover trial

    PubMed Central

    2011-01-01

    Background During circulatory arrest, effective external chest compression (ECC) is a key element for patient survival. In 2005, international emergency medical organisations changed their recommended compression-ventilation ratio (CVR) from 15:2 to 30:2 to acknowledge the vital importance of ECC. We hypothesised that physical fitness, biometric data and gender can influence the quality of ECC. Furthermore, we aimed to determine objective parameters of physical fitness that can reliably predict the quality of ECC. Methods The physical fitness of 30 male and 10 female healthcare professionals was assessed by cycling and rowing ergometry (focussing on lower and upper body, respectively). During ergometry, continuous breath-by-breath ergospirometric measurements and heart rate (HR) were recorded. All participants performed two nine-minute sequences of ECC on a manikin using CVRs of 30:2 and 15:2. We measured the compression and decompression depths, compression rates and assessed the participants' perception of exhaustion and comfort. The median body mass index (BMI; male 25.4 kg/m2 and female 20.4 kg/m2) was used as the threshold for subgroup analyses of participants with higher and lower BMI. Results HR during rowing ergometry at 75 watts (HR75) correlated best with the quality of ECC (r = -0.57, p < 0.05). Participants with a higher BMI and better physical fitness performed better and showed less fatigue during ECC. These results are valid for the entire cohort, as well as for the gender-based subgroups. The compressions of female participants were too shallow and more rapid (mean compression depth was 32 mm and rate was 117/min with a CVR of 30:2). For participants with a lower BMI and higher HR75, the compression depth decreased over time, beginning after four minutes for the 15:2 CVR and after three minutes for the 30:2 CVR. Although found to be more exhausting, a CVR of 30:2 was rated as being more comfortable. Conclusion The quality of the ECC and fatigue can both be predicted by BMI and physical fitness. An evaluation focussing on the upper body may be a more valid predictor of ECC quality than cycling based tests. Our data strongly support the recommendation to relieve ECC providers after two minutes. PMID:22053981

  15. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  16. The Effect of Compression Ratio on Knock Limits of High-Performance Fuels in a CFR Engine II : Blends of 2,2,3-Trimethylpentane with 28-R

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K

    1945-01-01

    The knock-limited performance of blends of 0,50; and 100 percent by volume of 2,2,3-trimethylpentane in 28-R fuel determined with a modified F-4 engine at three sets of conditions varying from severe to mild at each of three compression ratios (6.0, 8.0, and 10.0). A comparison of the knock-limited performance of 2,2,3-trimethylpentane with that of triptane (2,2,3-trimethylbutane) is included. The knock-Limited performance of 2,2,3-trimethylpontane was usually more sensitive to either compression ratio or inlet-air temperature than 28-R fuel, but the ratio of the knock-limited indicated mean effective pressure of a given blend containing 2,2,3-trimethypentane and 28-R to the indicated mean effective pressure of 28-R alone was not greatly affected by compression ratio if the engine operating conditions were mild. Although 2,2,3-trimethylpentane in general had a lower knock-limited performance than triptane, the characteristics of the two fuels were somewhat similar.

  17. Compressed/reconstructed test images for CRAF/Cassini

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Cheung, K.-M.; Onyszchuk, I.; Pollara, F.; Arnold, S.

    1991-01-01

    A set of compressed, then reconstructed, test images submitted to the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini project is presented as part of its evaluation of near lossless high compression algorithms for representing image data. A total of seven test image files were provided by the project. The seven test images were compressed, then reconstructed with high quality (root mean square error of approximately one or two gray levels on an 8 bit gray scale), using discrete cosine transforms or Hadamard transforms and efficient entropy coders. The resulting compression ratios varied from about 2:1 to about 10:1, depending on the activity or randomness in the source image. This was accomplished without any special effort to optimize the quantizer or to introduce special postprocessing to filter the reconstruction errors. A more complete set of measurements, showing the relative performance of the compression algorithms over a wide range of compression ratios and reconstruction errors, shows that additional compression is possible at a small sacrifice in fidelity.

  18. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    PubMed

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  19. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  20. Optimal Compression Methods for Floating-point Format Images

    NASA Technical Reports Server (NTRS)

    Pence, W. D.; White, R. L.; Seaman, R.

    2009-01-01

    We report on the results of a comparison study of different techniques for compressing FITS images that have floating-point (real*4) pixel values. Standard file compression methods like GZIP are generally ineffective in this case (with compression ratios only in the range 1.2 - 1.6), so instead we use a technique of converting the floating-point values into quantized scaled integers which are compressed using the Rice algorithm. The compressed data stream is stored in FITS format using the tiled-image compression convention. This is technically a lossy compression method, since the pixel values are not exactly reproduced, however all the significant photometric and astrometric information content of the image can be preserved while still achieving file compression ratios in the range of 4 to 8. We also show that introducing dithering, or randomization, when assigning the quantized pixel-values can significantly improve the photometric and astrometric precision in the stellar images in the compressed file without adding additional noise. We quantify our results by comparing the stellar magnitudes and positions as measured in the original uncompressed image to those derived from the same image after applying successively greater amounts of compression.

  1. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.

    PubMed

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-29

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.

  2. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    PubMed Central

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-01

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883

  3. Achieving high aspect ratio wrinkles by modifying material network stress.

    PubMed

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  4. The new American Heart Association cardiopulmonary resuscitation guidelines: should children and adults have to share?

    PubMed

    Sherman, Mindy

    2007-06-01

    The latest American Heart Association guidelines for pediatric cardiopulmonary resuscitation (CPR) were published in December 2005. Changes from the 2000 guidelines were directed toward simplifying CPR. Infants, children, and adults now share the same recommendation for the initial compression:ventilation ratio. This is a significant change for pediatricians trained in the importance of a respiratory etiology of pediatric cardiopulmonary arrest. The present review will focus on the rationale behind these guideline changes. The new guidelines for single rescuer CPR include a compression:ventilation ratio of 30: 2 for both adult and pediatric victims. The impetus for this recommendation is based on recent appreciation for the deleterious effects of hyperventilation as well as an attempt to increase bystander delivery of CPR. The physiologic results of hyperventilation are discussed. The new pediatric basic life support guideline changes are underscored. Research representing the spectrum of opinions on the optimal compression:ventilation ratio, including compression-only CPR, is presented. Although based primarily on adult, animal, and computational models, the new compression:ventilation ratio, recommended for both initial pediatric and adult CPR, is a reasonable recommendation. The simplified CPR guidelines released in 2005 will hopefully contribute to improved bystander delivery of CPR and improved outcome.

  5. Performance of a Fuel-Injection Spark-Ignition Engine Using a Hydrogenated Safety Fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1934-01-01

    This report presents the performance of a single-cylinder test engine using a hydrogenated safety fuel. The safety fuel has a flash point of 125 degrees f. (Cleveland open-dup method), which is high enough to remove most of the fire hazard, and an octane number of 95, which permits higher compression ratios to be used than are permissible with most undoped gasolines.

  6. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    NASA Astrophysics Data System (ADS)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  7. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    PubMed

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  8. SUPERNOVA DRIVING. II. COMPRESSIVE RATIO IN MOLECULAR-CLOUD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Liubin; Padoan, Paolo; Haugbølle, Troels

    2016-07-01

    The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of themore » compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.« less

  9. JPEG vs. JPEG 2000: an objective comparison of image encoding quality

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan

    2004-11-01

    This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.

  10. Benchtop quantification of gutter formation and compression of chimney stent grafts in relation to renal flow in chimney endovascular aneurysm repair and endovascular aneurysm sealing configurations.

    PubMed

    Boersen, Johannes T; Donselaar, Esme J; Groot Jebbink, Erik; Starreveld, Roeliene; Overeem, Simon P; Slump, Cornelis H; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-11-01

    The chimney technique has been successfully used to treat juxtarenal aortic aneurysms. The two main issues with this technique are gutter formation and chimney graft (CG) compression, which induce a risk for type Ia endoleaks and stent thrombosis, respectively. In this benchtop study, the geometry and renal artery flow of chimney endovascular aneurysm repair configurations were compared with chimney configurations with endovascular aneurysm sealing (ch-EVAS). Seven flow phantoms were constructed, including one control and six chimney endovascular aneurysm repairs (Endurant [Medtronic Inc, Minneapolis, Minn] and AFX [Endologix Inc, Irvine, Calif]) or ch-EVAS (Nellix, Endologix) configurations, combined with either balloon-expandable or self-expanding CGs with an intended higher positioning of the right CG in comparison to the left CG. Geometric analysis was based on measurements at three-dimensional computed tomography angiography and included gutter volume and CG compression, quantified by the ratio between maximal and minimal diameter (D-ratio). In addition, renal artery flow was studied in a physiologic flow model and compared with the control. The average gutter volume was 343.5 ± 142.0 mm 3 , with the lowest gutter volume in the EVAS-Viabahn (W. L. Gore & Associates, Flagstaff, Ariz) combination (102.6 mm 3 ) and the largest in the AFX-Advanta V12 (Atrium Medical Corporation, Hudson, NH) configuration (559.6 mm 3 ). The maximum D-ratio was larger in self-expanding CGs than in balloon-expandable CGs in all configurations (2.02 ± 0.34 vs 1.39 ± 0.13). The CG compression had minimal influence on renal volumetric flow (right, 390.7 ± 29.4 mL/min vs 455.1 mL/min; left, 423.9 ± 28.3 mL/min vs 410.0 mL/min in the control). This study showed that gutter volume was lowest in ch-EVAS in combination with a Viabahn CG. CG compression was lower in configurations with the Advanta V12 than with Viabahn. Renal flow is unrestricted by CG compression. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  11. Alterations in neuromuscular function in girls with generalized joint hypermobility.

    PubMed

    Jensen, Bente Rona; Sandfeld, Jesper; Melcher, Pia Sandfeld; Johansen, Katrine Lyders; Hendriksen, Peter; Juul-Kristensen, Birgit

    2016-10-03

    Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions (90°) at 20 % Maximum Voluntary Contraction, and explosive isometric knee flexions while sitting. EMG was recorded from knee flexor and extensor muscles. Early rate of torque development was 53 % faster for GJH. Reduced hamstring muscle activation in girls with GJH was found while knee extensor and calf muscle activation did not differ between groups. Flexion-extension and medial-lateral co-activation ratio during flexions were higher for girls with GJH than NGJH girls. Girls with GJH had higher capacity to rapidly generate force than NGJH girls which may reflect motor adaptation to compensate for hypermobility. Higher medial muscle activation indicated higher levels of medial knee joint compression in girls with GJH. Increased flexion-extension co-activation ratios in GJH were explained by decreased agonist drive to the hamstrings.

  12. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    NASA Technical Reports Server (NTRS)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  13. Stiffness and Poisson ratio in longitudinal compression of fiber yarns in meso-FE modelling of composite reinforcement forming

    NASA Astrophysics Data System (ADS)

    Wang, D.; Naouar, N.; Vidal-Salle, E.; Boisse, P.

    2018-05-01

    In meso-scale finite element modeling, the yarns of the reinforcement are considered to be solids made of a continuous material in contact with their neighbors. The present paper consider the mechanical behavior of these yarns that can happen for some loadings of the reinforcement. The yarns present a specific mechanical behavior when under longitudinal compression because they are made up of a large number of fibers, Local buckling of the fibers causes the compressive stiffness of the continuous material representing the yarn to be much weaker than when under tension. In addition, longitudinal compression causes an important transverse expansion. It is shown that the transverse expansion can be depicted by a Poisson ratio that remained roughly constant when the yarn length and the compression strain varied. Buckling of the fibers significantly increases the transverse dimensions of the yarn which leads to a large Poisson ratio (up to 12 for a yarn analyzed in the present study). Meso-scale finite element simulations of reinforcements with binder yarns submitted to longitudinal compression showed that these improvements led to results in good agreement with micro-CT analyses.

  14. Transform-Based Channel-Data Compression to Improve the Performance of a Real-Time GPU-Based Software Beamformer.

    PubMed

    Lok, U-Wai; Li, Pai-Chi

    2016-03-01

    Graphics processing unit (GPU)-based software beamforming has advantages over hardware-based beamforming of easier programmability and a faster design cycle, since complicated imaging algorithms can be efficiently programmed and modified. However, the need for a high data rate when transferring ultrasound radio-frequency (RF) data from the hardware front end to the software back end limits the real-time performance. Data compression methods can be applied to the hardware front end to mitigate the data transfer issue. Nevertheless, most decompression processes cannot be performed efficiently on a GPU, thus becoming another bottleneck of the real-time imaging. Moreover, lossless (or nearly lossless) compression is desirable to avoid image quality degradation. In a previous study, we proposed a real-time lossless compression-decompression algorithm and demonstrated that it can reduce the overall processing time because the reduction in data transfer time is greater than the computation time required for compression/decompression. This paper analyzes the lossless compression method in order to understand the factors limiting the compression efficiency. Based on the analytical results, a nearly lossless compression is proposed to further enhance the compression efficiency. The proposed method comprises a transformation coding method involving modified lossless compression that aims at suppressing amplitude data. The simulation results indicate that the compression ratio (CR) of the proposed approach can be enhanced from nearly 1.8 to 2.5, thus allowing a higher data acquisition rate at the front end. The spatial and contrast resolutions with and without compression were almost identical, and the process of decompressing the data of a single frame on a GPU took only several milliseconds. Moreover, the proposed method has been implemented in a 64-channel system that we built in-house to demonstrate the feasibility of the proposed algorithm in a real system. It was found that channel data from a 64-channel system can be transferred using the standard USB 3.0 interface in most practical imaging applications.

  15. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    NASA Astrophysics Data System (ADS)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  16. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.

    PubMed

    Faulhammer, E; Zellnitz, S; Wutscher, T; Stranzinger, S; Zimmer, A; Paudel, A

    2018-01-30

    This study investigates engineered carrier, as well as engineered API particles, and shows that there are distinct performance indicators of particle engineering for carrier-based dry powder inhalers (DPIs). Spray dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent capsule filling was performed with different process settings on a dosator nozzle capsule filling machine in order to reach a target fill weight of 20-25 mg. To evaluate the performance of the different mixtures, in vitro lung deposition experiments were carried out with a next generation impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the specification of the European pharmacopoeia. The FPF of micronised powder blends is significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API engineering, carrier engineering had a positive effect on the capsule filling performance (weight variability and mean fill weight) at lower compression ratios (setting 1). Results further showed that higher compression ratios appear to be beneficial in terms of capsule filling performance (higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier engineering, or generally carrier properties, govern downstream processing, whereas the API engineering and API properties govern the aerosolisation performance and thereby significantly affect the dose delivery to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2): Part 1. Compression Ratio Effects on Aqueous Ethanol Ignition

    DOT National Transportation Integrated Search

    2009-09-01

    The lean burning of water ethanol blends has the potential to reduce NOx, CO, and HC emissions while reducing the ethanol fermentation production cost of distillation and dehydration. The torch style ignition produced by the catalytic igniter allows ...

  18. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Garimella, Sandilya V. B.; Hamid, Ahmed M.

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple binsmore » of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.« less

  19. Intelligent bandwidth compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 bandwidth-compressed images are presented.

  20. Intelligent bandwith compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 band width-compressed images are presented. A video tape simulation of the Intelligent Bandwidth Compression system has been produced using a sequence of video input from the data base.

  1. To evaluate the effect of various magnesium stearate polymorphs using powder rheology and thermal analysis.

    PubMed

    Okoye, Patrick; Wu, Stephen H; Dave, Rutesh H

    2012-12-01

    The effects of magnesium stearate (MgSt) polymorphs-anhydrate (MgSt-A), monohydrate (MgSt-M), and dihydrate (MgSt-D)-on rheological properties of powders were evaluated using techniques such as atomic analysis and powder rheometry. Additional evaluation was conducted using thermal analysis, micromeritics, and tableting forces. In this study, binary ratios of neat MgSt polymorphs were employed as lubricants in powder blends containing acetaminophen (APAP), microcrystalline cellulose (MCC), and lactose monohydrate (LAC-M). Powder rheometry was studied using permeability, basic flow energy (BFE), density, and porosity analysis. Thermal conductivity and differential scanning calorimetric analysis of MgSt polymorphs were employed to elucidate MgSt effect on powder blends. The impact of MgSt polymorphs on compaction characteristics were analyzed via tablet compression forces. Finally, the distribution of atomized magnesium (Mg) ions as a function of intensity was evaluated using laser-induced breakdown spectroscopy (LIBS) on tablets. The results from LIBS analysis indicated the dependency of the MgSt polymorphic forms on the atomized Mg ion intensity, with higher Mg ion intensity suggesting higher lubricity index (i.e. greater propensity to over-lubricate). The results from lubricity index suggested the tendency of blends to over-lubricate based on the MgSt polymorphic forms. Finally, tableting forces suggested that MgSt-D and MgSt-A offered processing benefits such as lower ejection and compression forces, and that MgSt-M showed the most stable compression force in single or combined polymorphic ratios. These results suggested that the initial moisture content, crystal arrangement, intra- and inter-molecular packing of the polymorphs defined their effects on the rheology of lubricated powders.

  2. Effects of local thermodynamics and of stellar mass ratio on accretion disc stability in close binaries

    NASA Astrophysics Data System (ADS)

    Lanzafame, G.

    2009-08-01

    Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar-Mass-Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry of the gravitational potential wells. In this work we pay attention in particular to the role of the SMR, evaluating boundaries, separating theoretical domains in compressibility-viscosity graphs where physical conditions allow a well-bound disc development, as a function of mass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index γ), the higher is the physical viscosity (α) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active-to-quiet and vice-versa transitional phases. Time-scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg-like objects. Moreover, conclusions as far as active-quiet-active phenomena in a CB, according to viscous-thermal instabilities, in accordance to such domains, are also reported.

  3. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Treesearch

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  4. Improving transmission efficiency of large sequence alignment/map (SAM) files.

    PubMed

    Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser

    2011-01-01

    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.

  5. Biomechanics of phalangeal curvature.

    PubMed

    Richmond, Brian G

    2007-12-01

    Phalangeal curvature has been widely cited in primate functional morphology and is one of the key traits in the ongoing debate about whether the locomotion of early hominins included a significant degree of arboreality. This study examines the biomechanics of phalangeal curvature using data on hand posture, muscle recruitment, and anatomical moment arms to develop a finite element (FE) model of a siamang manual proximal phalanx during suspensory grasping. Strain patterns from experiments on intact cadaver forelimbs validated the model. The strain distribution in the curved siamang phalanx FE model was compared to that in a mathematically straight rendition in order to test the hypotheses that curvature: 1) reduces strain and 2) results in lower bending strains but relatively higher compression. In the suspensory posture, joint reaction forces load the articular ends of the phalanx in compression and dorsally, while muscle forces acting through the flexor sheath pull the mid-shaft palmarly. These forces compress the phalanx dorsally and tense it palmarly, effectively bending it 'open.' Strains in the curved model were roughly half that of the straight model despite equivalent lengths, areas, mechanical properties, and loading conditions in the two models. The curved model also experienced a higher ratio of compressive to tensile strains. Curvature reduces strains during grasping hand postures because the curved bone is more closely aligned with the joint reaction forces. Therefore, phalangeal curvature reduces the strains associated with arboreal, and especially suspensory, activity involving flexed digits. These results offer a biomechanical explanation for the observed association between phalangeal curvature and arboreality.

  6. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  7. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    PubMed

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  8. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  9. Wavelet-based watermarking and compression for ECG signals with verification evaluation.

    PubMed

    Tseng, Kuo-Kun; He, Xialong; Kung, Woon-Man; Chen, Shuo-Tsung; Liao, Minghong; Huang, Huang-Nan

    2014-02-21

    In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG) data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user's data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER), signal-to-noise ratio (SNR), compression ratio (CR), and compressed-signal to noise ratio (CNR) methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible.

  10. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  11. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading

    PubMed Central

    Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio. PMID:27861493

  12. Real-Time Aggressive Image Data Compression

    DTIC Science & Technology

    1990-03-31

    implemented with higher degrees of modularity, concurrency, and higher levels of machine intelligence , thereby providing higher data -throughput rates...Project Summary Project Title: Real-Time Aggressive Image Data Compression Principal Investigators: Dr. Yih-Fang Huang and Dr. Ruey-wen Liu Institution...Summary The objective of the proposed research is to develop reliable algorithms !.hat can achieve aggressive image data compression (with a compression

  13. Foam property tests to evaluate the potential for longwall shield dust control.

    PubMed

    Reed, W R; Beck, T W; Zheng, Y; Klima, S; Driscoll, J

    2018-01-01

    Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration's lower coal mine respirable dust standard of 1.5 mg/m 3 . Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control.

  14. Foam property tests to evaluate the potential for longwall shield dust control

    PubMed Central

    Reed, W.R.; Beck, T.W.; Zheng, Y.; Klima, S.; Driscoll, J.

    2018-01-01

    Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration’s lower coal mine respirable dust standard of 1.5 mg/m3. Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control. PMID:29416179

  15. Non-linear Post Processing Image Enhancement

    NASA Technical Reports Server (NTRS)

    Hunt, Shawn; Lopez, Alex; Torres, Angel

    1997-01-01

    A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,

  16. 3D Compressed Sensing for Highly Accelerated Hyperpolarized 13C MRSI With In Vivo Applications to Transgenic Mouse Models of Cancer

    PubMed Central

    Hu, Simon; Lustig, Michael; Balakrishnan, Asha; Larson, Peder E. Z.; Bok, Robert; Kurhanewicz, John; Nelson, Sarah J.; Goga, Andrei; Pauly, John M.; Vigneron, Daniel B.

    2010-01-01

    High polarization of nuclear spins in liquid state through hyperpolarized technology utilizing dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at a high signal-to-noise ratio. Acquisition time limitations due to T1 decay of the hyperpolarized signal require accelerated imaging methods, such as compressed sensing, for optimal speed and spatial coverage. In this paper, the design and testing of a new echo-planar 13C three-dimensional magnetic resonance spectroscopic imaging (MRSI) compressed sensing sequence is presented. The sequence provides up to a factor of 7.53 in acceleration with minimal reconstruction artifacts. The key to the design is employing x and y gradient blips during a fly-back readout to pseudorandomly undersample kf-kx-ky space. The design was validated in simulations and phantom experiments where the limits of undersampling and the effects of noise on the compressed sensing nonlinear reconstruction were tested. Finally, this new pulse sequence was applied in vivo in preclinical studies involving transgenic prostate cancer and transgenic liver cancer murine models to obtain much higher spatial and temporal resolution than possible with conventional echo-planar spectroscopic imaging methods. PMID:20017160

  17. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE PAGES

    Sanborn, Brett; Song, Bo

    2018-06-03

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  18. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  19. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    PubMed

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  20. A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio

    NASA Astrophysics Data System (ADS)

    Monkul, M. Murat; Önal, Okan

    2006-06-01

    A visual basic program (POCI) is proposed and explained in order to analyze oedometer test results. Oedometer test results have vital importance from geotechnical point of view, since settlement requirements usually control the design of foundations. The software POCI is developed in order perform the necessary calculations for convential oedometer test. The change of global void ratio and stress-strain characteristics can be observed both numerically and graphically. It enables the users to calculate some parameters such as coefficient of consolidation, compression index, recompression index, and preconsolidation pressure depending on the type and stress history of the soil. Moreover, it adopts the concept of intergranular void ratio which may be important especially in the compression behavior of sandy soils. POCI shows the variation of intergranular void ratio and also enables the users to calculate granular compression index.

  1. Free-piston engine

    DOEpatents

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  2. Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico

    NASA Astrophysics Data System (ADS)

    Solano Rojas, D. E.; Wdowinski, S.; Minderhoud, P. P. S.; Pacheco, J.; Cabral, E.

    2016-12-01

    The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model using Deltares iMOD (interactive MODeling), based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stresse along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.

  3. Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico

    NASA Astrophysics Data System (ADS)

    Solano Rojas, D. E.; Pacheco, J.; Wdowinski, S.; Minderhoud, P. S. J.; Cabral-Cano, E.; Albino, F.

    2017-12-01

    The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model, based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stress along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.

  4. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  5. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  6. Outer planet Pioneer imaging communications system study. [data compression

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.

  7. Chitin-natural clay nanotubes hybrid hydrogel.

    PubMed

    Liu, Mingxian; Zhang, Yun; Li, Jingjing; Zhou, Changren

    2013-07-01

    Novel hybrid hydrogel was synthesized from chitin NaOH/urea aqueous solution in presence of halloysite nanotubes (HNTs) via crosslinking with epichlorohydrin. Fourier transform infrared (FT-IR) spectra and atomic force microscopy (AFM) results confirmed the interfacial interactions in the chitin-HNTs hybrid hydrogel. The compressive strength and shear modulus of chitin hydrogel were significantly increased by HNTs as shown in the static compressive experiment and rheology measurement. The hybrid hydrogels showed highly porous microstructures by scanning electron microscopy (SEM). The swelling ratio of chitin hydrogel decreased because of the addition of HNTs. The malachite green's absorption experiment result showed that the hybrid hydrogel exhibited much higher absorption rate than the pure chitin hydrogel. The prepared hybrid hydrogel had potential applications in waste treatment and biomedical areas. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Transthoracic impedance used to evaluate performance of cardiopulmonary resuscitation during out of hospital cardiac arrest.

    PubMed

    Stecher, Frederik S; Olsen, Jan-Aage; Stickney, Ronald E; Wik, Lars

    2008-12-01

    There is a need to measure cardiopulmonary resuscitation (CPR) in order to document whether ambulance personnel follow CPR guidelines. Our goal was to do this using defibrillator technology based on changes in transthoracic impedance (TTI) produced by chest compressions and ventilations. 122 incidents of out-of-hospital cardiac arrest between May 2003 and February 2004 were analysed based on data recorded from defibrillators in Oslo EMS. New software was used to analyze chest compressions and ventilations based on changes in thoracic impedance between the defibrillator pads, as well as ECG and other event data. In total, 25+/-14% (varying from 76% to 3%) of the time chest compressions were not performed on patients without spontaneous circulation (NFR=No Flow Ratio). When adjusting for time spent on analysis of ECG, pulse check and defibrillation, NFR was 20+/-13% (varying from 70% to 3%). Mean compressions delivered per minute was 87+/-16 and the compression rate during active compressions was 117+/-9min(-1). Individual variation was 31-117min(-1) (mean) and 95-144min(-1) (active periods). A mean of 14+/-3ventilations/min was recorded, varying from 8 to 26min(-1). Compared with the rest of the episode, the first 5min had a significantly higher proportion of time without chest compressions; 30+/-17% (p<0.001) and significantly lower mean compression and ventilation rates; 80+/-19min(-1) and 12+/-4min(-1), respectively (p<0.001 in both cases). Core CPR values can be measured from TTI signals by using a standard defibrillator and new software. NFR was 25% (20% adjusted) with great rescuer variability.

  9. Ignition and combustion: Low compression ratio, high output diesel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.

  10. The Effect of Fuel Composition, Compression Pressure, and Fuel-Air Ratio on the Compression-Ignition Characteristics of Several Fuels

    DTIC Science & Technology

    1948-03-01

    to this arbitrary value as ntandard. The compression time was maintained unifcum by uElng a ccnstent . driving ~ essure of 500 pounds per squ=e inch...ir ratio,0.066 (chemlo~ correct); initial~ essure , 14.7 lb/sq in. abs.; intt Ml temperature, 609° F abs~ Ignitiondelay Compres- Compres- sion...chemically correct); initial ~ essure , 14.7 lb/sq in. abso; fimal pressures 379 lb/sq in. abs.; initial temperatume~ 6090 F abs.; final temperature, 1340° F abs

  11. Determination of preferred parameters for multichannel compression using individually fitted simulated hearing AIDS and paired comparisons.

    PubMed

    Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A

    2011-01-01

    To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.

  12. A study of the properties of tablets made of directly compressible maltose.

    PubMed

    Muzíková, J; Balhárková, J

    2008-01-01

    The paper deals with the study of the strength and disintegration time of tablets made of directly compressible maltose Advantose 100. It studies the differences of the effects of two types of lubricants, magnesium stearate and sodium stearylfumarate, on the above-mentioned properties, and it also tests the mixtures of the substance with microcrystalline cellulose Vivapur 102 in a ratio of 1:1 and with ascorbic and acetylsalicylic acids. The compacts are obtained by using three compression forces, excepting mixtures with active ingredients, where one compression force is used. In the compression forces of 6 and 8 kN, no statistically significant difference was found in the intervention of the lubricants into the strength of the compacts made of Advantose 100, only in the compression force of 10 kN Pruv decreased the strength more than stearate. The mixture of Advantose 100 and Vivapur 102 yielded the strongest tablets, an addition of Pruv to it decreased the strength of compacts more than stearate. The periods of disintegration time of Advantose compacts as well as those of the mixture of dry binders were longer with an addition of Pruv. The compacts with acetylsalicylic acid possessed higher strength and a longer period of disintegration than those with ascorbic acid. There was no statistically significant difference within the type of the lubricant employed, both in the case of Advantose 100 and its mixture with Vivapur 102, between the values of strength of the compacts with acetylsalicylic acid.

  13. Autosophy information theory provides lossless data and video compression based on the data content

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus E.; Holtz, Eric S.; Holtz, Diana

    1996-09-01

    A new autosophy information theory provides an alternative to the classical Shannon information theory. Using the new theory in communication networks provides both a high degree of lossless compression and virtually unbreakable encryption codes for network security. The bandwidth in a conventional Shannon communication is determined only by the data volume and the hardware parameters, such as image size; resolution; or frame rates in television. The data content, or what is shown on the screen, is irrelevant. In contrast, the bandwidth in autosophy communication is determined only by data content, such as novelty and movement in television images. It is the data volume and hardware parameters that become irrelevant. Basically, the new communication methods use prior 'knowledge' of the data, stored in a library, to encode subsequent transmissions. The more 'knowledge' stored in the libraries, the higher the potential compression ratio. 'Information' is redefined as that which is not already known by the receiver. Everything already known is redundant and need not be re-transmitted. In a perfect communication each transmission code, called a 'tip,' creates a new 'engram' of knowledge in the library in which each tip transmission can represent any amount of data. Autosophy theories provide six separate learning modes, or omni dimensional networks, all of which can be used for data compression. The new information theory reveals the theoretical flaws of other data compression methods, including: the Huffman; Ziv Lempel; LZW codes and commercial compression codes such as V.42bis and MPEG-2.

  14. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  15. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.

  16. [Lossless ECG compression algorithm with anti- electromagnetic interference].

    PubMed

    Guan, Shu-An

    2005-03-01

    Based on the study of ECG signal features, a new lossless ECG compression algorithm is put forward here. We apply second-order difference operation with anti- electromagnetic interference to original ECG signals and then, compress the result by the escape-based coding model. In spite of serious 50Hz-interference, the algorithm is still capable of obtaining a high compression ratio.

  17. Visually lossless compression of digital hologram sequences

    NASA Astrophysics Data System (ADS)

    Darakis, Emmanouil; Kowiel, Marcin; Näsänen, Risto; Naughton, Thomas J.

    2010-01-01

    Digital hologram sequences have great potential for the recording of 3D scenes of moving macroscopic objects as their numerical reconstruction can yield a range of perspective views of the scene. Digital holograms inherently have large information content and lossless coding of holographic data is rather inefficient due to the speckled nature of the interference fringes they contain. Lossy coding of still holograms and hologram sequences has shown promising results. By definition, lossy compression introduces errors in the reconstruction. In all of the previous studies, numerical metrics were used to measure the compression error and through it, the coding quality. Digital hologram reconstructions are highly speckled and the speckle pattern is very sensitive to data changes. Hence, numerical quality metrics can be misleading. For example, for low compression ratios, a numerically significant coding error can have visually negligible effects. Yet, in several cases, it is of high interest to know how much lossy compression can be achieved, while maintaining the reconstruction quality at visually lossless levels. Using an experimental threshold estimation method, the staircase algorithm, we determined the highest compression ratio that was not perceptible to human observers for objects compressed with Dirac and MPEG-4 compression methods. This level of compression can be regarded as the point below which compression is perceptually lossless although physically the compression is lossy. It was found that up to 4 to 7.5 fold compression can be obtained with the above methods without any perceptible change in the appearance of video sequences.

  18. Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.

    PubMed

    Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan

    2013-12-01

    This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.

  19. Experimental study on microstructure characters of foamed lightweight soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  20. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2016-07-01

    A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.

  1. Non-linear properties of metallic cellular materials with a negative Poisson's ratio

    NASA Technical Reports Server (NTRS)

    Choi, J. B.; Lakes, R. S.

    1992-01-01

    Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.

  2. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing

    PubMed Central

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2011-01-01

    Compression in the basilar-membrane input–output response flattens the temporal envelope of a fluctuating signal when more gain is applied to lower level than higher level temporal components. As a result, level-dependent changes in gap detection for signals with different depths of envelope fluctuation and for subjects with normal and impaired hearing may reveal effects of compression. To test these assumptions, gap detection with and without a broadband noise was measured with 1 000-Hz-wide (flatter) and 50-Hz-wide (fluctuating) noise markers as a function of marker level. As marker level increased, background level also increased, maintaining a fixed acoustic signal-to-noise ratio (SNR) to minimize sensation-level effects on gap detection. Significant level-dependent changes in gap detection were observed, consistent with effects of cochlear compression. For the flatter marker, gap detection that declines with increases in level up to mid levels and improves with further increases in level may be explained by an effective flattening of the temporal envelope at mid levels, where compression effects are expected to be strongest. A flatter effective temporal envelope corresponds to a reduced effective SNR. The effects of a reduction in compression (resulting in larger effective SNRs) may contribute to better-than-normal gap detection observed for some hearing-impaired listeners. PMID:22087921

  3. A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices

    PubMed Central

    Kim, Dong-Sun; Kwon, Jin-San

    2014-01-01

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900

  4. Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets

    DOE PAGES

    Salloum, Maher; Fabian, Nathan D.; Hensinger, David M.; ...

    2017-08-09

    Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate compressed sensing (CS) as an in situ method to reduce the size of the data as it is being generated during a large-scale simulation. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured datasets, such as image data, we investigate itsmore » usefulness for point clouds such as unstructured mesh datasets often found in finite element simulations. We sample using a technique that exhibits low coherence with tree wavelets found to be suitable for point clouds. We reconstruct using the stagewise orthogonal matching pursuit algorithm that we improved to facilitate automated use in batch jobs. We analyze the achievable compression ratios and the quality and accuracy of reconstructed results at each compression ratio. In the considered case studies, we are able to achieve compression ratios up to two orders of magnitude with reasonable reconstruction accuracy and minimal visual deterioration in the data. Finally, our results suggest that, compared to other compression techniques, CS is attractive in cases where the compression overhead has to be minimized and where the reconstruction cost is not a significant concern.« less

  5. Finite element analysis of residual stress in cold expanded plate with different thickness and expansion ratio

    NASA Astrophysics Data System (ADS)

    Arifin Shariffudin, Kamarul; Karuppanan, Saravanan; Patil, Santosh S.

    2017-10-01

    Cold expansion of fastener/rivet holes is a common way to generate beneficial compressive residual stress around the fastener hole. In this study, cold expansion process was simulated by finite-element method in order to determine the residual stress field around two cold expanded holes by varying the plate thickness and expansion ratio of the hole. The model was developed in ANSYS and assigned to aluminium alloy 7475-T61 material model. The results showed that the residual stress become more compressive as the plate thickness is increased up to t/d = 2.6 and decreased for further level of thickness. In addition, the residual stress at the edge of the hole become more compressive as the expansion ratio is increased up to 4.5% and decreased for further level of expansion. This study also found that the residual stresses near the entrance and the exit face of the plate are less compressive than the residual stresses on the mid-thickness of the plate.

  6. The relationship between Vickers microhardness and compressive strength of functional surface geopolymers

    NASA Astrophysics Data System (ADS)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70°C for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear.

  7. Universal data compression

    NASA Astrophysics Data System (ADS)

    Lindsay, R. A.; Cox, B. V.

    Universal and adaptive data compression techniques have the capability to globally compress all types of data without loss of information but have the disadvantage of complexity and computation speed. Advances in hardware speed and the reduction of computational costs have made universal data compression feasible. Implementations of the Adaptive Huffman and Lempel-Ziv compression algorithms are evaluated for performance. Compression ratios versus run times for different size data files are graphically presented and discussed in the paper. Required adjustments needed for optimum performance of the algorithms relative to theoretical achievable limits will be outlined.

  8. An Optimal Seed Based Compression Algorithm for DNA Sequences

    PubMed Central

    Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan

    2016-01-01

    This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868

  9. Lossless compression of otoneurological eye movement signals.

    PubMed

    Tossavainen, Timo; Juhola, Martti

    2002-12-01

    We studied the performance of several lossless compression algorithms on eye movement signals recorded in otoneurological balance and other physiological laboratories. Despite the wide use of these signals their compression has not been studied prior to our research. The compression methods were based on the common model of using a predictor to decorrelate the input and using an entropy coder to encode the residual. We found that these eye movement signals recorded at 400 Hz and with 13 bit amplitude resolution could losslessly be compressed with a compression ratio of about 2.7.

  10. Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy

    NASA Astrophysics Data System (ADS)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2017-02-01

    We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.

  11. The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations

    NASA Astrophysics Data System (ADS)

    Orf, L.

    2017-12-01

    In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress extremely well. We observe that the overhead for compressing data with ZFP is low, and that compressing data in memory reduces the amount of memory overhead needed to store the virtual files before they are flushed to disk.

  12. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    NASA Astrophysics Data System (ADS)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  13. 100 GeV SLAC Linac

    NASA Astrophysics Data System (ADS)

    Farkas, Z. D.

    2002-03-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  14. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  15. Light-weight reference-based compression of FASTQ data.

    PubMed

    Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan

    2015-06-09

    The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher; Fabian, Nathan D.; Hensinger, David M.

    Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate compressed sensing (CS) as an in situ method to reduce the size of the data as it is being generated during a large-scale simulation. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured datasets, such as image data, we investigate itsmore » usefulness for point clouds such as unstructured mesh datasets often found in finite element simulations. We sample using a technique that exhibits low coherence with tree wavelets found to be suitable for point clouds. We reconstruct using the stagewise orthogonal matching pursuit algorithm that we improved to facilitate automated use in batch jobs. We analyze the achievable compression ratios and the quality and accuracy of reconstructed results at each compression ratio. In the considered case studies, we are able to achieve compression ratios up to two orders of magnitude with reasonable reconstruction accuracy and minimal visual deterioration in the data. Finally, our results suggest that, compared to other compression techniques, CS is attractive in cases where the compression overhead has to be minimized and where the reconstruction cost is not a significant concern.« less

  17. Sequential neural text compression.

    PubMed

    Schmidhuber, J; Heil, S

    1996-01-01

    The purpose of this paper is to show that neural networks may be promising tools for data compression without loss of information. We combine predictive neural nets and statistical coding techniques to compress text files. We apply our methods to certain short newspaper articles and obtain compression ratios exceeding those of the widely used Lempel-Ziv algorithms (which build the basis of the UNIX functions "compress" and "gzip"). The main disadvantage of our methods is that they are about three orders of magnitude slower than standard methods.

  18. The effect of lossy image compression on image classification

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.

  19. Investigation of precipitate refinement in Mg alloys by an analytical composite failure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabei, Ali; Li, Dongsheng; Lavender, Curt A.

    2015-10-01

    An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature.more » In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.« less

  20. Robust QRS detection for HRV estimation from compressively sensed ECG measurements for remote health-monitoring systems.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2018-03-15

    To present a new compressive sensing (CS)-based method for the acquisition of ECG signals and for robust estimation of heart-rate variability (HRV) parameters from compressively sensed measurements with high compression ratio. CS is used in the biosensor to compress the ECG signal. Estimation of the locations of QRS segments is carried out by applying two algorithms on the compressed measurements. The first algorithm reconstructs the ECG signal by enforcing a block-sparse structure on the first-order difference of the signal, so the transient QRS segments are significantly emphasized on the first-order difference of the signal. Multiple block-divisions of the signals are carried out with various block lengths, and multiple reconstructed signals are combined to enhance the robustness of the localization of the QRS segments. The second algorithm removes errors in the locations of QRS segments by applying low-pass filtering and morphological operations. The proposed CS-based method is found to be effective for the reconstruction of ECG signals by enforcing transient QRS structures on the first-order difference of the signal. It is demonstrated to be robust not only to high compression ratio but also to various artefacts present in ECG signals acquired by using on-body wireless sensors. HRV parameters computed by using the QRS locations estimated from the signals reconstructed with a compression ratio as high as 90% are comparable with that computed by using QRS locations estimated by using the Pan-Tompkins algorithm. The proposed method is useful for the realization of long-term HRV monitoring systems by using CS-based low-power wireless on-body biosensors.

  1. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  2. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  3. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.

    PubMed

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-05-01

    Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of compressibility on the hypervelocity penetration

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  5. Motion of particles with inertia in a compressible free shear layer

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Lele, S. K.

    1991-01-01

    The effects of the inertia of a particle on its flow-tracking accuracy and particle dispersion are studied using direct numerical simulations of 2D compressible free shear layers in convective Mach number (Mc) range of 0.2 to 0.6. The results show that particle response is well characterized by tau, the ratio of particle response time to the flow time scales (Stokes' number). The slip between particle and fluid imposes a fundamental limit on the accuracy of optical measurements such as LDV and PIV. The error is found to grow like tau up to tau = 1 and taper off at higher tau. For tau = 0.2 the error is about 2 percent. In the flow visualizations based on Mie scattering, particles with tau more than 0.05 are found to grossly misrepresent the flow features. These errors are quantified by calculating the dispersion of particles relative to the fluid. Overall, the effect of compressibility does not seem to be significant on the motion of particles in the range of Mc considered here.

  6. Accretion onto a higher dimensional black hole

    NASA Astrophysics Data System (ADS)

    John, Anslyn J.; Ghosh, Sushant G.; Maharaj, Sunil D.

    2013-11-01

    We examine the steady-state spherically symmetric accretion of relativistic fluids, with a polytropic equation of state, onto a higher-dimensional Schwarzschild black hole. The mass accretion rate, critical radius, and flow parameters are determined and compared with results obtained in standard four dimensions. The accretion rate, M˙, is an explicit function of the black hole mass, M, as well as the gas boundary conditions and the dimensionality, D, of the spacetime. We also find the asymptotic compression ratios and temperature profiles below the accretion radius and at the event horizon. This analysis is a generalization of Michel’s solution to higher dimensions and of the Newtonian expressions of Giddings and Mangano, which consider the accretion of TeV black holes.

  7. On-chip frame memory reduction using a high-compression-ratio codec in the overdrives of liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha

    2010-11-01

    Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.

  8. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio.

    PubMed

    Kataoka, Takeshi; Tsutahara, Michihisa

    2004-03-01

    We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.

  9. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    PubMed

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (P<0.01). The AUC, sensitivity and specificity for elastic strain rate and VTQ for single or combined use were higher than those of conventional ultrasound (0.904, 97.5%, 69.2%; 0.946, 87.5%, 87.2%; 0.976, 90%, 97.4% vs 0.783, 85%, 61.5%). The AUC and specificity of VTQ were higher than those of the elastic strain rate (0.946, 87.2% vs 0.904, 69.2%), but the sensitivity of VTQ was higher than that of the latter (87.5% vs 97.5%). The AUC and specificity for combination of both methods were higher than those of single method, but the sensitivity was lower than that of the elastic strain rate. 
 Combination of elastic strain rate ratio method with VTQ possesses the best diagnostic value and the highest diagnostic accuracy in the diagnosis of breast mass than that used alone.

  10. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?

    PubMed

    Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent

    2017-07-01

    Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Clinical evaluation of JPEG2000 compression for digital mammography

    NASA Astrophysics Data System (ADS)

    Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik

    2002-06-01

    Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.

  12. [Basic life support in pediatrics].

    PubMed

    Calvo Macías, A; Manrique Martínez, I; Rodríguez Núñez, A; López-Herce Cid, J

    2006-09-01

    Basic life support (BLS) is the combination of maneuvers that identifies the child in cardiopulmonary arrest and initiates the substitution of respiratory and circulatory function, without the use of technical adjuncts, until the child can receive more advanced treatment. BLS includes a sequence of steps or maneuvers that should be performed sequentially: ensuring the safety of rescuer and child, assessing unconsciousness, calling for help, positioning the victim, opening the airway, assessing breathing, ventilating, assessing signs of circulation and/or central arterial pulse, performing chest compressions, activating the emergency medical service system, and checking the results of resuscitation. The most important changes in the new guidelines are the compression: ventilation ratio and the algorithm for relieving foreign body airway obstruction. A compression/ ventilation ratio of 30:2 will be recommended for lay rescuers of infants, children and adults. Health professionals will use a compression: ventilation ratio of 15:2 for infants and children. If the health professional is alone, he/she may also use a ratio of 30:2 to avoid fatigue. In the algorithm for relieving foreign body airway obstruction, when the child becomes unconscious, the maneuvers will be similar to the BLS sequence with chest compressions (functioning as a deobstruction procedure) and ventilation, with reassessment of the mouth every 2 min to check for a foreign body, and evaluation of breathing and the presence of vital signs. BLS maneuvers are easy to learn and can be performed by anyone with adequate training. Therefore, BLS should be taught to all citizens.

  13. A comparison of the fractal and JPEG algorithms

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Shahshahani, M.

    1991-01-01

    A proprietary fractal image compression algorithm and the Joint Photographic Experts Group (JPEG) industry standard algorithm for image compression are compared. In every case, the JPEG algorithm was superior to the fractal method at a given compression ratio according to a root mean square criterion and a peak signal to noise criterion.

  14. Salary Compression in the Association of Research Libraries

    ERIC Educational Resources Information Center

    Seaman, Scott

    2005-01-01

    Using salary data from the "ARL Annual Salary Survey," this paper analyzes 2003-2004 salary data for evidence of salary compression. It reviews the concept of salary compression to explain its relationship to market salary rates and salary dispersion within an organization. The analysis utilizes comparison ratios between salaries and years of…

  15. Salary Compression: A Time-Series Ratio Analysis of ARL Position Classifications

    ERIC Educational Resources Information Center

    Seaman, Scott

    2007-01-01

    Although salary compression has previously been identified in such professional schools as engineering, business, and computer science, there is now evidence of salary compression among Association of Research Libraries members. Using salary data from the "ARL Annual Salary Survey", this study analyzes average annual salaries from 1994-1995…

  16. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Jeelani, S.

    1992-01-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.

  17. An Experimental Study on the Edgewise Compressive Failure of Paper Honeycomb Sandwich Panels with Respect to Various Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Samad, W. A.; Warsame, A. A.; Khan, A.

    2018-04-01

    The present work investigates the edgewise compression failure for honeycomb paperboards. Various panels are tested under a fixed loading rate with varying aspect ratios. The influence of the varying properties aspect ratio on yield strength is recorded. The experimental results indicate that the honeycomb paperboards are subject a decrease in yield strength with an increase in aspect ratio towards more slender bodies. Buckling was not observed in any of the tested specimens. All experiments are conducted under the general framework of ASTM C364/C364M -16 with a few noted changes.

  18. Extreme compression for extreme conditions: pilot study to identify optimal compression of CT images using MPEG-4 video compression.

    PubMed

    Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les

    2012-12-01

    This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.

  19. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  20. A Space-Saving Approximation Algorithm for Grammar-Based Compression

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hiroshi; Maruyama, Shirou; Kida, Takuya; Shimozono, Shinichi

    A space-efficient approximation algorithm for the grammar-based compression problem, which requests for a given string to find a smallest context-free grammar deriving the string, is presented. For the input length n and an optimum CFG size g, the algorithm consumes only O(g log g) space and O(n log*n) time to achieve O((log*n)log n) approximation ratio to the optimum compression, where log*n is the maximum number of logarithms satisfying log log…log n > 1. This ratio is thus regarded to almost O(log n), which is the currently best approximation ratio. While g depends on the string, it is known that g =Ω(log n) and g=\\\\Omega(\\\\log n) and g=O\\\\left(\\\\frac{n}{log_kn}\\\\right) for strings from k-letter alphabet[12].

  1. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    NASA Astrophysics Data System (ADS)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  2. Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise.

    PubMed

    Sperlich, Billy; Born, Dennis-Peter; Kaskinoro, Kimmo; Kalliokoski, Kari K; Laaksonen, Marko S

    2013-01-01

    The purpose of this experiment was to investigate skeletal muscle blood flow and glucose uptake in m. biceps (BF) and m. quadriceps femoris (QF) 1) during recovery from high intensity cycle exercise, and 2) while wearing a compression short applying ~37 mmHg to the thigh muscles. Blood flow and glucose uptake were measured in the compressed and non-compressed leg of 6 healthy men by using positron emission tomography. At baseline blood flow in QF (P = 0.79) and BF (P = 0.90) did not differ between the compressed and the non-compressed leg. During recovery muscle blood flow was higher compared to baseline in both compressed (P<0.01) and non-compressed QF (P<0.001) but not in compressed (P = 0.41) and non-compressed BF (P = 0.05; effect size = 2.74). During recovery blood flow was lower in compressed QF (P<0.01) but not in BF (P = 0.26) compared to the non-compressed muscles. During baseline and recovery no differences in blood flow were detected between the superficial and deep parts of QF in both, compressed (baseline P = 0.79; recovery P = 0.68) and non-compressed leg (baseline P = 0.64; recovery P = 0.06). During recovery glucose uptake was higher in QF compared to BF in both conditions (P<0.01) with no difference between the compressed and non-compressed thigh. Glucose uptake was higher in the deep compared to the superficial parts of QF (compression leg P = 0.02). These results demonstrate that wearing compression shorts with ~37 mmHg of external pressure reduces blood flow both in the deep and superficial regions of muscle tissue during recovery from high intensity exercise but does not affect glucose uptake in BF and QF.

  3. Hierarchical honeycomb auxetic metamaterials

    NASA Astrophysics Data System (ADS)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  4. Experimentally Derived Mechanical and Flow Properties of Fine-grained Soil Mixtures

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Peets, C. S.; Flemings, P. B.; Day-Stirrat, R. J.; Germaine, J. T.

    2009-12-01

    As silt content in mudrocks increases, compressibility linearly decreases and permeability exponentially increases. We prepared mixtures of natural Boston Blue Clay (BBC) and synthetic silt in the ratios of 100:0, 86:14, 68:32, and 50:50, respectively. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to approximately 2.3 MPa in a CRS (constant-rate-of-strain) uniaxial consolidation device. The analyses show that the higher the silt content in the mixture, the stiffer the material is. Compression index as well as liquid and plastic limits linearly decrease with increasing silt content. Vertical permeability increases exponentially with porosity as well as with silt content. Fabric alignment determined through High Resolution X-ray Texture Goniometry (HRXTG) expressed as maximum pole density (m.r.d.) decreases with silt content at a given stress. However, this relationship is not linear instead there are two clusters: the mixtures with higher clay contents (100:0, 84:16) have m.r.d. around 3.9 and mixtures with higher silt contents (68:32, 50:50) have m.r.d. around 2.5. Specific surface area (SSA) measurements show a positive correlation to the total clay content. The amount of silt added to the clay reduces specific surface area, grain orientation, and fabric alignment; thus, it affects compression and fluid flow behavior on a micro- and macroscale. Our results are comparable with previous studies such as kaolinite / silt mixtures (Konrad & Samson [2000], Wagg & Konrad [1990]). We are studying this behavior to understand how fine-grained rocks consolidate. This problem is important to practical and fundamental programs. For example, these sediments can potentially act as either a tight gas reservoir or a seal for hydrocarbons or geologic storage of CO2. This study also provides a systematic approach for developing models of permeability and compressibility behavior needed as inputs for basin modeling.

  5. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  6. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    NASA Astrophysics Data System (ADS)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  7. FaStore - a space-saving solution for raw sequencing data.

    PubMed

    Roguski, Lukasz; Ochoa, Idoia; Hernaez, Mikel; Deorowicz, Sebastian

    2018-03-29

    The affordability of DNA sequencing has led to the generation of unprecedented volumes of raw sequencing data. These data must be stored, processed, and transmitted, which poses significant challenges. To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. FaStore does not use any reference sequences for compression, and permits the user to choose from several lossy modes to improve the overall compression ratio, depending on the specific needs. FaStore in the lossless mode achieves a significant improvement in compression ratio with respect to previously proposed algorithms. We perform an analysis on the effect that the different lossy modes have on variant calling, the most widely used application for clinical decision making, especially important in the era of precision medicine. We show that lossy compression can offer significant compression gains, while preserving the essential genomic information and without affecting the variant calling performance. FaStore can be downloaded from https://github.com/refresh-bio/FaStore. sebastian.deorowicz@polsl.pl. Supplementary data are available at Bioinformatics online.

  8. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  9. The Effect of Increased Carburetor Pressure on Engine Performance at Several Compression Ratios

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Rollin, Vern G

    1933-01-01

    The object of this investigation was to determine the effect of increasing the carburetor pressures from 30 to 40 inches of mercury, at compression ratios from 3.5 to 7.5, on the power, on the maximum cylinder pressures, on the fuel consumption, and on the other performance characteristics of an engine. A roots-type aircraft-engine supercharger was used to maintain the desired carburetor pressure.

  10. HUGO: Hierarchical mUlti-reference Genome cOmpression for aligned reads

    PubMed Central

    Li, Pinghao; Jiang, Xiaoqian; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila

    2014-01-01

    Background and objective Short-read sequencing is becoming the standard of practice for the study of structural variants associated with disease. However, with the growth of sequence data largely surpassing reasonable storage capability, the biomedical community is challenged with the management, transfer, archiving, and storage of sequence data. Methods We developed Hierarchical mUlti-reference Genome cOmpression (HUGO), a novel compression algorithm for aligned reads in the sorted Sequence Alignment/Map (SAM) format. We first aligned short reads against a reference genome and stored exactly mapped reads for compression. For the inexact mapped or unmapped reads, we realigned them against different reference genomes using an adaptive scheme by gradually shortening the read length. Regarding the base quality value, we offer lossy and lossless compression mechanisms. The lossy compression mechanism for the base quality values uses k-means clustering, where a user can adjust the balance between decompression quality and compression rate. The lossless compression can be produced by setting k (the number of clusters) to the number of different quality values. Results The proposed method produced a compression ratio in the range 0.5–0.65, which corresponds to 35–50% storage savings based on experimental datasets. The proposed approach achieved 15% more storage savings over CRAM and comparable compression ratio with Samcomp (CRAM and Samcomp are two of the state-of-the-art genome compression algorithms). The software is freely available at https://sourceforge.net/projects/hierachicaldnac/with a General Public License (GPL) license. Limitation Our method requires having different reference genomes and prolongs the execution time for additional alignments. Conclusions The proposed multi-reference-based compression algorithm for aligned reads outperforms existing single-reference based algorithms. PMID:24368726

  11. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    PubMed

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  12. The influence of pore geometry and orientation on the strength and stiffness of porous rock

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick

    2017-03-01

    The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  13. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    NASA Astrophysics Data System (ADS)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  14. Improved angiogenesis and healing in crush syndrome by fibroblast growth factor-2-containing low-molecular-weight heparin (Fragmin)/protamine nanoparticles.

    PubMed

    Takikawa, Makoto; Nakamura, Shingo; Ishihara, Masayuki; Takabayashi, Yuki; Fujita, Masanori; Hattori, Hidemi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-06-15

    We produced fibroblast growth factor (FGF)-2-containing low-molecular-weight heparin (Fragmin)/protamine nanoparticles (FGF-2 + F/P NPs). The purpose of this study was to evaluate the effectiveness of the local administration of FGF-2 + F/P NPs on repairing crush syndrome (CS)-injured lesions after compression release using a nonlethal and reproducible CS injury rat model. The hind limbs of the anesthetized rats were compressed for 6 h using 3.6 kg blocks, as previously described. The effects of administering FGF-2 + F/P NPs (group A), F/P NPs alone (group B), FGF-2 alone (group C), and saline (control; group D) were examined. Motor function, surface blood flow in the hind limbs, and the wet/dry weight ratio in the tibialis anterior muscle were examined for 1-28 d after the compression release. Histologic analyses were also performed. At the middle and late stages (3-28 d after the compression release), group A had higher scores in the motor function, improved blood flow, increased number of blood vessels, and faster recovered muscle tissue, compared with the other groups. There was no significant difference in enhanced edema in the tibialis anterior muscle among all groups. The local administration of FGF-2 + F/P NPs to a CS-injured lesion was effective in repairing damaged muscle tissue after compression release. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. N-vinylpyrrolidone modified glass-ionomer resins for improved dental restoratives

    NASA Astrophysics Data System (ADS)

    Xie, Dong

    The studies described in this dissertation focus on improvement of mechanical properties of current glass-ionomer cements. Thermal properties and microstructures of the cements were correlated with their mechanical strengths. The first study evaluated mechanical properties of selected commercial glass-ionomer cements and examined their microstructures. The results showed that resin-modified glass-ionomer cements (RM GICs) exhibited much higher flexural (FS) and diametral tensile strengths (DTS), compared to conventional GICs (C GICs). In addition, they exhibited comparable compressive strength (CS), relatively low microhardness and less wear resistance than C GICs. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The mechanical properties of the GICs were closely related to their microstructures. Factors such as the density of the microstructure, the integrity of the interface between the glass particles and polymer matrix, particle size and the number and size of voids have important roles in determining the mechanical properties. The second study evaluated thermal properties of these GICs. The results showed that the RM GICs exhibited higher thermal transition temperatures than those of the C GICs, thermal expansion coefficients of these cements were close to those of human teeth, and the indentation creep of the RM GICs were higher than the C GICs. The third study explored and evaluated the effect of a water-soluble monomer, N-vinylpyrrolidone (NVP), on the performance of current C GICs, indicating a significant improvement in both mechanical and working properties. The fourth study demonstrated the process of determining the optimal molar ratio of the NVP-containing copolymers, using design of experiment. The results showed that the optimal molar ratio for these copolymers was 7:1:3 for poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone), based on the FS test. The molar ratio of 8:2:1 (AA:IA:NVP) was considered as the best molar ratio for these copolymers, based on the DTS and CS tests. The fifth study formulated the NVP-containing RM GICs using a statistical design of experiment. The results indicated that the best graft ratio for 2-isocyanatoethyl methacrylate (IEM) in this system was 15% of the terpolymer by a molar ratio. The optimal formulation was found to be at the weight ratio of 55:15:30 (RM NVP-containing terpolymer: 2-hydroxyethyl methacrylate (HEMA): Hsb2O). Stress-strain curves showed that a relatively high amount of water in the formulation led to higher elastic modulus and proportional limit and lower malleability, whereas a relatively high amount of HEMA gave the opposite results. The sixth study evaluated the NVP modified GICs (NVPM GICs) with the best molar ratios and optimal formulations in the mechanical, thermal and working properties. The results showed that the effect of molecular weight on mechanical properties of the NVPM GICs were evident. Different glass powders exhibited different effects on properties of the NVPM GICs, due to different compositions, size and affinity. Powder/liquid ratios had significant effects on the mechanical properties of NVPM GICs, especially on FS. P/W ratios are only beneficial to the NVPM GICs mixed with the Fuji II glass powders. The NVPM GICs showed a higher WT than the models, due to water retention of the NVP ring. Thermal expansion coefficients for the NVPM GICs were close to those for the natural tooth. Mismatch between the glass powders used and the polymer matrix was a big concern in this study and should be solved in the future.

  16. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    NASA Astrophysics Data System (ADS)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  17. [Randomised study of the relationship between the use of CPRmeter® device and the quality of chest compressions in a simulated cardiopulmonary resuscitation].

    PubMed

    Calvo-Buey, J A; Calvo-Marcos, D; Marcos-Camina, R M

    2016-01-01

    To determine whether the use of CPRmeter(®) during the resuscitation manoeuvres, is related to a higher quality of external cardiac massage, as recommended by the International Liaison Committee on Resuscitation (ILCOR). To compare the quality obtained without the use or this, and whether there are differences related to anthropometric, demographic, professional and/or occupational factors. Experimental, open trial performed with life support simulators in a stratified random sample of 88 health workers randomly distributed between groups A (without indications of the device) and B (with them). The homogeneity of their confounding variables was compared, as well as the compressions depth and compressions rate, the proportion of completed release, and distribution of the quality massage variable (according to criteria ILCOR) between the groups. The qualitative variables were analysed with the chi-square test, and quantitative variables with the Student t-test or Mann-Whitney U-test and the association between the variable quality massage variable, and use of the device with the odds ratio. Group A: mean depth 42.1mm (standard deviation 10.1), mean rate 121.3/min (21.6), percentage of complete release 71.2% (36.9). Group B: 51.2mm (5.9) 111.9/min (6.4), 92.9% (10.1) respectively. Odds ratio for quality massage regarding the use of the device was 5.170 (95% CI; 2.060-12.977). The use of CPRmeter(®) device in simulated resuscitations is related to a higher quality of cardiac massage, improving the approach to the ILCOR recommendations, regardless of the characteristics of the participants. They were 83.8% more likely to achieve a quality massage using the device than without it. Copyright © 2015 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  18. A higher chest compression rate may be necessary for metronome-guided cardiopulmonary resuscitation.

    PubMed

    Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Cho, Young Soon; Chung, Sung Phil; Park, Incheol

    2012-01-01

    Metronome guidance is a simple and economical feedback system for guiding cardiopulmonary resuscitation (CPR). However, a recent study showed that metronome guidance reduced the depth of chest compression. The results of previous studies suggest that a higher chest compression rate is associated with a better CPR outcome as compared with a lower chest compression rate, irrespective of metronome use. Based on this finding, we hypothesized that a lower chest compression rate promotes a reduction in chest compression depth in the recent study rather than metronome use itself. One minute of chest compression-only CPR was performed following the metronome sound played at 1 of 4 different rates: 80, 100, 120, and 140 ticks/min. Average compression depths (ACDs) and duty cycles were compared using repeated measures analysis of variance, and the values in the absence and presence of metronome guidance were compared. Both the ACD and duty cycle increased when the metronome rate increased (P = .017, <.001). Average compression depths for the CPR procedures following the metronome rates of 80 and 100 ticks/min were significantly lower than those for the procedures without metronome guidance. The ACD and duty cyle for chest compression increase as the metronome rate increases during metronome-guided CPR. A higher rate of chest compression is necessary for metronome-guided CPR to prevent suboptimal quality of chest compression. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Jeelani, S.

    1992-02-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less

  20. CPR feedback/prompt device improves the quality of hands-only CPR performed in manikin by laypersons following the 2015 AHA guidelines.

    PubMed

    Liu, Yuanshan; Huang, Zitong; Li, Heng; Zheng, Guanghui; Ling, Qin; Tang, Wanchun; Yang, Zhengfei

    2018-03-06

    We investigated the effects of a cardiopulmonary resuscitation (CPR) feedback/prompt device on the quality of chest compression (CC) during hands-only CPR following the 2015 AHA guidelines. A total of 124 laypersons were randomly assigned into three groups. The first (n=42) followed the 2010 guidelines, the second (n=42) followed the 2015 guidelines with no feedback/prompt device, the third (n=40) followed the 2015 guidelines with a feedback/prompt device (2015F). Participants underwent manual CPR training and took a written basic life support examination, then required to perform 2min of hands-only CPR monitored by a CPR feedback/prompt device. The quality of CPR was quantified as the percentage of correct CCs (mean CC depth and rate, complete recoil and chest compression fraction (CCF)) per 20s, as recorded by the CPR feedback/prompt device. Significantly higher correct ratios of CC, CC depth, and rate were achieved in the 2010 group in each minute vs the 2015 group. The greater mean CC depth and rate were observed in the 2015F group vs the 2015 group. The correct ratio of CC was significantly higher in the 2015F group vs the 2015 group. CCF was also significantly higher in the 2015F group vs the 2015 group in the last 20s of CPR. It is difficult for a large percentage of laypersons to achieve the targets of CC depth and rate following the 2015 AHA guidelines. CPR feedback/prompt devices significantly improve the quality of hands-only CPR performance by laypersons following the standards of the 2015 AHA guidelines. Copyright © 2017. Published by Elsevier Inc.

  1. A new hyperspectral image compression paradigm based on fusion

    NASA Astrophysics Data System (ADS)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  2. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B

    2014-01-01

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less

  3. Breaking of rod-shaped model material during compression

    NASA Astrophysics Data System (ADS)

    Lukas, Kulaviak; Vera, Penkavova; Marek, Ruzicka; Miroslav, Puncochar; Petr, Zamostny; Zdenek, Grof; Frantisek, Stepanek; Marek, Schongut; Jaromir, Havlica

    2017-06-01

    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising.

  4. Compressive buckling of black phosphorene nanotubes: an atomistic study

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Trang; Le, Minh-Quy

    2018-04-01

    We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.

  5. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  6. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  7. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    PubMed

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  8. Aging and compressibility of municipal solid wastes.

    PubMed

    Chen, Y M; Zhan, Tony L T; Wei, H Y; Ke, H

    2009-01-01

    The expansion of a municipal solid waste (MSW) landfill requires the ability to predict settlement behavior of the existing landfill. The practice of using a single compressibility value when performing a settlement analysis may lead to inaccurate predictions. This paper gives consideration to changes in the mechanical compressibility of MSW as a function of the fill age of MSW as well as the embedding depth of MSW. Borehole samples representative of various fill ages were obtained from five boreholes drilled to the bottom of the Qizhishan landfill in Suzhou, China. Thirty-one borehole samples were used to perform confined compression tests. Waste composition and volume-mass properties (i.e., unit weight, void ratio, and water content) were measured on all the samples. The test results showed that the compressible components of the MSW (i.e., organics, plastics, paper, wood and textiles) decreased with an increase in the fill age. The in situ void ratio of the MSW was shown to decrease with depth into the landfill. The compression index, Cc, was observed to decrease from 1.0 to 0.3 with depth into the landfill. Settlement analyses were performed on the existing landfill, demonstrating that the variation of MSW compressibility with fill age or depth should be taken into account in the settlement prediction.

  9. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete

    PubMed Central

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-01-01

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions. PMID:28787998

  10. Plasma Switch for High-Power Active Pulse Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ?more » 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.« less

  11. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio

    NASA Astrophysics Data System (ADS)

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C.; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P.; Elias, Ana L.; Feng, Simin; Kim, Seon Jeong; Narayanan, N. T.; Ajayan, Pulickel M.; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H.; Chen, Yongsheng

    2015-01-01

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson’s ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson’s ratio.

  12. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio.

    PubMed

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P; Elias, Ana L; Feng, Simin; Kim, Seon Jeong; Narayanan, N T; Ajayan, Pulickel M; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H; Chen, Yongsheng

    2015-01-20

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.

  13. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    PubMed

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p < 0.05). The MD/UT ratio was significantly higher during condition 3 than during conditions 1 and 2, and higher during condition 2 than during condition 1 (p < 0.05). Shoulder abductor strength was significantly higher during condition 3 than during condition 1 (p < 0.05). These findings suggest that augmented trunk stabilization with the ECS may be advantageous with regard to reducing the compensatory muscle effort of the UT during isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Real-time 3D video compression for tele-immersive environments

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William

    2006-01-01

    Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).

  15. Prediction of compression-induced image interpretability degradation

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Chen, Hua-Mei; Irvine, John M.; Wang, Zhonghai; Chen, Genshe; Nagy, James; Scott, Stephen

    2018-04-01

    Image compression is an important component in modern imaging systems as the volume of the raw data collected is increasing. To reduce the volume of data while collecting imagery useful for analysis, choosing the appropriate image compression method is desired. Lossless compression is able to preserve all the information, but it has limited reduction power. On the other hand, lossy compression, which may result in very high compression ratios, suffers from information loss. We model the compression-induced information loss in terms of the National Imagery Interpretability Rating Scale or NIIRS. NIIRS is a user-based quantification of image interpretability widely adopted by the Geographic Information System community. Specifically, we present the Compression Degradation Image Function Index (CoDIFI) framework that predicts the NIIRS degradation (i.e., a decrease of NIIRS level) for a given compression setting. The CoDIFI-NIIRS framework enables a user to broker the maximum compression setting while maintaining a specified NIIRS rating.

  16. The Effects of Hearing Aid Compression Parameters on the Short-Term Dynamic Range of Continuous Speech

    ERIC Educational Resources Information Center

    Henning, Rebecca L. Warner; Bentler, Ruth A.

    2008-01-01

    Purpose: The purpose of this study was to evaluate and quantitatively model the independent and interactive effects of compression ratio, number of compression channels, and release time on the dynamic range of continuous speech. Method: A CD of the Rainbow Passage (J. E. Bernthal & N. W. Bankson, 1993) was used. The hearing aid was a…

  17. Alaska SAR Facility (ASF5) SAR Communications (SARCOM) Data Compression System

    NASA Technical Reports Server (NTRS)

    Mango, Stephen A.

    1989-01-01

    The real-time operational requirements for SARCOM translation into a high speed image data handler and processor to achieve the desired compression ratios and the selection of a suitable image data compression technique with as low as possible fidelity (information) losses and which can be implemented in an algorithm placing a relatively low arithmetic load on the system are described.

  18. Prechamber Compression-Ignition Engine Performance

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  19. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  20. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  1. Hyperspectral Imagery Throughput and Fusion Evaluation over Compression and Interpolation

    DTIC Science & Technology

    2008-07-01

    MSE ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (17) The PSNR values and compression ratios are shown in Table 1 and a plot of PSNR against the bits per pixel ( bpp ) is shown...Ratio bpp 59.3 2.9:1 2.76 46.0 9.2:1 0.87 43.2 14.5:1 0.55 40.8 25.0:1 0.32 38.7 34.6:1 0.23 35.5 62.1:1 0.13 Figure 11. PSNR vs. bits per...and a plot of PSNR against the bits per pixel ( bpp ) is shown in Figure 13. The 3D DCT compression yielded better results than the baseline JPEG

  2. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    NASA Astrophysics Data System (ADS)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  3. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  4. A very efficient RCS data compression and reconstruction technique, volume 4

    NASA Technical Reports Server (NTRS)

    Tseng, N. Y.; Burnside, W. D.

    1992-01-01

    A very efficient compression and reconstruction scheme for RCS measurement data was developed. The compression is done by isolating the scattering mechanisms on the target and recording their individual responses in the frequency and azimuth scans, respectively. The reconstruction, which is an inverse process of the compression, is granted by the sampling theorem. Two sets of data, the corner reflectors and the F-117 fighter model, were processed and the results were shown to be convincing. The compression ratio can be as large as several hundred, depending on the target's geometry and scattering characteristics.

  5. Compression of real time volumetric echocardiographic data using modified SPIHT based on the three-dimensional wavelet packet transform.

    PubMed

    Hang, X; Greenberg, N L; Shiota, T; Firstenberg, M S; Thomas, J D

    2000-01-01

    Real-time three-dimensional echocardiography has been introduced to provide improved quantification and description of cardiac function. Data compression is desired to allow efficient storage and improve data transmission. Previous work has suggested improved results utilizing wavelet transforms in the compression of medical data including 2D echocardiogram. Set partitioning in hierarchical trees (SPIHT) was extended to compress volumetric echocardiographic data by modifying the algorithm based on the three-dimensional wavelet packet transform. A compression ratio of at least 40:1 resulted in preserved image quality.

  6. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration.

    PubMed

    Hadavi, M; Hasannia, S; Faghihi, Sh; Mashayekhi, F; Zadeh, H H; Mostofi, S B

    2017-07-08

    The aim of this study was to investigate the biomechanical and biological properties of a nanocomposite scaffold containing both mineral and polysaccharide constituents. Hydroxyapatite nanoparticles (n-HA) was synthesized from dead abra ovata shells using wet chemical methods and was used in different ratios in concert with gum Arabic, a branched plant polysaccharide. N-HA/gum nanocomposite was fabricated with freeze-drying process and characterized by FTIR and SEM for chemical structure and morphology. Porosity was estimated using liquid substitution method. The scaffold mechanical properties were evaluated by compressive test measurement. Osteogenic differentiation was assessed using alkaline phosphatase production and biomineralization was evaluated using Alizarin red assay. Results demonstrated that the hydroxyapatite/gum Arabic nanocomposite had favorable biocompatibility and a similar structure to natural bone matrix. Porous nanocomposite possessed macropore networks with a porosity 87-93% and mean pore size ranging between 164 and 230 μm. The gum/HA with a ratio of 50% w/w HA had the highest compressive modulus of ∼75.3 MPa Pa (MPa) and the ultimate compressive stress of ∼16.6 MPa. C2C12 cells cultured on a scaffold with higher percentage (40 and 50 w/w) of HA demonstrated increased ALP levels and calcium deposition. The data from the present study demonstrated significant changes to the biomechanical properties and osteoconductivity of the nanocomposite scaffold by modulating its mineral content. Nanocomposite scaffolds containing gum and n-HA of 40-50% exhibited highest mechanical properties, as well as supported increased biomineralization. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Reconnection in Compressible Plasmas: Extended Conversion Region

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.; Zenitani, S.

    2011-01-01

    The classical Sweet-Parker approach to steady-state magnetic reconnection is extended into the regime of large resistivity (small magnetic Reynolds or Lundquist number) when the aspect ratio between the outflow and inflow scale, delta = d/L, approaches unity. In a previous paper the vicinity of the dissipation site ("diffusion region") was investigated. In this paper, the approach is extended to cover larger sites, in which the energy transfer and conversion is not confined to the diffusion region. Consistent with the results of Paper I, we find that increasing aspect ratio delta is associated with increasing compression, increasing reconnect ion rate for low Beta, but slightly decreasing rate for higher Beta, decreasing outflow speed, and increasing outflow magnetic field. These trends are stronger for lower Beta. Deviations from the traditional Sweet-Parker limit delta approaches 0 become significant for R(sub m) approx < 10, where R(sub m) is the magnetic Reynolds number (Lundquist number) based on the half-thickness of the current layer responsible for the Ohmic dissipation. They are also more significant for small gamma, that is, for increasing compressibility. In contrast to the results of Paper I, but consistent with earlier results for delta much < 1,nu(sub A) we find that in this limit the outflow speed is given by the Alfven speed nu(sub A) in the inflow region and the energy conversion is given by an even split of Poynting flux into enthalpy flux and bulk kinetic energy flux. However, with increasing delta the conversion to enthalpy flux becomes more and more dominant.

  8. Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials

    PubMed Central

    Yang, Keun-Hyeok; Jeon, Yong-Su

    2014-01-01

    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (R SCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to R SCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at R SCM of 0.9. Hence, it is recommended that R SCM needs to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete. PMID:25162049

  9. HDFITS: Porting the FITS data model to HDF5

    NASA Astrophysics Data System (ADS)

    Price, D. C.; Barsdell, B. R.; Greenhill, L. J.

    2015-09-01

    The FITS (Flexible Image Transport System) data format has been the de facto data format for astronomy-related data products since its inception in the late 1970s. While the FITS file format is widely supported, it lacks many of the features of more modern data serialization, such as the Hierarchical Data Format (HDF5). The HDF5 file format offers considerable advantages over FITS, such as improved I/O speed and compression, but has yet to gain widespread adoption within astronomy. One of the major holdbacks is that HDF5 is not well supported by data reduction software packages and image viewers. Here, we present a comparison of FITS and HDF5 as a format for storage of astronomy datasets. We show that the underlying data model of FITS can be ported to HDF5 in a straightforward manner, and that by doing so the advantages of the HDF5 file format can be leveraged immediately. In addition, we present a software tool, fits2hdf, for converting between FITS and a new 'HDFITS' format, where data are stored in HDF5 in a FITS-like manner. We show that HDFITS allows faster reading of data (up to 100x of FITS in some use cases), and improved compression (higher compression ratios and higher throughput). Finally, we show that by only changing the import lines in Python-based FITS utilities, HDFITS formatted data can be presented transparently as an in-memory FITS equivalent.

  10. Nonlinear frequency compression: Influence of start frequency and input bandwidth on consonant and vowel recognitiona)

    PubMed Central

    Alexander, Joshua M.

    2016-01-01

    By varying parameters that control nonlinear frequency compression (NFC), this study examined how different ways of compressing inaudible mid- and/or high-frequency information at lower frequencies influences perception of consonants and vowels. Twenty-eight listeners with mild to moderately severe hearing loss identified consonants and vowels from nonsense syllables in noise following amplification via a hearing aid simulator. Low-pass filtering and the selection of NFC parameters fixed the output bandwidth at a frequency representing a moderately severe (3.3 kHz, group MS) or a mild-to-moderate (5.0 kHz, group MM) high-frequency loss. For each group (n = 14), effects of six combinations of NFC start frequency (SF) and input bandwidth [by varying the compression ratio (CR)] were examined. For both groups, the 1.6 kHz SF significantly reduced vowel and consonant recognition, especially as CR increased; whereas, recognition was generally unaffected if SF increased at the expense of a higher CR. Vowel recognition detriments for group MS were moderately correlated with the size of the second formant frequency shift following NFC. For both groups, significant improvement (33%–50%) with NFC was confined to final /s/ and /z/ and to some VCV tokens, perhaps because of listeners' limited exposure to each setting. No set of parameters simultaneously maximized recognition across all tokens. PMID:26936574

  11. Sub-component modeling for face image reconstruction in video communications

    NASA Astrophysics Data System (ADS)

    Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.

    2008-08-01

    Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.

  12. Impact of Altering Various Image Parameters on Human Epidermal Growth Factor Receptor 2 Image Analysis Data Quality.

    PubMed

    Pantanowitz, Liron; Liu, Chi; Huang, Yue; Guo, Huazhang; Rohde, Gustavo K

    2017-01-01

    The quality of data obtained from image analysis can be directly affected by several preanalytical (e.g., staining, image acquisition), analytical (e.g., algorithm, region of interest [ROI]), and postanalytical (e.g., computer processing) variables. Whole-slide scanners generate digital images that may vary depending on the type of scanner and device settings. Our goal was to evaluate the impact of altering brightness, contrast, compression, and blurring on image analysis data quality. Slides from 55 patients with invasive breast carcinoma were digitized to include a spectrum of human epidermal growth factor receptor 2 (HER2) scores analyzed with Visiopharm (30 cases with score 0, 10 with 1+, 5 with 2+, and 10 with 3+). For all images, an ROI was selected and four parameters (brightness, contrast, JPEG2000 compression, out-of-focus blurring) then serially adjusted. HER2 scores were obtained for each altered image. HER2 scores decreased with increased illumination, higher compression ratios, and increased blurring. HER2 scores increased with greater contrast. Cases with HER2 score 0 were least affected by image adjustments. This experiment shows that variations in image brightness, contrast, compression, and blurring can have major influences on image analysis results. Such changes can result in under- or over-scoring with image algorithms. Standardization of image analysis is recommended to minimize the undesirable impact such variations may have on data output.

  13. Numerical studies of the formation and destruction of vortices in a motored four-stroke piston-cylinder configuration

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Sosoka, D. J.; Ramos, J. I.

    1983-01-01

    A finite-difference procedure which solves the conservation equations of mass, momentum, and energy is used to investigate the effects of the compression ratio, engine speed, bore-to-stroke ratio, and air intake flow angle on the turbulent flow field within an axisymmetric piston-cylinder configuration. It is shown that in a four-stroke piston-cylinder configuration, the intake stroke is characterized by the formation of a piston vortex. The piston vortex is stretched during the intake stroke, and the head vortex has an almost constant diameter. For a 0-deg air intake flow angle, both vortices disappear by the end of the compression stroke; for an air intake flow angle of 45 deg, the flow field within the cylinder shows three elongated vortices which persist into the compression stroke and then break up and merge. It is also shown that larger bore-to-stroke ratios give rise to lower turbulent levels than smaller bore-to-stroke ratios and that the turbulent intensity is almost independent of the rpm.

  14. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete.

    PubMed

    Wang, Xiao-Yong

    2017-01-26

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel-space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  15. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete

    PubMed Central

    Wang, Xiao-Yong

    2017-01-01

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods. PMID:28772472

  16. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma.

    PubMed

    Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2006-01-01

    An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.

  17. A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-03-31

    The energy in turbulent flow can be amplied by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound givenmore » here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of compressing astrophysical turbulence are too dissipative. As a result, the technique used highlights the relationship between compressed turbulence and decaying turbulence.« less

  18. Data compression for near Earth and deep space to Earth transmission

    NASA Technical Reports Server (NTRS)

    Erickson, Daniel E.

    1991-01-01

    Key issues of data compression for near Earth and deep space to Earth transmission discussion group are briefly presented. Specific recommendations as made by the group are as follows: (1) since data compression is a cost effective way to improve communications and storage capacity, NASA should use lossless data compression wherever possible; (2) NASA should conduct experiments and studies on the value and effectiveness of lossy data compression; (3) NASA should develop and select approaches to high ratio compression of operational data such as voice and video; (4) NASA should develop data compression integrated circuits for a few key approaches identified in the preceding recommendation; (5) NASA should examine new data compression approaches such as combining source and channel encoding, where high payoff gaps are identified in currently available schemes; and (6) users and developers of data compression technologies should be in closer communication within NASA and with academia, industry, and other government agencies.

  19. A block-based JPEG-LS compression technique with lossless region of interest

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    JPEG-LS lossless compression algorithm is used in many specialized applications that emphasize on the attainment of high fidelity for its lower complexity and better compression ratios than the lossless JPEG standard. But it cannot prevent error diffusion because of the context dependence of the algorithm, and have low compression rate when compared to lossy compression. In this paper, we firstly divide the image into two parts: ROI regions and non-ROI regions. Then we adopt a block-based image compression technique to decrease the range of error diffusion. We provide JPEG-LS lossless compression for the image blocks which include the whole or part region of interest (ROI) and JPEG-LS near lossless compression for the image blocks which are included in the non-ROI (unimportant) regions. Finally, a set of experiments are designed to assess the effectiveness of the proposed compression method.

  20. Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP

    NASA Astrophysics Data System (ADS)

    Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping

    2017-03-01

    Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.

  1. Lossless compression of stromatolite images: a biogenicity index?

    PubMed

    Corsetti, Frank A; Storrie-Lombardi, Michael C

    2003-01-01

    It has been underappreciated that inorganic processes can produce stromatolites (laminated macroscopic constructions commonly attreibuted to microbiological activity), thus calling into question the long-standing use of stromatolites as de facto evidence for ancient life. Using lossless compression on unmagnified reflectance red-green-blue (RGB) images of matched stromatolite-sediment matrix pairs as a complexity metric, the compressibility index (delta(c), the log ratio of the ratio of the compressibility of the matrix versus the target) of a putative abiotic test stromatolite is significantly less than the delta(c) of a putative biotic test stromatolite. There is a clear separation in delta(c) between the different stromatolites discernible at the outcrop scale. In terms of absolute compressibility, the sediment matrix between the stromatolite columns was low in both cases, the putative abiotic stromatolite was similar to the intracolumnar sediment, and the putative biotic stromatolite was much greater (again discernible at the outcrop scale). We propose tht this metric would be useful for evaluating the biogenicity of images obtained by the camera systems available on every Mars surface probe launched to date including Viking, Pathfinder, Beagle, and the two Mars Exploration Rovers.

  2. A review in high early strength concrete and local materials potential

    NASA Astrophysics Data System (ADS)

    Yasin, A. K.; Bayuaji, R.; Susanto, T. E.

    2017-11-01

    High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa). There are 4 (four) important factors that must be considered in the making process, those factors including: portland cement type, cement content, water to cement ratio, and admixture. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. This paper will also explain about the local materials which were abundantly available, cheap, and located in strategic coast area of East Java Province, that is: Gresik, Tuban and Bojonegoro city. In addition, the application of this study is not limited only to a large building project, but also for a small scale building which has one to three-story. The performance of this concrete was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough to support building structurally.

  3. A Basic Behavior of CNG DI Combustion in a Spark-Ignited Rapid Compression Machine

    NASA Astrophysics Data System (ADS)

    Huang, Zuohua; Shiga, Seiichi; Ueda, Takamasa; Jingu, Nobuhisa; Nakamura, Hisao; Ishima, Tsuneaki; Obokata, Tomio; Tsue, Mitsuhiro; Kono, Michikata

    A basic characteristics of compressed natural gas direct-injection (CNG DI) combustion was studied by using a rapid compression machine. Results show that comparing with homogeneous mixture, CNG DI has short combustion duration, high pressure rise due to combustion, and high rate of heat release, which are considered to come from the charge stratification and the gas flow generated by the fuel injection. CNG DI can realize extremely lean combustion which reaches 0.03 equivalence ratio, φ. Combustion duration, maximum pressure rise due to combustion and combustion efficiency are found to be insensitive to the injection modes. Unburned methane showed almost the same level as that of homogeneous mixture combustion. CO increased steeply with the increase in φ when φ was greater than 0.8 due to the excessive stratification, and NOx peak value shifted to the region of lower φ. Combustion inefficiency maintains less than 0.08 in the range of φ from 0.1 to 0.9 and increases at very low φ due to bulk quenching and at higher φ due to excessive stratification. The combustion efficiency estimated from combustion products shows good agreement with that of heat release analysis.

  4. Fractured Rock Permeability as a Function of Temperature and Confining Pressure

    NASA Astrophysics Data System (ADS)

    Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko

    2015-10-01

    Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.

  5. A Novel ECG Data Compression Method Using Adaptive Fourier Decomposition With Security Guarantee in e-Health Applications.

    PubMed

    Ma, JiaLi; Zhang, TanTan; Dong, MingChui

    2015-05-01

    This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.

  6. Ways to Increase Launch Velocities of 2-Stage Gas Guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc; Arnold, James O. (Technical Monitor)

    1994-01-01

    The amount of space debris is rapidly increasing and the debris is distributed over a wide variety of orbits. Satellites, manned space vehicles and space stations will have to pay increasing attention to the dangers of impacts with space debris. Various armoring techniques (i.e., double or triple layer armor) will have to tested extensively to determine the most effective armor per unit weight. Intersecting near-earth orbits can lead to impact velocities up to 15 km/sec. Conventional two-stage light gas guns can launch intact, controlled-shape projectiles with a density of 1.2 gm/cc and length- to-diameter ratios of 0.5-1.0 at velocities up to 8-9 km/sec. Higher velocities (10-11 km/sec) can be obtained' for very light projectiles. The higher launch velocities tend to be very severe on the high pressure coupling and barrel of the gun and lead to short component lifetimes. Clearly, the ability to raise the launch velocity of a gun (for reasonably massive projectile shapes) from 8-9 km/sec to 11-13 km/sec (or higher), without reduction of component lifetimes, would have significant benefits. This would allow much better simulation of the higher velocity debris impacts as well as better simulation of high speed re-entry into planetary atmospheres. Several techniques for increasing the launcher muzzle velocity above 8-9 km/sec have been studied using CFD simulations and appear to offer the potential for significant gains. The first technique is to use multiple compressions, instead of a single compression, in the pump tube of the light gas gun. In a sense, this is a kind of pre-heating of the gas in the pump tube; other types of pre-heating have yielded disappointing results in the past. The dynamics of the multiple compression pump tube is very different, however, from the earlier techniques, where the pump tube was typically heated ohmically before the gun 2 cycle was started. In this paper, we present CFD calculations that show that significant increases in muzzle velocity can be obtained with multiple compressions in the pump tube. With a conventional two-stage gun, an important limitation to obtaining higher velocities is friction and heat transfer to the barrel, which typically has a length- to- diameter ratio of 200-400. These viscous losses greatly reduce the effectiveness of the regions of the barrel far removed from the second stage breech. We have studied computationally the effect of adding an additional breech (or breeches) along the barrel to reduce these viscous losses. Velocity increases from 6.5 to 7.2 km/sec have been obtained using the main breech and one additional breech. In these results, both breeches were operated with hydrogen, heated electrothermally. We have also studied a gun geometry where the main breech is operated in the conventional manner, using piston compression. The additional breech is operated either with electrothermal heating or heating by using a high explosive charge in a novel geometry. The latter option provides very effective compression, heating and acceleration of the hydrogen working gas and is fully reusable. Calculations are presented which show that very substantial increases in muzzle velocity can be obtained this way, without overstressing the projectile or the 'gun. The third technique studied is to add a section of ram accelerator tube after the barrel to further accelerate the projectile. The ram accelerator used here is not the conventional premixed gas ram accelerator, but a new technique using high explosive as the energy source and pure hydrogen as the working gas in a geometry which can be made fully reusable. Preliminary results with this new rain accelerator geometry were presented and showed that stable ram accelerator drive can be established. Herein, detailed calculations axe presented which show that substantial velocity increases can be obtained using this ram accelerator technique in tandem with a conventional light gas gun.

  7. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.

    PubMed

    Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia

    2017-10-01

    Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Trial of Continuous or Interrupted Chest Compressions during CPR.

    PubMed

    Nichol, Graham; Leroux, Brian; Wang, Henry; Callaway, Clifton W; Sopko, George; Weisfeldt, Myron; Stiell, Ian; Morrison, Laurie J; Aufderheide, Tom P; Cheskes, Sheldon; Christenson, Jim; Kudenchuk, Peter; Vaillancourt, Christian; Rea, Thomas D; Idris, Ahamed H; Colella, Riccardo; Isaacs, Marshal; Straight, Ron; Stephens, Shannon; Richardson, Joe; Condle, Joe; Schmicker, Robert H; Egan, Debra; May, Susanne; Ornato, Joseph P

    2015-12-03

    During cardiopulmonary resuscitation (CPR) in patients with out-of-hospital cardiac arrest, the interruption of manual chest compressions for rescue breathing reduces blood flow and possibly survival. We assessed whether outcomes after continuous compressions with positive-pressure ventilation differed from those after compressions that were interrupted for ventilations at a ratio of 30 compressions to two ventilations. This cluster-randomized trial with crossover included 114 emergency medical service (EMS) agencies. Adults with non-trauma-related cardiac arrest who were treated by EMS providers received continuous chest compressions (intervention group) or interrupted chest compressions (control group). The primary outcome was the rate of survival to hospital discharge. Secondary outcomes included the modified Rankin scale score (on a scale from 0 to 6, with a score of ≤3 indicating favorable neurologic function). CPR process was measured to assess compliance. Of 23,711 patients included in the primary analysis, 12,653 were assigned to the intervention group and 11,058 to the control group. A total of 1129 of 12,613 patients with available data (9.0%) in the intervention group and 1072 of 11,035 with available data (9.7%) in the control group survived until discharge (difference, -0.7 percentage points; 95% confidence interval [CI], -1.5 to 0.1; P=0.07); 7.0% of the patients in the intervention group and 7.7% of those in the control group survived with favorable neurologic function at discharge (difference, -0.6 percentage points; 95% CI, -1.4 to 0.1, P=0.09). Hospital-free survival was significantly shorter in the intervention group than in the control group (mean difference, -0.2 days; 95% CI, -0.3 to -0.1; P=0.004). In patients with out-of-hospital cardiac arrest, continuous chest compressions during CPR performed by EMS providers did not result in significantly higher rates of survival or favorable neurologic function than did interrupted chest compressions. (Funded by the National Heart, Lung, and Blood Institute and others; ROC CCC ClinicalTrials.gov number, NCT01372748.).

  9. Geopolymer lightweight bricks manufactured from fly ash and foaming agent

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wan Mastura Wan; Hussin, Kamarudin; Abdullah, Mohd Mustafa Al Bakri; Kadir, Aeslina Abdul

    2017-04-01

    This paper deals with the development of lightweight geopolymer bricks by using foaming agent and fly ash. The mix parameters analysed through a laboratory experiment with fix ratio of sodium silicate/sodium hydroxide solution mass ratio 2.5, fly ash/alkaline activator solution mass ratio 2.0, foaming agent/paste mass ratio 1:2 and molarity of sodium hydroxide solution used was 12M. Different curing temperature (Room Temperature, 60, 80) and foaming agent/water mass ratio (1:10 and 1:20) were studied. Compressive strength, density analysis, and water absorption has been investigated. The results show that the foamed geopolymer bricks with a lower foam/water mass ratio (1:10)and high curing temperature (80°C) leading to a better properties. Mixtures with a low density of around 1420 kg/m3 and a compressive strength of around 10 MPa were achieved.

  10. Differential regulation of immature articular cartilage compressive moduli and Poisson's ratios by in vitro stimulation with IGF-1 and TGF-beta1.

    PubMed

    Williams, Gregory M; Dills, Kristin J; Flores, Christian R; Stender, Michael E; Stewart, Kevin M; Nelson, Lauren M; Chen, Albert C; Masuda, Koichi; Hazelwood, Scott J; Klisch, Stephen M; Sah, Robert L

    2010-09-17

    Mechanisms of articular cartilage growth and maturation have been elucidated by studying composition-function dynamics during in vivo development and in vitro culture with stimuli such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta 1 (TGF-beta1). This study tested the hypothesis that IGF-1 and TGF-beta1 regulate immature cartilage compressive moduli and Poisson's ratios in a manner consistent with known effects on tensile properties. Bovine calf articular cartilage from superficial-articular (S) and middle-growth (M) regions were analyzed fresh or following culture in medium with IGF-1 or TGF-beta1. Mechanical properties in confined (CC) and unconfined (UCC) compression, cartilage matrix composition, and explant size were assessed. Culture with IGF-1 resulted in softening in CC and UCC, increased Poisson's ratios, substantially increased tissue volume, and accumulation of glycosaminoglycan (GAG) and collagen (COL). Culture with TGF-beta1 promoted maturational changes in the S layer, including stiffening in CC and UCC and increased concentrations of GAG, COL, and pyridinoline crosslinks (PYR), but little growth. Culture of M layer explants with TGF-beta1 was nearly homeostatic. Across treatment groups, compressive moduli in CC and UCC were positively related to GAG, COL, and PYR concentrations, while Poisson's ratios were negatively related to concentrations of these matrix components. Thus, IGF-1 and TGF-beta1 differentially regulate the compressive mechanical properties and size of immature articular cartilage in vitro. Prescribing tissue growth, maturation, or homeostasis by controlling the in vitro biochemical environment with such growth factors may have applications in cartilage repair and tissue engineering.

  11. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    NASA Astrophysics Data System (ADS)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  12. A New Approach for Fingerprint Image Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefactsmore » which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.« less

  13. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Maozhe; Blanc, Denise, E-mail: denise.blanc-biscarat@insa-lyon.fr; Gautier, Mathieu

    2013-05-15

    Highlights: ► We used sewage sludge ashes in ready-mix concrete recipe. ► SSAs were used as a substitution of cement. ► Compressive strength of ready-mix concrete incorporating SSAs were similar as blank one. ► Contaminants leaching from concrete monoliths were above threshold limits. - Abstract: Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials,more » provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO{sub 2} as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at concentrations above the threshold limits considered. The leaching tests conducted on concrete monoliths showed however that none of the contaminants monitored, including Mo and Se, were leached above the limits. In addition, whether concrete recipe incorporated ashes or not, similar concentrations were measured for each potential contaminant in the leachates. This result indicated that mixing ash with cement and sand to produce mortar or concrete induced a stabilization of Mo and Se and thereby constituted in itself a good treatment of the ashes.« less

  14. Higher-Order Nonlinear Effects on Wave Structures in a Multispecies Plasma with Nonisothermal Electrons

    NASA Astrophysics Data System (ADS)

    Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder

    2010-04-01

    In the present investigation, we have studied ion-acoustic solitary waves in a plasma consisting of warm positive and negative ions and nonisothermal electron distribution. We have used reductive perturbation theory (RPT) and derived a dispersion relation which supports only two ion-acoustic modes, viz. slow and fast. The expression for phase velocities of these modes is observed to be a function of parameters like nonisothermality, charge and mass ratio, and relative temperature of ions. A modified Korteweg-de Vries (KdV) equation with a (1+1/2) nonlinearity, also known as Schamel-mKdV model, is derived. RPT is further extended to include the contribution of higher-order terms. The results of numerical computation for such contributions are shown in the form of graphs in different parameter regimes for both, slow and fast ion-acoustic solitary waves having several interesting features. For the departure from the isothermally distributed electrons, a generalized KdV equation is derived and solved. It is observed that both rarefactive and compressive solitons exist for the isothermal case. However, nonisothermality supports only the compressive type of solitons in the given parameter regime.

  15. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water.

    PubMed

    Wang, Xin; Lü, Xin

    2014-02-15

    Response surface methodology (RSM) was used to optimize the extraction of pectic polysaccharides from apple pomace by hot-compressed water, by which the optimum levels of the parameters were obtained as follows: extraction temperature 140 °C, extraction time 5 min, S:W ratio 1:14. Compared with commercial pectin, the Mw, galacturonic acid content, DM and protein of the extracted pectic polysaccharides were lower while ash content and neutral sugars were higher. The endothermic transition temperature and fusion heat of the extracted pectic polysaccharides was lower than commercial one according to DSC analysis. For its rheological properties, it was found that the viscosity of the extracted pectic polysaccharides solution was slightly lower than commercial pectin at lower shear rate region while it decreased sharply when the shear rate increased. Besides, both G' and G" moduli of the extracted pectic polysaccharides were lower than the commercial pectin's possibly because of weaker polymer chain interaction, which was also reflected in gel textural properties. However, the extracted pectic polysaccharides showed higher in vitro antioxidant capability and inhibitory effect on HT-29 colon adenocarcinoma cells than commercial pectin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Combustion engine variable compression ratio apparatus and method

    DOEpatents

    Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  17. Compressible flow across narrow passages: Comparison of theory and experiment for face seals

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.; Hady, W. F.

    1978-01-01

    Computer calculation for determining compressible flow across radial face seals were compared with measured results obtained in a seal simulator rig at pressure ratios to 0.9 (ambient pressure/sealed pressure). In general, the measured and calculated leakages across the seal dam agreed within 3 percent. The resultant loss coefficient, dependent upon the pressure ratio, ranged from 0.47 to 0.68. The calculated pressures were within 2.5 N/cu um of the measured values.

  18. Free-Spinning-Tunnel Investigation of a 1/20-Scale Model of an Unswept-Wing Jet-Propelled Trainer Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1960-01-01

    A flutter analysis employing the kernel function for three- dimensional, subsonic, compressible flow is applied to a flutter-tested tail surface which has an aspect ratio of 3.5, a taper ratio of 0.15, and a leading-edge sweep of 30 deg. Theoretical and experimental results are compared at Mach numbers from 0.75 to 0.98. Good agreement between theoretical and experimental flutter dynamic pressures and frequencies is achieved at Mach numbers to 0.92. At Mach numbers from 0.92 to 0.98, however, a second solution to the flutter determinant results in a spurious theoretical flutter boundary which is at a much lower dynamic pressure and at a much higher frequency than the experimental boundary.

  19. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications.

    PubMed

    Ghorbani, Farnaz; Nojehdehian, Hanieh; Zamanian, Ali

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Anisotropic Constitutive Relationships in Energetic Materials: Nitromethane and Rdx

    NASA Astrophysics Data System (ADS)

    Oleynik, I. I.; Conroy, M.; White, C. T.

    2007-12-01

    The anisotropic constitutive relationships in solid nitromethane (NM) and α-RDX were studied using first-principles density functional theory (DFT). In addition to hydrostatic compressions, we performed uniaxial compressions in the [100], [010], [001], [110], [101], [011], and [111] directions up to the compression ratio V/V0 = 0.70. Equilibrium properties, including lattice parameters and elastic constants, as well as hydrostatic EOS, are in good agreement with available experimental data. The shear stresses of uniaxially compressed NM and α-RDX were used to predict the relative shock sensitivity between different crystallographic directions.

  1. Compression testing of thick-section composite materials

    NASA Astrophysics Data System (ADS)

    Camponeschi, Eugene T., Jr.

    A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.

  2. Radio astronomy Explorer B antenna aspect processor

    NASA Technical Reports Server (NTRS)

    Miller, W. H.; Novello, J.; Reeves, C. C.

    1972-01-01

    The antenna aspect system used on the Radio Astronomy Explorer B spacecraft is described. This system consists of two facsimile cameras, a data encoder, and a data processor. Emphasis is placed on the discussion of the data processor, which contains a data compressor and a source encoder. With this compression scheme a compression ratio of 8 is achieved on a typical line of camera data. These compressed data are then convolutionally encoded.

  3. Effect of data compression on diagnostic accuracy in digital hand and chest radiography

    NASA Astrophysics Data System (ADS)

    Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita

    1992-05-01

    Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.

  4. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    NASA Astrophysics Data System (ADS)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  5. Lossless compression of VLSI layout image data.

    PubMed

    Dai, Vito; Zakhor, Avideh

    2006-09-01

    We present a novel lossless compression algorithm called Context Copy Combinatorial Code (C4), which integrates the advantages of two very disparate compression techniques: context-based modeling and Lempel-Ziv (LZ) style copying. While the algorithm can be applied to many lossless compression applications, such as document image compression, our primary target application has been lossless compression of integrated circuit layout image data. These images contain a heterogeneous mix of data: dense repetitive data better suited to LZ-style coding, and less dense structured data, better suited to context-based encoding. As part of C4, we have developed a novel binary entropy coding technique called combinatorial coding which is simultaneously as efficient as arithmetic coding, and as fast as Huffman coding. Compression results show C4 outperforms JBIG, ZIP, BZIP2, and two-dimensional LZ, and achieves lossless compression ratios greater than 22 for binary layout image data, and greater than 14 for gray-pixel image data.

  6. Spectroscopic studies of fly ash-based geopolymers

    NASA Astrophysics Data System (ADS)

    Rożek, Piotr; Król, Magdalena; Mozgawa, Włodzimierz

    2018-06-01

    In the present work fly-ash based geopolymers with different contents of alkali-activator and water were prepared. Alkali-activation was conducted with sodium hydroxide (NaOH) at the SiO2/Na2O molar ratio of 3, 4, and 5. Water content was at the ratio of 30, 40, and 50 wt% in respect to the weight of the fly ash. Structural and microstructural characterization (FT-IR spectroscopy, 29Si and 27Al MAS NMR, X-ray diffraction, SEM) of the specimens as well as compressive strength and apparent density measurements were carried out. The obtained geopolymers are mainly amorphous due to the presence of disordered aluminosilicate phases. However, hydroxysodalite have been identified as a crystalline product of geopolymerization. The major band in the mid-infrared spectra (at about 1000 cm-1) is related to Sisbnd O(Si,Al) asymmetric stretching vibrations and is an indicator of the geopolymeric network formation. Several component bands in this region can be noticed after the decomposition process. Decomposition of band at 1450 cm-1 (vibrations of Csbnd O bonds in bicarbonate group) has been also conducted. Higher NaOH content favors carbonation, inasmuch as the intensity of the band then increases. Both water and alkaline activator contents have an influence on compressive strength and microstructure of the obtained fly-ash based geopolymers.

  7. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  8. Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.

    PubMed

    Heikal, A A; Wachowicz, K; Fallone, B G

    2016-10-01

    To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.

  9. Parameters Affecting the Mechanical Properties of Fly Ash-Based Geopolymer Binders – Experimental Results

    NASA Astrophysics Data System (ADS)

    Lăzărescu, A.; Szilagyi, H.; Ioani, A.; Baeră, C.

    2018-06-01

    As the demand for concrete and the needs to satisfy development of infrastructure facilities increase, it is essential to find alternatives to create environment-friendly concrete. The particular procedure of alkaline activation of fly ash - in which ash resulting from a power plant is combined with a specific alkaline activator in order to create a solid material, then dried at a certain temperature - opened new opportunities for this new material to get attention worldwide. In order to obtain a material with similar properties of ordinary Portland cement concrete and to obtain desirable compressive strengths, the parameters that affect this type of binders should be fully understood. The aim of this paper is to study the main parameters affecting the mechanical strength of the fly ash-based geopolymer paste and their interactions. Parameters such as molarity of sodium hydroxide (from 8M to 12M) and alkaline activators ratio (from 0,5 to 2,5) were analysed to observe how they affect the mechanical properties of the geopolymer paste. Experimental results show that the compressive strength of the fly ash-based geopolymer paste produced using Romanian local raw materials increases with the increase of the concentration of sodium hydroxide and higher ratios of Na2SiO3/NaOH solution.

  10. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  11. Construction and Effect of New Mechanical Structure in Traditional Nitroguanidine Propellants

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Liao, Xin; Wang, Zeshan

    2017-07-01

    In order to improve the mechanical properties of nitroguanidine propellants, spheroidized nitroguanidine (SNGu) was mixed up with needle-shaped NGu (NSNGu) at different mass ratios. The results from tensile/compression tests showed that the addition of SNGu could improve compression properties of nitroguanidine propellants. At the NSNGu to SNGu ratio of 8:2, compression properties of the propellants exhibit an excellent promotion with the maximum increase of 25.2% at -40°C comparing against the value of the traditional propellants. Meanwhile, tensile properties of the new propellants at the same ratio were nearly equal to those of traditional propellants. The impacts of the morphology of NGus on the distribution density and orientation of the NGus were investigated by scanning electron microscopy (SEM). The aforementioned mechanical behavior of nitroguanidine propellants could be well explained by the results of closed-bomb tests. The difference of the total heat effect observed in the Differential Scanning Calorimeter (DSC) tests of the two NGus was calculated to be only 1.5%.

  12. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  13. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Lee, K.H.

    2007-08-15

    Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less

  14. Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran

    NASA Astrophysics Data System (ADS)

    Lashkaripour, Gholam Reza; Rastegarnia, Ahmad; Ghafoori, Mohammad

    2018-02-01

    The determination of brittleness and geomechanical parameters, especially uniaxial compressive strength (UCS) and Young's modulus (ES) of rocks are needed for the design of different rock engineering applications. Evaluation of these parameters are time-consuming processes, tedious, expensive and require well-prepared rock cores. Therefore, compressional wave velocity (Vp) and index parameters such as point load index and porosity are often used to predict the properties of rocks. In this paper, brittleness and other properties, physical and mechanical in type, of 56 Asmari limestones in dry and saturated conditions were analyzed. The rock samples were collected from Khersan 2 dam site. This dam with the height of 240 m is being constructed and located in the Zagros Mountain, in the southwest of Iran. The bedrock and abutments of the dam site consist of Asemari and Gachsaran Formations. In this paper, a practical relation for predicting brittleness and some relations between mechanical and index parameters of the Asmari limestone were established. The presented equation for predicting brittleness based on UCS, Brazilian tensile strength and Vp had high accuracy. Moreover, results showed that the brittleness estimation based on B3 concept (the ratio of multiply compressive strength in tensile strength divided 2) had more accuracy as compared to the B2 (the ratio of compressive strength minus tensile strength to compressive strength plus tensile strength) and B1 (the ratio of compressive strength to tensile strength) concepts.

  15. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    NASA Astrophysics Data System (ADS)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  16. Exploring the Relationship Between Working Memory, Compressor Speed, and Background Noise Characteristics.

    PubMed

    Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N

    2016-01-01

    Previous work has shown that individuals with lower working memory demonstrate reduced intelligibility for speech processed with fast-acting compression amplification. This relationship has been noted in fluctuating noise, but the extent of noise modulation that must be present to elicit such an effect is unknown. This study expanded on previous study by exploring the effect of background noise modulations in relation to compression speed and working memory ability, using a range of signal to noise ratios. Twenty-six older participants between ages 61 and 90 years were grouped by high or low working memory according to their performance on a reading span test. Speech intelligibility was measured for low-context sentences presented in background noise, where the noise varied in the extent of amplitude modulation. Simulated fast- or slow-acting compression amplification combined with individual frequency-gain shaping was applied to compensate for the individual's hearing loss. Better speech intelligibility scores were observed for participants with high working memory when fast compression was applied than when slow compression was applied. The low working memory group behaved in the opposite way and performed better under slow compression compared with fast compression. There was also a significant effect of the extent of amplitude modulation in the background noise, such that the magnitude of the score difference (fast versus slow compression) depended on the number of talkers in the background noise. The presented signal to noise ratios were not a significant factor on the measured intelligibility performance. In agreement with earlier research, high working memory allowed better speech intelligibility when fast compression was applied in modulated background noise. In the present experiment, that effect was present regardless of the extent of background noise modulation.

  17. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties.

    PubMed

    Moshaverinia, Alireza; Ansari, Sahar; Movasaghi, Zanyar; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U

    2008-10-01

    The objective of this study was to enhance the mechanical strength of glass-ionomer cements, while preserving their unique clinical properties. Copolymers incorporating several different segments including N-vinylpyrrolidone (NVP) in different molar ratios were synthesized. The synthesized polymers were copolymers of acrylic acid and NVP with side chains containing itaconic acid. In addition, nano-hydroxyapatite and fluoroapatite were synthesized using an ethanol-based sol-gel technique. The synthesized polymers were used in glass-ionomer cement formulations (Fuji II commercial GIC) and the synthesized nanoceramic particles (nano-hydroxy or fluoroapatite) were also incorporated into commercial glass-ionomer powder, respectively. The synthesized materials were characterized using FTIR and Raman spectroscopy and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass-ionomer cements were evaluated. After 24h setting, the NVP modified glass-ionomer cements exhibited higher compressive strength (163-167 MPa), higher diametral tensile strength (DTS) (13-17 MPa) and much higher biaxial flexural strength (23-26 MPa) in comparison to Fuji II GIC (160 MPa in CS, 12MPa in DTS and 15 MPa in biaxial flexural strength). The nano-hydroxyapatite/fluoroapatite added cements also exhibited higher CS (177-179 MPa), higher DTS (19-20 MPa) and much higher biaxial flexural strength (28-30 MPa) as compared to the control group. The highest values for CS, DTS and BFS were found for NVP-nanoceramic powder modified cements (184 MPa for CS, 22 MPa for DTS and 33 MPa for BFS) which were statistically higher than control group. It was concluded that, both NVP modified and nano-HA/FA added glass-ionomer cements are promising restorative dental materials with improved mechanical properties.

  18. Compressibility and resiliency properties of wilton type woven carpets produced with different fiber blend ratio

    NASA Astrophysics Data System (ADS)

    Osman, B.; Esin, S.; Sıdıka Ziba, O.

    2017-10-01

    Carpet is a textile structure that composed of three components: warp (stuffer and chain warp), weft and pile yarns. These textile products are used for areas which will stand up to the use of home, hotel, work place etc. Furthermore, the capable of carpets are related to it’s especially pile performance during use in various areas. During usage, carpets made from various type of raw materials of pile yarn also acts differently that these differentiate determines carpet performance, as well.This study was focused on the compression and resilience behaviour of carpet composed of 100% viscose and 100% acrylic pile yarns and blended pile yarns of blend ratios, 80%/20%, 50%/50% and 20%/80% viscose/acrylic. During the yarn production process, all spinning conditions were kept constant in order to eliminate the yarn production parameters. Five different types of wilton face to face carpet samples were produced from these yarns at the same pile height and pile density on Van de Wiele carpet weaving machine at 110 picks/min machine speed and 1/1 V carpet construction. Compressibility properties of carpets were examined whether blend ratio was statistically significant on carpet resilience or not. The behaviour of pile yarns under pressure is important that leads to understand the growth characteristic which is exposed to decrease and increase loadings during usage of carpet made from these yarns. Results indicated that blend ratio of pile yarns have significance effect on compression behaviour of carpet samples.

  19. n-Gram-Based Text Compression.

    PubMed

    Nguyen, Vu H; Nguyen, Hien T; Duong, Hieu N; Snasel, Vaclav

    2016-01-01

    We propose an efficient method for compressing Vietnamese text using n -gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n -grams and then encodes them based on n -gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n -gram is encoded by two to four bytes accordingly based on its corresponding n -gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n -gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.

  20. On the Suitability of Suffix Arrays for Lempel-Ziv Data Compression

    NASA Astrophysics Data System (ADS)

    Ferreira, Artur J.; Oliveira, Arlindo L.; Figueiredo, Mário A. T.

    Lossless compression algorithms of the Lempel-Ziv (LZ) family are widely used nowadays. Regarding time and memory requirements, LZ encoding is much more demanding than decoding. In order to speed up the encoding process, efficient data structures, like suffix trees, have been used. In this paper, we explore the use of suffix arrays to hold the dictionary of the LZ encoder, and propose an algorithm to search over it. We show that the resulting encoder attains roughly the same compression ratios as those based on suffix trees. However, the amount of memory required by the suffix array is fixed, and much lower than the variable amount of memory used by encoders based on suffix trees (which depends on the text to encode). We conclude that suffix arrays, when compared to suffix trees in terms of the trade-off among time, memory, and compression ratio, may be preferable in scenarios (e.g., embedded systems) where memory is at a premium and high speed is not critical.

  1. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    PubMed

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  2. n-Gram-Based Text Compression

    PubMed Central

    Duong, Hieu N.; Snasel, Vaclav

    2016-01-01

    We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods. PMID:27965708

  3. Influence of macromer molecular weight and chemistry on poly(beta-amino ester) network properties and initial cell interactions.

    PubMed

    Brey, Darren M; Erickson, Isaac; Burdick, Jason A

    2008-06-01

    A library of photocrosslinkable poly(beta-amino ester)s (PBAEs) was recently synthesized to expand the number of degradable polymers that can be screened and developed for a variety of biological applications. In this work, the influence of variations in macromer chemistry and macromer molecular weight (MMW) on network reaction behavior, overall bulk properties, and cell interactions were investigated. The MMW was controlled through alterations in the initial diacrylate to amine ratio (> or =1) during synthesis and decreased with an increase in this ratio. Lower MMWs reacted more quickly and to higher double bond conversions than higher MMWs, potentially due to the higher concentration of reactive groups. Additionally, the lower MMWs led to networks with higher compressive and tensile moduli that degraded slower than networks formed from higher MMWs because of an increase in the crosslinking density and decrease in the number of degradable units per crosslink. The adhesion and spreading of osteoblast-like cells on polymer films was found to be dependent on both the macromer chemistry and the MMW. In general, the number of cells was similar on networks formed from a range of MMWs, but the spreading was dramatically influenced by MMW (higher spreading with lower MMWs). These results illustrate further diversity in photocrosslinkable PBAE properties and that the chemistry and macromer structure must be carefully selected for the desired application. Copyright 2007 Wiley Periodicals, Inc.

  4. Fluid-induced transition from banded kyanite- to bimineralic eclogite and implications for the evolution of cratons

    NASA Astrophysics Data System (ADS)

    Sommer, H.; Jacob, D. E.; Stern, R. A.; Petts, D.; Mattey, D. P.; Pearson, D. G.

    2017-06-01

    Heterogeneous, modally banded kyanite-bearing and bimineralic eclogites from the lithospheric mantle, collected at the Roberts Victor Diamond mine (South Africa), show a reaction texture in which kyanite is consumed. Geothermobarometric calculations using measured mineral compositions in Perple_X allowed the construction of a P-T path showing a steep, cool prograde metamorphic gradient of 2 °C/km to reach peak conditions of 5.8 GPa and 890 °C for the kyanite eclogite. The kyanite-out reaction formed bimineralic eclogite and is probably an integral part of the mineralogical evolution of most archetypal bimineralic eclogites at Roberts Victor and potentially elsewhere. The kyanite-out reaction occured at close to peak pressure (5.3 GPa) and was associated with a rise in temperature to 1380 °C. Mass balance calculations show that upon breakdown, the kyanite component is fully accommodated in garnet and omphacite via a reaction system with low water fugacity that required restricted fluid influx from metasomatic sources. The δ18O values of garnets are consistently higher than normal mantle values. Each sample has its characteristic trend of δ18O variance between garnets in the kyanite-bearing sections and those in the bimineralic parts covering a range between 5.1‰ and 6.8‰. No systematic change in O-isotope signature exists across the sample population. Differences in garnet trace element signatures between differing lithologies in the eclogites are significant. Grossular-rich garnets coexisting with kyanite have strong positive Eu-anomalies and low Gd/Yb ratios, while more pyrope-rich garnets in the bimineralic sections have lost their positive Eu-anomaly, have higher Gd/Yb ratios and generally higher heavy rare earth element contents. Garnets in the original kyanite-bearing portions thus reflect the provenance of the rocks as metamorphosed gabbros/troctolites. The kyanite-out reaction was most likely triggered by a heating event in the subcratonic lithosphere. As kyanite contains around 100 ppm of H2O it is suggested that the kyanite-out reaction, once initiated by heating and restricted metasomatic influx, was promoted by the release of water contained in the kyanite. The steep (high-P low-T) prograde P-T path defining rapid compression at low heating rates is atypical for subduction transport of eclogites into the lithospheric mantle. Such a trajectory is best explained in a model where strong lateral compression forces eclogites downward to higher pressures, supporting models of cratonic lithosphere formation by lateral collision and compression.

  5. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  6. Evaluating the effect of online data compression on the disk cache of a mass storage system

    NASA Technical Reports Server (NTRS)

    Pentakalos, Odysseas I.; Yesha, Yelena

    1994-01-01

    A trace driven simulation of the disk cache of a mass storage system was used to evaluate the effect of an online compression algorithm on various performance measures. Traces from the system at NASA's Center for Computational Sciences were used to run the simulation and disk cache hit ratios, number of files and bytes migrating to tertiary storage were measured. The measurements were performed for both an LRU and a size based migration algorithm. In addition to seeing the effect of online data compression on the disk cache performance measure, the simulation provided insight into the characteristics of the interactive references, suggesting that hint based prefetching algorithms are the only alternative for any future improvements to the disk cache hit ratio.

  7. Some Effects of Compressibility on the Flow Through Fans and Turbines

    NASA Technical Reports Server (NTRS)

    Perl, W.; Epstein, H. T.

    1946-01-01

    The laws of conservation of mass, momentum, and energy are applied to the compressible flow through a two-dimensional cascade of airfoils. A fundamental relation between the ultimate upstream and downstream flow angles, the inlet Mach number, and the pressure ratio across the cascade is derived. Comparison with the corresponding relation for incompressible flow shows large differences. The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, for which no ideal pressure ratio exists. One of these nonideal operating ranges is analogous to a similar type in incompressible flow. The other is characteristic only of compressible flow. The effect of variable axial-flow area is treated. Some implications of the basic conservation laws in the case of nonideal flow through cascades are discussed.

  8. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  9. Effect of mixing proportion on the properties of seaweed modified sustainable concrete

    NASA Astrophysics Data System (ADS)

    Siddique, Md Nurul Islam; Wahid, Zularisam bin Abd

    2017-10-01

    Although the application of organic polymer has already been reported in the development of polymer modification process the use of carbohydrate polymer hasn't been reported till date. The effect of mixing ratio of seaweed modified mortar on the properties of sustainable concrete was investigated. A number of mixing ratios of seaweed (gel) with cement, sand and water (such as 0.1; 0.6; 1.1; 6) was studied in this work. In addition, a range of mixing ratios of seaweed (powder) with cement, sand and water (such as 0.1; 0.3; 0.6; 1.1; 2.1, 5.1) was examined. The performance of the seaweed modified sustainable concrete was evaluated by compressive and splitting strength. Results revealed that seaweed modified concrete with mixing ratio (0.6) was optimum. This ratio produced significant compressive and splitting strength of 30 MPa and 5 MPa for 28 days, respectively.

  10. Effects of Tunable Data Compression on Geophysical Products Retrieved from Surface Radar Observations with Applications to Spaceborne Meteorological Radars

    NASA Technical Reports Server (NTRS)

    Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee

    2013-01-01

    This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.

  11. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  12. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  13. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    PubMed

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, and cement volume (P > 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P < 0.05) and vertebral body wall incompetence (P < 0.05) were the risk factors for occurrence of cement leakage. The volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence are risk factors of cement leakage in PVP for OVCF. Cement leakage is easy to occur in operative level with vertebral body wall incompetence and high volume ratio of intravertebral bone cement to vertebral body.

  14. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    PubMed

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Supersonic compressor

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  16. Generation new MP3 data set after compression

    NASA Astrophysics Data System (ADS)

    Atoum, Mohammed Salem; Almahameed, Mohammad

    2016-02-01

    The success of audio steganography techniques is to ensure imperceptibility of the embedded secret message in stego file and withstand any form of intentional or un-intentional degradation of secret message (robustness). Crucial to that using digital audio file such as MP3 file, which comes in different compression rate, however research studies have shown that performing steganography in MP3 format after compression is the most suitable one. Unfortunately until now the researchers can not test and implement their algorithm because no standard data set in MP3 file after compression is generated. So this paper focuses to generate standard data set with different compression ratio and different Genre to help researchers to implement their algorithms.

  17. Context-Sensitive Grammar Transform: Compression and Pattern Matching

    NASA Astrophysics Data System (ADS)

    Maruyama, Shirou; Tanaka, Youhei; Sakamoto, Hiroshi; Takeda, Masayuki

    A framework of context-sensitive grammar transform for speeding-up compressed pattern matching (CPM) is proposed. A greedy compression algorithm with the transform model is presented as well as a Knuth-Morris-Pratt (KMP)-type compressed pattern matching algorithm. The compression ratio is a match for gzip and Re-Pair, and the search speed of our CPM algorithm is almost twice faster than the KMP-type CPM algorithm on Byte-Pair-Encoding by Shibata et al.[18], and in the case of short patterns, faster than the Boyer-Moore-Horspool algorithm with the stopper encoding by Rautio et al.[14], which is regarded as one of the best combinations that allows a practically fast search.

  18. Working memory, age, and hearing loss: susceptibility to hearing aid distortion.

    PubMed

    Arehart, Kathryn H; Souza, Pamela; Baca, Rosalinda; Kates, James M

    2013-01-01

    Hearing aids use complex processing intended to improve speech recognition. Although many listeners benefit from such processing, it can also introduce distortion that offsets or cancels intended benefits for some individuals. The purpose of the present study was to determine the effects of cognitive ability (working memory) on individual listeners' responses to distortion caused by frequency compression applied to noisy speech. The present study analyzed a large data set of intelligibility scores for frequency-compressed speech presented in quiet and at a range of signal-to-babble ratios. The intelligibility data set was based on scores from 26 adults with hearing loss with ages ranging from 62 to 92 years. The listeners were grouped based on working memory ability. The amount of signal modification (distortion) caused by frequency compression and noise was measured using a sound quality metric. Analysis of variance and hierarchical linear modeling were used to identify meaningful differences between subject groups as a function of signal distortion caused by frequency compression and noise. Working memory was a significant factor in listeners' intelligibility of sentences presented in babble noise and processed with frequency compression based on sinusoidal modeling. At maximum signal modification (caused by both frequency compression and babble noise), the factor of working memory (when controlling for age and hearing loss) accounted for 29.3% of the variance in intelligibility scores. Combining working memory, age, and hearing loss accounted for a total of 47.5% of the variability in intelligibility scores. Furthermore, as the total amount of signal distortion increased, listeners with higher working memory performed better on the intelligibility task than listeners with lower working memory did. Working memory is a significant factor in listeners' responses to total signal distortion caused by cumulative effects of babble noise and frequency compression implemented with sinusoidal modeling. These results, together with other studies focused on wide-dynamic range compression, suggest that older listeners with hearing loss and poor working memory are more susceptible to distortions caused by at least some types of hearing aid signal-processing algorithms and by noise, and that this increased susceptibility should be considered in the hearing aid fitting process.

  19. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  20. 2D-RBUC for efficient parallel compression of residuals

    NASA Astrophysics Data System (ADS)

    Đurđević, Đorđe M.; Tartalja, Igor I.

    2018-02-01

    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  1. Optimal color coding for compression of true color images

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-11-01

    In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.

  2. Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.

    PubMed

    Howard, Leah; Weng, Yiming; Xie, Dong

    2014-06-01

    The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. The fatigue behavior of composite laminates under various mean stresses

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  4. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    NASA Technical Reports Server (NTRS)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  5. Perceptually lossless fractal image compression

    NASA Astrophysics Data System (ADS)

    Lin, Huawu; Venetsanopoulos, Anastasios N.

    1996-02-01

    According to the collage theorem, the encoding distortion for fractal image compression is directly related to the metric used in the encoding process. In this paper, we introduce a perceptually meaningful distortion measure based on the human visual system's nonlinear response to luminance and the visual masking effects. Blackwell's psychophysical raw data on contrast threshold are first interpolated as a function of background luminance and visual angle, and are then used as an error upper bound for perceptually lossless image compression. For a variety of images, experimental results show that the algorithm produces a compression ratio of 8:1 to 10:1 without introducing visual artifacts.

  6. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  7. Impact of Altering Various Image Parameters on Human Epidermal Growth Factor Receptor 2 Image Analysis Data Quality

    PubMed Central

    Pantanowitz, Liron; Liu, Chi; Huang, Yue; Guo, Huazhang; Rohde, Gustavo K.

    2017-01-01

    Introduction: The quality of data obtained from image analysis can be directly affected by several preanalytical (e.g., staining, image acquisition), analytical (e.g., algorithm, region of interest [ROI]), and postanalytical (e.g., computer processing) variables. Whole-slide scanners generate digital images that may vary depending on the type of scanner and device settings. Our goal was to evaluate the impact of altering brightness, contrast, compression, and blurring on image analysis data quality. Methods: Slides from 55 patients with invasive breast carcinoma were digitized to include a spectrum of human epidermal growth factor receptor 2 (HER2) scores analyzed with Visiopharm (30 cases with score 0, 10 with 1+, 5 with 2+, and 10 with 3+). For all images, an ROI was selected and four parameters (brightness, contrast, JPEG2000 compression, out-of-focus blurring) then serially adjusted. HER2 scores were obtained for each altered image. Results: HER2 scores decreased with increased illumination, higher compression ratios, and increased blurring. HER2 scores increased with greater contrast. Cases with HER2 score 0 were least affected by image adjustments. Conclusion: This experiment shows that variations in image brightness, contrast, compression, and blurring can have major influences on image analysis results. Such changes can result in under- or over-scoring with image algorithms. Standardization of image analysis is recommended to minimize the undesirable impact such variations may have on data output. PMID:28966838

  8. Applications of just-noticeable depth difference model in joint multiview video plus depth coding

    NASA Astrophysics Data System (ADS)

    Liu, Chao; An, Ping; Zuo, Yifan; Zhang, Zhaoyang

    2014-10-01

    A new multiview just-noticeable-depth-difference(MJNDD) Model is presented and applied to compress the joint multiview video plus depth. Many video coding algorithms remove spatial and temporal redundancies and statistical redundancies but they are not capable of removing the perceptual redundancies. Since the final receptor of video is the human eyes, we can remove the perception redundancy to gain higher compression efficiency according to the properties of human visual system (HVS). Traditional just-noticeable-distortion (JND) model in pixel domain contains luminance contrast and spatial-temporal masking effects, which describes the perception redundancy quantitatively. Whereas HVS is very sensitive to depth information, a new multiview-just-noticeable-depth-difference(MJNDD) model is proposed by combining traditional JND model with just-noticeable-depth-difference (JNDD) model. The texture video is divided into background and foreground areas using depth information. Then different JND threshold values are assigned to these two parts. Later the MJNDD model is utilized to encode the texture video on JMVC. When encoding the depth video, JNDD model is applied to remove the block artifacts and protect the edges. Then we use VSRS3.5 (View Synthesis Reference Software) to generate the intermediate views. Experimental results show that our model can endure more noise and the compression efficiency is improved by 25.29 percent at average and by 54.06 percent at most compared to JMVC while maintaining the subject quality. Hence it can gain high compress ratio and low bit rate.

  9. Cancelable ECG biometrics using GLRT and performance improvement using guided filter with irreversible guide signal.

    PubMed

    Kim, Hanvit; Minh Phuong Nguyen; Se Young Chun

    2017-07-01

    Biometrics such as ECG provides a convenient and powerful security tool to verify or identify an individual. However, one important drawback of biometrics is that it is irrevocable. In other words, biometrics cannot be re-used practically once it is compromised. Cancelable biometrics has been investigated to overcome this drawback. In this paper, we propose a cancelable ECG biometrics by deriving a generalized likelihood ratio test (GLRT) detector from a composite hypothesis testing in randomly projected domain. Since it is common to observe performance degradation for cancelable biometrics, we also propose a guided filtering (GF) with irreversible guide signal that is a non-invertibly transformed signal of ECG authentication template. We evaluated our proposed method using ECG-ID database with 89 subjects. Conventional Euclidean detector with original ECG template yielded 93.9% PD1 (detection probability at 1% FAR) while Euclidean detector with 10% compressed ECG (1/10 of the original data size) yielded 90.8% PD1. Our proposed GLRT detector with 10% compressed ECG yielded 91.4%, which is better than Euclidean with the same compressed ECG. GF with our proposed irreversible ECG template further improved the performance of our GLRT with 10% compressed ECG up to 94.3%, which is higher than Euclidean detector with original ECG. Lastly, we showed that our proposed cancelable ECG biometrics practically met cancelable biometrics criteria such as efficiency, re-usability, diversity and non-invertibility.

  10. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  11. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  12. MHD simulation of plasma compression experiments

    NASA Astrophysics Data System (ADS)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter

    2017-10-01

    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  13. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-12-21

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  14. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth; Fisch, Nathaniel J.

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  15. Novel Data Reduction Based on Statistical Similarity

    DOE PAGES

    Lee, Dongeun; Sim, Alex; Choi, Jaesik; ...

    2016-07-18

    Applications such as scientific simulations and power grid monitoring are generating so much data quickly that compression is essential to reduce storage requirement or transmission capacity. To achieve better compression, one is often willing to discard some repeated information. These lossy compression methods are primarily designed to minimize the Euclidean distance between the original data and the compressed data. But this measure of distance severely limits either reconstruction quality or compression performance. In this paper, we propose a new class of compression method by redefining the distance measure with a statistical concept known as exchangeability. This approach reduces the storagemore » requirement and captures essential features, while reducing the storage requirement. In this paper, we report our design and implementation of such a compression method named IDEALEM. To demonstrate its effectiveness, we apply it on a set of power grid monitoring data, and show that it can reduce the volume of data much more than the best known compression method while maintaining the quality of the compressed data. Finally, in these tests, IDEALEM captures extraordinary events in the data, while its compression ratios can far exceed 100.« less

  16. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...

  17. Electrical resistance determination of actual contact area of cold welded metal joints

    NASA Technical Reports Server (NTRS)

    Hordon, M. J.

    1970-01-01

    Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.

  18. Chitosan composite hydrogels reinforced with natural clay nanotubes.

    PubMed

    Huang, Biao; Liu, Mingxian; Zhou, Changren

    2017-11-01

    Here, chitosan composites hydrogels were prepared by addition of halloysite nanotubes (HNTs) in the chitosan KOH/LiOH/urea solution. The raw chitosan and chitosan/HNTs composite hydrogels were obtained by heat treatment at 60°C for 8h and then regeneration in ethanol solution. The viscosity of the composite solution is increased with HNTs content. The Fourier transform infrared spectroscopy (FT-IR) shows that the hydrogen bonds interactions exist between the HNTs and the chitosan. X-ray diffraction (XRD) results show that the crystal structure of HNT is not changed in the composite hydrogels. The compressive property test and storage modulus determination show that the mechanical properties and anti-deformation ability of the composite hydrogel significantly increase owing to the reinforcing effect of HNTs. The composites hydrogel with 66.7% HNTs can undergo 7 times compression cycles without breaking with compressive strength of 0.71MPa at 70% deformation, while pure chitosan hydrogel is broken after bearing 5 compression cycles with compressive strength of 0.14MPa and a maximum deformation of 59%. A porous structure with pore size of 100-500μm is found in the composite hydrogels by scanning electron microscopy (SEM), and the pore size and the swelling ratio in NaCl solution decrease by the addition of HNTs and the immersing of ethanol. Chitosan/HNTs composite hydrogels show low cytotoxicity towards MC3T3-E1 cells. Also, the composite hydrogels show a maximum drug entrapment efficiency of 45.7% for doxorubicin (DOX) which is much higher than that of pure chitosan hydrogel (27.5%). All the results illustrate that the chitosan/HNTs composite hydrogels show promising applications as biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Many-body interactions and high-pressure equations of state in rare-gas solids

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.; Tretyak, S. M.

    2007-06-01

    The T =0K equations of state (EOS) of rare-gas solids (RGS) (He, Ne, Ar, Kr, and Xe) are calculated in the experimentally studied ranges of pressures with the two- and three-body interatomic forces taken into account. Solid-state corrections to the pure two-body Aziz et al. potentials included the long-range Axilrod-Teller three-body interaction and short-range three-body exchange interaction. The energy-scale and length-scale parameters of the latter were taken as adjustable parameters of theory. The calculated T =0K EOS for all RGS are in excellent agreement with experiment in the whole range of pressures. The calculated EOS for Ar, Kr, and Xe exhibit inflection points where the isothermal bulk moduli have non-physical maxima, indicating that account of only three-body forces becomes insufficient. These points lie at pressures 250, 200, and 175GPa (volume compressions of approximately 4.8, 4.1, and 3.6) for Ar, Kr, and Xe, respectively. No such points were found in the calculated EOS of He and Ne. The relative magnitude of the three-body contribution to the ground-state energy with respect to the two-body one as a function of the volume compression was found to be nonmonotonic in the sequence Ne-Ar-Kr-Xe. In a large range of compressions, Kr has the highest value of this ratio. This anomalously high three-body exchange force contributes to the EOS a negative pressure so large that the EOS for Kr and Ar as a function of compression nearly coincide. At compressions higher than approximately 3.5 the curves intersect, and further on, the EOS of Kr lies lower than that of Ar.

  20. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    PubMed

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  1. Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang

    2005-10-31

    Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

  2. Curvelet-based compressive sensing for InSAR raw data

    NASA Astrophysics Data System (ADS)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications, therefore, providing a feasibility for compressive sensing application.

  3. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  4. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    NASA Astrophysics Data System (ADS)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  5. Comparative study of the pentamodal property of four potential pentamode microstructures

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Lu, Xuegang; Liang, Gongying; Xu, Zhuo

    2017-03-01

    In this paper, a numerical comparative study is presented on the pentamodal property of four potential pentamode microstructures (three based on simple cubic and one on body-centered cubic structures) based on phonon band calculations. The finite-element method is employed to calculate the band structures, and the two essential factors of the ratio of bulk modulus B to shear modulus G and the single-mode band gap (SBG) are analyzed to quantitatively evaluate the pentamodal property. The results show that all four structures possess a higher B/G ratio than traditional materials. One of the simple cubic structures exhibits the incomplete SBG, while the three other structures exhibit complete SBG to decouple the compression and shear waves in all propagation directions. Further parametric analyses are presented investigating the effects of geometrical and material parameters on the pentamodal property of these structures. This study provides guidelines for the future design of novel pentamode microstructures possessing a high B/G ratio and a low-frequency broadband SBG.

  6. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    PubMed

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  7. Expression of TGF-β in Fractures Fixed by Nitinol Swan-like Memory Compressive Connectors

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, C. C.; Xu, S. G.; Fu, Q. G.

    2011-07-01

    In this article, the effect of internal fixation of a Nitinol swan-like memory compressive connector (SMC) on the temporal expression of transforming growth factor-β (TGF-β) at fracture sites is evaluated. Specimens were collected from 35 New Zealand rabbits modeled for bilateral humeral fracture fixed with either SMC or stainless dynamic compression plate (DCP). Five rabbits each were killed at day 1, 3, 7, 14, 21, 28, and 56. The local positive staining potency, positive area ratio, and positive index of TGF-β were measured using an immunohistochemistry approach (EnVision) in combination with a computerized image analysis system. TGF-β staining was seen in mesenchymal cells, osteoblasts, chondrocytes, and in the extracellular matrix of fractures fixed in both the SMC and the DCP samples without a significant difference in staining at both the early stages (days 1 and 3) and day 56. A higher TGF-β content was observed in the fractures fixed with SMC when compared to that of DCP from day 7 to 28. As a conclusion, TGF-β is highly expressed in fractures fixed with SMC during chondrogenesis stage and entochondrostosis stage. Finally, the mechanism of how SMC promoting synthesis and secretion of TGF-β in the process of fracture healing has been discussed.

  8. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.

    PubMed

    Yang, Qian; Li, Jian; Xu, Heng; Long, Shijun; Li, Xuefeng

    2017-04-01

    A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca 2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10 -6 to 10 -3  m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10 -2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.

  9. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  10. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  11. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  12. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  13. Networking of three dimensional sonography volume data.

    PubMed

    Kratochwil, A; Lee, A; Schoisswohl, A

    2000-09-01

    Three-dimensioned (3D) sonography enables the examiner to store, instead of copies from single B-scan planes, a volume consisting of 300 scan planes. The volume is displayed on a monitor in form of three orthogonal planes--longitudinal, axial and coronal. Translation and rotation facilitates anatomical orientation and provides any arbitrary plane within the volume to generate organ optimized scan planes. Different algorithms allow the extraction of different information such as surface, or bone structures by maximum mode, or fluid filled structures, such as vessels by the minimum mode. The volume may contain as well color information of vessels. The digitized information is stored on a magnetic optical disc. This allows virtual scanning in absence of the patient under the same conditions as the volume was primarily stored. The volume size is dependent on different, examiner-controlled settings. A volume may need a storage capacity between 2 and 16 MB of 8-bit gray level information. As such huge data sets are unsuitable for network transfer, data compression is of paramount interest. 100 stored volumes were submitted to JPEG, MPEG, and biorthogonal wavelet compression. The original and compressed volumes were randomly shown on two monitors. In case of noticeable image degradation, information on the location of the original and compressed volume and the ratio of compression was read. Numerical values for proving compression fidelity as pixel error calculation and computation of square root error have been unsuitable for evaluating image degradation. The best results in recognizing image degradation were achieved by image experts. The experts disagreed on the ratio where image degradation became visible in only 4% of the volumes. Wavelet compression ratios of 20:1 or 30:1 could be performed without discernible information reduction. The effect of volume compression is reflected both in the reduction of transfer time and in storage capacity. Transmission time for a volume of 6 MB using a normal telephone with a data flow of 56 kB/s was reduced from 14 min to 28 s at a compression rate of 30:1. Compression reduced storage requirements from 6 MB uncompressed to 200 kB at a compression rate of 30:1. This successful compression opens new possibilities of intra- and extra-hospital and global information for 3D sonography. The key to this communication is not only volume compression, but also the fact that the 3D examination can be simulated on any PC by the developed 3D software. PACS teleradiology using digitized radiographs transmitted over standard telephone lines. Systems in combination with the management systems of HIS and RIS are available for archiving, retrieval of images and reports and for local and global communication. This form of tele-medicine will have an impact on cost reduction in hospitals, reduction of transport costs. On this fundament worldwide education and multi-center studies becomes possible.

  14. [Study of mixed dry binders in directly compressible lactoses and microcrystalline cellulose].

    PubMed

    Muzíková, J; Vinklarová, S

    2004-09-01

    The paper evaluated the compressibility of dry binders prepared in the ratios of 3:1, 1:1, and 1:3 from Pharmatosa DCL 15 and DCL 21 and Avicel PH 200, and the sensitivity of the mixtures to an addition of the lubricant magnesium stearate from the standpoint of the effect on the strength of tablets. Mixtures of lactoses with Avicel PH -200 in a ratio of 3:1 proved to be most advantageous. The strengths of tablets made of these mixtures oscillated in the optimal range and they showed the least sensitivity to the added lubricant. An increase in stearate concentration did not result in a marked decrease in the strength of compacts. Pharmatosa DCL 21 in a mixture with Avicel PH 200 yielded stronger compacts at lower compression force than Pharmatosa DCL 15.

  15. Dataset on predictive compressive strength model for self-compacting concrete.

    PubMed

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  16. Study of on-board compression of earth resources data

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1975-01-01

    The current literature on image bandwidth compression was surveyed and those methods relevant to compression of multispectral imagery were selected. Typical satellite multispectral data was then analyzed statistically and the results used to select a smaller set of candidate bandwidth compression techniques particularly relevant to earth resources data. These were compared using both theoretical analysis and simulation, under various criteria of optimality such as mean square error (MSE), signal-to-noise ratio, classification accuracy, and computational complexity. By concatenating some of the most promising techniques, three multispectral data compression systems were synthesized which appear well suited to current and future NASA earth resources applications. The performance of these three recommended systems was then examined in detail by all of the above criteria. Finally, merits and deficiencies were summarized and a number of recommendations for future NASA activities in data compression proposed.

  17. A comparison of spectral decorrelation techniques and performance evaluation metrics for a wavelet-based, multispectral data compression algorithm

    NASA Technical Reports Server (NTRS)

    Matic, Roy M.; Mosley, Judith I.

    1994-01-01

    Future space-based, remote sensing systems will have data transmission requirements that exceed available downlinks necessitating the use of lossy compression techniques for multispectral data. In this paper, we describe several algorithms for lossy compression of multispectral data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image compression algorithm to exploit both spectral and spatial correlation. We compare the performance of several different spectral decorrelation techniques including wavelet transformation in the spectral dimension. The performance of each technique is evaluated at compression ratios ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional distortion measures, and multispectral classification results. We also introduce a family of distortion metrics that are designed to quantify and predict the effect of compression artifacts on multi spectral classification of the reconstructed data.

  18. A bioinspired study on the compressive resistance of helicoidal fibre structures

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Ribbans, Brian

    2017-10-01

    Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.

  19. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    PubMed

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results inmore » a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  1. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.

  2. Communications and information research: Improved space link performance via concatenated forward error correction coding

    NASA Technical Reports Server (NTRS)

    Rao, T. R. N.; Seetharaman, G.; Feng, G. L.

    1996-01-01

    With the development of new advanced instruments for remote sensing applications, sensor data will be generated at a rate that not only requires increased onboard processing and storage capability, but imposes demands on the space to ground communication link and ground data management-communication system. Data compression and error control codes provide viable means to alleviate these demands. Two types of data compression have been studied by many researchers in the area of information theory: a lossless technique that guarantees full reconstruction of the data, and a lossy technique which generally gives higher data compaction ratio but incurs some distortion in the reconstructed data. To satisfy the many science disciplines which NASA supports, lossless data compression becomes a primary focus for the technology development. While transmitting the data obtained by any lossless data compression, it is very important to use some error-control code. For a long time, convolutional codes have been widely used in satellite telecommunications. To more efficiently transform the data obtained by the Rice algorithm, it is required to meet the a posteriori probability (APP) for each decoded bit. A relevant algorithm for this purpose has been proposed which minimizes the bit error probability in the decoding linear block and convolutional codes and meets the APP for each decoded bit. However, recent results on iterative decoding of 'Turbo codes', turn conventional wisdom on its head and suggest fundamentally new techniques. During the past several months of this research, the following approaches have been developed: (1) a new lossless data compression algorithm, which is much better than the extended Rice algorithm for various types of sensor data, (2) a new approach to determine the generalized Hamming weights of the algebraic-geometric codes defined by a large class of curves in high-dimensional spaces, (3) some efficient improved geometric Goppa codes for disk memory systems and high-speed mass memory systems, and (4) a tree based approach for data compression using dynamic programming.

  3. Behavior of some singly ionized, heavy-ion impurities during compression in a theta-pinch plasma

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1975-01-01

    The introduction of a small percentage of an impurity gas containing a desired element into a theta-pinch plasma is a standard procedure used to investigate the spectra and atomic processes of the element. This procedure assumes that the mixing ratio of impurity-to-fill gases remains constant during the collapse and heating phase. Spectroscopic investigations of the constant-mixing-ratio assumption for a 2% neon and argon impurity verifies the assumption only for the neon impurity. However, for the 2% argon impurity, only 20 to 25% of the argon is in the high-temperature compressed plasma. It is concluded that the constant-mixing-ratio assumption is not applicable to the argon impurity.

  4. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

    PubMed

    Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas

    2014-05-01

    In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p<0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (<20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The mechanical properties of human dentin for 3-D finite element modeling: Numerical and analytical evaluation.

    PubMed

    Grzebieluch, Wojciech; Będziński, Romuald; Czapliński, Tomasz; Kaczmarek, Urszula

    2017-07-01

    The FEM is often used in investigations of dentin loading conditions; however, its anisotropy is mostly neglected. The purpose of the study was to evaluate the anisotropy and the elastic properties of an equivalent homogenous material model of human dentin as well as to compare isotropic and anisotropic dentin FE-models. Analytical and numerical dentin homogenization according to Luciano and Barbero was performed and E-modulus (E), Poisson's ratios (v) G-modulus (G) were calculated. The E-modulus of the dentin matrix was 28.0 GPa, Poisson's ratio (v) was 0.3; finite element models of orthotropic and isotropic dentin were created, loaded and compared using Ansys® 14.5 and CodeAster® 11.2 software. Anisotropy of the dentin ranged from 6.9 to 35.2%. E-modulus and G-modulus were as follows: E1 = 22.0-26.0 GPa, E2/E3 = 15.7-23.0 GPa; G12/G13 = 6.96-9.35 GPa and G23 = 6.08-8.09 GPa (highest values in the superficial layer). In FEM analysis of the displacement values were higher in the isotropic than in the orthotropic model, reaching up to 16% by shear load, 37% by compression and 23% in the case of shear with bending. Strain values were higher in the isotropic model, up to 35% for the shear load, 31% for compression and 35% in the case of shear with bending. The decrease in the volumetric fraction and diameter of tubules increased the G and E values. Anisotropy of the dentin applied during FEM analysis decreased the displacements and strain values. The numerical and analytical homogenization of dentin showed similar results.

  6. Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.

  7. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test... rejection ratio and the CO2 rejection ratio as specified in § 89.318. (e) Verify that the dynamometer test...

  8. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  9. The wavelet/scalar quantization compression standard for digital fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  10. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  11. Image and Video Compression with VLSI Neural Networks

    NASA Technical Reports Server (NTRS)

    Fang, W.; Sheu, B.

    1993-01-01

    An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.

  12. Collateral Damage to Satellites from an EMP Attack

    DTIC Science & Technology

    2010-08-01

    peak dose is computed in an infinite half plane of silicon. The resulting in- plane stresses in silicon are shown in Figure VI.23. In- plane refers to...achieved by the SLAR coating 81 Figure VIII.6. Ratio of the peak in- plane compressive stress to the maximum compressive stress for the SLAR coating...82 Figure VIII.7. Maximum in- plane compressive stress in a SLAR coating on DMSP/NOAA subjected to the threat events 83 Figure VIII.8. Maximum in

  13. Hyperspectral image compressing using wavelet-based method

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  14. Adaptive efficient compression of genomes

    PubMed Central

    2012-01-01

    Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. However, memory requirements of the current algorithms are high and run times often are slow. In this paper, we propose an adaptive, parallel and highly efficient referential sequence compression method which allows fine-tuning of the trade-off between required memory and compression speed. When using 12 MB of memory, our method is for human genomes on-par with the best previous algorithms in terms of compression ratio (400:1) and compression speed. In contrast, it compresses a complete human genome in just 11 seconds when provided with 9 GB of main memory, which is almost three times faster than the best competitor while using less main memory. PMID:23146997

  15. Image splitting and remapping method for radiological image compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  16. Compression of regions in the global advanced very high resolution radiometer 1-km data set

    NASA Technical Reports Server (NTRS)

    Kess, Barbara L.; Steinwand, Daniel R.; Reichenbach, Stephen E.

    1994-01-01

    The global advanced very high resolution radiometer (AVHRR) 1-km data set is a 10-band image produced at USGS' EROS Data Center for the study of the world's land surfaces. The image contains masked regions for non-land areas which are identical in each band but vary between data sets. They comprise over 75 percent of this 9.7 gigabyte image. The mask is compressed once and stored separately from the land data which is compressed for each of the 10 bands. The mask is stored in a hierarchical format for multi-resolution decompression of geographic subwindows of the image. The land for each band is compressed by modifying a method that ignores fill values. This multi-spectral region compression efficiently compresses the region data and precludes fill values from interfering with land compression statistics. Results show that the masked regions in a one-byte test image (6.5 Gigabytes) compress to 0.2 percent of the 557,756,146 bytes they occupy in the original image, resulting in a compression ratio of 89.9 percent for the entire image.

  17. A gigawatt level repetitive rate adjustable magnetic pulse compressor.

    PubMed

    Li, Song; Gao, Jing-Ming; Yang, Han-Wu; Qian, Bao-Liang; Li, Ze-Xin

    2015-08-01

    In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 μs to 1 μs and from 18 μs to 1 μs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses.

  18. The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method

    NASA Astrophysics Data System (ADS)

    Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.

    2018-05-01

    The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.

  19. A FASTQ compressor based on integer-mapped k-mer indexing for biologist.

    PubMed

    Zhang, Yeting; Patel, Khyati; Endrawis, Tony; Bowers, Autumn; Sun, Yazhou

    2016-03-15

    Next generation sequencing (NGS) technologies have gained considerable popularity among biologists. For example, RNA-seq, which provides both genomic and functional information, has been widely used by recent functional and evolutionary studies, especially in non-model organisms. However, storing and transmitting these large data sets (primarily in FASTQ format) have become genuine challenges, especially for biologists with little informatics experience. Data compression is thus a necessity. KIC, a FASTQ compressor based on a new integer-mapped k-mer indexing method, was developed (available at http://www.ysunlab.org/kic.jsp). It offers high compression ratio on sequence data, outstanding user-friendliness with graphic user interfaces, and proven reliability. Evaluated on multiple large RNA-seq data sets from both human and plants, it was found that the compression ratio of KIC had exceeded all major generic compressors, and was comparable to those of the latest dedicated compressors. KIC enables researchers with minimal informatics training to take advantage of the latest sequence compression technologies, easily manage large FASTQ data sets, and reduce storage and transmission cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. COMPRESSIBLE RELATIVISTIC MAGNETOHYDRODYNAMIC TURBULENCE IN MAGNETICALLY DOMINATED PLASMAS AND IMPLICATIONS FOR A STRONG-COUPLING REGIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamoto, Makoto; Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: alazarian@facstaff.wisc.edu

    2016-11-10

    In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho and Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fastmore » and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.« less

  1. An ECG signals compression method and its validation using NNs.

    PubMed

    Fira, Catalina Monica; Goras, Liviu

    2008-04-01

    This paper presents a new algorithm for electrocardiogram (ECG) signal compression based on local extreme extraction, adaptive hysteretic filtering and Lempel-Ziv-Welch (LZW) coding. The algorithm has been verified using eight of the most frequent normal and pathological types of cardiac beats and an multi-layer perceptron (MLP) neural network trained with original cardiac patterns and tested with reconstructed ones. Aspects regarding the possibility of using the principal component analysis (PCA) to cardiac pattern classification have been investigated as well. A new compression measure called "quality score," which takes into account both the reconstruction errors and the compression ratio, is proposed.

  2. New image compression scheme for digital angiocardiography application

    NASA Astrophysics Data System (ADS)

    Anastassopoulos, George C.; Lymberopoulos, Dimitris C.; Kotsopoulos, Stavros A.; Kokkinakis, George C.

    1993-06-01

    The present paper deals with the development and evaluation of a new compression scheme, for angiocardiography images. This scheme provides considerable compression of the medical data file, through two different stages. The first stage obliterates the redundancy inside a single frame domain since the second stage obliterates the redundancy among the sequential frames. Within these stages the employed data compression ratio can be easily adjusted according to the needs of the angiocardiography applications, where still or moving (in slow or full motion) images are hauled. The developed scheme has been tailored on the real needs of the diagnosis oriented conferencing-teleworking processes, where Unified Image Viewing facilities are required.

  3. Multi-rate, real time image compression for images dominated by point sources

    NASA Technical Reports Server (NTRS)

    Huber, A. Kris; Budge, Scott E.; Harris, Richard W.

    1993-01-01

    An image compression system recently developed for compression of digital images dominated by point sources is presented. Encoding consists of minimum-mean removal, vector quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations are presented showing that the peaks corresponding to point sources can be transmitted losslessly for low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced output bit rate. Encoding and decoding hardware has been built and tested which processes 552,960 12-bit pixels per second at compression rates of 10:1 and 4:1. Simulation results are presented for the 10:1 case only.

  4. Data compression using Chebyshev transform

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F. (Inventor); Hawkins, III, S. Edward (Inventor); Nguyen, Lillian (Inventor); Monaco, Christopher A. (Inventor); Seagrave, Gordon G. (Inventor)

    2007-01-01

    The present invention is a method, system, and computer program product for implementation of a capable, general purpose compression algorithm that can be engaged on the fly. This invention has particular practical application with time-series data, and more particularly, time-series data obtained form a spacecraft, or similar situations where cost, size and/or power limitations are prevalent, although it is not limited to such applications. It is also particularly applicable to the compression of serial data streams and works in one, two, or three dimensions. The original input data is approximated by Chebyshev polynomials, achieving very high compression ratios on serial data streams with minimal loss of scientific information.

  5. Compressed sensing system considerations for ECG and EMG wireless biosensors.

    PubMed

    Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J

    2012-04-01

    Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.

  6. [A quality controllable algorithm for ECG compression based on wavelet transform and ROI coding].

    PubMed

    Zhao, An; Wu, Baoming

    2006-12-01

    This paper presents an ECG compression algorithm based on wavelet transform and region of interest (ROI) coding. The algorithm has realized near-lossless coding in ROI and quality controllable lossy coding outside of ROI. After mean removal of the original signal, multi-layer orthogonal discrete wavelet transform is performed. Simultaneously,feature extraction is performed on the original signal to find the position of ROI. The coefficients related to the ROI are important coefficients and kept. Otherwise, the energy loss of the transform domain is calculated according to the goal PRDBE (Percentage Root-mean-square Difference with Baseline Eliminated), and then the threshold of the coefficients outside of ROI is determined according to the loss of energy. The important coefficients, which include the coefficients of ROI and the coefficients that are larger than the threshold outside of ROI, are put into a linear quantifier. The map, which records the positions of the important coefficients in the original wavelet coefficients vector, is compressed with a run-length encoder. Huffman coding has been applied to improve the compression ratio. ECG signals taken from the MIT/BIH arrhythmia database are tested, and satisfactory results in terms of clinical information preserving, quality and compress ratio are obtained.

  7. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  8. Ideal Magnetohydrodynamic Simulations of Magnetic Bubble Expansion as a Model for Extragalactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Hsu, Scott; Li, Hui; Li, Shengtai; Lynn, Alan

    2009-05-01

    Recent astronomical observations indicate that radio lobes are gigantic relaxed magnetized plasmas with kilo-to-megaparsec scale jets providing a source of magnetic energy from the galaxy to the lobes. Therefore we are conducting a laboratory plasma experiment, the Plasma Bubble Expansion Experiment (PBEX) in which a higher pressure magnetized plasma bubble (i.e., the lobe) is injected into a lower pressure background plasma (i.e., the intergalactic medium) to study key nonlinear plasma physics issues. Here we present detailed ideal magnetohydrodynamic (MHD) three-dimensional simulations of PBEX. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a leading MHD shock and a trailing slow-mode compressible MHD wave front are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection arising from numerical resistivity and to inhomogeneous angular momentum transport due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.

  9. The relative performance obtained with several methods of control of an overcompressed engine using gasoline

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Whedon, William E

    1928-01-01

    This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.

  10. On the reachable cycles via the unified perspective of cryocoolers. Part B: Cryocoolers with isentropic expanders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maytal, Ben-Zion; Pfotenhauer, John M.

    2014-01-29

    Solvay, Stirling and Gifford-McMahon types of cryocoolers employ an isentropic expander which is their elementary mechanism for temperature reduction (following the unified model of cryocoolers as described in a previous paper, Part A). Solvay and Stirling cryocoolers are driven by a larger temperature reduction than that of the Gifford-McMahon cycle, for a similar compression ratio. These cryocoolers are compared from the view of the unified model, in terms of the lowest attainable temperature, compression ratio, the size of the interchanger and the applied heat load.

  11. Ovalization of Tubes Under Bending and Compression

    NASA Technical Reports Server (NTRS)

    Demer, L J; Kavanaugh, E S

    1944-01-01

    An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)

  12. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  13. Quantitative DLA-based compressed sensing for T1-weighted acquisitions

    NASA Astrophysics Data System (ADS)

    Svehla, Pavel; Nguyen, Khieu-Van; Li, Jing-Rebecca; Ciobanu, Luisa

    2017-08-01

    High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high resolution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling, DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% differences when compared to the fully encoded data, with minimal impact on image spatial resolution. In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional studies of living tissues.

  14. Correlation of the Processing Parameters in the Formation of Granulated Ground Blast Furnace Slag Geopolymer

    NASA Astrophysics Data System (ADS)

    Aziz, I. H.; Abdullah, M. M. A. B.; Yong, H. C.; Ming, L. Y.; Panias, D.; Sakkas, K.

    2017-06-01

    Geopolymers are inorganic materials with huge potential applications including building material, fire resistant materials, and agricultural construction materials. Various parameters influenced the final properties of these geopolymer concretes. This study developed the effects of several factors such as solid-to-liquid ratio, NaOH concentration, and Na2SiO3/NaOH ratio on the compressive strength of granulated ground blast furnace slag (GGBFS) by statistical design of experiment (DOE) approach. Analysis of the experimental results through ANOVA exhibited that the specimen with NaOH concentration of 10M, Na2SiO3/NaOH ratio equals to 2.5, and solid-to-liquid ratio of 3.0 curing at room temperatures for 28 days was potential of highest strength (168.705 MPa) in the considered procedure. Besides, the relationship between compressive strength and influential factors could be suitably by fraction factorial design method.

  15. On lossy transform compression of ECG signals with reference to deformation of their parameter values.

    PubMed

    Koski, Antti; Tossavainen, Timo; Juhola, Martti

    2004-01-01

    Electrocardiogram (ECG) signals are the most prominent biomedical signal type used in clinical medicine. Their compression is important and widely researched in the medical informatics community. In the previous literature compression efficacy has been investigated only in the context of how much known or developed methods reduced the storage required by compressed forms of original ECG signals. Sometimes statistical signal evaluations based on, for example, root mean square error were studied. In previous research we developed a refined method for signal compression and tested it jointly with several known techniques for other biomedical signals. Our method of so-called successive approximation quantization used with wavelets was one of the most successful in those tests. In this paper, we studied to what extent these lossy compression methods altered values of medical parameters (medical information) computed from signals. Since the methods are lossy, some information is lost due to the compression when a high enough compression ratio is reached. We found that ECG signals sampled at 400 Hz could be compressed to one fourth of their original storage space, but the values of their medical parameters changed less than 5% due to compression, which indicates reliable results.

  16. Preparation and characterization of starch-based loose-fill packaging foams

    NASA Astrophysics Data System (ADS)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.

  17. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  18. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  19. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.

    PubMed

    Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric

    2010-02-01

    The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  20. Wavelet/scalar quantization compression standard for fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class ofmore » potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.« less

Top