Sample records for higher detection efficiency

  1. Absolute calibration of a multichannel plate detector for low energy O, O-, and O+

    NASA Astrophysics Data System (ADS)

    Stephen, T. M.; Peko, B. L.

    2000-03-01

    Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.

  2. Characterizations of BC501A and BC537 liquid scintillator detectors.

    PubMed

    Qin, Jianguo; Lai, Caifeng; Ye, Bangjiao; Liu, Rong; Zhang, Xinwei; Jiang, Li

    2015-10-01

    Two 2″×2″ liquid scintillator detectors BC537 and BC501A have been characterized for their responses and efficiencies to γ-ray detection. Light output resolution and response functions were derived by least-squares minimization of a simulated response function, fitted to experimental data. The γ-ray response matrix and detection efficiency were simulated with Monte Carlo (MC) methods and validated. For photon energies below 2.4 MeVee, the resolution, as well as the efficiency, of BC501A is better than BC537 scintillator. The situation is reversed when the energy is higher than 2.4 MeVee. BC537 has higher γ-ray detection efficiency than BC501A if the impinging photon energy is more than 2 MeV due to different ratios of C to H/D atoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media.

    PubMed

    Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F

    2014-12-10

    The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  5. Pigment network-based skin cancer detection.

    PubMed

    Alfed, Naser; Khelifi, Fouad; Bouridane, Ahmed; Seker, Huseyin

    2015-08-01

    Diagnosing skin cancer in its early stages is a challenging task for dermatologists given the fact that the chance for a patient's survival is higher and hence the process of analyzing skin images and making decisions should be time efficient. Therefore, diagnosing the disease using automated and computerized systems has nowadays become essential. This paper proposes an efficient system for skin cancer detection on dermoscopic images. It has been shown that the statistical characteristics of the pigment network, extracted from the dermoscopic image, could be used as efficient discriminating features for cancer detection. The proposed system has been assessed on a dataset of 200 dermoscopic images of the `Hospital Pedro Hispano' [1] and the results of cross-validation have shown high detection accuracy.

  6. Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection.

    PubMed

    Barhoum, Erek; Johnston, Richard; Seibel, Eric

    2005-09-19

    An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.

  7. Efficient cooperative compressive spectrum sensing by identifying multi-candidate and exploiting deterministic matrix

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi

    2015-12-01

    Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.

  8. Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

    PubMed

    Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah

    2015-01-01

    Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.

  9. A density-based clustering model for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  10. Performance characteristics of high-conductivity channel electron multipliers. [as UV and x ray detector

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1978-01-01

    The paper describes a new type of continuous channel multiplier (CEM) fabricated from a low-resistance glass to produce a high-conductivity channel section and thereby obtain a high count-rate capability. The flat-cone cathode configuration of the CEM is specifically designed for the detection of astigmatic exit images from grazing-incidence spectrometers at the optimum angle of illumination for high detection efficiencies at XUV wavelengths. Typical operating voltages are in the range of 2500-2900 V with stable counting plateau slopes in the range 3-6% per 100-V increment. The modal gain at 2800 V was typically in the range (50-80) million. The modal gain falls off at count rates in excess of about 20,000 per sec. The detection efficiency remains essentially constant to count rates in excess of 2 million per sec. Higher detection efficiencies (better than 20%) are obtained by coating the CEM with MgF2. In life tests of coated CEMs, no measurable change in detection efficiency was measured to a total accumulated signal of 2 times 10 to the 11th power counts.

  11. Towards Loophole-Free Optical Bell Test of CHSH Inequality

    NASA Astrophysics Data System (ADS)

    Tan, Yong-gang; Li, Hong-wei

    2016-09-01

    Bell test had been suggested to end the long-standing debate on the EPR paradox, while the imperfections of experimental devices induce some loopholes in Bell test experiments and hence the assumption of local reality by EPR cannot be excluded with current experimental results. In optical Bell test experiments, the locality loophole can be closed easily, while the attempt of closing detection loophole requires very high efficiency of single photon detectors. Previous studies showed that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality with maximally entangled states requires the detection efficiency to be higher than 82.8 %. In this paper, we raise a modified CHSH inequality that covers all measurement events including the efficient and inefficient detections in the Bell test and prove that all local hidden models can be excluded when the inequality is violated. We find that, when non-maximally entangled states are applied to the Bell test, the lowest detection efficiency for violation of the present inequality is 66.7 %. This makes it feasible to close the detection loophole and the locality loophole simultaneously in optical Bell test of CHSH inequality.

  12. New efficient stimuli for evoking frequency-specific auditory steady-state responses.

    PubMed

    Stürzebecher, Ekkehard; Cebulla, Mario; Elberling, Claus; Berger, Thomas

    2006-06-01

    ASSR is a promising tool for the objective frequency-specific assessment of hearing thresholds in children. The stimulus generally used for ASSR recording (single amplitude-modulated carrier) only activates a small area on the basilar membrane. Therefore, the response amplitude is low. A stimulus with a broader frequency spectrum can be composed by adding several cosines whose frequency intervals comply with the desired stimulus repetition rate. Compensation of the travelling wave delay on the basilar membrane is possible with a stimulus of this type. Through this, a better synchronization of the neural response can be obtained and, as a result, higher response amplitudes can be expected, particularly for low-frequency stimuli. The additional introduction of a frequency offset enables the use of a q-sample test for the response detection, especially important at 500 Hz. The results of investigations carried out on a large group of normally hearing test subjects have confirmed the efficiency of this stimulus design. The new stimuli lead to significantly improved ASSRs with higher SNRs and thus higher detection rates and shorter detection times.

  13. SA-SOM algorithm for detecting communities in complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang

    2017-10-01

    Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.

  14. Ship detection in optical remote sensing images based on deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen

    2017-10-01

    Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.

  15. Towards radiation hard converter material for SiC-based fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection efficiency of a stacked structure concept has been explored by juxtaposing several converter-detector layers to improve the efficiency of LiH-SiC-based FNDs . It is observed that approximately tenfold efficiency improvement has been achieved—0.93% for ten layers stacked configuration vis-à-vis 0.1% of single converter-detector layer configuration. Finally, stacked detectors have also been simulated for different converter thicknesses to attain the efficiency as high as ~ 3.25% with the help of 50 stacked layers.

  16. Highly Sensitive Detection of Low-Abundance White Spot Syndrome Virus by a Pre-Amplification PCR Method.

    PubMed

    Pan, Xiaoming; Zhang, Yanfang; Sha, Xuejiao; Wang, Jing; Li, Jing; Dong, Ping; Liang, Xingguo

    2017-03-28

    White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ~10 10 magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.

  17. Measurements of the response function and the detection efficiency of an NE213 scintillator for neutrons between 20 and 65 MeV

    NASA Astrophysics Data System (ADS)

    Meigo, S.

    1997-02-01

    For neutrons 25, 30 and 65 MeV, the response functions and detection efficiencies of an NE213 liquid scintillator were measured. Quasi-monoenergetic neutrons produced by the 7Li(p,N 0.1) reaction were employed for the measurement and the absolute flux of incident neutrons was determined within 4% accuracy using a proton recoil telescope. Response functions and detection efficiencies calculated with the Monte Carlo codes, CECIL and SCINFUL, were compared with the measured data. It was found that response functions calculated with SCINFUL agreed better with experimental ones than those with CECIL, however, the deuteron light output used in SCINFUL was too low. The response functions calculated with a revised SCINFUL agreed with the experimental ones quite well even for the deuteron bump and peak due to the C(n,d 0) reaction. It was confirmed that the detection efficiencies calculated with the original and the revised SCINFULs agreed with the experimental data within the experimental error, while those with CECIL were about 20% higher in the energy region above 30 MeV.

  18. Channel electron multipliers - Detection efficiencies with opaque MgF2 photocathodes at XUV wavelengths

    NASA Technical Reports Server (NTRS)

    Lapson, L. B.; Timothy, J. G.

    1976-01-01

    Detection efficiencies of channel electron multipliers (CEM) with opaque MgF2 photocathodes obtained in the extreme ultraviolet (XUV), 44 A to 990 A, are reported. A stable highly efficient response is reported for that interval, with no adverse effects on CEM performance. Efficiencies twice those of uncoated CEMs are obtained for 50 A to 350 A. The Mullard B419BL and Galileo 4510WL single-stage cone-cathode CEMs were used in the experiments. A rare-gas double ionization chamber was employed as absolute standard detector for 406 A to 990 A, and a flow Geiger counter filled with 96% argon and 4% isobutane for 44 A to 256 A. Absolute detection efficiencies are 10% higher from 67 A to 990 A when photocathodes are illuminated at an angle of incidence 45 deg. The photocathodes suffered no loss of response in storage (in vacuum or air) after an initial aging period. Effects of scattered UV radiation are greatly reduced when MgF2-coated CEMs are used in the XUV.

  19. Extraction and Refinement Strategy for Detection of Autism in 18-Month-Olds: A Guarantee of Higher Sensitivity and Specificity in the Process of Mass Screening

    ERIC Educational Resources Information Center

    Honda, Hideo; Shimizu, Yasuo; Nitto, Yukari; Imai, Miho; Ozawa, Takeshi; Iwasa, Mitsuaki; Shiga, Keiko; Hira, Tomoko

    2009-01-01

    Background: For early detection of autism, it is difficult to maintain an efficient level of sensitivity and specificity based on observational data from a single screening. The Extraction and Refinement (E&R) Strategy utilizes a public children's health surveillance program to produce maximum efficacy in early detection of autism. In the…

  20. Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry.

    PubMed

    Feng, Dan; Xia, Yan

    2018-07-19

    Covalent organic framework (COF) was explored as a novel matrix with a high desorption/ionization efficiency for direct detection of small molecules by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). By using COF as an LDI MS matrix, we could detect not only biological micro molecules such as amino acids and fatty acids, but also emerging environmental pollutants like bisphenol S (BPS) and pyrene. With COF as the matrix, higher desorption/ionization efficiency, and less background interference were achieved than the conventional organic matrices. Good salt tolerance (as high as 500 mM NaCl) and repeatability allowed the detection limit of amino acids was 90 fmol. In addition, COF matrix performed well for amino acids analysis in the honey sample. The ionization mechanism was also discussed. These results demonstrate that COF is a powerful matrix for small molecules analysis in real samples by MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  2. Performance comparison of NE213 detectors for their application in moisture measurement

    PubMed

    Naqvi; Nagadi; Rehman; Kidwai

    2000-10-01

    The pulse shape discrimination (PSD) characteristic and neutron detection efficiency of NE213 detectors have been measured for their application in moisture measurements using 252Cf and 241Am-Be sources. In PSD studies, neutron peak to valley (Pn/V) ratio and figure of merit M were measured at four different bias values for cylindrical 50, 125 and 250 mm diameter NE213 detectors. The result of this study has shown that better PSD performance with the NE213 detector can be achieved with a smaller volume detector in conjunction with a neutron source with smaller gamma-ray/neutron ratio. The neutron detection efficiency of the 125 mm diameter NE213 detector for 241Am-Be and 252Cf source spectra was determined at 0.85, 1.25 and 1.75 MeV bias energies using the experimental neutron detection efficiency data of the same detector over 0.1-10 MeV energy range. Due to different energy spectra of the 241Am-Be and 252Cf sources, integrated efficiency of the 125 mm diameter NE213 detector for the two sources shows bias dependence. At smaller bias, 252Cf source has larger efficiency but as the bias is increased, the detector has larger efficiency for 241Am-Be source. This study has revealed that NE213 detector has better performance (such as PSD and neutron detection efficiency) in simultaneous detection of neutron and gamma-rays in moisture measurements, if it is used in conjunction with 241Am-Be source at higher detector bias.

  3. Microstructured silicon neutron detectors for security applications

    NASA Astrophysics Data System (ADS)

    Esteban, S.; Fleta, C.; Guardiola, C.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodriguez, J.; Lozano, M.

    2014-12-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured.

  4. Fast object detection algorithm based on HOG and CNN

    NASA Astrophysics Data System (ADS)

    Lu, Tongwei; Wang, Dandan; Zhang, Yanduo

    2018-04-01

    In the field of computer vision, object classification and object detection are widely used in many fields. The traditional object detection have two main problems:one is that sliding window of the regional selection strategy is high time complexity and have window redundancy. And the other one is that Robustness of the feature is not well. In order to solve those problems, Regional Proposal Network (RPN) is used to select candidate regions instead of selective search algorithm. Compared with traditional algorithms and selective search algorithms, RPN has higher efficiency and accuracy. We combine HOG feature and convolution neural network (CNN) to extract features. And we use SVM to classify. For TorontoNet, our algorithm's mAP is 1.6 percentage points higher. For OxfordNet, our algorithm's mAP is 1.3 percentage higher.

  5. X-ray detection properties of plastic scintillators containing surface-modified Bi2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-05-01

    Plastic scintillators containing Bi2O3 nanoparticles (NPs) were developed as detectors for X-ray synchrotron radiation. A hydrothermal method was used to synthesize the NPs that had average particle sizes of less than 10 nm. Higher NP concentration led to a higher detection efficiency at 67.4 keV. The light yield of the scintillator containing 5 wt % Bi2O3 NPs was comparable with or higher than that of the commercially available plastic scintillator, EJ 256. The time resolution of the developed scintillation detector equipped with each sample scintillator was approximately 0.6 ns. Dispersion of nanoparticles within plastic scintillators is generally applicable and has wide application as a method for preparation of plastic scintillators for detecting X-ray synchrotron radiation.

  6. A simple but highly efficient multi-formyl phenol-amine system for fluorescence detection of peroxide explosive vapour.

    PubMed

    Xu, Wei; Fu, Yanyan; Gao, Yixun; Yao, Junjun; Fan, Tianchi; Zhu, Defeng; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2015-07-11

    A simple, highly stable, sensitive and selective fluorescent system for peroxide explosives was developed via an aromatic aldehyde oxidation reaction. The high efficiency arises from its higher HOMO level and multiple H-bonding. The sensitivity is obtained to be 0.1 ppt for H2O2 and 0.2 ppb for TATP.

  7. Efficiency of playback for assessing the occurrence of five bird species in Brazilian Atlantic Forest fragments.

    PubMed

    Boscolo, Danilo; Metzger, Jean Paul; Vielliard, Jacques M E

    2006-12-01

    Playback of bird songs is a useful technique for species detection; however, this method is usually not standardized. We tested playback efficiency for five Atlantic Forest birds (White-browed Warbler Basileuterus leucoblepharus, Giant Antshrike Batara cinerea, Swallow-tailed Manakin Chiroxiphia caudata, Whiteshouldered Fire-eye Pyriglena leucoptera and Surucua Trogon Trogon surrucura) for different time of the day, season of the year and species abundance at the Morro Grande Forest Reserve (South-eastern Brazil) and at thirteen forest fragments in a nearby landscape. Vocalizations were broadcasted monthly at sunrise, noon and sunset, during one year. For B. leucoblepharus, C. caudata and T. surrucura, sunrise and noon were more efficient than sunset. Batara cinerea presented higher efficiency from July to October. Playback expanded the favourable period for avifaunal surveys in tropical forest, usually restricted to early morning in the breeding season. The playback was efficient in detecting the presence of all species when the abundance was not too low. But only B. leucoblepharus and T. surrucura showed abundance values significantly related to this efficiency. The present study provided a precise indication of the best daily and seasonal periods and a confidence interval to maximize the efficiency of playback to detect the occurrence of these forest species.

  8. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  9. Comparative analyses of universal extraction buffers for assay of stress related biochemical and physiological parameters.

    PubMed

    Han, Chunyu; Chan, Zhulong; Yang, Fan

    2015-01-01

    Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.

  10. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  11. Mixture IRT Model with a Higher-Order Structure for Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu

    2017-01-01

    Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…

  12. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor

    NASA Astrophysics Data System (ADS)

    Shojaei, Taha Roodbar; Salleh, Mohamad Amran Mohd; Sijam, Kamaruzaman; Rahim, Raha Abdul; Mohsenifar, Afshin; Safarnejad, Reza; Tabatabaei, Meisam

    2016-12-01

    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13 μg mL- 1 and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.

  13. Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diercks, David R., E-mail: ddiercks@mines.edu; Gorman, Brian P.; Kirchhofer, Rita

    2013-11-14

    The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At themore » lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.« less

  14. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Engineering Department, Cambridge University, 9 J J Thomson Ave, Cambridge CB3 0FA; Fröhlich, B.

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with anmore » increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.« less

  15. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes.

    PubMed

    Berry, C W; Wang, N; Hashemi, M R; Unlu, M; Jarrahi, M

    2013-01-01

    Even though the terahertz spectrum is well suited for chemical identification, material characterization, biological sensing and medical imaging, practical development of these applications has been hindered by attributes of existing terahertz optoelectronics. Here we demonstrate that the use of plasmonic contact electrodes can significantly mitigate the low-quantum efficiency performance of photoconductive terahertz optoelectronics. The use of plasmonic contact electrodes offers nanoscale carrier transport path lengths for the majority of photocarriers, increasing the number of collected photocarriers in a subpicosecond timescale and, thus, enhancing the optical-to-terahertz conversion efficiency of photoconductive terahertz emitters and the detection sensitivity of photoconductive terahertz detectors. We experimentally demonstrate 50 times higher terahertz radiation powers from a plasmonic photoconductive emitter in comparison with a similar photoconductive emitter with non-plasmonic contact electrodes, as well as 30 times higher terahertz detection sensitivities from a plasmonic photoconductive detector in comparison with a similar photoconductive detector with non-plasmonic contact electrodes.

  16. Predatory insects as bioindicators of heavy metal pollution.

    PubMed

    Nummelin, Matti; Lodenius, Martin; Tulisalo, Esa; Hirvonen, Heikki; Alanko, Timo

    2007-01-01

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective.

  17. Optimum efficiency lidar sensing of multilayer hydrometeors through a turbid atmosphere

    NASA Astrophysics Data System (ADS)

    Evgenieva, Ts T.; Gurdev, L. L.

    2018-03-01

    The detected lidar return power is a basic factor determining the brightness of the detected lidar images and the signal-to-noise ratio (SNR) of a given measurement. At equal other characteristics, the laser radiation wavelength should influence the lidar return signal and assume an optimum value depending on the specificity of the objects investigated. As such a problem had not been considered systematically, we recently began developing a modeling approach to solving it, based on evaluating the mean and the noisy lidar profiles and the SNR profile of the measurement along the lidar line of sight by using the lidar equation and well known realistic models of the atmospheric objects and background. The main purpose of the present work is to estimate by numerical modeling the detectability of the lidar return from different distances and multilayer cirrus clouds, depending on the laser radiation wavelengths. The results obtained confirm the expectations that at a higher atmospheric turbidity, a relatively higher sensing efficiency (return power) is achievable by longer-wavelength laser radiation, within the NIR range.

  18. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  19. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  20. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z ˜ 1.6 Well Above the Star-forming Main Sequence

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Béthermin, M.; Koekemoer, A.; Lutz, D.; Magdis, G.; Mancini, C.; Onodera, M.; Zamorani, G.

    2015-10-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ˜ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (˜300-800 M⊙ yr-1) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ˜ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (˜30%-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  1. Hexagonal boron nitride neutron detectors with high detection efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less

  2. Hexagonal boron nitride neutron detectors with high detection efficiencies

    NASA Astrophysics Data System (ADS)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  3. Hexagonal boron nitride neutron detectors with high detection efficiencies

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2018-01-23

    Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less

  4. The MetaTelescope, a System for the Detection of Objects in Low and Higher Earth Orbits

    NASA Astrophysics Data System (ADS)

    Boer, M.

    We present an original design involving several telescopes for the detection of mobiles in space over a very wide field of view. The system uses relatively simple and cheap telescopes associated with commercial CCD cameras that can be placed either in a single location or in relatively close (100m - 10km) locations. This last set-up opens the possibility of detecting parallaxes, but sky conditions should remain almost identical. Areas on the order of 800 square degrees can be surveyed. The system is versatile, i.e. it can detect and follow up objects either in the LEO or higher orbits. We will present the system, how it can be operated in order to have a more efficient setup while using even less telescopes, and possible implementations for space surveillance activities.

  5. The Diagnostic Efficiency of 99mTc-EDDA/HYNIC-Octreotate SPECT-CT in Comparison with 111In-Pentetrotide in the Detection of Neuroendocrine Tumours.

    PubMed

    Koçyiğit Deveci, Emel; Ocak, Meltem; Bozkurt, Murat Fani; Türker, Selcan; Kabasakal, Levent; Uğur, Omer

    2013-12-01

    The aim of this study was to assess the diagnostic efficiency of (99m)Tc-EDDA/HYNIC-Octreotate in comparison with (111)Inpentetrotide scintigraphy in the detection of neuroendocrine tumors. This study also evaluates the impact of SPECT-CT hybrid imaging on somatostatin receptor scintigraphy (SRS) interpretation and clinical management of these tumors. Fourteen patients were included in the study. All patients underwent a whole body and SPECT-CT imaging with both (99m)Tc- EDDA/HYNIC-octreotate and (111)In-pentetrotide. Images were evaluated both visually and semiquantitatively. On patient basis, the diagnostic results of both studies were similar. The number of lesions detected by (99m)Tc- EDDA/HYNICOctreotate were higher than the number of lesions detected by (111)In-pentetrotide however the difference was not significant (40/43( 93%), 36/43 (83%) p=0.109). Semiquantitative analysis showed higher tumor/organ count ratios for both whole-body and SPECT (99m)Tc- EDDA/HYNIC-Octreotate scans. The results of this study suggested that, (99m)Tc- EDDA/HYNIC-Octreotate may be a better alternative to (111)In- pentetrotide due to high image quality and lower radiation dose. SPECT/CT is a valuable tool for the assessment of neuroendocrine tumors by providing the precise anatomic localization of scintigraphic findings thus improving lesion detectability and characterization. None declared.

  6. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  7. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  8. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Andery; Kumara, N. T. R. N.; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R. L. N.; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G. K. R.; Ekanayake, Piyasiri

    2015-03-01

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids.

  9. Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

    PubMed

    de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-06-12

    Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.

  10. Evaluation of the efficiency of three extraction conditions for the immunochemical detection of allergenic soy proteins in different food matrices.

    PubMed

    Amponsah, Amma; Nayak, Balunkeswar

    2018-04-01

    Recent studies have shown the need to improve soy allergen extraction using different extraction conditions to ensure more accurate results in allergen detection. This study investigated some of these extraction conditions to confirm that these methods, especially ultrasound-assisted extraction (UAE) and the use of Laemmli buffer instead of the conventional extraction with phosphate-buffered saline (PBS), could be helpful in improving the extraction step in allergen detection. Higher total soluble protein was obtained in all samples extracted with Laemmli buffer alone and in combination with ultrasound. For immunochemical detection of soy proteins by enzyme-linked immunosorbent assay (ELISA), comparable detection was observed in extracts from all extraction conditions in all commercial samples with the exception of table cracker and veggie burger, where significantly higher detection was seen in extracts from Laemmli buffer only. For the dry mix and cookie samples, the degree of soy protein detection with ELISA varied among the different extraction conditions, but overall, extraction with only Laemmli buffer showed higher detection. Laemmli buffer with conventional extraction and UAE may be better alternatives or additional extraction methods in soy allergen detection. Different food matrices performed differently (whether it was for the recovery of total proteins or detection by ELISA) under different extraction conditions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Multi-Element CZT Array for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.

    2016-12-01

    Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.

  12. Comprehensive Detection of Gas Plumes from Multibeam Water Column Images with Minimisation of Noise Interferences

    PubMed Central

    Zhao, Jianhu; Zhang, Hongmei; Wang, Shiqi

    2017-01-01

    Multibeam echosounder systems (MBES) can record backscatter strengths of gas plumes in the water column (WC) images that may be an indicator of possible occurrence of gas at certain depths. Manual or automatic detection is generally adopted in finding gas plumes, but frequently results in low efficiency and high false detection rates because of WC images that are polluted by noise. To improve the efficiency and reliability of the detection, a comprehensive detection method is proposed in this paper. In the proposed method, the characteristics of WC background noise are first analyzed and given. Then, the mean standard deviation threshold segmentations are respectively used for the denoising of time-angle and depth-angle images, an intersection operation is performed for the two segmented images to further weaken noise in the WC data, and the gas plumes in the WC data are detected from the intersection image by the morphological constraint. The proposed method was tested by conducting shallow-water and deepwater experiments. In these experiments, the detections were conducted automatically and higher correct detection rates than the traditional methods were achieved. The performance of the proposed method is analyzed and discussed. PMID:29186014

  13. TRStalker: an efficient heuristic for finding fuzzy tandem repeats.

    PubMed

    Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio

    2010-06-15

    Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.

  14. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  15. High efficiency CsI(Tl)/HgI{sub 2} gamma ray spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    CsI(Tl)/HgI{sub 2} gamma-ray spectrometers have been constructed using 0.5 inch diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV {sup 137}Cs gamma-ray photons. Further efforts have been focused on optimization of larger size ({ge} 1 inch diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However, the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of includingmore » nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may be necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection for various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top-2 inch, bottom-1 inch, 2 inch high) CsI(Tl) scintillator coupled with a 1 inch HgI{sub 2} PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum.« less

  16. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  17. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1.

    PubMed

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R (2) values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.

  18. Cross-Platform Evaluation of Commercial Real-Time SYBR Green RT-PCR Kits for Sensitive and Rapid Detection of European Bat Lyssavirus Type 1

    PubMed Central

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R 2 values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes. PMID:25785274

  19. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  20. Carboxylated multiwalled carbon nanotubes/polydimethylsiloxane, a new coating for 96-blade solid-phase microextraction for determination of phenolic compounds in water.

    PubMed

    Kueseng, Pamornrat; Pawliszyn, Janusz

    2013-11-22

    A new thin-film, carboxylated multiwalled carbon nanotubes/polydimethylsiloxane (MWCNTs-COOH/PDMS) coating was developed for 96-blade solid-phase microextraction (SPME) system followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). The method provided good extraction efficiency (64-90%) for three spiked levels, with relative standard deviations (RSD)≤6%, and detection limits between 1 and 2 μg/L for three phenolic compounds. The MWCNTs-COOH/PDMS 96-blade SPME system presents advantages over traditional methods due to its simplicity of use, easy coating preparation, low cost and high sample throughput (2.1 min per sample). The developed coating is reusable for a minimum of 110 extractions with good extraction efficiency. The coating provided higher extraction efficiency (3-8 times greater) than pure PDMS coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood

    NASA Astrophysics Data System (ADS)

    Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto

    2017-03-01

    With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.

  2. MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.

    PubMed

    Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin

    2017-01-01

    The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.

  3. Critical assessment of the efficiency of CD34 and CD133 antibodies for enrichment of rabbit hematopoietic stem cells.

    PubMed

    Vašíček, Jaromír; Shehata, Medhat; Schnabl, Susanne; Hilgarth, Martin; Hubmann, Rainer; Jäger, Ulrich; Bauer, Miroslav; Chrenek, Peter

    2018-06-08

    Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581 and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34 + cells labelled by AC136 in comparison to the clone 581 and pCD34 (P<0.01). A higher percentage of rabbit CD133 + cells were also detected by 293C3 compared to the AC133 clone (P<0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34 + cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34 + cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34 + cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34 + HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  4. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

    PubMed Central

    2018-01-01

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events. PMID:29614060

  5. Planetary-scale surface water detection from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.

    2017-12-01

    Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.

  6. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications.

    PubMed

    Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just

    2018-04-03

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  7. Improved detection probability of low level light and infrared image fusion system

    NASA Astrophysics Data System (ADS)

    Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang

    2018-02-01

    Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.

  8. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine.

    PubMed

    Jin, Meng; Mou, Zhao-Li; Zhang, Rui-Ling; Liang, Si-Si; Zhang, Zhi-Qi

    2017-05-15

    The development of a simple and accurate quantitative method for the determination of 6-mercaptopurine (6-MP) is of great importance because of its serious side effects. Ratiometric fluorescence (RF) sensors are not subject to interference from environmental factors, and exhibit enhanced precision and accuracy. Therefore, a novel RF sensor for the selective detection of 6-MP was developed based on a dual-emission nanosensor. The nanosensor was fabricated by combining a blue-emission metal-organic framework (MOF) NH 2 -MIL-53(Al) (λ em =425nm) with green-emission 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) (λ em =528nm) under a single excitation wavelength (335nm). Upon addition of 6-MP, the fluorescence of NH 2 -MIL-53(Al) in the nanohybrid was selectively quenched due to strong inner filter effects, while the fluorescence of the MPA-CdTe QDs was enhanced. The novel RF sensor exhibited higher selectivity towards 6-MP than CdTe QDs alone, and higher sensitivity than MOFs alone. 6-MP could be detected in the range of 0-50μM with a detection limit of 0.15μM (S/N=3). The developed sensor was applied for the determination of 6-MP in human urine samples and satisfactory results were obtained. Overall, a novel and efficient fluorescence-based method was developed for the detection of 6-MP in biosamples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase

    NASA Astrophysics Data System (ADS)

    Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei

    2018-03-01

    In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.

  10. The Diagnostic Efficiency of 99mTc-EDDA/HYNIC-Octreotate SPECT-CT in Comparison with 111In-Pentetrotide in the Detection of Neuroendocrine Tumours

    PubMed Central

    Koçyiğit Deveci, Emel; Ocak, Meltem; Bozkurt, Murat Fani; Türker, Selcan; Kabasakal, Levent; Uğur, Ömer

    2013-01-01

    Objective: The aim of this study was to assess the diagnostic efficiency of 99mTc-EDDA/HYNIC-Octreotate in comparison with 111Inpentetrotide scintigraphy in the detection of neuroendocrine tumors. This study also evaluates the impact of SPECT-CT hybrid imaging on somatostatin receptor scintigraphy (SRS) interpretation and clinical management of these tumors. Methods: Fourteen patients were included in the study. All patients underwent a whole body and SPECT-CT imaging with both 99mTc- EDDA/HYNIC-octreotate and 111In-pentetrotide. Images were evaluated both visually and semiquantitatively. Results: On patient basis, the diagnostic results of both studies were similar. The number of lesions detected by 99mTc- EDDA/HYNICOctreotate were higher than the number of lesions detected by 111In-pentetrotide however the difference was not significant (40/43( 93%), 36/43 (83%) p=0.109). Semiquantitative analysis showed higher tumor/organ count ratios for both whole-body and SPECT 99mTc- EDDA/HYNIC-Octreotate scans. Conclusion: The results of this study suggested that, 99mTc- EDDA/HYNIC-Octreotate may be a better alternative to 111In- pentetrotide due to high image quality and lower radiation dose. SPECT/CT is a valuable tool for the assessment of neuroendocrine tumors by providing the precise anatomic localization of scintigraphic findings thus improving lesion detectability and characterization. Conflict of interest:None declared. PMID:24416622

  11. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.

    PubMed

    Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun

    2014-01-01

    Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.

  12. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material provides high gamma-radiation detection efficiency in that energy range. This new type of gamma-neutron detector is based on a 'sandwich' structure using a ZnSe composite film and light guide with a fast neutron detection efficiency of about 6%. Its high detection efficiency of low-energy gamma-radiation allows a substantial increase (by an order of magnitude) in the efficiency of detection of neutron sources and transuranic materials by means of simultaneous detection of accompanying gamma-radiation. The design and fabrication technology of this detector allows the creation of gamma-neutron detectors characterized by high sensitivity at relatively low costs (as compared with analogs using oxide scintillators) for portable inspection systems. The sandwich structure can be comprised of any number of plates, with no limitations on thickness or area.« less

  13. Antibody biosensors for spoilage yeast detection based on impedance spectroscopy.

    PubMed

    Tubía, I; Paredes, J; Pérez-Lorenzo, E; Arana, S

    2018-04-15

    Brettanomyces is a yeast species responsible for wine and cider spoilage, producing volatile phenols that result in off-odors and loss of fruity sensorial qualities. Current commercial detection methods for these spoilage species are liable to frequent false positives, long culture times and fungal contamination. In this work, an interdigitated (IDE) biosensor was created to detect Brettanomyces using immunological reactions and impedance spectroscopy analysis. To promote efficient antibody immobilization on the electrodes' surface and to decrease non-specific adsorption, a Self-Assembled Monolayer (SAM) was developed. An impedance spectroscopy analysis, over four yeast strains, confirmed our device's increased efficacy. Compared to label-free sensors, antibody biosensors showed a higher relative impedance. The results also suggested that these biosensors could be a promising method to monitor some spoilage yeasts, offering an efficient alternative to the laborious and expensive traditional methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Motorcyclists safety system to avoid rear end collisions based on acoustic signatures

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.

  15. Rapid Authentication of Ginkgo biloba Herbal Products Using the Recombinase Polymerase Amplification Assay.

    PubMed

    Liu, Yang; Wang, Xiao-Yue; Wei, Xue-Min; Gao, Zi-Tong; Han, Jian-Ping

    2018-05-22

    Species adulteration in herbal products (HPs) exposes consumers to health risks. Chemical and morphological methods have their own deficiencies when dealing with the detection of species containing the same active compounds in HPs. In this study, we developed a rapid identification method using the recombinase polymerase amplification (RPA) assay to detect two species, Ginkgo biloba and Sophora japonica (as adulteration), in Ginkgo biloba HPs. Among 36 Ginkgo biloba HP samples, 34 were found to have Ginkgo biloba sequences, and 9 were found to have Sophora japonica sequences. During the authentication process, the RPA-LFS assay showed a higher specificity, sensitivity and efficiency than PCR-based methods. We initially applied the RPA-LSF technique to detect plant species in HPs, demonstrating that this assay can be developed into an efficient tool for the rapid on-site authentication of plant species in Ginkgo biloba HPs.

  16. Detection of protruding lesion in wireless capsule endoscopy videos of small intestine

    NASA Astrophysics Data System (ADS)

    Wang, Chengliang; Luo, Zhuo; Liu, Xiaoqi; Bai, Jianying; Liao, Guobin

    2018-02-01

    Wireless capsule endoscopy (WCE) is a developed revolutionary technology with important clinical benefits. But the huge image data brings a heavy burden to the doctors for locating and diagnosing the lesion images. In this paper, a novel and efficient approach is proposed to help clinicians to detect protruding lesion images in small intestine. First, since there are many possible disturbances such as air bubbles and so on in WCE video frames, which add the difficulty of efficient feature extraction, the color-saliency region detection (CSD) method is developed for extracting the potentially saliency region of interest (SROI). Second, a novel color channels modelling of local binary pattern operator (CCLBP) is proposed to describe WCE images, which combines grayscale and color angle. The CCLBP feature is more robust to variation of illumination and more discriminative for classification. Moreover, support vector machine (SVM) classifier with CCLBP feature is utilized to detect protruding lesion images. Experimental results on real WCE images demonstrate that proposed method has higher accuracy on protruding lesion detection than some art-of-state methods.

  17. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells.

    PubMed

    Lim, Andery; Kumara, N T R N; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R L N; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G K R; Ekanayake, Piyasiri

    2015-03-05

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Partial oxidation of methane by pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2014-09-01

    Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.

  19. A comparative investigation of Lu2SiO5:Ce and Gd2O2S:Eu powder scintillators for use in x-ray mammography detectors

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.

    2009-10-01

    The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.

  20. Compliance Issues in Higher Education

    ERIC Educational Resources Information Center

    Benedek, Petra

    2016-01-01

    Efficiency in the 1980's, quality in the 1990's, compliance in the 2010's - private sector management techniques and mechanisms find their way to public services. This paper facilitates the understanding of how compliance management controls can improve operations and prevent or detect failure or wrong doing. The last few years' empirical research…

  1. Go Pink! The Effect of Secondary Quanta on Detective Quantum Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott

    2017-09-05

    Photons are never directly observable. Consequently, we often use photoelectric detectors (eg CCDs) to record associated photoelectrons statistically. Nonetheless, it is an implicit goal of radiographic detector designers to achieve the maximum possible detector efficiency1. In part the desire for ever higher efficiency has been due to the fact that detectors are far less expensive than associated accelerator facilities (e.g. DARHT and PHERMEX2). In addition, higher efficiency detectors often have better spatial resolution. Consequently, the optimization of the detector, not the accelerator, is the system component with the highest leverage per dollar. In recent years, imaging scientists have adopted themore » so-called Detective Quantum Efficiency, or DQE as a summary measure of detector performance. Unfortunately, owing to the complex nature of the trade-space associated with detector components, and the natural desire for simplicity and low(er) cost, there has been a recent trend in Los Alamos to focus only on the zerofrequency efficiency, or DQE(0), when designing such systems. This narrow focus leads to system designs that neglect or even ignore the importance of high-spatial-frequency image components. In this paper we demonstrate the significant negative impact of these design choices on the Noise Power Spectrum1 (NPS) and recommend a more holistic approach to detector design. Here we present a statistical argument which indicates that a very large number (>20) of secondary quanta (typically visible light and/or recorded photo-electrons) are needed to take maximum advantage of the primary quanta (typically x-rays or protons) which are available to form an image. Since secondary particles come in bursts, they are not independent. In short, we want to maximize the pink nature of detector noise at DARHT.« less

  2. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii

    PubMed Central

    2012-01-01

    Background Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection. Results Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P < 0.05) than the 2.8-μm diameter M-280 beads with both antibodies. The highest capture efficiency for MyOne-2D12 (49.2% for 105 CFU/mL) was significantly higher (P < 0.05) than that of MyOne-3F8 (16.6 %) and Dynabeads anti-Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results. Conclusions IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food. PMID:23176167

  3. Learning to detect and combine the features of an object

    PubMed Central

    Suchow, Jordan W.; Pelli, Denis G.

    2013-01-01

    To recognize an object, it is widely supposed that we first detect and then combine its features. Familiar objects are recognized effortlessly, but unfamiliar objects—like new faces or foreign-language letters—are hard to distinguish and must be learned through practice. Here, we describe a method that separates detection and combination and reveals how each improves as the observer learns. We dissociate the steps by two independent manipulations: For each step, we do or do not provide a bionic crutch that performs it optimally. Thus, the two steps may be performed solely by the human, solely by the crutches, or cooperatively, when the human takes one step and a crutch takes the other. The crutches reveal a double dissociation between detecting and combining. Relative to the two-step ideal, the human observer’s overall efficiency for unconstrained identification equals the product of the efficiencies with which the human performs the steps separately. The two-step strategy is inefficient: Constraining the ideal to take two steps roughly halves its identification efficiency. In contrast, we find that humans constrained to take two steps perform just as well as when unconstrained, which suggests that they normally take two steps. Measuring threshold contrast (the faintness of a barely identifiable letter) as it improves with practice, we find that detection is inefficient and learned slowly. Combining is learned at a rate that is 4× higher and, after 1,000 trials, 7× more efficient. This difference explains much of the diversity of rates reported in perceptual learning studies, including effects of complexity and familiarity. PMID:23267067

  4. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

  5. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Further developments of series-connected superconducting tunnel junction to radiation detection

    NASA Astrophysics Data System (ADS)

    Kurakado, Masahiko; Ohsawa, Daisuke; Katano, Rintaro; Ito, Shin; Isozumi, Yasuhito

    1997-10-01

    One of the promising radiation detection devices for various practical applications is the series-connected superconducting tunnel junction (STJ) detector. In this article, interesting topics of the detectors are described since our previous work: e.g., more than two order higher detection efficiency compared with single STJ detectors, high count rate detection, and position resolution. Detectors were cooled to 0.35-0.4 K by means of a convenient 3He cryostat. The 5.9 and 6.5 keV x rays from 55Fe are separated by a detector specially designed for x-ray detection. The possible count rate of the series-junction detector estimated from the shaping-time constant applied in the measurements is high, e.g., over 104 counts per second. A series-junction detector equipped with a position sensing mechanism has shown a position resolution of about 35 μm in a sensing area with a radius of 1.1 mm. The position resolution of series junctions improves the energy resolution. A new type series-connected STJ detector is also proposed, i.e., the dispersed multitrap series-junction detector, for further improvement of detection efficiency and energy resolution.

  7. Impact of transition from microscopy to molecular screening for detection of intestinal protozoa in Dutch patients.

    PubMed

    Svraka-Latifovic, S; Bouter, S; Naus, H; Bakker, L J; Timmerman, C P; Dorigo-Zetsma, J W

    2014-11-01

    Detection of intestinal protozoa by PCR methods has been described as being sensitive and specific, and as improving the diagnostic yield. Here we present the outcome of the transition from microscopy to molecular screening for detection of a select group of intestinal protozoa in faeces in our laboratory. Introduction of molecular screening for intestinal protozoa resulted in higher sensitivity, reduced hands-on-time, reduced time-to-results, leading to improved diagnostic efficiency. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  8. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxiesmore » having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.« less

  9. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  10. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    PubMed

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  11. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons.

    PubMed

    Suzuki, Sadafumi; Akamatsu, Wado; Kisa, Fumihiko; Sone, Takefumi; Ishikawa, Kei-Ichi; Kuzumaki, Naoko; Katayama, Hiroyuki; Miyawaki, Atsushi; Hattori, Nobutaka; Okano, Hideyuki

    2017-01-29

    Patient-specific induced pluripotent stem cells (iPSCs) show promise for use as tools for in vitro modeling of Parkinson's disease. We sought to improve the efficiency of dopaminergic (DA) neuron induction from iPSCs by the using surface markers expressed in DA progenitors to increase the significance of the phenotypic analysis. By sorting for a CD184 high /CD44 - fraction during neural differentiation, we obtained a population of cells that were enriched in DA neuron precursor cells and achieved higher differentiation efficiencies than those obtained through the same protocol without sorting. This high efficiency method of DA neuronal induction enabled reliable detection of reactive oxygen species (ROS) accumulation and vulnerable phenotypes in PARK2 iPSCs-derived DA neurons. We additionally established a quantitative system using the mt-mKeima reporter system to monitor mitophagy in which mitochondria fuse with lysosomes and, by combining this system with the method of DA neuronal induction described above, determined that mitophagy is impaired in PARK2 neurons. These findings suggest that the efficiency of DA neuron induction is important for the precise detection of cellular phenotypes in modeling Parkinson's disease. Copyright © 2016. Published by Elsevier Inc.

  12. Alternative Surfactants for Improved Efficiency of In Situ Tryptic Proteolysis of Fingermarks

    NASA Astrophysics Data System (ADS)

    Patel, Ekta; Clench, Malcolm R.; West, Andy; Marshall, Peter S.; Marshall, Nathan; Francese, Simona

    2015-06-01

    Despite recent improvements to in situ proteolysis strategies, a higher efficiency is still needed to increase both the number of peptides detected and the associated ion intensity, leading to a complete and reliable set of biomarkers for diagnostic or prognostic purposes. In the study presented here, an extract of a systematic study is illustrated investigating a range of surfactants assisting trypsin proteolytic activity. Method development was trialled on fingermarks; this specimen results from a transfer of sweat from an individual's fingertip to a surface upon contact. As sweat carries a plethora of biomolecules, including peptides and proteins, fingermarks are, potentially, a very valuable specimen for non-invasive prognostic or diagnostic screening. A recent study has demonstrated the opportunity to quickly detect peptides and small proteins in fingermarks using Matrix Assisted Laser Desorption Ionization Mass Spectrometry Profiling (MALDI MSP). However, intact detection bears low sensitivity and does not allow species identification; therefore, a shotgun proteomic approach was employed involving in situ proteolysis. Data demonstrate that in fingermarks, further improvements to the existing method can be achieved using MEGA-8 as surfactant in higher percentages as well as combinations of different detergents. Also, for the first time, Rapigest SF, normally used in solution digestions, has been shown to successfully work also for in situ proteolysis.

  13. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals.

    PubMed

    Miniaci, M; Gliozzi, A S; Morvan, B; Krushynska, A; Bosia, F; Scalerandi, M; Pugno, N M

    2017-05-26

    The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.

  14. Robust video copy detection approach based on local tangent space alignment

    NASA Astrophysics Data System (ADS)

    Nie, Xiushan; Qiao, Qianping

    2012-04-01

    We propose a robust content-based video copy detection approach based on local tangent space alignment (LTSA), which is an efficient dimensionality reduction algorithm. The idea is motivated by the fact that the content of video becomes richer and the dimension of content becomes higher. It does not give natural tools for video analysis and understanding because of the high dimensionality. The proposed approach reduces the dimensionality of video content using LTSA, and then generates video fingerprints in low dimensional space for video copy detection. Furthermore, a dynamic sliding window is applied to fingerprint matching. Experimental results show that the video copy detection approach has good robustness and discrimination.

  15. Deterministic secure quantum communication using a single d-level system.

    PubMed

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-03-22

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.

  16. Comparative efficiency of a scheme of cyclic alternating-period subtraction

    NASA Astrophysics Data System (ADS)

    Golikov, V. S.; Artemenko, I. G.; Malinin, A. P.

    1986-06-01

    The estimation of the detection quality of a signal on a background of correlated noise according to the Neumann-Pearson criterion is examined. It is shown that, in a number of cases, the cyclic alternating-period subtraction scheme has a higher noise immunity than the conventional alternating-period subtraction scheme.

  17. Comparison of oral fluid collection methods for the molecular detection of hepatitis B virus.

    PubMed

    Portilho, M M; Mendonça, Acf; Marques, V A; Nabuco, L C; Villela-Nogueira, C A; Ivantes, Cap; Lewis-Ximenez, L L; Lampe, E; Villar, L M

    2017-11-01

    This study aims to compare the efficiency of four oral fluid collection methods (Salivette, FTA Card, spitting and DNA-Sal) to detect HBV DNA by qualitative PCR. Seventy-four individuals (32 HBV reactive and 42 with no HBV markers) donated serum and oral fluid. In-house qualitative PCR to detect HBV was used for both samples and commercial quantitative PCR for serum. HBV DNA was detected in all serum samples from HBV-infected individuals, and it was not detected in control group. HBV DNA from HBV group was detected in 17 samples collected with Salivette device, 16 samples collected by FTA Card device, 16 samples collected from spitting and 13 samples collected by DNA-Sal device. Samples that corresponded to a higher viral load in their paired serum sample could be detected using all oral fluid collection methods, but Salivette collection device yielded the largest numbers of positive samples and had a wide range of viral load that was detected. It was possible to detect HBV DNA using all devices tested, but higher number of positive samples was observed when samples were collected using Salivette device, which shows high concordance to viral load observed in the paired serum samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Improvement in defect classification efficiency by grouping disposition for reticle inspection

    NASA Astrophysics Data System (ADS)

    Lai, Rick; Hsu, Luke T. H.; Chang, Peter; Ho, C. H.; Tsai, Frankie; Long, Garrett; Yu, Paul; Miller, John; Hsu, Vincent; Chen, Ellison

    2005-11-01

    As the lithography design rule of IC manufacturing continues to migrate toward more advanced technology nodes, the mask error enhancement factor (MEEF) increases and necessitates the use of aggressive OPC features. These aggressive OPC features pose challenges to reticle inspection due to high false detection, which is time-consuming for defect classification and impacts the throughput of mask manufacturing. Moreover, higher MEEF leads to stricter mask defect capture criteria so that new generation reticle inspection tool is equipped with better detection capability. Hence, mask process induced defects, which were once undetectable, are now detected and results in the increase of total defect count. Therefore, how to review and characterize reticle defects efficiently is becoming more significant. A new defect review system called ReviewSmart has been developed based on the concept of defect grouping disposition. The review system intelligently bins repeating or similar defects into defect groups and thus allows operators to review massive defects more efficiently. Compared to the conventional defect review method, ReviewSmart not only reduces defect classification time and human judgment error, but also eliminates desensitization that is formerly inevitable. In this study, we attempt to explore the most efficient use of ReviewSmart by evaluating various defect binning conditions. The optimal binning conditions are obtained and have been verified for fidelity qualification through inspection reports (IRs) of production masks. The experiment results help to achieve the best defect classification efficiency when using ReviewSmart in the mask manufacturing and development.

  19. A Robust and Energy-Efficient Transport Protocol for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman

    2014-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. CRSNs benefit from cognitive radio capabilities such as dynamic spectrum access and transmission parameters reconfigurability; but cognitive radio also brings additional challenges and leads to higher energy consumption. Motivated to improve the energy efficiency in CRSNs, we propose a robust and energy-efficient transport protocol (RETP). The novelties of RETP are two-fold: (I) it combines distributed channel sensing and channel decision with centralized schedule-based data transmission; and (II) it differentiates the types of data transmission on the basis of data content and adopts different acknowledgment methods for different transmission types. To the best of our knowledge, no transport layer protocols have yet been designed for CRSNs. Simulation results show that the proposed protocol achieves remarkably longer network lifetime and shorter event-detection delay compared to those achieved with a conventional transport protocol, while simultaneously preserving event-detection reliability. PMID:25333288

  20. Efficient Incorporation of Mg in Solution Grown GaN Crystals

    NASA Astrophysics Data System (ADS)

    Freitas, Jaime A., Jr.; Feigelson, Boris N.; Anderson, Travis J.

    2013-11-01

    Detailed spectrometry and optical spectroscopy studies carried out on GaN crystals grown in solution detect and identify Mg as the dominant shallow acceptor. Selective etching of crystals with higher Mg levels than that of the donor concentration background indicates that Mg acceptors incorporate preferentially in the N-polar face. Electrical transport measurements verified an efficient incorporation and activation of the Mg acceptors. These results suggest that this growth method has the potential to produce p-type doped epitaxial layers or p-type substrates characterized by high hole concentration and low defect density.

  1. Detecting glaucomatous change in visual fields: Analysis with an optimization framework.

    PubMed

    Yousefi, Siamak; Goldbaum, Michael H; Varnousfaderani, Ehsan S; Belghith, Akram; Jung, Tzyy-Ping; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher

    2015-12-01

    Detecting glaucomatous progression is an important aspect of glaucoma management. The assessment of longitudinal series of visual fields, measured using Standard Automated Perimetry (SAP), is considered the reference standard for this effort. We seek efficient techniques for determining progression from longitudinal visual fields by formulating the problem as an optimization framework, learned from a population of glaucoma data. The longitudinal data from each patient's eye were used in a convex optimization framework to find a vector that is representative of the progression direction of the sample population, as a whole. Post-hoc analysis of longitudinal visual fields across the derived vector led to optimal progression (change) detection. The proposed method was compared to recently described progression detection methods and to linear regression of instrument-defined global indices, and showed slightly higher sensitivities at the highest specificities than other methods (a clinically desirable result). The proposed approach is simpler, faster, and more efficient for detecting glaucomatous changes, compared to our previously proposed machine learning-based methods, although it provides somewhat less information. This approach has potential application in glaucoma clinics for patient monitoring and in research centers for classification of study participants. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Detecting and enumerating soil-transmitted helminth eggs in soil: New method development and results from field testing in Kenya and Bangladesh.

    PubMed

    Steinbaum, Lauren; Kwong, Laura H; Ercumen, Ayse; Negash, Makeda S; Lovely, Amira J; Njenga, Sammy M; Boehm, Alexandria B; Pickering, Amy J; Nelson, Kara L

    2017-04-01

    Globally, about 1.5 billion people are infected with at least one species of soil-transmitted helminth (STH). Soil is a critical environmental reservoir of STH, yet there is no standard method for detecting STH eggs in soil. We developed a field method for enumerating STH eggs in soil and tested the method in Bangladesh and Kenya. The US Environmental Protection Agency (EPA) method for enumerating Ascaris eggs in biosolids was modified through a series of recovery efficiency experiments; we seeded soil samples with a known number of Ascaris suum eggs and assessed the effect of protocol modifications on egg recovery. We found the use of 1% 7X as a surfactant compared to 0.1% Tween 80 significantly improved recovery efficiency (two-sided t-test, t = 5.03, p = 0.007) while other protocol modifications-including different agitation and flotation methods-did not have a significant impact. Soil texture affected the egg recovery efficiency; sandy samples resulted in higher recovery compared to loamy samples processed using the same method (two-sided t-test, t = 2.56, p = 0.083). We documented a recovery efficiency of 73% for the final improved method using loamy soil in the lab. To field test the improved method, we processed soil samples from 100 households in Bangladesh and 100 households in Kenya from June to November 2015. The prevalence of any STH (Ascaris, Trichuris or hookworm) egg in soil was 78% in Bangladesh and 37% in Kenya. The median concentration of STH eggs in soil in positive samples was 0.59 eggs/g dry soil in Bangladesh and 0.15 eggs/g dry soil in Kenya. The prevalence of STH eggs in soil was significantly higher in Bangladesh than Kenya (chi-square, χ2 = 34.39, p < 0.001) as was the concentration (Mann-Whitney, z = 7.10, p < 0.001). This new method allows for detecting STH eggs in soil in low-resource settings and could be used for standardizing soil STH detection globally.

  3. Detecting and enumerating soil-transmitted helminth eggs in soil: New method development and results from field testing in Kenya and Bangladesh

    PubMed Central

    Kwong, Laura H.; Ercumen, Ayse; Negash, Makeda S.; Lovely, Amira J.; Njenga, Sammy M.; Boehm, Alexandria B.; Pickering, Amy J.; Nelson, Kara L.

    2017-01-01

    Globally, about 1.5 billion people are infected with at least one species of soil-transmitted helminth (STH). Soil is a critical environmental reservoir of STH, yet there is no standard method for detecting STH eggs in soil. We developed a field method for enumerating STH eggs in soil and tested the method in Bangladesh and Kenya. The US Environmental Protection Agency (EPA) method for enumerating Ascaris eggs in biosolids was modified through a series of recovery efficiency experiments; we seeded soil samples with a known number of Ascaris suum eggs and assessed the effect of protocol modifications on egg recovery. We found the use of 1% 7X as a surfactant compared to 0.1% Tween 80 significantly improved recovery efficiency (two-sided t-test, t = 5.03, p = 0.007) while other protocol modifications—including different agitation and flotation methods—did not have a significant impact. Soil texture affected the egg recovery efficiency; sandy samples resulted in higher recovery compared to loamy samples processed using the same method (two-sided t-test, t = 2.56, p = 0.083). We documented a recovery efficiency of 73% for the final improved method using loamy soil in the lab. To field test the improved method, we processed soil samples from 100 households in Bangladesh and 100 households in Kenya from June to November 2015. The prevalence of any STH (Ascaris, Trichuris or hookworm) egg in soil was 78% in Bangladesh and 37% in Kenya. The median concentration of STH eggs in soil in positive samples was 0.59 eggs/g dry soil in Bangladesh and 0.15 eggs/g dry soil in Kenya. The prevalence of STH eggs in soil was significantly higher in Bangladesh than Kenya (chi-square, χ2 = 34.39, p < 0.001) as was the concentration (Mann-Whitney, z = 7.10, p < 0.001). This new method allows for detecting STH eggs in soil in low-resource settings and could be used for standardizing soil STH detection globally. PMID:28379956

  4. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    NASA Technical Reports Server (NTRS)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  5. Performance study of the neutron-TPC

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Li, Yulan; Niu, Libo; Deng, Zhi; Cheng, Xiaolei; He, Li; Zhang, Hongyan; Fu, Jianqiang; Yan, Yangyang; Cai, Yiming; Li, Yuanjing

    2017-02-01

    Fast neutron spectrometers will play an important role in the future of the nuclear industry and nuclear physics experiments, in tasks such as fast neutron reactor monitoring, thermo-nuclear fusion plasma diagnostics, nuclear reaction cross-section measurement, and special nuclear material detection. Recently, a new fast neutron spectrometer based on a GEM (Gas Electron Multiplier amplification)-TPC (Time Projection Chamber), named the neutron-TPC, has been under development at Tsinghua University. It is designed to have a high energy resolution, high detection efficiency, easy access to the medium material, an outstanding n/γ suppression ratio, and a wide range of applications. This paper presents the design, test, and experimental study of the neutron-TPC. Based on the experimental results, the energy resolution (FWHM) of the neutron-TPC can reach 15.7%, 10.3% and 7.0% with detection efficiency higher than 10-5 for 1.2 MeV, 1.81 MeV and 2.5 MeV neutrons respectively. Supported by National Natural Science Foundation of China (11275109)

  6. Value stream mapping of the Pap test processing procedure: a lean approach to improve quality and efficiency.

    PubMed

    Michael, Claire W; Naik, Kalyani; McVicker, Michael

    2013-05-01

    We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.

  7. Detection of CYP2E1, a genetic biomarker of susceptibility to benzene metabolism toxicity in immortal human lymphocytes derived from the Han Chinese Population.

    PubMed

    Zhang, Juan; Yin, Lihong; Liang, Geyu; Liu, Ran; Fan, Kaihong; Pu, Yuepu

    2011-06-01

    Cytochrome P450 2E1 (CYP2E1) is an important metabolizing enzyme involved in oxidative stress responses to benzene, a chemical associated with bone marrow toxicity and leukemia. We aimed to identify the CYP2E1 genetic biomarkers of susceptibility to benzene toxicity in support of environmental and occupational exposure prevention, and to test whether a model using immortal human lymphocytes might be an efficient tool for detecting genetic biomarkers. Immortalized human lymphocyte cell lines with independent genotypes on four CYP2E1 SNP sites were induced with 0.01% phenol, a metabolite of benzene. CYP2E1 gene function was evaluated by mRNA expression and enzyme activity. DNA damage was measured by Single-Cell Gel Electrophoresis (SCGE). Among the four SNPs, cells with rs2070673TT and rs2030920CC showed higher levels of CYP2E1 transcription and enzymatic activity than the other genotypes in the same SNP site. Cells with higher gene expression genotypes also showed higher comet rates compared with lower gene expression genotypes. These results suggest that CYP2E1 rs2070673 and rs2030920 might be the genetic biomarkers of susceptibility to benzene toxicity and that the immortalized human lymphocytes model might be an efficient tool for the detection of genetic biomarkers of susceptibility to chemicals. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  8. InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Wolde, Seyoum; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Liu, H. C.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S. S.

    2013-12-01

    An InAs/GaAs quantum dot infrared photodetector (QDIP) based on p-type valence-band intersublevel hole transitions as opposed to conventional electron transitions is reported. Two response bands observed at 1.5-3 and 3-10 μm are due to transitions from the heavy-hole to spin-orbit split-off QD level and from the heavy-hole to heavy-hole level, respectively. Without employing optimized structures (e.g., the dark current blocking layer), the demonstrated QDIP displays promising characteristics, including a specific detectivity of 1.8×109 cm.Hz1/2/W and a quantum efficiency of 17%, which is about 5% higher than that of present n-type QDIPs. This study shows the promise of utilizing hole transitions for developing QDIPs.

  9. Spatiotemporal Characteristics for the Depth from Luminance Contrast

    PubMed Central

    Matsubara, Kazuya; Matsumiya, Kazumichi; Shioiri, Satoshi; Takahashi, Shuichi; Hyodo, Yasuhide; Ohashi, Isao

    2011-01-01

    Images with higher luminance contrast tend to be perceived closer in depth. To investigate a spatiotemporal characteristic of this effect, we evaluated subjective depth of a test stimulus with various spatial and temporal frequencies. For the purpose, the depth of a reference stimulus was matched to that of the test stimulus by changing the binocular disparity. The results showed that the test stimulus was perceived closer with higher luminance contrast for all conditions. Contrast efficiency was obtained from the contrast that provided the subjective depth for each spatiotemporal frequency. The shape of the contrast efficiency function was spatially low-pass and temporally band-pass. This characteristic is different from the one measure for a detection task. This suggests that only subset of contrast signals are used for depth from contrast.

  10. Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection.

    PubMed

    Bonnot, Karine; Bernhardt, Pierre; Hassler, Dominique; Baras, Christian; Comet, Marc; Keller, Valérie; Spitzer, Denis

    2010-04-15

    Among various methods for landmine detection, as well as soil and water pollution monitoring, the detection of explosive compounds in air is becoming an important and inevitable challenge for homeland security applications, due to the threatening increase in terrorist explosive bombs used against civil populations. However, in the last case, there is a crucial need for the detection of vapor phase traces or subtraces (in the ppt range or even lower). A novel and innovative generator for explosive trace vapors was designed and developed. It allowed the generation of theoretical concentrations as low as 0.24 ppq for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in air according to Clapeyron equations. The accurate generation of explosive concentrations at subppt levels was verified for RDX and 2,4,6-trinitrotoluene (TNT) using a gas chromatograph coupled to an electron capture detector (GC-ECD). First, sensing material experiments were conducted on a nanostructured tungsten oxide. The sensing efficiency of this material determined as its adsorption capacity toward 54 ppb RDX was calculated to be five times higher than the sensing efficiency of a 54 ppb TNT vapor. The material sensing efficiency showed no dependence on the mass of material used. The results showed that the device allowed the calibration and discrimination between materials for highly sensitive and accurate sensing detection in air of low vapor pressure explosives such as TNT or RDX at subppb levels. The designed device and method showed promising features for nanosensing applications in the field of ultratrace explosive detection. The current perspectives are to decrease the testing scale and the detection levels to ppt or subppt concentration of explosives in air.

  11. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  12. Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data.

    PubMed

    Bao, Yanchun; Vinciotti, Veronica; Wit, Ernst; 't Hoen, Peter A C

    2013-05-30

    ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and between repeated experiments with the same antibody. These differences have a large impact on the quality of ChIP-seq data: a more efficient experiment will necessarily lead to a higher signal to background ratio, and therefore to an apparent larger number of enriched regions, compared to a less efficient experiment. In this paper, we show how IP efficiencies can be explicitly accounted for in the joint statistical modelling of ChIP-seq data. We fit a latent mixture model to eight experiments on two proteins, from two laboratories where different antibodies are used for the two proteins. We use the model parameters to estimate the efficiencies of individual experiments, and find that these are clearly different for the different laboratories, and amongst technical replicates from the same lab. When we account for ChIP efficiency, we find more regions bound in the more efficient experiments than in the less efficient ones, at the same false discovery rate. A priori knowledge of the same number of binding sites across experiments can also be included in the model for a more robust detection of differentially bound regions among two different proteins. We propose a statistical model for the detection of enriched and differentially bound regions from multiple ChIP-seq data sets. The framework that we present accounts explicitly for IP efficiencies in ChIP-seq data, and allows to model jointly, rather than individually, replicates and experiments from different proteins, leading to more robust biological conclusions.

  13. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons

    NASA Astrophysics Data System (ADS)

    Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.; Janoska, Z.; Takacs, P.; Tsang, T.

    2017-01-01

    We describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430-900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. Sensors with the thinnest window, 50 nm, had the best performance.

  14. Folic Acid Targeting for Efficient Isolation and Detection of Ovarian Cancer CTCs from Human Whole Blood Based on Two-Step Binding Strategy.

    PubMed

    Nie, Liju; Li, Fulai; Huang, Xiaolin; Aguilar, Zoraida P; Wang, Yongqiang Andrew; Xiong, Yonghua; Fu, Fen; Xu, Hengyi

    2018-04-25

    Studies regarding circulating tumor cells (CTCs) have great significance for cancer prognosis, treatment monitoring, and metastasis diagnosis. However, due to their extremely low concentration in peripheral blood, isolation and enrichment of CTCs are the key steps for early detection. To this end, targeting the folic acid receptors (FRs) on the CTC surface for capture with folic acid (FA) using bovine serum albumin (BSA)-tether for multibiotin enhancement in combination with streptavidin-coated magnetic nanoparticles (MNPs-SA) was developed for ovarian cancer CTC isolation. The streptavidin-biotin-system-mediated two-step binding strategy was shown to capture CTCs from whole blood efficiently without the need for a pretreatment process. The optimized parameters for this system exhibited an average capture efficiency of 80%, which was 25% higher than that of FA-decorated magnetic nanoparticles based on the one-step CTC separation method. Moreover, the isolated cells remained highly viable and were cultured directly without detachment from the MNPs-SA-biotin-CTC complex. Furthermore, when the system was applied for the isolation and detection of CTCs in ovarian cancer patients' peripheral blood samples, it exhibited an 80% correlation with clinical diagnostic criteria. The results indicated that FA targeting, in combination with BSA-based multibiotin enhancement magnetic nanoparticle separation, is a promising tool for CTC enrichment and detection of early-stage ovarian cancer.

  15. Evaluation of BBL CHROMagar O157 versus Sorbitol-MacConkey Medium for Routine Detection of Escherichia coli O157 in a Centralized Regional Clinical Microbiology Laboratory▿

    PubMed Central

    Church, D. L.; Emshey, D.; Semeniuk, H.; Lloyd, T.; Pitout, J. D.

    2007-01-01

    The performance of BBL CHROMagar O157 (CHROM) versus that of sorbitol-MacConkey (SMAC) media for detection of Escherichia coli O157 was determined for a 3-month period. Results for 27/3,116 (0.9%) stool cultures were positive. CHROM had a higher sensitivity (96.30%) and negative predictive value (100%) and a better diagnostic efficiency than SMAC. Labor and material costs decreased when CHROM was used. PMID:17634298

  16. [Detection of endpoint for segmentation between consonants and vowels in aphasia rehabilitation software based on artificial intelligence scheduling].

    PubMed

    Deng, Xingjuan; Chen, Ji; Shuai, Jie

    2009-08-01

    For the purpose of improving the efficiency of aphasia rehabilitation training, artificial intelligence-scheduling function is added in the aphasia rehabilitation software, and the software's performance is improved. With the characteristics of aphasia patient's voice as well as with the need of artificial intelligence-scheduling functions under consideration, the present authors have designed a set of endpoint detection algorithm. It determines the reference endpoints, then extracts every word and ensures the reasonable segmentation points between consonants and vowels, using the reference endpoints. The results of experiments show that the algorithm is able to attain the objects of detection at a higher accuracy rate. Therefore, it is applicable to the detection of endpoint on aphasia-patient's voice.

  17. Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy.

    PubMed

    Nahman-Averbuch, Hadas; Yarnitsky, David; Granovsky, Yelena; Sprecher, Elliot; Steiner, Mariana; Tzuk-Shina, Tzahala; Pud, Dorit

    2011-08-01

    Several chemotherapy agents induce polyneuropathy that is painful for some patients, but not for others. We assumed that these differences might be attributable to varying patterns of pain modulation. The aim of the present study was to evaluate pain modulation in such patients. Twenty-seven patients with chemotherapy-induced polyneuropathy were tested for detection thresholds (cold, warm, and mechanical) in both the forearm and foot, as well as for heat pain threshold, mechanical temporal summation (TS), and conditioned pain modulation (CPM; also known as the diffuse noxious inhibitory control-like effect), which were tested in the upper limbs. Positive correlations were found between clinical pain levels and both TS (r=0.52, P=0.005) and CPM (r=0.40, P=0.050) for all patients. In addition, higher TS was associated with less efficient CPM (r=0.56, P=0.004). The group of patients with painful polyneuropathy (n=12) showed a significantly higher warm detection threshold in the foot (P=0.03), higher TS (P<0.01), and less efficient CPM (P=0.03) in comparison to the group with nonpainful polyneuropathy. The painfulness of polyneuropathy is associated with a "pronociceptive" modulation pattern, which may be primary to the development of pain. The higher warm sensory thresholds in the painful polyneuropathy group suggest that the severity of polyneuropathy may be another factor in determining its painfulness. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  18. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers.

    PubMed

    Teymurazyan, A; Pang, G

    2012-03-01

    Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.

  19. Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.

    2003-11-01

    Network data analysis methods are the only way to properly separate real gravitational wave (GW) transient events from detector noise. They can be divided into two generic classes: the coincidence method and the coherent analysis. The former uses lists of selected events provided by each interferometer belonging to the network and tries to correlate them in time to identify a physical signal. Instead of this binary treatment of detector outputs (signal present or absent), the latter method involves first the merging of the interferometer data and looks for a common pattern, consistent with an assumed GW waveform and a given source location in the sky. The thresholds are only applied later, to validate or not the hypothesis made. As coherent algorithms use more complete information than coincidence methods, they are expected to provide better detection performances, but at a higher computational cost. An efficient filter must yield a good compromise between a low false alarm rate (hence triggering on data at a manageable rate) and a high detection efficiency. Therefore, the comparison of the two approaches is achieved using so-called receiving operating characteristics (ROC), giving the relationship between the false alarm rate and the detection efficiency for a given method. This paper investigates this question via Monte Carlo simulations, using the network model developed in a previous article. Its main conclusions are the following. First, a three-interferometer network such as Virgo-LIGO is found to be too small to reach good detection efficiencies at low false alarm rates: larger configurations are suitable to reach a confidence level high enough to validate as true GW a detected event. In addition, an efficient network must contain interferometers with comparable sensitivities: studying the three-interferometer LIGO network shows that the 2-km interferometer with half sensitivity leads to a strong reduction of performances as compared to a network of three interferometers with full sensitivity. Finally, it is shown that coherent analyses are feasible for burst searches and are clearly more efficient than coincidence strategies. Therefore, developing such methods should be an important goal of a worldwide collaborative data analysis.

  20. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    PubMed Central

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate. PMID:26295058

  1. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection.

    PubMed

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  2. Towards on-chip integration of brain imaging photodetectors using standard CMOS process.

    PubMed

    Kamrani, Ehsan; Lesage, Frederic; Sawan, Mohamad

    2013-01-01

    The main effects of on-chip integration on the performance and efficiency of silicon avalanche photodiode (SiAPD) and photodetector front-end is addressed in this paper based on the simulation and fabrication experiments. Two different silicon APDs are fabricated separately and also integrated with a transimpedance amplifier (TIA) front-end using standard CMOS technology. SiAPDs are designed in p+/n-well structure with guard rings realized in different shapes. The TIA front-end has been designed using distributed-gain concept combined with resistive-feedback and common-gate topology to reach low-noise and high gain-bandwidth product (GBW) characteristics. The integrated SiAPDs show higher signal-to-noise ratio (SNR), sensitivity and detection efficiency comparing to the separate SiAPDs. The integration does not show a significant effect on the gain and preserves the low power consumption. Using APDs with p-well guard-ring is preferred due to the higher observed efficiency after integration.

  3. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection

    NASA Astrophysics Data System (ADS)

    Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.

    2018-04-01

    Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.

  4. Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron

    NASA Astrophysics Data System (ADS)

    Tsang, Yuen H.; El-Taher, Atalla E.; King, Terence A.; Chang, Kuang-Po; Jackson, Stuart D.

    2006-04-01

    Wavelengths around 1.15 μm, 1.3 μm and 1.7 μm can be used to pump Dy-doped ZBLAN fibre in order to generate ~3 μm with high efficiency. Previously the generation of 2.9 μm from the Dy-ZBLAN fibre was demonstrated by pumping with 1.1 μm Yb-silica fibre laser sources. The laser slope efficiency and lasing threshold demonstrated was about ~5% and ~1.78 W. In this investigation, the longer wavelength absorption band ( 6H 9/2 , 6F 11/2) centred at 1.3 μm of Dy 3+-doped ZBLAN is utilised and the lasing transition around ~3 μm takes places from 6H 13/2 --> 6H 15/2. With this pumping scheme the Stokes' efficiency is expected to be up to ~45%. A quasi-continuous wave Dy 3+-ZBLAN fibre laser pumped by a ~1.3 μm Nd:YAG laser and operating at 2.96 μm with a bandwidth (FWHM) of ~14 nm has been demonstrated. For a 60cm fibre length, a threshold of 0.5W and a slope efficiency of ~20% with respect to the absorbed pump power was observed. The overall pump absorption in the fibre was around 84%. The cavity reflectivities at 2.9 μm were 99% and 50%. The demonstrated slope efficiency was 45% of the Stokes' limit. The slope efficiency was around four times higher and the threshold around 3.6 times lower than the previous performance demonstrated by using the 1.1 μm Yb fibre laser pumping scheme. The higher performance achieved compared to the 1.1 μm pump scheme is due to the higher Stokes' limit, lower pump ESA losses and higher cavity reflectivity. About 590 cm -1 Raman Stokes shift has also detected by using 514.5 nm and 488 nm Ar ion laser as excitation pump sources.

  5. The potential for using canopy spectral reflectance as an indirect selection tool for yield improvement in winter wheat

    NASA Astrophysics Data System (ADS)

    Prasad, Bishwajit

    Scope and methods of study. Complementing breeding effort by deploying alternative methods of identifying higher yielding genotypes in a wheat breeding program is important for obtaining greater genetic gains. Spectral reflectance indices (SRI) are one of the many indirect selection tools that have been reported to be associated with different physiological process of wheat. A total of five experiments (a set of 25 released cultivars from winter wheat breeding programs of the U.S. Great Plains and four populations of randomly derived recombinant inbred lines having 25 entries in each population) were conducted in two years under Great Plains winter wheat rainfed environments at Oklahoma State University research farms. Grain yield was measured in each experiment and biomass was measured in three experiments at three growth stages (booting, heading, and grainfilling). Canopy spectral reflectance was measured at three growth stages and eleven SRI were calculated. Correlation (phenotypic and genetic) between grain yield and SRI, biomass and SRI, heritability (broad sense) of the SRI and yield, response to selection and correlated response, relative selection efficiency of the SRI, and efficiency in selecting the higher yielding genotypes by the SRI were assessed. Findings and conclusions. The genetic correlation coefficients revealed that the water based near infrared indices (WI and NWI) were strongly associated with grain yield and biomass production. The regression analysis detected a linear relationship between the water based indices with grain yield and biomass. The two newly developed indices (NWI-3 and NWI-4) gave higher broad sense heritability than grain yield, higher direct response to selection compared to grain yield, correlated response equal to or higher than direct response for grain yield, relative selection efficiency greater than one, and higher efficiency in selecting higher yielding genotypes. Based on the overall genetic analysis required to establish any trait as an efficient indirect selection tool, the water based SRI (especially NWI-3 and NWI-4) have the potential to complement the classical breeding effort for selecting genotypes with higher yield potential in a winter wheat breeding program.

  6. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  7. Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes.

    PubMed

    Souza, Fernanda S; Da Silva, Vanessa V; Rosin, Catiusa K; Hainzenreder, Luana; Arenzon, Alexandre; Pizzolato, Tania; Jank, Louise; Féris, Liliana A

    2018-02-23

    This study investigates the mineralization efficiency, i.e. removal of total organic carbon (TOC) in hospital wastewater by direct ozonation, ozonation with UV radiation (O 3 /UV), homogeneous catalytic ozonation (O 3 /Fe 2+ ) and homogeneous photocatalytic ozonation (O 3 /Fe 2+ /UV). The influence of pH and reaction time was evaluated. For the best process, toxicity and degradation efficiency of the selected pharmaceutical compounds (PhCs) were determined. The results showed that the PhCs detected in the hospital wastewater were completely degraded when the mineralization efficiency reached 54.7% for O 3 /UV with 120 minutes of reaction time using a rate of 1.57 g O 3 h -1 . This process also achieved a higher chemical oxygen demand removal efficiency (64.05%), an increased aromaticity reduction efficiency (81%) and a toxicity reduction.

  8. Does peer use influence adoption of efficient cookstoves? Evidence from a randomized controlled trial in Uganda.

    PubMed

    Beltramo, Theresa; Blalock, Garrick; Levine, David I; Simons, Andrew M

    2015-01-01

    The authors examined the effect of peer usage on consumer demand for efficient cookstoves with a randomized controlled trial in rural Uganda. The authors tested whether the neighbors of buyers who ordered and received a stove are more likely to purchase an efficient cookstove than the neighbors of buyers who ordered but have not yet received a stove. The authors found that neighbors of buyers who have experience with the stove are not detectably more likely to purchase a stove than neighbors of buyers who have not yet received their stove. The authors found evidence of peer effects in opinions about efficient cookstoves. Knowing that a prominent member of the community has the efficient stove predicts 17-22 percentage points higher odds of strongly favoring the stove. However, this more favorable opinion seemingly has no effect on purchase decisions.

  9. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE PAGES

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng; ...

    2017-04-25

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  10. Cost and technical efficiency of physician practices: a stochastic frontier approach using panel data.

    PubMed

    Heimeshoff, Mareike; Schreyögg, Jonas; Kwietniewski, Lukas

    2014-06-01

    This is the first study to use stochastic frontier analysis to estimate both the technical and cost efficiency of physician practices. The analysis is based on panel data from 3,126 physician practices for the years 2006 through 2008. We specified the technical and cost frontiers as translog function, using the one-step approach of Battese and Coelli to detect factors that influence the efficiency of general practitioners and specialists. Variables that were not analyzed previously in this context (e.g., the degree of practice specialization) and a range of control variables such as a patients' case-mix were included in the estimation. Our results suggest that it is important to investigate both technical and cost efficiency, as results may depend on the type of efficiency analyzed. For example, the technical efficiency of group practices was significantly higher than that of solo practices, whereas the results for cost efficiency differed. This may be due to indivisibilities in expensive technical equipment, which can lead to different types of health care services being provided by different practice types (i.e., with group practices using more expensive inputs, leading to higher costs per case despite these practices being technically more efficient). Other practice characteristics such as participation in disease management programs show the same impact throughout both cost and technical efficiency: participation in disease management programs led to an increase in both, technical and cost efficiency, and may also have had positive effects on the quality of care. Future studies should take quality-related issues into account.

  11. Second primary cancers after cancer of unknown primary in Sweden and Germany: efficacy of the modern work-up.

    PubMed

    Liu, Hao; Hemminki, Kari; Sundquist, Jan; Holleczek, Bernd; Katalinic, Alexander; Emrich, Katharina; Brenner, Hermann

    2013-05-01

    In unsparing efforts to find the hidden primaries, second primary cancers (SPCs) unrelated to cancer of unknown primary (CUP) are found. The detection rates of SPCs after CUP can be considered as measures for the effectiveness of modern diagnostic techniques in finding tumors. We aimed to compare the rates of specific SPCs found after the work-up of CUP and the more sign/symptom-directed diagnostic approaches applied after any other cancer. The number of CUP patients identified in the nationwide Swedish database and nine German cancer registries was 24 641 from 1997 through 2006, and rate ratios (RRs) for SPCs were recorded in two follow-up periods. The detection rate of SPCs immediately after any other cancer was about two times higher in Germany than in Sweden, but the rate immediately after CUP was almost the same for the two datasets. In the joint analyses after CUP, the RRs of liver, lung, breast, and kidney cancers were higher than after any other cancer, whereas the RRs of prostate, urinary bladder, and connective tissue cancers as well as non-Hodgkin's lymphoma were not significantly different; the RR of cancers of upper aerodigestive tract was lower after CUP than after any other cancer. The joint data indicate that the work-up is efficient in detecting tumors in the thoracoabdominal organs that are screened by computed tomography. For some other organ sites, the more sign/symptom-directed diagnostic approaches may be equally efficient. However, none of the applied techniques could detect all tumors immediately after the first diagnosis.

  12. Geometric identification and damage detection of structural elements by terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min

    2016-04-01

    In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.

  13. Development of 99mTc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer

    PubMed Central

    Rainone, Paolo; Riva, Benedetta; Belloli, Sara; Sudati, Francesco; Ripamonti, Marilena; Verderio, Paolo; Colombo, Miriam; Colzani, Barbara; Gilardi, Maria Carla; Moresco, Rosa Maria; Prosperi, Davide

    2017-01-01

    The human epidermal growth factor receptor 2 (HER2) is normally associated with a highly aggressive and infiltrating phenotype in breast cancer lesions with propensity to spread into metastases. In clinic, the detection of HER2 in primary tumors and in their metastases is currently based on invasive methods. Recently, nuclear molecular imaging techniques, including positron emission tomography and single photon emission computed tomography (SPECT), allowed the detection of HER2 lesions in vivo. We have developed a 99mTc-radiolabeled nanosilica system, functionalized with a trastuzumab half-chain, able to act as drug carrier and SPECT radiotracer for the identification of HER2-positive breast cancer cells. To this aim, nanoparticles functionalized or not with trastuzumab half-chain, were radiolabeled using the 99mTc-tricarbonyl approach and evaluated in HER2 positive and negative breast cancer models. Cell uptake experiments, combined with flow cytometry and fluorescence imaging, suggested that active targeting provides higher efficiency and selectivity in tumor detection compared to passive diffusion, indicating that our radiolabeling strategy did not affect the nanoconjugate binding efficiency. Ex vivo biodistribution of 99mTc-nanosilica in a SK-BR-3 (HER2+) tumor xenograft at 4 h postinjection was higher in targeted compared to nontargeted nanosilica, confirming the in vitro data. In addition, viability and toxicity tests provided evidence on nanoparticle safety in cell cultures. Our results encourage further assessment of silica 99mTc-nanoconjugates to validate a safe and versatile nanoreporter system for both diagnosis and treatment of aggressive breast cancer. PMID:28496321

  14. Development and application of carbon nanotubes assisted electromembrane extraction (CNTs/EME) for the determination of buprenorphine as a model of basic drugs from urine samples.

    PubMed

    Hasheminasab, Kobra Sadat; Fakhari, Ali Reza

    2013-03-12

    In this work carbon nanotubes assisted electromembrane extraction (CNTs/EME) coupled with capillary electrophoresis (CE) and ultraviolet (UV) detection was developed for the determination of buprenorphine as a model of basic drugs from urine samples. Carbon nanotubes reinforced hollow fiber was used in this research. Here the CNTs serve as a sorbent and provide an additional pathway for solute transport. The presence of CNTs in the hollow fiber wall increased the effective surface area and the overall partition coefficient on the membrane; and lead to an enhancement in the analyte transport. For investigating the influence of the presence of CNTs in the SLM on the extraction efficiency, a comparative study was carried out between EME and CNTs/EME methods. Optimization of the variables affecting these methods was carried out in order to achieve the best extraction efficiency. Optimal extractions were accomplished with NPOE as the SLM, with 200V as the driving force, and with pH 2.0 in the donor and pH 1.0 in the acceptor solutions with the whole assembly agitated at 750rpm after 25min and 15min for EME and CNTs/EME, respectively. Under the optimized conditions, in comparison with the conventional EME method, CNTs/EME provided higher extraction efficiencies in shorter time. This method provided lower limit of detection (1ngmL(-1)), higher preconcentration factor (185) and higher recovery (92). Finally, the applicability of this method was evaluated by the extraction and determination of buprenorphine in patients' urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  16. GLM Validation Studies in Colorado

    NASA Astrophysics Data System (ADS)

    Rutledge, S. A.; Reimel, K.; Fuchs, B.; Xu, W.

    2017-12-01

    On 8 May 2017 the Geostationary Lightning Mapper (GLM) calibration/validation field campaign completed a mission over the domain of the Colorado Lightning Mapping Array (LMA). This "gold mine day" produced a mixture of normal polarity and anomalous storms of varying intensity. A case study analysis has been completed for a portion of three individual storms from this day. By utilizing a cell tracking algorithm and lightning flash attribution program, individual lightning flashes detected by the GLM, LMA, the National Lightning Detection Network (NLDN), and Earth Networks Total Lightning Network (ENTLN) are attributed to individual storm cells. The focus of this analysis is the detection efficiency of GLM. We will discuss how the GLM detection efficiency changes as a result of storm morphology and lightning flash characteristics. Lightning flash size, flash height, and the amount of ice present between the lightning flash altitude and the top of the cloud all appear to play a role in how well GLM detects lightning flashes. Since GLM shares the same concept as its predecessor TRMM LIS (optically-based lightning detection), the evaluation of TRMM LIS against LMA network-detected lightning provides insights into the GLM detection efficiency. We have collected observations by LIS and LMA coincident in time and space during 2008-2014. The sample includes 400 LIS overpasses with both LIS and LMA detecting flashes within 150 km radius of the center of the LMA array during the 120 second LIS observing time period (analysis presently confined to the Alabama LMA network). The overall LIS detection efficiency (DE, defined as the ratio of flash rates between LIS and LMA) is 0.45, with higher DE for lower flash rate cases. LIS showed a DE of nearly 100% for cases with flash rates < 10 fl/min, but had a DE of only 20-30% for high flash rates within intense storms (> 300 fl/min). We further separated the dataset into day and night, and found that the night-time DE (0.6) increased by 20% compared to day-time DE (0.5). LIS DE also increased as a function of LMA-derived flash size, possibly due to stronger radiance from larger flashes. LIS DE was the lowest ( 40%) for flashes with sizes smaller than a single LIS pixel (< 16 km2). These results may be applicable to GLM as well.

  17. Deterministic and efficient quantum cryptography based on Bell's theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zengbing; Pan Jianwei; Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  18. Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Rydbeck, Gustaf

    1987-01-01

    The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.

  19. Theory of particle detection and multiplicity counting with dead time effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, L.; Pazsit, I.

    The subject of this paper is the investigation of the effect of the dead time on the statistics of the particle detection process. A theoretical treatment is provided with the application of the methods of renewal theory. The detector efficiency and various types of the dead time are accounted for. Exact analytical results are derived for the probability distribution functions, the expectations and the variances of the number of detected particles. Explicit solutions are given for a few representative cases. The results should serve for the evaluation of the measurements in view of the dead time correction effects for themore » higher moments of the detector counts. (authors)« less

  20. UV plasmonic device for sensing ethanol and acetone

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiro; Ichikawa, Yo; Rozhin, Alex G.; Kulinich, Sergei A.

    2018-01-01

    In the present study, we demonstrate efficient detection of volatile organic vapors with improved sensitivity, exploiting the localized surface plasmon resonance of indium nanograins in the UV range (UV-LSPR). The sensitivity of deep-UV-LSPR measurements toward ethanol was observed to be 0.004 nm/ppm, which is 10 times higher than that of a previously reported visible-LSPR device based on Ag nanoprisms [Sensors 11, 8643 (2011)]. Although practical issues such as improving detection limits are still remaining, the results of the present study suggest that the new approach based on UV-LSPR may open new avenues to the detection of organic molecules in solid, liquid, and gas phases using plasmonic sensors.

  1. Deterministic secure quantum communication using a single d-level system

    PubMed Central

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557

  2. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues

    PubMed Central

    Fraser, Matthew; McKay, Colette M.

    2012-01-01

    Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425

  3. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  4. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  5. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons

    DOE PAGES

    Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.; ...

    2017-01-04

    Here we describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430–900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. We found sensors with the thinnestmore » window, 50 nm, had the best performance.« less

  6. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.

    Here we describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430–900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. We found sensors with the thinnestmore » window, 50 nm, had the best performance.« less

  7. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton.

    PubMed

    Yang, Jinny Wu; Wu, Wenxue; Chung, Chih-Ching; Chiang, Kuo-Ping; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2018-06-01

    The importance of biodiversity effects on ecosystem functioning across trophic levels, especially via predatory-prey interactions, is receiving increased recognition. However, this topic has rarely been explored for marine microbes, even though microbial biodiversity contributes significantly to marine ecosystem function and energy flows. Here we examined diversity and biomass of bacteria (prey) and nanoflagellates (predators), as well as their effects on trophic transfer efficiency in the East China Sea. Specifically, we investigated: (i) predator diversity effects on prey biomass and trophic transfer efficiency (using the biomass ratio of predator/prey as a proxy), (ii) prey diversity effects on predator biomass and trophic transfer efficiency, and (iii) the relationship between predator and prey diversity. We found higher prey diversity enhanced both diversity and biomass of predators, as well as trophic transfer efficiency, which may arise from more balanced diet and/or enhanced niche complementarity owing to higher prey diversity. By contrast, no clear effect was detected for predator diversity on prey biomass and transfer efficiency. Notably, we found prey diversity effects on predator-prey interactions; whereas, we found no significant diversity effect on biomass within the same trophic level. Our findings highlight the importance of considering multi-trophic biodiversity effects on ecosystem functioning in natural ecosystems.

  8. Scan statistics with local vote for target detection in distributed system

    NASA Astrophysics Data System (ADS)

    Luo, Junhai; Wu, Qi

    2017-12-01

    Target detection has occupied a pivotal position in distributed system. Scan statistics, as one of the most efficient detection methods, has been applied to a variety of anomaly detection problems and significantly improves the probability of detection. However, scan statistics cannot achieve the expected performance when the noise intensity is strong, or the signal emitted by the target is weak. The local vote algorithm can also achieve higher target detection rate. After the local vote, the counting rule is always adopted for decision fusion. The counting rule does not use the information about the contiguity of sensors but takes all sensors' data into consideration, which makes the result undesirable. In this paper, we propose a scan statistics with local vote (SSLV) method. This method combines scan statistics with local vote decision. Before scan statistics, each sensor executes local vote decision according to the data of its neighbors and its own. By combining the advantages of both, our method can obtain higher detection rate in low signal-to-noise ratio environment than the scan statistics. After the local vote decision, the distribution of sensors which have detected the target becomes more intensive. To make full use of local vote decision, we introduce a variable-step-parameter for the SSLV. It significantly shortens the scan period especially when the target is absent. Analysis and simulations are presented to demonstrate the performance of our method.

  9. Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics

    PubMed Central

    2011-01-01

    Background High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin) make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum. Results The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent) displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma) in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance proteins. Conclusions The immunoaffinity based kits exceeded the immobilized dye based kit in high abundance protein depletion of umbilical cord serum samples and dramatically improved 2DE gel quality for detection of trace biomarkers. PMID:21554704

  10. Efficient multiparty quantum key agreement with collective detection.

    PubMed

    Huang, Wei; Su, Qi; Liu, Bin; He, Yuan-Hang; Fan, Fan; Xu, Bing-Jie

    2017-11-10

    As a burgeoning branch of quantum cryptography, quantum key agreement is a kind of key establishing processes where the security and fairness of the established common key should be guaranteed simultaneously. However, the difficulty on designing a qualified quantum key agreement protocol increases significantly with the increase of the number of the involved participants. Thus far, only few of the existing multiparty quantum key agreement (MQKA) protocols can really achieve security and fairness. Nevertheless, these qualified MQKA protocols are either too inefficient or too impractical. In this paper, an MQKA protocol is proposed with single photons in travelling mode. Since only one eavesdropping detection is needed in the proposed protocol, the qubit efficiency and measurement efficiency of it are higher than those of the existing ones in theory. Compared with the protocols which make use of the entangled states or multi-particle measurements, the proposed protocol is more feasible with the current technologies. Security and fairness analysis shows that the proposed protocol is not only immune to the attacks from external eavesdroppers, but also free from the attacks from internal betrayers.

  11. Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.

    PubMed

    Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang

    2018-05-06

    Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.

  12. p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism.

    PubMed

    He, Zhiqiao; Song, Shuang; Ying, Haiping; Xu, Lejin; Chen, Jianmeng

    2007-07-01

    The degradation of p-aminophenol (PAP) in aqueous solution by sonolysis, by ozonation, and by a combination of both was investigated in laboratory-scale experiments. Operation parameters such as pH, temperature, ultrasonic energy density and ozone dose were optimized with regard to the efficiency of PAP removal. The concentration of PAP during the reaction was detected by high-pressure liquid chromatography. The concentrations of ammonium ions and nitrate ions were monitored during the degradation. Intermediate products such as 4-iminocyclohexa-2,5-dien-1-one, phenol, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry. The degradation rate of PAP was higher in the combined system than in the linear combination of separate experiments. The degradation efficiency was decreased rapidly when n-butanol was added to the combined reaction system, which showed that some radical reaction might proceed during the laboratory experiments.

  13. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  14. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  15. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  16. 4H-SiC UV Photo Detector with Large Area and Very High Specific Detectivity

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Shahid, Aslam; Franz, David; Xin, Xiaobin; Zhao, Jian H.; Zhao, Yuegang; Winer, Maurice

    2004-01-01

    Pt/4H-SiC Schottky photodiodes have been fabricated with the device areas up to 1 sq cm. The I-V characteristics and photo-response spectra have been measured and analyzed. For a 5 mm x 5 mm area device leakage current of 1 x 10(exp 15)A at zero bias and 1.2 x 10(exp 14)A at -IV have been established. The quantum efficiency is over 30% from 240nm to 320nm. The specific detectivity, D(sup *), has been calculated from the directly measured leakage current and quantum efficiency data and are shown to be higher than 10(exp 15) cmHz(sup 1/2)/W from 210nm to 350nm with a peak D(sup *) of 3.6 x 10(exp 15)cmH(sup 1/2)/W at 300nm.

  17. Colorimetric detection of 1,5-anhydroglucitol based on graphene quantum dots and enzyme-catalyzed reaction.

    PubMed

    Zhou, Zhide; Zhao, Le; Wang, Zhihong; Xue, Wen; Wang, Yunxiao; Huang, Yong; Liang, Jintao; Chen, Jiejing; Li, Guiyin

    2018-06-01

    Early diagnosis of diabetes yields significant clinical benefits. The serum level of 1,5‑anhydroglucitol (1,5‑AG) has been a new biochemical marker for postprandial hyperglycemia. In this study, a simple colorimetric method for 1,5‑AG detection has been designed based on highly efficient peroxidase mimetic activity of GQDs and enzyme-catalyzed reaction. By the catalytic action of pyranose oxidase (PROD), the 1,5‑AG was oxidized to 1,5‑anhydrofuctose and H 2 O 2 . The GQDs in the presence of H 2 O 2 exhibited highly efficient catalytic activity toward the oxidation of 3, 3', 5, 5'‑tetramethylbenzidine (TMB) to a blue colored product. The influence of relevant experimental variables was optimized. A linear relationship of optical signal with the concentration of 1,5‑AG in the range of 20.0-100.0μg/mL with the regression correlation coefficient of 0.9985 was obtained which could be monitored by colorimetry detection. The limit of detection (LOD) for 1,5‑AG detection was approximately 0.144μg/mL. All in all, the proposed 1,5‑AG detection system based on GQDs and PROD-catalyzed reaction showed better performances with simple operation, low-cost, higher selectivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Detection of Unknown LEO Satellite Using Radar Measurements

    NASA Astrophysics Data System (ADS)

    Kamensky, S.; Samotokhin, A.; Khutorovsky, Z.; Alfriend, T.

    While processing of the radar information aimed at satellite catalog maintenance some measurements do not correlate with cataloged and tracked satellites. These non-correlated measurements participate in the detection (primary orbit determination) of new (not cataloged) satellites. The satellite is considered newly detected when it is missing in the catalog and the primary orbit determination on the basis of the non-correlated measurements provides the accuracy sufficient for reliable correlation of future measurements. We will call this the detection condition. One non-correlated measurement in real conditions does not have enough accuracy and thus does not satisfy the detection condition. Two measurements separated by a revolution or more normally provides orbit determination with accuracy sufficient for selection of other measurements. However, it is not always possible to say with high probability (close to 1) that two measurements belong to one satellite. Three measurements for different revolutions, which are included into one orbit, have significantly higher chances to belong to one satellite. Thus the suggested detection (primary orbit determination) algorithm looks for three uncorrelated measurements in different revolutions for which we can determine the orbit inscribing them. The detection procedure based on search for the triplets is rather laborious. Thus only relatively high efficiency can be the reason for its practical implementation. The work presents the detailed description of the suggested detection procedure based on the search for triplets of uncorrelated measurements (for radar measurements). The break-ups of the tracked satellites provide the most difficult conditions for the operation of the detection algorithm and reveal explicitly its characteristics. The characteristics of time efficiency and reliability of the detected orbits are of maximum interest. Within this work we suggest to determine these characteristics using simulation of break-ups with further acquisition of measurements generated by the fragments. In particular, using simulation we can not only evaluate the characteristics of the algorithm but adjust its parameters for certain conditions: the orbit of the fragmented satellite, the features of the break-up, capabilities of detection radars etc. We describe the algorithm performing the simulation of radar measurements produced by the fragments of the parent satellite. This algorithm accounts of the basic factors affecting the characteristics of time efficiency and reliability of the detection. The catalog maintenance algorithm includes two major components detection and tracking. These are two processes permanently interacting with each other. This is actually in place for the processing of real radar data. The simulation must take this into account since one cannot obtain reliable characteristics of detection procedure simulating only this process. Thus we simulated both processes in their interaction. The work presents the results of simulation for the simplest case of a break-up in near-circular orbit with insignificant atmospheric drag. The simulations show rather high efficiency. We demonstrate as well that the characteristics of time efficiency and reliability of determined orbits essentially depend on the density of the observed break-up fragments.

  19. Remediation efficiency of three treatments on water polluted with endocrine disruptors: Assessment by means of in vitro techniques.

    PubMed

    Polloni-Silva, Juliana; Valdehita, Ana; Fracácio, Renata; Navas, José M

    2017-04-01

    Chemical substances with potential to disrupt endocrine systems have been detected in aquatic environments worldwide, making necessary the investigation about water treatments able to inhibit such potential. The present work aimed to assess the efficiency for removing endocrine disruptors (with estrogenic and androgenic activity) of three simple and inexpensive substrates that could be potentially used in sectors or regions with limited resources: powdered activated carbon (PAC), powdered natural zeolite (ZEO) (both at a concentration of 500 mg L -1 ) and natural aquatic humic substances (AHS) (at 30 mg L -1 ). MilliQ-water and mature water from fish facilities (aquarium water, AW), were artificially spiked with 17β-estradiol (E2), 17α-ethinylestradiol and dihydrotestosterone. Moreover, effluent samples from waste water treatment plants (WWTP) were also submitted to the remediation treatments. Estrogenic and androgenic activities were assessed with two cell lines permanently transfected with luciferase as reporter gene under the control of hormone receptors: AR-EcoScreen containing the human androgen receptor and HER-LUC transfected with the sea bass estrogen receptor. PAC was efficiently removing the estrogenic and androgenic compounds added to milliQ and AW. However, androgenic activity detected in WWTP effluents was only reduced after treatment with ZEO. The higher surface area of PAC could have facilitated the removal of spiked hormones in clean waters. However, it is possible that the substances responsible of the hormonal activity in WWTP have adsorbed to micro and nanoparticles present in suspension that would have been retained with higher efficiency by ZEO that show pores of several microns in size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Analysis of RF emissions from laser induced breakdown of atmospheric air and metals

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Lakshmi, Vinoth Kumar; Elle, Manikanta; Chelikani, Leela

    2013-10-01

    The low frequency (RF, microwave) emissions from laser produced plasma (LPP) are of great interest because of their variety of applications. The RF waves emitted by the nanosecond LPP of atmospheric air and metal (Al, Cu) targets were detected using antennas over frequency ranges (30 MHz-18 GHz) and were monitored using a spectrum analyzer (3 Hz-50 GHz). With different target materials, the dominant emission lines were observed to fall in different specific frequency ranges within the detection limit. The emissions from Cu were in the higher frequency range (100-200 MHz) than that of Al (30-100 MHz) may be due to the higher electron density of Cu, which contributes to the LPP conductivity. From the LPP of atmospheric air, the RF output was found to be increasing with the input laser energy up to certain value, beyond which almost no emission was observed. This effect is attributed to the modification in the net induced dipole moment due to the multiple plasma sources in the LPP at higher input laser energies. The detected radiation was observed to be dependent on laser and antenna polarization. Further studies may lead to an efficient technique for material identification from the RF characteristic peaks.

  1. Cutting efficiency of conventional and martensitic nickel-titanium instruments for coronal flaring.

    PubMed

    Morgental, Renata Dornelles; Vier-Pelisser, Fabiana Vieira; Kopper, Patrícia Maria Poli; de Figueiredo, José Antonio Poli; Peters, Ove A

    2013-12-01

    This study aimed at evaluating the influence of rotational speed and number of uses on the cutting efficiency of 4 nickel-titanium coronal flaring instruments against 2 substrates, bovine dentin and acrylic blocks. BioRaCe BR0, HyFlex CM1, ProFile OS#2, and ProTaper Sx were used in simulated lateral action against both substrates at 250 and 500 rpm up to 5 times, producing 5 notches in each block. Notch areas and lengths were measured under a stereomicroscope, and data were compared by using parametric tests (α = 0.05). Against both substrates, HyFlex CM1 and ProFile OS#2 were the most and the least cutting efficient instruments, respectively (P < .05). Against acrylic, area and length values at 500 rpm were significantly higher than those at 250 rpm for all brands. Against dentin, significant differences were detected between 250 and 500 rpm for HyFlex CM1 and ProTaper Sx (area) and for BioRace BR0, HyFlex CM1, and ProTaper Sx (length). Regarding cutting efficiency loss, area and length for notches 1 and 2 (first notches) and 4 and 5 (last notches) were similar against acrylic. Against dentin, length values for notches 1 and 2 were significantly higher than those for notches 4 and 5 in ProFile OS#2 and ProTaper Sx. A strong correlation was detected between the overall results obtained on acrylic and dentin for area and length (P < .0001), although further analysis showed that data against acrylic were a poor predictor of data against dentin after repeated use. HyFlex CM1 was the most cutting efficient instrument in lateral action. An increase in rotational speed improved the cutting efficiency. Results against acrylic showed a high correlation to data against dentin, but acrylic may not be a proper substrate when the intention is to assess cutting efficiency loss with repeated use. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Detection of epistatic effects with logic regression and a classical linear regression model.

    PubMed

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  3. Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: Review of current approaches

    PubMed Central

    Stärk, Katharina DC; Regula, Gertraud; Hernandez, Jorge; Knopf, Lea; Fuchs, Klemens; Morris, Roger S; Davies, Peter

    2006-01-01

    Background Emerging animal and zoonotic diseases and increasing international trade have resulted in an increased demand for veterinary surveillance systems. However, human and financial resources available to support government veterinary services are becoming more and more limited in many countries world-wide. Intuitively, issues that present higher risks merit higher priority for surveillance resources as investments will yield higher benefit-cost ratios. The rapid rate of acceptance of this core concept of risk-based surveillance has outpaced the development of its theoretical and practical bases. Discussion The principal objectives of risk-based veterinary surveillance are to identify surveillance needs to protect the health of livestock and consumers, to set priorities, and to allocate resources effectively and efficiently. An important goal is to achieve a higher benefit-cost ratio with existing or reduced resources. We propose to define risk-based surveillance systems as those that apply risk assessment methods in different steps of traditional surveillance design for early detection and management of diseases or hazards. In risk-based designs, public health, economic and trade consequences of diseases play an important role in selection of diseases or hazards. Furthermore, certain strata of the population of interest have a higher probability to be sampled for detection of diseases or hazards. Evaluation of risk-based surveillance systems shall prove that the efficacy of risk-based systems is equal or higher than traditional systems; however, the efficiency (benefit-cost ratio) shall be higher in risk-based surveillance systems. Summary Risk-based surveillance considerations are useful to support both strategic and operational decision making. This article highlights applications of risk-based surveillance systems in the veterinary field including food safety. Examples are provided for risk-based hazard selection, risk-based selection of sampling strata as well as sample size calculation based on risk considerations. PMID:16507106

  4. Bomb swab: Can trace explosive particle sampling and detection be improved?

    PubMed

    Fisher, Danny; Zach, Raya; Matana, Yossef; Elia, Paz; Shustack, Shiran; Sharon, Yarden; Zeiri, Yehuda

    2017-11-01

    The marked increase in international terror in recent years requires the development of highly efficient methods to detect trace amounts of explosives at airports, border crossings and check points. The preferred analytical method worldwide is the ion mobility spectrometry (IMS) that is capable of detecting most explosives at the nano-gram level. Sample collection for the IMS analysis is based on swabbing of a passenger's belongings to collect possible explosive residues. The present study examines a wide range of issues related to swab-based particle collection and analysis, in the hope of gaining deeper understanding into this technique that will serve to improve the detection process. The adhesion of explosive particles to three typical materials, plastic, metal and glass, were measured using atomic force microscopy (AFM). We found that a strong contribution of capillary forces to adhesion on glass and metal surfaces renders these substrates more promising materials upon which to find and collect explosive residues. The adhesion of explosives to different swipe materials was also examined. Here we found that Muslin, Nomex ® and polyamide membrane surfaces are the most promising materials for use as swipes. Subsequently, the efficiency of multiple swipe use - for collecting explosive residues from a glass surface using Muslin, Nomex ® and Teflon™ swipes - was examined. The study suggests that swipes used in about 5-10 "sampling and analysis cycles" have higher efficiency as compared to new unused swipes. The reason for this behavior was found to be related to the increased roughness of the swipe surface following a few swab measurements. Lastly, GC-MS analysis was employed to examine the nature of contaminants collected by the three types of swipe. The relative amounts of different contaminants are reported. The existence and interference of these contaminants have to be considered in relation to the detection efficiency of the various explosives by the IMS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Determination of N-vinyl-2-pyrrolidone and N-methyl-2-pyrrolidone in drugs using polypyrrole-based headspace solid-phase microextraction and gas chromatography-nitrogen-phosphorous detection.

    PubMed

    Mehdinia, Ali; Ghassempour, Alireza; Rafati, Hasan; Heydari, Rouhollah

    2007-03-21

    A headspace solid-phase microextraction and gas chromatography-nitrogen-phosphorous detection (HS-SPME-GC-NPD) method using polypyrrole (PPy) fibers has been introduced to determine two derivatives of pyrrolidone; N-vinyl-2-pyrrolidone (NVP) and N-methyl-2-pyrrolidone (NMP). Two types of PPy fibers, prepared using organic and aqueous media, were compared in terms of extraction efficiency and thermal stability. It was found that PPy film prepared using organic medium (i.e. acetonitrile) had higher extraction efficiency and more thermal stability compared to the film prepared in aqueous medium. To enhance the sensitivity of HS-SPME, the effects of pH, ionic strength, extraction time, extraction temperature and the headspace volume on the extraction efficiency were optimized. Using the results of this research, high sensitivity and selectivity had been achieved due to the combination of the high extraction efficiency of PPy film prepared in organic medium and the high sensitivity and selectivity of nitrogen-phosphorous detection. Linear range of the analytes was found to be between 1.0 and 1000 microg L(-1) with regression coefficients (R(2)) of 0.998 and 0.997 for NVP and NMP, consequently. Limits of detection (LODs) were 0.074 and 0.081 microg L(-1) for NVP and NMP, respectively. Relative standard deviation (R.S.D.) for five replications of analyses was found to be less than 6.0%. In real samples the mean recoveries were 94.81% and 94.15% for NVP and NMP, respectively. The results demonstrated the suitability of the HS-SPME technique for analyzing NVP and NMP in two different pharmaceutical matrices. In addition, the method was used for simultaneous detection of NVP, 2-pyrrolidone (2-Pyr), gamma-butyrolactone (GBL) and ethanolamine (EA) compounds.

  6. Development of a novel and highly efficient method of isolating bacteriophages from water.

    PubMed

    Liu, Weili; Li, Chao; Qiu, Zhi-Gang; Jin, Min; Wang, Jing-Feng; Yang, Dong; Xiao, Zhong-Hai; Yuan, Zhao-Kang; Li, Jun-Wen; Xu, Qun-Ying; Shen, Zhi-Qiang

    2017-08-01

    Bacteriophages are widely used to the treatment of drug-resistant bacteria and the improvement of food safety through bacterial lysis. However, the limited investigations on bacteriophage restrict their further application. In this study, a novel and highly efficient method was developed for isolating bacteriophage from water based on the electropositive silica gel particles (ESPs) method. To optimize the ESPs method, we evaluated the eluent type, flow rate, pH, temperature, and inoculation concentration of bacteriophage using bacteriophage f2. The quantitative detection reported that the recovery of the ESPs method reached over 90%. The qualitative detection demonstrated that the ESPs method effectively isolated 70% of extremely low-concentration bacteriophage (10 0 PFU/100L). Based on the host bacteria composed of 33 standard strains and 10 isolated strains, the bacteriophages in 18 water samples collected from the three sites in the Tianjin Haihe River Basin were isolated by the ESPs and traditional methods. Results showed that the ESPs method was significantly superior to the traditional method. The ESPs method isolated 32 strains of bacteriophage, whereas the traditional method isolated 15 strains. The sample isolation efficiency and bacteriophage isolation efficiency of the ESPs method were 3.28 and 2.13 times higher than those of the traditional method. The developed ESPs method was characterized by high isolation efficiency, efficient handling of large water sample size and low requirement on water quality. Copyright © 2017. Published by Elsevier B.V.

  7. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    PubMed

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  8. Evaluation of two membrane-based microextraction techniques for the determination of endocrine disruptors in aqueous samples by HPLC with diode array detection.

    PubMed

    Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo

    2017-11-01

    In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The diversity of (13)C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance.

    PubMed

    Roussel, Magali; Dreyer, Erwin; Montpied, Pierre; Le-Provost, Grégoire; Guehl, Jean-Marc; Brendel, Oliver

    2009-01-01

    (13)C discrimination in organic matter with respect to atmospheric CO(2) (Delta(13)C) is under tight genetic control in many plant species, including the pedunculate oak (Quercus robur L.) full-sib progeny used in this study. Delta(13)C is expected to reflect intrinsic water use efficiency, but this assumption requires confirmation due to potential interferences with mesophyll conductance to CO(2), or post-photosynthetic discrimination. In order to dissect the observed Delta(13)C variability in this progeny, six genotypes that have previously been found to display extreme phenotypic values of Delta(13)C [either very high ('high Delta') or low ('low Delta') phenotype] were selected, and transpiration efficiency (TE; accumulated biomass/transpired water), net CO(2) assimilation rate (A), stomatal conductance for water vapour (g(s)), and intrinsic water use efficiency (W(i)=A/g(s)) were compared with Delta(13)C in bulk leaf matter, wood, and cellulose in wood. As expected, 'high Delta' displayed higher values of Delta(13)C not only in bulk leaf matter, but also in wood and cellulose. This confirmed the stability of the genotypic differences in Delta(13)C recorded earlier. 'High Delta' also displayed lower TE, lower W(i), and higher g(s). A small difference was detected in photosynthetic capacity but none in mesophyll conductance to CO(2). 'High Delta' and 'low Delta' displayed very similar leaf anatomy, except for higher stomatal density in 'high Delta'. Finally, diurnal courses of leaf gas exchange revealed a higher g(s) in 'high Delta' in the morning than in the afternoon when the difference decreased. The gene ERECTA, involved in the control of water use efficiency, leaf differentiation, and stomatal density, displayed higher expression levels in 'low Delta'. In this progeny, the variability of Delta(13)C correlated closely with that of W(i) and TE. Genetic differences of Delta(13)C and W(i) can be ascribed to differences in stomatal conductance and stomatal density but not in photosynthetic capacity.

  10. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    PubMed Central

    Li, Feilong; Li, Zhiqiang; Li, Guangxia; Dong, Feihong; Zhang, Wei

    2017-01-01

    The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU) with sufficient protection to licensed primary user (PU). Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS) in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO) mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS) framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS) is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework. PMID:28117712

  11. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J.D.; Zhang, J.; Rember, W.C.

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduousmore » species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.« less

  12. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  13. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Li, X.; Xu, P.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecturemore » offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.« less

  14. Detection of links between Ebola nucleocapsid and virulence using disorder analysis.

    PubMed

    Goh, Gerard Kian-Meng; Dunker, A Keith; Uversky, Vladimir N

    2015-08-01

    The underlying reasons for the differences in the virulence of various types of Ebola virus (EBOV) remain unknown. Comparison of the percentage of disorder (PID) in nucleocapsid proteins VP30 and NP reveals high correlation between nucleocapsid PIDs and the case-fatality rates of EBOV. The higher disorder of these proteins is likely to be needed for more efficient multiplication of virus copies via more efficient viral RNA transcription and more promiscuous protein binding potential. This is important for the more efficient assistance of nucleocapsid in viral particle budding and of the assembly and mobility of viral proteins across the host membrane and within the cytoplasm. A more comprehensive knowledge of the molecular mechanisms of EBOV virulence would also lead to new and more effective strategies in vaccine development.

  15. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    NASA Astrophysics Data System (ADS)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  16. Experimental validation and testing of a NaI boron-lined neutron detector

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Emam, Amira G.

    2018-05-01

    Effective neutron detection systems are critical in various nuclear fields. Most of the current detection systems rely on He-3 detectors due to their high neutron cross section. However, the limited sizes and worldwide scarcity of He-3 lead to major research efforts to find alternative neutron detectors. One of the proposed cost-effective alternatives is using boron-lined NaI detectors to detect the gamma ray resulting from the 10B(n,α)7Li reaction. The proposed detector assembly has been experimentally tested and its results were compared with those from a He-3 detector. In addition to detecting the gamma rays from the source and surrounding medium, the boron-lined NaI detector showed a good sensitivity to changes in neutron flux distributions and a higher efficiency when compared to the He-3 detector used.

  17. Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance

    PubMed Central

    Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong

    2013-01-01

    We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023

  18. Autofluorescence imaging to optimize 5-ALA-induced fluorescence endoscopy of bladder carcinoma.

    PubMed

    Frimberger, D; Zaak, D; Stepp, H; Knüchel, R; Baumgartner, R; Schneede, P; Schmeller, N; Hofstetter, A

    2001-09-01

    To design an optical system for detecting autofluorescence (AF) of bladder tumors and to determine the success of reducing the false-positive rate of 5-aminolevulinic acid-induced fluorescence endoscopy (AFE). AFE provides significantly higher sensitivity in detecting and localizing bladder carcinoma compared with white light endoscopy. The specificity of AFE is equivalent to white light endoscopy, mostly because of the false-positive fluorescence of chronic cystitis lesions. Laser-induced spectral autofluorescence detection is also an efficient method in the diagnosis of bladder carcinoma. Bladder tissue was excited to AF using the D-Light (375 to 440 nm) after regular AFE with detection of fluorescence-positive areas. The optical image was produced using a special RGB camera. Biopsies were taken from AFE-positive areas, the peritumoral edges, and normal bladder mucosa. The AF images of the suspicious areas were compared with the AFE images and the histologic results. A total of 43 biopsies were histologically examined (24 benign and 19 neoplastic). AF imaging showed contrast differences between papillary tumors, flat lesions, and normal mucosa. The combination of AFE with AF raised the specificity of AFE alone from 67% to 88%. AF imaging is possible. The value of the method in reducing the false-positive rate of the highly sensitive AFE needs to be validated with higher numbers. The combination of AF with AFE had a 20% higher specificity than AFE alone in our study.

  19. Organic composition of fogwater in the Texas-Louisiana gulf coast corridor

    NASA Astrophysics Data System (ADS)

    Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.

    Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.

  20. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.

  1. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    PubMed

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.

  2. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat

    PubMed Central

    Gunasekara, Dulan B.; Hulvey, Matthew K.; Lunte, Susan M.

    2012-01-01

    The combination of microchip electrophoresis (ME) with amperometric detection leads to a number of analytical challenges that are associated with isolating the detector from the high voltages used for the separation. While methods such as end-channel alignment and the use of decouplers have been employed, they have limitations. A less common method has been to utilize an electrically isolated potentiostat. This approach allows placement of the working electrode directly in the separation channel without using a decoupler. This paper explores the use of microchip electrophoresis and electrochemical detection (ME-EC) with an electrically isolated potentiostat for the separation and in-channel detection of several biologically important anions. The separation employed negative polarity voltages and tetradecyltrimethylammonium bromide (TTAB, as a buffer modifier) for the separation of nitrite (NO2-), glutathione (GSH), ascorbic acid (AA), and tyrosine (Tyr). A half-wave potential (E½) shift of approximately negative 500 mV was observed for NO2- and H2O2 standards in the in-channel configuration compared to end channel. Higher separation efficiencies were observed for both NO2- and H2O2 with the in-channel detection configuration. The limits of detection were approximately two-fold lower and the sensitivity was approximately two-fold higher for in-channel detection of nitrite when compared to end-channel. The application of this microfluidic device for the separation and detection of biomarkers related to oxidative stress is described. PMID:21437918

  3. The forest, the trees, and the leaves: Differences of processing across development.

    PubMed

    Krakowski, Claire-Sara; Poirel, Nicolas; Vidal, Julie; Roëll, Margot; Pineau, Arlette; Borst, Grégoire; Houdé, Olivier

    2016-08-01

    To act and think, children and adults are continually required to ignore irrelevant visual information to focus on task-relevant items. As real-world visual information is organized into structures, we designed a feature visual search task containing 3-level hierarchical stimuli (i.e., local shapes that constituted intermediate shapes that formed the global figure) that was presented to 112 participants aged 5, 6, 9, and 21 years old. This task allowed us to explore (a) which level is perceptively the most salient at each age (i.e., the fastest detected level) and (b) what kind of attentional processing occurs for each level across development (i.e., efficient processing: detection time does not increase with the number of stimuli on the display; less efficient processing: detection time increases linearly with the growing number of distractors). Results showed that the global level was the most salient at 5 years of age, whereas the global and intermediate levels were both salient for 9-year-olds and adults. Interestingly, at 6 years of age, the intermediate level was the most salient level. Second, all participants showed an efficient processing of both intermediate and global levels of hierarchical stimuli, and a less efficient processing of the local level, suggesting a local disadvantage rather than a global advantage in visual search. The cognitive cost for selecting the local target was higher for 5- and 6-year-old children compared to 9-year-old children and adults. These results are discussed with regards to the development of executive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. An interlaboratory study on efficient detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O121, O145, and O157 in food using real-time PCR assay and chromogenic agar.

    PubMed

    Hara-Kudo, Yukiko; Konishi, Noriko; Ohtsuka, Kayoko; Iwabuchi, Kaori; Kikuchi, Rie; Isobe, Junko; Yamazaki, Takumiko; Suzuki, Fumie; Nagai, Yuhki; Yamada, Hiroko; Tanouchi, Atsuko; Mori, Tetsuya; Nakagawa, Hiroshi; Ueda, Yasufumi; Terajima, Jun

    2016-08-02

    To establish an efficient detection method for Shiga toxin (Stx)-producing Escherichia coli (STEC) O26, O103, O111, O121, O145, and O157 in food, an interlaboratory study using all the serogroups of detection targets was firstly conducted. We employed a series of tests including enrichment, real-time PCR assays, and concentration by immunomagnetic separation, followed by plating onto selective agar media (IMS-plating methods). This study was particularly focused on the efficiencies of real-time PCR assays in detecting stx and O-antigen genes of the six serogroups and of IMS-plating methods onto selective agar media including chromogenic agar. Ground beef and radish sprouts samples were inoculated with the six STEC serogroups either at 4-6CFU/25g (low levels) or at 22-29CFU/25g (high levels). The sensitivity of stx detection in ground beef at both levels of inoculation with all six STEC serogroups was 100%. The sensitivity of stx detection was also 100% in radish sprouts at high levels of inoculation with all six STEC serogroups, and 66.7%-91.7% at low levels of inoculation. The sensitivity of detection of O-antigen genes was 100% in both ground beef and radish sprouts at high inoculation levels, while at low inoculation levels, it was 95.8%-100% in ground beef and 66.7%-91.7% in radish sprouts. The sensitivity of detection with IMS-plating was either the same or lower than those of the real-time PCR assays targeting stx and O-antigen genes. The relationship between the results of IMS-plating methods and Ct values of real-time PCR assays were firstly analyzed in detail. Ct values in most samples that tested negative in the IMS-plating method were higher than the maximum Ct values in samples that tested positive in the IMS-plating method. This study indicates that all six STEC serogroups in food contaminated with more than 29CFU/25g were detected by real-time PCR assays targeting stx and O-antigen genes and IMS-plating onto selective agar media. Therefore, screening of stx and O-antigen genes followed by isolation of STECs by IMS-plating methods may be an efficient method to detect the six STEC serogroups. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes

    PubMed Central

    Petrova, Olga E.; Garcia-Alcalde, Fernando; Zampaloni, Claudia; Sauer, Karin

    2017-01-01

    Global transcriptomic analysis via RNA-seq is often hampered by the high abundance of ribosomal (r)RNA in bacterial cells. To remove rRNA and enrich coding sequences, subtractive hybridization procedures have become the approach of choice prior to RNA-seq, with their efficiency varying in a manner dependent on sample type and composition. Yet, despite an increasing number of RNA-seq studies, comparative evaluation of bacterial rRNA depletion methods has remained limited. Moreover, no such study has utilized RNA derived from bacterial biofilms, which have potentially higher rRNA:mRNA ratios and higher rRNA carryover during RNA-seq analysis. Presently, we evaluated the efficiency of three subtractive hybridization-based kits in depleting rRNA from samples derived from biofilm, as well as planktonic cells of the opportunistic human pathogen Pseudomonas aeruginosa. Our results indicated different rRNA removal efficiency for the three procedures, with the Ribo-Zero kit yielding the highest degree of rRNA depletion, which translated into enhanced enrichment of non-rRNA transcripts and increased depth of RNA-seq coverage. The results indicated that, in addition to improving RNA-seq sensitivity, efficient rRNA removal enhanced detection of low abundance transcripts via qPCR. Finally, we demonstrate that the Ribo-Zero kit also exhibited the highest efficiency when P. aeruginosa/Staphylococcus aureus co-culture RNA samples were tested. PMID:28117413

  6. Comparing scat detection dogs, cameras, and hair snares for surveying carnivores

    USGS Publications Warehouse

    Long, Robert A.; Donovan, T.M.; MacKay, Paula; Zielinski, William J.; Buzas, Jeffrey S.

    2007-01-01

    Carnivores typically require large areas of habitat, exist at low natural densities, and exhibit elusive behavior - characteristics that render them difficult to study. Noninvasive survey methods increasingly provide means to collect extensive data on carnivore occupancy, distribution, and abundance. During the summers of 2003-2004, we compared the abilities of scat detection dogs, remote cameras, and hair snares to detect black bears (Ursus americanus), fishers (Martes pennanti), and bobcats (Lynx rufus) at 168 sites throughout Vermont. All 3 methods detected black bears; neither fishers nor bobcats were detected by hair snares. Scat detection dogs yielded the highest raw detection rate and probability of detection (given presence) for each of the target species, as well as the greatest number of unique detections (i.e., occasions when only one method detected the target species). We estimated that the mean probability of detecting the target species during a single visit to a site with a detection dog was 0.87 for black bears, 0.84 for fishers, and 0.27 for bobcats. Although the cost of surveying with detection dogs was higher than that of remote cameras or hair snares, the efficiency of this method rendered it the most cost-effective survey method.

  7. Changes in collection efficiency in nylon net filter media through magnetic alignment of elongated aerosol particles.

    PubMed

    Lam, Christopher O; Finlay, W H

    2009-10-01

    Fiber aerosols tend to align parallel to surrounding fluid streamlines in shear flows, making their filtration more difficult. However, previous research indicates that composite particles made from cromoglycic acid fibers coated with small nanoscaled magnetite particles can align with an applied magnetic field. The present research explored the effect of magnetically aligning these fibers to increase their filtration. Nylon net filters were challenged with the aerosol fibers, and efficiency tests were performed with and without a magnetic field applied perpendicular to the flow direction. We investigated the effects of varying face velocities, the amount of magnetite material on the aerosol particles, and magnetic field strengths. Findings from the experiments, matched by supporting single-fiber theories, showed significant efficiency increases at the low face velocity of 1.5 cm s(-1) at all magnetite compositions, with efficiencies more than doubling due to magnetic field alignment in certain cases. At a higher face velocity of 5.12 cm s(-1), filtration efficiencies were less affected by the magnetic field alignment being, at most, 43% higher for magnetite weight compositions up to 30%, while at a face velocity of 10.23 cm s(-1) alignment effects were insignificant. In most cases, efficiencies became independent of magnetic field strength above 50 mT, suggesting full alignment of the fibers. The present data suggest that fiber alignment in a magnetic field may warrant applications in the filtration and detection of fibers, such as asbestos.

  8. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  9. Evaluation of the efficiency of nested q-PCR in the detection of Mycobacterium tuberculosis complex directly from tuberculosis-suspected lesions in post-mortem macroscopic inspections of bovine carcasses slaughtered in the state of Mato Grosso, Brazil.

    PubMed

    Carvalho, Ricardo César Tavares; Furlanetto, Leone Vinícius; Maruyama, Fernanda Harumy; Araújo, Cristina Pires de; Barros, Sílvia Letícia Bomfim; Ramos, Carlos Alberto do Nascimento; Dutra, Valéria; Araújo, Flábio Ribeiro de; Paschoalin, Vânia Margaret Flosi; Nakazato, Luciano; Figueiredo, Eduardo Eustáquio de Souza

    2015-08-01

    Bovine tuberculosis (BTB) is a zoonotic disease caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC). The quick and specific detection of this species is of extreme importance, since BTB may cause economic impacts, in addition to presenting imminent risks to human health. In the present study a nested real-time PCR test (nested q-PCR) was used in post-mortem evaluations to assess cattle carcasses with BTB-suspected lesions. A total of 41,193 cattle slaughtered in slaughterhouses located in the state of Mato Grosso, were examined. Of the examined animals, 198 (0.48%) showed BTB-suspected lesions. M. bovis was isolated in 1.5% (3/198) of the samples. Multiplex-PCR detected MTC in 7% (14/198) of the samples. The nested q-PCR test detected MTC in 28% (56/198) of the BTB-suspected lesions, demonstrating higher efficiency when compared to the multiplex-PCR and conventional microbiology. Nested q-PCR can therefore be used as a complementary test in the national program for control and eradication of bovine tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of a Change Detection Methodology by Means of Binary Thresholding Algorithms and Informational Fusion Processes

    PubMed Central

    Molina, Iñigo; Martinez, Estibaliz; Arquero, Agueda; Pajares, Gonzalo; Sanchez, Javier

    2012-01-01

    Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth’s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution. PMID:22737023

  11. Evaluation of a change detection methodology by means of binary thresholding algorithms and informational fusion processes.

    PubMed

    Molina, Iñigo; Martinez, Estibaliz; Arquero, Agueda; Pajares, Gonzalo; Sanchez, Javier

    2012-01-01

    Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth's resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.

  12. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  13. Development of new solid-phase microextraction fibers by sol-gel technology for the determination of organophosphorus pesticide multiresidues in food.

    PubMed

    Yu, Jianxin; Wu, Caiying; Xing, Jun

    2004-05-21

    Allyloxy bisbenzo 16-crown-5 trimethoxysilane was first used as precursor to prepare the sol-gel-derived bisbenzo crown ether/hydroxyl-terminated silicone oil (OH-TSO) SPME coating. The coating procedure involving sol solution composition and conditioning process was presented. Compared with commercial SPME stationary phases, the new coatings showed higher extraction efficiency and therefore could provide higher sensitivity for organphosphorous pesticides (OPs). Limits of detection (LODs) were in the range of 0.003-1.0 ng/g for these OPs in food samples (honey, juice, orange and pakchoi). The optimal extraction conditions of the new coatings to OPs in these samples were investigated by adjusting extraction time, salt addition, extraction temperature, and dilution ratios of samples with distilled water by using SPME coupled with gas chromatography (GC)-flame photometric detection (FPD). The method was applied to determine the concentrations of OPs in real samples.

  14. Detection of White Root Disease (Rigidoporus Microporus) in Various Soil Types in the Rubber Plantations Based on The Serological Reaction

    NASA Astrophysics Data System (ADS)

    Indriani Dalimunthe, Cici; Tistama, Radite; Wahyuni, Sri

    2017-12-01

    The Conventional detection of White Root Disease (Rigidoporus microporus, WRD) still uses the visual method based on an abnormal color of leaf or mycelium growth on the tap root neck. The method was less effective and less efficient. The serological technique uses yolk chicken antibodies induced by immunization with mycelium extract. The purpose of this research was to examine the consistency of selected antibodies in detecting root fungi at various soil types in the rubber plantations. This research used a Completely Randomized Design non-factorial with twelve (12) treatments and two (2) replications. The results showed that the antibodies could detect WRD in various soils types. The serological detection was higher precisely than visual observation. The development of WRD mycelium varies depending on the soil types and it was different in the each estate area. In addition, this research is expected to get a serology kit to detect early symptoms of WRD in the rubber plants.

  15. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  16. A non-imaging polarized terahertz passive system for detecting and identifying concealed explosives

    NASA Astrophysics Data System (ADS)

    Karam, Mostafa A.; Meyer, Doug

    2011-06-01

    Existing terahertz THz systems for detecting concealed explosives are not capable of identifying explosive type which leads to higher false alarm rates. Moreover, some of those systems are imaging systems that invade personal privacy, and require more processing and computational resources. Other systems have no polarization preference which makes them incapable of capturing the geometric features of an explosive. In this study a non-imaging polarized THz passive system for detecting and identifying concealed explosives overcoming the forgoing shortcomings is developed. The system employs a polarized passive THz sensor in acquiring emitted data from a scene that may have concealed explosives. The acquired data are decomposed into their natural resonance frequencies, and the number of those frequencies is used as criteria in detecting the explosive presence. If the presence of an explosive is confirmed, a set of physically based retrieval algorithms is used in extracting the explosive dielectric constant/refractive index value from natural resonance frequencies and amplitudes of associated signals. Comparing the refractive index value against a database of refractive indexes of known explosives identifies the explosive type. As an application, a system having a dual polarized radiometer operating within the frequency band of 0.62- 0.82 THz is presented and used in detecting and identifying person borne C-4 explosive concealed under a cotton garment. The system showed higher efficiencies in detecting and identifying the explosive.

  17. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn.

    PubMed

    Li, Y L; Niu, S Z; Dong, Y B; Cui, D Q; Wang, Y Z; Liu, Y Y; Wei, M G

    2007-06-01

    Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F(2:3) lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F(2:3) population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.

  18. EUV observation from the Earth-orbiting satellite, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.

    2010-01-01

    An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.

  19. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser.

    PubMed

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-12-19

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

  20. Wave study of compound eyes for efficient infrared detection

    NASA Astrophysics Data System (ADS)

    Kilinc, Takiyettin Oytun; Hayran, Zeki; Kocer, Hasan; Kurt, Hamza

    2017-08-01

    Improving sensitivity in the infrared spectrum is a challenging task. Detecting infrared light over a wide bandwidth and at low power consumption is very important. Novel solutions can be acquired by mimicking biological eyes such as compound eye with many individual lenses inspired from the nature. The nature provides many ingenious approaches of sensing and detecting the surrounding environment. Even though compound eye consists of small optical units, it can detect wide-angle electromagnetic waves and it has high transmission and low reflection loss. Insects have eyes that are superior compared to human eyes (single-aperture eyes) in terms of compactness, robustness, wider field of view, higher sensitivity of light intensity and being cheap vision systems. All these desired properties are accompanied by an important drawback: lower spatial resolution. The first step to investigate the feasibility of bio-inspired optics in photodetectors is to perform light interaction with the optical system that gather light and detect it. The most common method used in natural vision systems is the ray analysis. Light wave characteristics are not taken into consideration in such analyses, such as the amount of energy at the focal point or photoreceptor site, the losses caused by reflection at the interfaces and absorption cannot be investigated. In this study, we present a bio-inspired optical detection system investigated by wave analysis. We numerically model the wave analysis based on Maxwell equations from the viewpoint of efficient light detection and revealing the light propagation after intercepting the first interface of the eye towards the photoreceptor site.

  1. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  2. PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-09-15

    We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.

  3. Improving detection of low SNR targets using moment-based detection

    NASA Astrophysics Data System (ADS)

    Young, Shannon R.; Steward, Bryan J.; Hawks, Michael; Gross, Kevin C.

    2016-05-01

    Increases in the number of cameras deployed, frame rate, and detector array sizes have led to a dramatic increase in the volume of motion imagery data that is collected. Without a corresponding increase in analytical manpower, much of the data is not analyzed to full potential. This creates a need for fast, automated, and robust methods for detecting signals of interest. Current approaches fall into two categories: detect-before-track (DBT), which are fast but often poor at detecting dim targets, and track-before-detect (TBD) methods which can offer better performance but are typically much slower. This research seeks to contribute to the near real time detection of low SNR, unresolved moving targets through an extension of earlier work on higher order moments anomaly detection, a method that exploits both spatial and temporal information but is still computationally efficient and massively parallelizable. It was found that intelligent selection of parameters can improve probability of detection by as much as 25% compared to earlier work with higherorder moments. The present method can reduce detection thresholds by 40% compared to the Reed-Xiaoli anomaly detector for low SNR targets (for a given probability of detection and false alarm).

  4. Alpha-fetoprotein detection by using a localized surface plasmon coupled fluorescence fiber-optic biosensor

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien

    2007-11-01

    Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.

  5. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base

    NASA Astrophysics Data System (ADS)

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N‧-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, CN- and SCN-) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F- through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F- anion to the two Ar-OH groups. The detection limit was 5.78 × 10- 7 M of F-, which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F- test kit to detect F- for ;in-the-field; measurement.

  6. Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint

    PubMed Central

    Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Zhai, Ruifang

    2018-01-01

    Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency. PMID:29734793

  7. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    NASA Astrophysics Data System (ADS)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; Nugent, Peter

    2018-05-01

    We present a measurement of the volumetric rate of “calcium-rich” optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: {1.21}-0.39+1.13 × {10}-5 events yr‑1 Mpc‑3. This is equivalent to 33%–94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ∼0.05 {M}ȯ . We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.

  8. A High Resolution Liquid Xenon Imaging Telescope for 0.3-10 MeV Gamma Ray Astrophysics: Construction and Initial Balloon Flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1993-01-01

    The results achieved with a 3.5 liter liquid xenon time projection chamber (LXe-TPC) prototype during the first year include: the efficiency of detecting the primary scintillation light for event triggering has been measured to be higher than 85%; the charge response has been measured to be stable to within 0.1% for a period of time of about 30 hours; the electron lifetime has been measured to be in excess of 1.3 ms; the energy resolution has been measured to be consistent with previous results obtained with small volume chambers; X-Y gamma ray imaging has been demonstrated with a nondestructive orthogonal wires readout; Monte Carlo simulation results on detection efficiency, expected background count rate at balloon altitude, background reduction algorithms, telescope response to point-like and diffuse sources, and polarization sensitivity calculations; and work on a 10 liter LXe-TPC prototype and gas purification/recovery system.

  9. A Simple and Efficient Method of Extracting DNA from Aged Bones and Teeth.

    PubMed

    Liu, Qiqi; Liu, Liyan; Zhang, Minli; Zhang, Qingzhen; Wang, Qiong; Ding, Xiaoran; Shao, Liting; Zhou, Zhe; Wang, Shengqi

    2018-05-01

    DNA is often difficult to extract from old bones and teeth due to low levels of DNA and high levels of degradation. This study established a simple yet efficient method for extracting DNA from 20 aged bones and teeth (approximately 60 years old). Based on the concentration and STR typing results, the new method of DNA extraction (OM) developed in this study was compared with the PrepFiler™ BTA Forensic DNA Extraction Kit (BM). The total amount of DNA extracted using the OM method was not significantly different from that extracted using the commercial kit (p > 0.05). However, the number of STR loci detected was significantly higher in the samples processed using the OM method than using the BM method (p < 0.05). This study aimed to establish a DNA extraction method for aged bones and teeth to improve the detection rate of STR typing and reduce costs compared to the BM technique. © 2017 American Academy of Forensic Sciences.

  10. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  11. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  12. Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China

    NASA Astrophysics Data System (ADS)

    Qin, Qiming; Zhang, Ning; Nan, Peng; Chai, Leilei

    2011-08-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. Based on radiometric calibration, atmospheric correction and emissivity calculation, a simple but efficient single channel algorithm with acceptable precision is applied to retrieve the land surface temperature (LST) of study area. The LST anomalous areas with temperature about 4-10 K higher than background area are discovered. Four geothermal areas are identified with the discussion of geothermal mechanism and the further analysis of regional geologic structure. The research reveals that the distribution of geothermal areas is consistent with the fault development in study area. Magmatism contributes abundant thermal source to study area and the faults provide thermal channels for heat transfer from interior earth to land surface and facilitate the present of geothermal anomalies. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect LST anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  13. (6)Li-loaded liquid scintillators with pulse shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R; Zarwell, G A

    1979-04-01

    Excellent pulse height and pulse shape discrimination performance has been obtained for liquid scintillators containing as much as 10 wt.% (6)Li-salicylate dissolved in a toluene-methanol solvent system using naphthalene and 9,10 diphenylanthracene as intermediate and secondary solutes. This solution has improved performance at higher (6)Li-loading than solutions in dioxane-water solvent systems, and remains stable at temperatures as low as -10 degrees C. Cells as large as 5 cm in diameter and 15.2 deep have been prepared which have a higher light output for slow neutron detection than (10)B-loaded liquids. Neutron efficiency calculations are also presented.

  14. Compton camera study for high efficiency SPECT and benchmark with Anger system

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.

  15. Attachment of chloride anion to sugars: mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spectrometers.

    PubMed

    Boutegrabet, Lemia; Kanawati, Basem; Gebefügi, Istvan; Peyron, Dominique; Cayot, Philippe; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2012-10-08

    A new method for efficient ionization of sugars in the negative-ion mode of electrospray mass spectrometry is presented. Instead of using strongly hydrophobic dopants such as dichloromethane or chloroform, efficient ionization of sugars has been achieved by using aqueous HCl solution for the first time. This methodology makes it possible to use hydrophilic dopants, which are more appropriate for chromatographic separation techniques with efficient sugar ionization and detection in mass spectrometry. The interaction between chloride anions and monosaccharides (glucose and galactose) was studied by DFT in the gas phase and by implementing the polarizable continuum model (PCM) for calculations in solution at the high B3LYP/6-31+G(d,p)//B3LYP/6-311+G(2d,p) level of theory. In all optimized geometries of identified [M+Cl](-) anions, a non-covalent interaction exists. Differences were revealed between monodentate and bidentate complex anions, with the latter having noticeably higher binding energies. The calculated affinity of glucose and galactose toward the chloride anion in the gas phase and their chloride anion binding energies in solution are in excellent agreement with glucose and galactose [M+Cl](-) experimental intensity profiles that are represented as a function of the chloride ion concentration. Density functional calculations of gas-phase affinities toward chloride anion were also performed for the studied disaccharides sucrose and gentiobiose. All calculations are in excellent agreement with the experimental data. An example is introduced wherein HCl was used to effectively ionize sugars and form chlorinated adduct anions to detect sugars and glycosylated metabolites (anthocyanins) in real biological systems (Vitis vinifera grape extracts and wines), whereas they would not have been easily detectable under standard infusion electrospray mass spectrometry conditions as deprotonated species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection.

    PubMed

    Lau, Han Yih; Botella, Jose R

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  17. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    PubMed Central

    Lau, Han Yih; Botella, Jose R.

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail. PMID:29375588

  18. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ali, Md. Azahar; Mondal, Kunal; Singh, Chandan; Dhar Malhotra, Bansi; Sharma, Ashutosh

    2015-04-01

    We report the fabrication of an efficient, label-free, selective and highly reproducible immunosensor with unprecedented sensitivity (femto-molar) to detect a breast cancer biomarker for early diagnostics. Mesoporous zinc oxide nanofibers (ZnOnFs) are synthesized by electrospinning technique with a fiber diameter in the range of 50-150 nm. Fragments of ZnOnFs are electrophoretically deposited on an indium tin oxide glass substrate and conjugated via covalent or electrostatic interactions with a biomarker (anti-ErbB2; epidermal growth factor receptor 2). Oxygen plasma treatment of the carbon doped ZnOnFs generates functional groups (-COOH, -OH, etc.) that are effective for the conjugation of anti-ErbB2. ZnOnFs without plasma treatment that conjugate via electrostatic interactions were also tested for comparison. Label-free detection of the breast cancer biomarker by this point-of-care device is achieved by an electrochemical impedance technique that has high sensitivity (7.76 kΩ μM-1) and can detect 1 fM (4.34 × 10-5 ng mL-1) concentration. The excellent impedimetric response of this immunosensor provides a fast detection (128 s) in a wide detection test range (1.0 fM-0.5 μM). The oxy-plasma treated ZnOnF immunoelectrode shows a higher association constant (404.8 kM-1 s-1) indicating a higher affinity towards the ErbB2 antigen compared to the untreated ZnOnF immunoelectrode (165.6 kM-1 s-1). This sensor is about an order of magnitude more sensitive than the best demonstrated in the literature based on different nanomaterials and about three orders of magnitude better than the ELISA standard for breast cancer biomarker detection. This proposed point-of-care cancer diagnostic offers several advantages, such as higher stability, rapid monitoring, simplicity, cost-effectiveness, etc., and should prove to be useful for the detection of other bio- and cancer markers.We report the fabrication of an efficient, label-free, selective and highly reproducible immunosensor with unprecedented sensitivity (femto-molar) to detect a breast cancer biomarker for early diagnostics. Mesoporous zinc oxide nanofibers (ZnOnFs) are synthesized by electrospinning technique with a fiber diameter in the range of 50-150 nm. Fragments of ZnOnFs are electrophoretically deposited on an indium tin oxide glass substrate and conjugated via covalent or electrostatic interactions with a biomarker (anti-ErbB2; epidermal growth factor receptor 2). Oxygen plasma treatment of the carbon doped ZnOnFs generates functional groups (-COOH, -OH, etc.) that are effective for the conjugation of anti-ErbB2. ZnOnFs without plasma treatment that conjugate via electrostatic interactions were also tested for comparison. Label-free detection of the breast cancer biomarker by this point-of-care device is achieved by an electrochemical impedance technique that has high sensitivity (7.76 kΩ μM-1) and can detect 1 fM (4.34 × 10-5 ng mL-1) concentration. The excellent impedimetric response of this immunosensor provides a fast detection (128 s) in a wide detection test range (1.0 fM-0.5 μM). The oxy-plasma treated ZnOnF immunoelectrode shows a higher association constant (404.8 kM-1 s-1) indicating a higher affinity towards the ErbB2 antigen compared to the untreated ZnOnF immunoelectrode (165.6 kM-1 s-1). This sensor is about an order of magnitude more sensitive than the best demonstrated in the literature based on different nanomaterials and about three orders of magnitude better than the ELISA standard for breast cancer biomarker detection. This proposed point-of-care cancer diagnostic offers several advantages, such as higher stability, rapid monitoring, simplicity, cost-effectiveness, etc., and should prove to be useful for the detection of other bio- and cancer markers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00194c

  19. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  20. Health risk assessment of phthalate esters (PAEs) in drinking water sources of China.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Wang, Chao; He, Tao; Hu, Hong-Ying

    2015-03-01

    Phthalate esters (PAEs) with endocrine disruption effects and carcinogenicity are widely detected in water environment. Occurrences of PAEs in source water and removal efficiencies of PAEs by drinking water treatment plants (DWTPs) in China were surveyed from publications in the last 10 years. Concentration of diethylhexyl phthalate (DEHP) in source water with median value of 1.3 μg/L was higher than that of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP). If the removal efficiencies of DEHP and DnBP reached 60 and 90 %, respectively, the calculated PAE concentration in drinking water can generally meet Standards for Drinking Water Quality in China. The health risks of PAEs, including non-carcinogenic and carcinogenic risks via the "water source-DWTP-oral ingestion/dermal permeation" pathway, were evaluated with Monte Carlo simulation and sensitivity analysis under certain removal efficiencies from 0 to 95 %. The carcinogenic risk of DEHP was lower than the upper acceptable carcinogenic risk level (10(-4)), while the probability of DEHP's carcinogenic risk between lower (10(-6)) and upper (10(-4)) acceptable carcinogenic risk level decreased from about 21.2 to 0.4 % through increasing DEHP removal efficiency from 0 to 95 %. The non-carcinogenic risk of DEHP was higher than that of DEP and DnBP. In all cases, the total non-carcinogenic risk of DEP, DnBP, and DEHP was lower than 1, indicating that there would be unlikely incremental non-carcinogenic risk to humans. Both carcinogenic risk and non-carcinogenic risk of PAEs in drinking water to female were a little higher than those to male.

  1. Effects of ocular aberrations on contrast detection in noise.

    PubMed

    Liang, Bo; Liu, Rong; Dai, Yun; Zhou, Jiawei; Zhou, Yifeng; Zhang, Yudong

    2012-08-06

    We use adaptive optics (AO) techniques to manipulate the ocular aberrations and elucidate the effects of these ocular aberrations on contrast detection in a noisy background. The detectability of sine wave gratings at frequencies of 4, 8, and 16 circles per degree (cpd) was measured in a standard two-interval force-choice staircase procedure against backgrounds of various levels of white noise. The observer's ocular aberrations were either corrected with AO or left uncorrected. In low levels of external noise, contrast detection thresholds are always lowered by AO correction, whereas in high levels of external noise, they are generally elevated by AO correction. Higher levels of external noise are required to make this threshold elevation observable when signal spatial frequencies increase from 4 to 16 cpd. The linear-amplifier-model fit shows that mostly sampling efficiency and equivalent noise both decrease with AO correction. Our findings indicate that ocular aberrations could be beneficial for contrast detection in high-level noises. The implications of these findings are discussed.

  2. Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems

    NASA Astrophysics Data System (ADS)

    El-Ghandour, Osama M.; Saha, Debabrata

    1991-05-01

    A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.

  3. DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor

    NASA Astrophysics Data System (ADS)

    Hien, L. T.; Quynh, L. K.; Huyen, V. T.; Tu, B. D.; Hien, N. T.; Phuong, D. M.; Nhung, P. H.; Giang, D. T. H.; Duc, N. H.

    2016-12-01

    A disposable card incorporating specific DNA probes targeting the 16 S rRNA gene of Streptococcus suis was developed for magnetically labeled target DNA detection. A single-stranded target DNA was hybridized with the DNA probe on the SPA/APTES/PDMS/Si as-prepared card, which was subsequently magnetically labeled with superparamagnetic beads for detection using an anisotropic magnetoresistive (AMR) sensor. An almost linear response between the output signal of the AMR sensor and amount of single-stranded target DNA varied from 4.5 to 18 pmol was identified. From the sensor output signal response towards the mass of magnetic beads which were directly immobilized on the disposable card surface, the limit of detection was estimated about 312 ng ferrites, which corresponds to 3.8 μemu. In comparison with DNA detection by conventional biosensor based on magnetic bead labeling, disposable cards are featured with higher efficiency and performances, ease of use and less running cost with respects to consumables for biosensor in biomedical analysis systems operating with immobilized bioreceptor.

  4. Cognitive and connectome properties detectable through individual differences in graphomotor organization.

    PubMed

    Lamar, Melissa; Ajilore, Olusola; Leow, Alex; Charlton, Rebecca; Cohen, Jamie; GadElkarim, Johnson; Yang, Shaolin; Zhang, Aifeng; Davis, Randall; Penney, Dana; Libon, David J; Kumar, Anand

    2016-05-01

    We investigated whether graphomotor organization during a digitized Clock Drawing Test (dCDT) would be associated with cognitive and/or brain structural differences detected with a tractography-derived structural connectome of the brain. 72 non-demented/non-depressed adults were categorized based on whether or not they used 'anchor' digits (i.e., 12, 3, 6, 9) before any other digits while completing dCDT instructions to "draw the face of a clock with all the numbers and set the hands to 10 after 11". 'Anchorers' were compared to 'non-anchorers' across dCDT, additional cognitive measures and connectome-based metrics. In the context of grossly intact clock drawings, anchorers required fewer strokes to complete the dCDT and outperformed non-anchorers on executive functioning and learning/memory/recognition tasks. Anchorers had higher local efficiency for the left medial orbitofrontal and transverse temporal cortices as well as the right rostral anterior cingulate and superior frontal gyrus versus non-anchorers suggesting better regional integration within local networks involving these regions; select aspects of which correlated with cognition. Results also revealed that anchorers' exhibited a higher degree of modular integration among heteromodal regions of the ventral visual processing stream versus non-anchorers. Thus, an easily observable graphomotor distinction was associated with 1) better performance in specific cognitive domains, 2) higher local efficiency suggesting better regional integration, and 3) more sophisticated modular integration involving the ventral ('what') visuospatial processing stream. Taken together, these results enhance our knowledge of the brain-behavior relationships underlying unprompted graphomotor organization during dCDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene

    PubMed Central

    Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-01-01

    Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640

  6. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.

  7. Association and dissociation between detection and discrimination of objects of expertise: Evidence from visual search.

    PubMed

    Golan, Tal; Bentin, Shlomo; DeGutis, Joseph M; Robertson, Lynn C; Harel, Assaf

    2014-02-01

    Expertise in face recognition is characterized by high proficiency in distinguishing between individual faces. However, faces also enjoy an advantage at the early stage of basic-level detection, as demonstrated by efficient visual search for faces among nonface objects. In the present study, we asked (1) whether the face advantage in detection is a unique signature of face expertise, or whether it generalizes to other objects of expertise, and (2) whether expertise in face detection is intrinsically linked to expertise in face individuation. We compared how groups with varying degrees of object and face expertise (typical adults, developmental prosopagnosics [DP], and car experts) search for objects within and outside their domains of expertise (faces, cars, airplanes, and butterflies) among a variable set of object distractors. Across all three groups, search efficiency (indexed by reaction time slopes) was higher for faces and airplanes than for cars and butterflies. Notably, the search slope for car targets was considerably shallower in the car experts than in nonexperts. Although the mean face slope was slightly steeper among the DPs than in the other two groups, most of the DPs' search slopes were well within the normative range. This pattern of results suggests that expertise in object detection is indeed associated with expertise at the subordinate level, that it is not specific to faces, and that the two types of expertise are distinct facilities. We discuss the potential role of experience in bridging between low-level discriminative features and high-level naturalistic categories.

  8. N-Hydroxysuccinimide as an effective chemiluminescence coreactant for highly selective and sensitive detection.

    PubMed

    Saqib, Muhammad; Li, Suping; Gao, Wenyue; Majeed, Saadat; Qi, Liming; Liu, Zhongyuan; Xu, Guobao

    2016-12-01

    The development of novel coreactants for chemiluminescence is very important to improve performance and widen its applications without using any other catalyst. N-Hydroxysuccinimide (NHS), a highly popular amine-reactive, activating, or protecting reagent in biochemical applications and organic synthesis, has been explored as an efficient and stable chemiluminescence coreactant for the first time. The chemiluminescence intensity of the newly developed luminol-NHS system is about 22 times higher than that of the traditional luminol-H 2 O 2 system. Chemiluminescence of this system is dramatically enhanced by Co 2+ . This new chemiluminescence system is then applied for the highly selective and ultrasensitive detection of Co 2+ with limit of detection (0.01 nM) better than those of several conventional analytical methods. This system also enables the efficient detection of luminol (LOD = 7 pM) and NHS (LOD = 3.0 μM) with excellent sensitivity. This chemiluminescence method was then also utilized to detect Co 2+ in tap water and blue silica gel with excellent recoveries in the range 99.20-103.07 %. This novel chemiluminescence system has several advantages, including simple, cost-effective, highly sensitive, selective, and wide linear range. We expect that this chemiluminescence system will be a promising candidate for chemical and biological sensing. Graphical Abstract Comparison of CL peak intensities of classical luminol-H 2 O 2 CL system and newly developed luminol-NHS CL system.

  9. Efficient search for a face by chimpanzees (Pan troglodytes).

    PubMed

    Tomonaga, Masaki; Imura, Tomoko

    2015-07-16

    The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces--but not monkey faces--efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model.

  10. Efficient search for a face by chimpanzees (Pan troglodytes)

    PubMed Central

    Tomonaga, Masaki; Imura, Tomoko

    2015-01-01

    The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces-but not monkey faces-efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model. PMID:26180944

  11. Detecting event-related changes in organizational networks using optimized neural network models.

    PubMed

    Li, Ze; Sun, Duoyong; Zhu, Renqi; Lin, Zihan

    2017-01-01

    Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques.

  12. Detecting event-related changes in organizational networks using optimized neural network models

    PubMed Central

    Sun, Duoyong; Zhu, Renqi; Lin, Zihan

    2017-01-01

    Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques. PMID:29190799

  13. Neutron counting with cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involvedmore » are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)« less

  14. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic surveillance data while controlling the Bayesian False Discovery Rate (BFDR). The procedure entails choosing an appropriate Bayesian model that captures the spatial dependency inherent in epidemiological data and considers all days of interest, selecting a test statistic based on a chosen measure that provides the magnitude of the maximumal spatial cluster for each day, and identifying a cutoff value that controls the BFDR for rejecting the collective null hypothesis of no outbreak over a collection of days for a specified region.We use our procedure to analyze botulism-like syndrome data collected by the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT).

  15. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells.

    PubMed

    Tang, Man; Wen, Cong-Ying; Wu, Ling-Ling; Hong, Shao-Li; Hu, Jiao; Xu, Chun-Miao; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-04-07

    The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.

  16. The effectiveness of detection of splashed particles using a system of three integrated high-speed cameras

    NASA Astrophysics Data System (ADS)

    Ryżak, Magdalena; Beczek, Michał; Mazur, Rafał; Sochan, Agata; Bieganowski, Andrzej

    2017-04-01

    The phenomenon of splash, which is one of the factors causing erosion of the soil surface, is the subject of research of various scientific teams. One of efficient methods of observation and analysis of this phenomenon are high-speed cameras to measure particles at 2000 frames per second or higher. Analysis of the phenomenon of splash with the use of high-speed cameras and specialized software can reveal, among other things, the number of broken particles, their speeds, trajectories, and the distances over which they were transferred. The paper presents an attempt at evaluation of the efficiency of detection of splashed particles with the use of a set of 3 cameras (Vision Research MIRO 310) and software Dantec Dynamics Studio, using a 3D module (Volumetric PTV). In order to assess the effectiveness of estimating the number of particles, the experiment was performed on glass beads with a diameter of 0.5 mm (corresponding to the sand fraction). Water droplets with a diameter of 4.2 mm fell on a sample from a height of 1.5 m. Two types of splashed particles were observed: particle having a low range (up to 18 mm) splashed at larger angles and particles of a high range (up to 118 mm) splashed at smaller angles. The detection efficiency the number of splashed particles estimated by the software was 45 - 65% for particles with a large range. The effectiveness of the detection of particles by the software has been calculated on the basis of comparison with the number of beads that fell on the adhesive surface around the sample. This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851.

  17. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China.

    PubMed

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-08-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of 85% in A/O process and 60-77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  19. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    PubMed

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  20. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress

    PubMed Central

    Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue

    2014-01-01

    Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523

  1. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Liu, Fanxin; Cao, Zhishen; Tang, Chaojun; Chen, Ling; Wang, Zhenlin

    2010-05-25

    We have demonstrated that by coating with a thin dielectric layer of tetrahedral amorphous carbon (ta-C), a biocompatible and optical transparent material in the visible range, the Ag nanoparticle-based substrate becomes extremely suitable for surface-enhanced Raman spectroscopy (SERS). Our measurements show that a 10 A or thicker ta-C layer becomes efficient to protect the oxygen-free Ag in air and prevent Ag ionizing in aqueous solutions. Furthermore, the Ag nanoparticles substrate coated with a 10 A ta-C film shows a higher enhancement of Raman signals than the uncoated substrate. These observations are further supported by our numerical simulations. We suggest that biomolecule detections in analytic assays could be easily realized using ta-C-coated Ag-based substrate for SERS especially in the visible range. The coated substrate also has higher mechanical stability, chemical inertness, and technological compliance, and may be useful, for example, to enhance TiO(2) photocatalysis and solar-cell efficiency by the surface plasmons.

  2. Hybrid graphene-copper UWB array sensor for brain tumor detection via scattering parameters in microwave detection system

    NASA Astrophysics Data System (ADS)

    Jamlos, Mohd Aminudin; Ismail, Abdul Hafiizh; Jamlos, Mohd Faizal; Narbudowicz, Adam

    2017-01-01

    Hybrid graphene-copper ultra-wideband array sensor applied to microwave imaging technique is successfully used in detecting and visualizing tumor inside human brain. The sensor made of graphene coated film for the patch while copper for both the transmission line and parasitic element. The hybrid sensor performance is better than fully copper sensor. Hybrid sensor recorded wider bandwidth of 2.0-10.1 GHz compared with fully copper sensor operated from 2.5 to 10.1 GHz. Higher gain of 3.8-8.5 dB is presented by hybrid sensor, while fully copper sensor stated lower gain ranging from 2.6 to 6.7 dB. Both sensors recorded excellent total efficiency averaged at 97 and 94%, respectively. The sensor used for both transmits equivalent signal and receives backscattering signal from stratified human head model in detecting tumor. Difference in the data of the scattering parameters recorded from the head model with presence and absence of tumor is used as the main data to be further processed in confocal microwave imaging algorithm in generating image. MATLAB software is utilized to analyze S-parameter signals obtained from measurement. Tumor presence is indicated by lower S-parameter values compared to higher values recorded by tumor absence.

  3. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    PubMed

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  4. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  5. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    NASA Astrophysics Data System (ADS)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  6. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aimsmore » to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.« less

  8. Enhanced Microchip Electrophoresis Separations Combined with Electrochemical Detection Utilizing a Capillary Embedded in Polystyrene.

    PubMed

    Mehl, Benjamin T; Martin, R Scott

    2018-01-07

    The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.

  9. Soft error rate simulation and initial design considerations of neutron intercepting silicon chip (NISC)

    NASA Astrophysics Data System (ADS)

    Celik, Cihangir

    Advances in microelectronics result in sub-micrometer electronic technologies as predicted by Moore's Law, 1965, which states the number of transistors in a given space would double every two years. The most available memory architectures today have submicrometer transistor dimensions. The International Technology Roadmap for Semiconductors (ITRS), a continuation of Moore's Law, predicts that Dynamic Random Access Memory (DRAM) will have an average half pitch size of 50 nm and Microprocessor Units (MPU) will have an average gate length of 30 nm over the period of 2008-2012. Decreases in the dimensions satisfy the producer and consumer requirements of low power consumption, more data storage for a given space, faster clock speed, and portability of integrated circuits (IC), particularly memories. On the other hand, these properties also lead to a higher susceptibility of IC designs to temperature, magnetic interference, power supply, and environmental noise, and radiation. Radiation can directly or indirectly affect device operation. When a single energetic particle strikes a sensitive node in the micro-electronic device, it can cause a permanent or transient malfunction in the device. This behavior is called a Single Event Effect (SEE). SEEs are mostly transient errors that generate an electric pulse which alters the state of a logic node in the memory device without having a permanent effect on the functionality of the device. This is called a Single Event Upset (SEU) or Soft Error . Contrary to SEU, Single Event Latchup (SEL), Single Event Gate Rapture (SEGR), or Single Event Burnout (SEB) they have permanent effects on the device operation and a system reset or recovery is needed to return to proper operations. The rate at which a device or system encounters soft errors is defined as Soft Error Rate (SER). The semiconductor industry has been struggling with SEEs and is taking necessary measures in order to continue to improve system designs in nano-scale technologies. Prevention of SEEs has been studied and applied in the semiconductor industry by including radiation protection precautions in the system architecture or by using corrective algorithms in the system operation. Decreasing 10B content (20%of natural boron) in the natural boron of Borophosphosilicate glass (BPSG) layers that are conventionally used in the fabrication of semiconductor devices was one of the major radiation protection approaches for the system architecture. Neutron interaction in the BPSG layer was the origin of the SEEs because of the 10B (n,alpha) 7Li reaction products. Both of the particles produced have the capability of ionization in the silicon substrate region, whose thickness is comparable to the ranges of these particles. Using the soft error phenomenon in exactly the opposite manner of the semiconductor industry can provide a new neutron detection system based on the SERs in the semiconductor memories. By investigating the soft error mechanisms in the available semiconductor memories and enhancing the soft error occurrences in these devices, one can convert all memory using intelligent systems into portable, power efficient, directiondependent neutron detectors. The Neutron Intercepting Silicon Chip (NISC) project aims to achieve this goal by introducing 10B-enriched BPSG layers to the semiconductor memory architectures. This research addresses the development of a simulation tool, the NISC Soft Error Analysis Tool (NISCSAT), for soft error modeling and analysis in the semiconductor memories to provide basic design considerations for the NISC. NISCSAT performs particle transport and calculates the soft error probabilities, or SER, depending on energy depositions of the particles in a given memory node model of the NISC. Soft error measurements were performed with commercially available, off-the-shelf semiconductor memories and microprocessors to observe soft error variations with the neutron flux and memory supply voltage. Measurement results show that soft errors in the memories increase proportionally with the neutron flux, whereas they decrease with increasing the supply voltages. NISC design considerations include the effects of device scaling, 10B content in the BPSG layer, incoming neutron energy, and critical charge of the node for this dissertation. NISCSAT simulations were performed with various memory node models to account these effects. Device scaling simulations showed that any further increase in the thickness of the BPSG layer beyond 2 mum causes self-shielding of the incoming neutrons due to the BPSG layer and results in lower detection efficiencies. Moreover, if the BPSG layer is located more than 4 mum apart from the depletion region in the node, there are no soft errors in the node due to the fact that both of the reaction products have lower ranges in the silicon or any possible node layers. Calculation results regarding the critical charge indicated that the mean charge deposition of the reaction products in the sensitive volume of the node is about 15 fC. It is evident that the NISC design should have a memory architecture with a critical charge of 15 fC or less to obtain higher detection efficiencies. Moreover, the sensitive volume should be placed in close proximity to the BPSG layers so that its location would be within the range of alpha and 7Li particles. Results showed that the distance between the BPSG layer and the sensitive volume should be less than 2 mum to increase the detection efficiency of the NISC. Incoming neutron energy was also investigated by simulations and the results obtained from these simulations showed that NISC neutron detection efficiency is related with the neutron cross-sections of 10B (n,alpha) 7Li reaction, e.g., ratio of the thermal (0.0253 eV) to fast (2 MeV) neutron detection efficiencies is approximately equal to 8000:1. Environmental conditions and their effects on the NISC performance were also studied in this research. Cosmic rays were modeled and simulated via NISCSAT to investigate detection reliability of the NISC. Simulation results show that cosmic rays account for less than 2 % of the soft errors for the thermal neutron detection. On the other hand, fast neutron detection by the NISC, which already has a poor efficiency due to the low neutron cross-sections, becomes almost impossible at higher altitudes where the cosmic ray fluxes and their energies are higher. NISCSAT simulations regarding soft error dependency of the NISC for temperature and electromagnetic fields show that there are no significant effects in the NISC detection efficiency. Furthermore, the detection efficiency of the NISC decreases with both air humidity and use of moderators since the incoming neutrons scatter away before reaching the memory surface.

  10. Cell cycle distribution, cellular viability and mRNA expression of hGCase-gene-transfected cells in dairy goat.

    PubMed

    Zhang, Yan-Li; Wan, Yong-Jie; Wang, Zi-Yu; Qi, Wei-Wei; Zhou, Zheng-Rong; Huang, Rong; Wang, Feng

    2010-05-07

    Nuclear transfer using transgenic donor cells is an efficient way of generating transgenic goats, wherein the preparation of competent transgenic donor cells is the pivotal upstream step. We have measured the efficiency of transfection with a plasmid containing hGCase (human lysosomal acid beta-glucosidase) gene into goat FFC (fetal-derived fibroblast cells), MEC (mammary epithelial cells) and AEFC (adult ear skin-derived fibroblast cells), and the characteristics of cell cycle, apoptosis and chromosome abnormalities after transfection. The expression of genes involved in imprinting [IGF2 (insulin-like growth factor 2), IGF2R (IGF2 receptor)], apoptosis (Bax), stress (heat-shock protein, Hsp70.1), cellular connections [Cx43 (connexin 43)] and DNA methylation [DNMT1 (DNA methyltransferase 1)] in transgenic fetal cells has been investigated. The hGCase transgene was successfully detected in the transfected cell lines, and chromosomal stability remained similar in FFC and transgenic FFC (70.9 compared with 66.8%), whereas a smaller percentage (P<0.05) of cells at G(0)/G(1) in the transgenic FFC, MEC and AEFC (T-FFC, T-MEC and T-AEFC), and higher percentage (P<0.05) of apoptotic cells in T-FFC than the non-transfected controls were detected by flow cytometric analysis. Among the genes tested, the relative expressions of IGF2, IGF2R and transcripts of Cx43 were significantly higher (P<0.05) in T-FFC compared with non-transfected FFC. These novel findings on gene expression in transgenic fetal cells may have certain implications in the biopharming industry and in our understanding the low efficiency of transgenic cloning.

  11. Interquantile Shrinkage in Regression Models

    PubMed Central

    Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.

    2012-01-01

    Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546

  12. A novel Laser Ion Mobility Spectrometer

    NASA Astrophysics Data System (ADS)

    Göbel, J.; Kessler, M.; Langmeier, A.

    2009-05-01

    IMS is a well know technology within the range of security based applications. Its main advantages lie in the simplicity of measurement, along with a fast and sensitive detection method. Contemporary technology often fails due to interference substances, in conjunction with saturation effects and a low dynamic detection range. High throughput facilities, such as airports, require the analysis of many samples at low detection limits within a very short timeframe. High detection reliability is a requirement for safe and secure operation. In our present work we developed a laser based ion-mobility-sensor which shows several advantages over known IMS sensor technology. The goal of our research was to increase the sensitivity compared to the range of 63Ni based instruments. This was achieved with an optimised geometric drift tube design and a pulsed UV laser system at an efficient intensity. In this intensity range multi-photon ionisation is possible, which leads to higher selectivity in the ion-formation process itself. After high speed capturing of detection samples, a custom designed pattern recognition software toolbox provides reliable auto-detection capability with a learning algorithm and a graphical user interface.

  13. Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range

    NASA Astrophysics Data System (ADS)

    Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.

    2018-02-01

    We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.

  14. Remote detection of single emitters via optical waveguides

    NASA Astrophysics Data System (ADS)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  15. Estimating the influence of population density and dispersal behavior on the ability to detect and monitor Agrilus planipennis (Coleoptera: Buprestidae) populations.

    PubMed

    Mercader, R J; Siegert, N W; McCullough, D G

    2012-02-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.

  16. Exploring Damped Ly Alpha System Host Galaxies Using Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Toy, Vicki L.; Cucchiara, Antonino; Veilleux, Sylvain; Fumagalli, Michele; Rafelski, Marc; Rahmati, Alireza; Cenko, S. Bradley; Capone, John I.; Pasham, Dheeraj R.

    2016-01-01

    We present a sample of 45 Damped Ly-Alpha system [DLA; H I-N is greater than or equal to 2 x 10(exp. 20) cm(exp. -2)] counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z is approx. 2 - 6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or H I column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z is approximately 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under- and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow.

  17. Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands.

    PubMed

    Lodder, W J; de Roda Husman, A M

    2005-03-01

    Since virus concentrations in drinking waters are generally below the detection limit, the infectious risk from drinking water consumption requires assessment from the virus concentrations in source waters and removal efficiency of treatment processes. In this study, we estimated from reverse transcription-PCR on 10-fold serially diluted RNA that noroviruses, the most prevalent waterborne gastroenteritis agents, were present at 4 (0.2 to 38) to 4,900 (303 to 4.6 x 10(4)) PCR-detectable units (PDU) per liter of river water (ranges are given in parentheses). These virus concentrations are still high compared with 896 to 7,499 PDU/liter of treated sewage and 5,111 to 850,000 PDU/liter in raw sewage. Sequencing analyses designated human norovirus GGII.4 Lordsdale as the most prevalent strain in the sampling period 1998 to 1999 in both sewage and surface waters. Other GGII strains were also very abundant, indicating that the majority of the virus contamination was derived from urban sewage, although very divergent strains and one animal strain were also detected in the surface and sewage waters. Rotaviruses were also detected in two large rivers (the Maas and the Waal) at 57 to 5,386 PDU/liter. The high virus concentrations determined by PCR may in part be explained by the detection of virus RNA instead of infectious particles. Indeed, reoviruses and enteroviruses that can be cultured were present at much lower levels, of 0.3 to 1 and 2 to 10 PFU/liter, respectively. Assuming 1% of the noroviruses and rotaviruses to be infectious, a much higher disease burden than for other viruses can be expected, not only because of the higher levels but also because of these viruses' higher infectivity and attack rates.

  18. Presence of Noroviruses and Other Enteric Viruses in Sewage and Surface Waters in The Netherlands

    PubMed Central

    Lodder, W. J.; de Roda Husman, A. M.

    2005-01-01

    Since virus concentrations in drinking waters are generally below the detection limit, the infectious risk from drinking water consumption requires assessment from the virus concentrations in source waters and removal efficiency of treatment processes. In this study, we estimated from reverse transcription-PCR on 10-fold serially diluted RNA that noroviruses, the most prevalent waterborne gastroenteritis agents, were present at 4 (0.2 to 38) to 4,900 (303 to 4.6 × 104) PCR-detectable units (PDU) per liter of river water (ranges are given in parentheses). These virus concentrations are still high compared with 896 to 7,499 PDU/liter of treated sewage and 5,111 to 850,000 PDU/liter in raw sewage. Sequencing analyses designated human norovirus GGII.4 Lordsdale as the most prevalent strain in the sampling period 1998 to 1999 in both sewage and surface waters. Other GGII strains were also very abundant, indicating that the majority of the virus contamination was derived from urban sewage, although very divergent strains and one animal strain were also detected in the surface and sewage waters. Rotaviruses were also detected in two large rivers (the Maas and the Waal) at 57 to 5,386 PDU/liter. The high virus concentrations determined by PCR may in part be explained by the detection of virus RNA instead of infectious particles. Indeed, reoviruses and enteroviruses that can be cultured were present at much lower levels, of 0.3 to 1 and 2 to 10 PFU/liter, respectively. Assuming 1% of the noroviruses and rotaviruses to be infectious, a much higher disease burden than for other viruses can be expected, not only because of the higher levels but also because of these viruses' higher infectivity and attack rates. PMID:15746348

  19. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    PubMed

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  20. Design of stepwise screening for prediabetes and type 2 diabetes based on costs and cases detected.

    PubMed

    de Graaf, Gimon; Postmus, Douwe; Bakker, Stephan J L; Buskens, Erik

    2015-09-01

    To provide insight into the trade-off between cost per case detected (CPCD) and the detection rate in questionnaire-based stepwise screening for impaired fasting glucose and undiagnosed type 2 diabetes. We considered a stepwise screening in which individuals whose risk score exceeds a predetermined cutoff value are invited for further blood glucose testing. Using individual patient data to determine questionnaire sensitivity and specificity and external sources to determine screening costs and patient response rates, we rolled back a decision tree to estimate the CPCD and the detection rate for all possible cutoffs on the questionnaire. We found a U-shaped relation between CPCD and detection rate, with high costs per case detected at very low and very high detection rates. Changes in patient response rates had a large impact on both the detection rate and the CPCD, whereas screening costs and questionnaire accuracy mainly impacted the CPCD. Our applied method makes it possible to identify a range of efficient cutoffs where higher detection rates can be achieved at an additional cost per detected patient. This enables decision makers to choose an optimal cutoff based on their willingness to pay for additional detected patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.

    PubMed

    Witters, Daan; Knez, Karel; Ceyssens, Frederik; Puers, Robert; Lammertyn, Jeroen

    2013-06-07

    Digital microfluidics is introduced as a novel platform with unique advantages for performing single-molecule detection. We demonstrate how superparamagnetic beads, used for capturing single protein molecules, can be printed with unprecedentedly high loading efficiency and single bead resolution on an electrowetting-on-dielectric-based digital microfluidic chip by micropatterning the Teflon-AF surface of the device. By transporting droplets containing suspended superparamagnetic beads over a hydrophilic-in-hydrophobic micropatterned Teflon-AF surface, single beads are trapped inside the hydrophilic microwells due to their selective wettability and tailored dimensions. Digital microfluidics presents the following advantages for printing and sealing magnetic beads for single-molecule detection: (i) droplets containing suspended beads can be transported back and forth over the array of hydrophilic microwells to obtain high loading efficiencies of microwells with single beads, (ii) the use of hydrophilic-in-hydrophobic patterns permits the use of a magnet to speed up the bead transfer process to the wells, while the receding droplet meniscus removes excess beads off the chip surface and thereby shortens the bead patterning time, and (iii) reagents can be transported over the printed beads multiple times, while capillary forces and a magnet hold the printed beads in place. High loading efficiencies (98% with a CV of 0.9%) of single beads in microwells were obtained by transporting droplets of suspended beads over the array 10 times in less than 1 min, which is much higher than previously reported methods (40-60%), while the total surface area needed for performing single-molecule detection can be decreased. The performance of the device was demonstrated by fluorescent detection of the presence of the biotinylated enzyme β-galactosidase on streptavidin-coated beads with a linear dynamic range of 4 orders of magnitude ranging from 10 aM to 90 fM.

  2. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser

    PubMed Central

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-01-01

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures. PMID:25524646

  3. Recurrent neural network based virtual detection line

    NASA Astrophysics Data System (ADS)

    Kadikis, Roberts

    2018-04-01

    The paper proposes an efficient method for detection of moving objects in the video. The objects are detected when they cross a virtual detection line. Only the pixels of the detection line are processed, which makes the method computationally efficient. A Recurrent Neural Network processes these pixels. The machine learning approach allows one to train a model that works in different and changing outdoor conditions. Also, the same network can be trained for various detection tasks, which is demonstrated by the tests on vehicle and people counting. In addition, the paper proposes a method for semi-automatic acquisition of labeled training data. The labeling method is used to create training and testing datasets, which in turn are used to train and evaluate the accuracy and efficiency of the detection method. The method shows similar accuracy as the alternative efficient methods but provides greater adaptability and usability for different tasks.

  4. Enhancing Sensitivity of Liquid Chromatography-Mass Spectrometry of Peptides and Proteins Using Supercharging Agents.

    PubMed

    Nshanian, Michael; Lakshmanan, Rajeswari; Chen, Hao; Ogorzalek Loo, Rachel R; Loo, Joseph A

    2018-04-01

    Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.

  5. Efficient photoconductive terahertz detector with all-dielectric optical metasurface

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Oleg; Siday, Thomas; Thompson, Robert J.; Luk, Ting Shan; Brener, Igal; Reno, John L.

    2018-05-01

    We designed an optically thin photoconductive channel as an all-dielectric metasurface comprising an array of low-temperature grown GaAs nanobeams and a sub-surface distributed Bragg reflector. The metasurface exhibited enhanced optical absorption, and it was integrated into a photoconductive THz detector, which showed high efficiency and sensitivity as a result. The detector produced photocurrents over one order of magnitude higher compared to a similar detector with an unstructured surface with only 0.5 mW of optical excitation while exhibiting high dark resistance required for low-noise detection in THz time-domain spectroscopy and imaging. At that level of optical excitation, the metasurface detector showed a high signal to noise ratio of 106. The detector showed saturation above that level.

  6. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less

  7. Compact CdZnTe-based gamma camera for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera have been completed. The results show better than 6-mm resolution at a distance of 1 cm. Details of the test results are discussed in this paper.

  8. Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in foods.

    PubMed

    Qi, Feifei; Jian, Ningge; Qian, Liangliang; Cao, Weixin; Xu, Qian; Li, Jian

    2017-09-01

    A simple and efficient three-step sample preparation method was developed and optimized for the simultaneous analysis of illegal anionic and cationic dyes (acid orange 7, metanil yellow, auramine-O, and chrysoidine) in food samples. A novel solid-phase extraction (SPE) procedure based on nanofibers mat (NFsM) was proposed after solvent extraction and freeze-salting out purification. The preferred SPE sorbent was selected from five functionalized NFsMs by orthogonal experimental design, and the optimization of SPE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD). Under the optimal conditions, the target analytes could be completely adsorbed by polypyrrole-functionalized polyacrylonitrile NFsM (PPy/PAN NFsM), and the eluent was directly analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The limits of detection (LODs) were between 0.002 and 0.01 mg kg -1 , and satisfactory linearity with correlation coefficients (R > 0.99) for each dye in all samples was achieved. Compared with the Chinese standard method and the published methods, the proposed method was simplified greatly with much lower requirement of sorbent (5.0 mg) and organic solvent (2.8 mL) and higher sample preparation speed (10 min/sample), while higher recovery (83.6-116.5%) and precision (RSDs < 7.1%) were obtained. With this developed method, we have successfully detected illegal ionic dyes in three common representative foods: yellow croaker, soybean products, and chili seasonings. Graphical abstract Schematic representation of the process of the three-step sample preparation.

  9. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    PubMed

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  10. Velocity measurements by laser resonance fluorescence. [single atom diffusional motion

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Fairbank, W. M., Jr.

    1980-01-01

    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.

  11. Evaluation of SDS depletion using an affinity spin column and IMS-MS detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna M.; Floyd, Erica A.; Baker, Erin Shammel

    2012-11-01

    While the use of detergents is necessary for a variety of protein isolation preparation protocols, often prior to mass spectral (MS) analysis, they are not compatible with MS analysis due to ion suppression and adduct formation. This manuscript describes optimization of detergent removal, using commercially available SDS depletion spin columns containing an affinity resin, providing for both increased protein recovery and thorough SDS removal. Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) allowed for a concurrent analysis of both analyte and detergent. In the case of both proteins and peptides, higher detergent concentrations than previously reported provided an increase ofmore » sample recovery; however there was a limit as SDS was detected by IMS-MS at higher levels of SDS indicating incomplete detergent depletion. The results also suggest optimal conditions for SDS removal are dependent on the sample concentration. Overall, this study provides a useful guide for proteomic studies where SDS is required for efficient sample preparation.« less

  12. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Finally, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.« less

  13. Fundamental and Applied Investigations in Atomic Spectrometric Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).

  14. Efficiency of depleted UO2 based semiconductor neutron detectors in direct and indirect configuration—A GEANT4 simulation study

    NASA Astrophysics Data System (ADS)

    Parida, M. K.; Prabakar, K.; Sundari, S. T.

    2018-03-01

    In the present work, Monte Carlo simulations using GEANT4 are carried out to estimate the efficiency of semiconductor neutron detectors with depleted UO2 (DUO2) as converter material, in both planar (direct and indirect) and 3D geometry (cylindrical perforation and trenches structure) configurations. The simulations were conducted for neutrons of variable energy viz., thermal (25 meV) and fast (1 to 10 MeV) that were incident on varying thicknesses (0.25 μm to 1000 μm), diameters (1 μm to 9 μm) and widths (1 μm to 9 μm) along with depths (50 μm to 275 μm) of DUO2 for planar, cylindrical perforated and trench structures, respectively. In the case of direct planar detectors, efficiency was found to increase with the thickness of DUO2 and the rate at which efficiency increased was found to follow the macroscopic fission cross section at the corresponding neutron energy. In the case of indirect planar detector, efficiency was lower as compared to direct configuration and was found to saturate beyond a thickness of ~3 μm. This saturation is explained on the basis of mean free path of neutrons in the DUO2 material. For the 3D perforated silicon detectors of cylindrical (trench) geometry, backfilled with DUO2, the efficiency for detection of thermal neutrons ~25 meV and fast neutrons ~ typical energy of 10 MeV was found to be ~0.0159% (~0.0177%) and ~0.0088% (0.0098%), respectively. These efficiency values were two (one) order values higher than planar indirect detector for thermal (fast) neutrons. Histogram plots were also obtained from the GEANT4 simulations to monitor the energy distribution of fission products in planar (direct and indirect) and 3D geometry (cylindrical and trench) configurations. These plots revealed that, for all the detector configurations, the energy deposited by the fission products are higher as compared to the typical gamma ray background. Thus, for detectors with DUO2 as converter material, higher values of low level discriminator (LLD) can be set, so as to achieve good background discrimination.

  15. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen.

    PubMed

    Carro, M D; Ranilla, M J; Martín-García, A I; Molina-Alcaide, E

    2009-04-01

    Eight Rusitec and eight single-flow continuous-culture fermenters (SFCCF) were used to compare the ruminal fermentation of two diets composed of alfalfa hay and concentrate in proportions of 80 : 20 (F80) and 20 : 80 (F20). Results were validated with those obtained previously in sheep fed the same diets. Rusitec fermenters were fed once daily and SFCCF twice, but liquid dilution rates were similar in both types of fermenters. Mean values of pH over the 12 h postfeeding were higher (P < 0.001) in Rusitec than in SFCCF, with diet F80 showing higher values (P < 0.001) in both types of fermenters. Concentrations of total volatile fatty acids (VFA) were higher (P < 0.001) in SFCCF than in Rusitec, and in both systems were higher (P = 0.002) for diet F20 than for diet F80. There were significant differences between systems in the proportions of the main VFA, and a fermentation system × diet interaction (P < 0.001) was detected for all VFA with the exception of valerate. No differences (P = 0.145) between the two types of fermenters were detected in dry matter (DM) digestibility, but NDF, microbial N flow and its efficiency were higher (P = 0.001) in SFCCF compared to Rusitec. Whereas pH values and VFA concentrations remained fairly stable through the day in both in vitro systems, pH dropped and VFA increased shortly after feeding in sheep rumen reaching the minimum and maximal values, respectively, about 4 h after feeding. Both in vitro systems detected differences between diets similar to those found in sheep for liquid dilution rate, pH values, DM digestibility, microbial N flow and growth efficiency. In contrast, acetate/propionate ratios were lower for diet F20 than for F80 in sheep rumen (2.73 and 3.97) and SFCCF (3.07 and 4.80), but were higher for diet F20 compared to F80 (4.29 and 3.40) in Rusitec, with values considered to be unphysiological for high-concentrate diets. In vivo NDF digestibility was affected (P = 0.017) by diet, but no differences between diets (P > 0.05) were found in any in vitro system. A more precise control of pH in both types of fermenters and a reduction of concentrate retention time in Rusitec could probably improve the simulation of in vivo fermentation.

  16. An Efficient Reachability Analysis Algorithm

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh; Fijany, Amir

    2008-01-01

    A document discusses a new algorithm for generating higher-order dependencies for diagnostic and sensor placement analysis when a system is described with a causal modeling framework. This innovation will be used in diagnostic and sensor optimization and analysis tools. Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in-situ platforms. This algorithm will serve as a power tool for technologies that satisfy a key requirement of autonomous spacecraft, including science instruments and in-situ missions.

  17. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  18. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry.

    PubMed

    Zhao, Xiaoyong; Shen, Shanshan; Wu, Datong; Cai, Pengfei; Pan, Yuanjiang

    2017-09-08

    Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Johnson, John A.; Morton, Timothy D.

    2015-11-01

    We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.

  20. Efficiency of two-way weirs and prepositioned electrofishing for sampling potamodromous fish migrations

    USGS Publications Warehouse

    Favrot, Scott D.; Kwak, Thomas J.

    2016-01-01

    Potamodromy (i.e., migration entirely in freshwater) is a common life history strategy of North American lotic fishes, and efficient sampling methods for potamodromous fishes are needed to formulate conservation and management decisions. Many potamodromous fishes inhabit medium-sized rivers and are mobile during spawning migrations, which complicates sampling with conventional gears (e.g., nets and electrofishing). We compared the efficiency of a passive migration technique (resistance board weirs) and an active technique (prepositioned areal electrofishers; [PAEs]) for sampling migrating potamodromous fishes in Valley River, a southern Appalachian Mountain river, from March through July 2006 and 2007. A total of 35 fish species from 10 families were collected, 32 species by PAE and 19 species by weir. Species richness and diversity were higher for PAE catch, and species dominance (i.e., proportion of assemblage composed of the three most abundant species) was higher for weir catch. Prepositioned areal electrofisher catch by number was considerably higher than weir catch, but biomass was lower for PAE catch. Weir catch decreased following the spawning migration, while PAEs continued to collect fish. Sampling bias associated with water velocity was detected for PAEs, but not weirs, and neither gear demonstrated depth bias in wadeable reaches. Mean fish mortality from PAEs was five times greater than that from weirs. Catch efficiency and composition comparisons indicated that weirs were effective at documenting migration chronology, sampling nocturnal migration, and yielding samples unbiased by water velocity or habitat, with low mortality. Prepositioned areal electrofishers are an appropriate sampling technique for seasonal fish occupancy objectives, while weirs are more suitable for quantitatively describing spawning migrations. Our comparative results may guide fisheries scientists in selecting an appropriate sampling gear and regime for research, monitoring, conservation, and management of potamodromous fishes.

  1. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    USGS Publications Warehouse

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  2. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.

    PubMed

    Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F

    2016-01-01

    In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Real-time PCR method combined with immunomagnetic separation for detecting healthy and heat-injured Salmonella Typhimurium on raw duck wings.

    PubMed

    Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Xu, Wang; Yuk, Hyun-Gyun

    2014-09-01

    Conventional culture detection methods are time consuming and labor-intensive. For this reason, an alternative rapid method combining real-time PCR and immunomagnetic separation (IMS) was investigated in this study to detect both healthy and heat-injured Salmonella Typhimurium on raw duck wings. Firstly, the IMS method was optimized by determining the capture efficiency of Dynabeads(®) on Salmonella cells on raw duck wings with different bead incubation (10, 30 and 60 min) and magnetic separation (3, 10 and 30 min) times. Secondly, three Taqman primer sets, Sal, invA and ttr, were evaluated to optimize the real-time PCR protocol by comparing five parameters: inclusivity, exclusivity, PCR efficiency, detection probability and limit of detection (LOD). Thirdly, the optimized real-time PCR, in combination with IMS (PCR-IMS) assay, was compared with a standard ISO and a real-time PCR (PCR) method by analyzing artificially inoculated raw duck wings with healthy and heat-injured Salmonella cells at 10(1) and 10(0) CFU/25 g. Finally, the optimized PCR-IMS assay was validated for Salmonella detection in naturally contaminated raw duck wing samples. Under optimal IMS conditions (30 min bead incubation and 3 min magnetic separation times), approximately 85 and 64% of S. Typhimurium cells were captured by Dynabeads® from pure culture and inoculated raw duck wings, respectively. Although Sal and ttr primers exhibited 100% inclusivity and exclusivity for 16 Salmonella spp. and 36 non-Salmonella strains, the Sal primer showed lower LOD (10(3) CFU/ml) and higher PCR efficiency (94.1%) than the invA and ttr primers. Moreover, for Sal and invA primers, 100% detection probability on raw duck wings suspension was observed at 10(3) and 10(4) CFU/ml with and without IMS, respectively. Thus, the Sal primer was chosen for further experiments. The optimized PCR-IMS method was significantly (P=0.0011) better at detecting healthy Salmonella cells after 7-h enrichment than traditional PCR method. However there was no significant difference between the two methods with longer enrichment time (14 h). The diagnostic accuracy of PCR-IMS was shown to be 98.3% through the validation study. These results indicate that the optimized PCR-IMS method in this study could provide a sensitive, specific and rapid detection method for Salmonella on raw duck wings, enabling 10-h detection. However, a longer enrichment time could be needed for resuscitation and reliable detection of heat-injured cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  5. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-08-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  6. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    PubMed Central

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222

  7. Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology.

    PubMed

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  8. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  9. Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7.

    PubMed

    Yang, Dandan; Liu, Mei; Xu, Jing; Yang, Chao; Wang, Xiaoxiao; Lou, Yongbing; He, Nongyue; Wang, Zhifei

    2018-08-01

    In this work, carbon nanosphere (CNS)-based fluorescence "turn off/on" aptasensor was developed for targeted detection of breast cancer cell MCF-7 by conjugation with FAM (a dye)-labeled mucin1 (MUC1) aptamer P0 (P0-FAM), which can recognize MUC1 protein overexpressed on the surface of MCF-7. Different from other carbon based fluorescence quenching materials, CNSs prepared by the carbonization of glucose not only have the high fluorescence quenching efficiency (98.8%), but also possess negligible cytotoxicity (in the concentration range of 0-1 mg/mL, which is 10 times higher than that of traditional carbon nanotubes or graphene oxide (0-100 µg/mL)). As for the detection of the mimic of the tumor antigen MUC1, the resulting fluorescence intensity increases nearly linearly in the range of 0-6 μM with the limit of detection (LOD) of 25 nM. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  11. An Accurate Framework for Arbitrary View Pedestrian Detection in Images

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Wen, G.; Qiu, S.

    2018-01-01

    We consider the problem of detect pedestrian under from images collected under various viewpoints. This paper utilizes a novel framework called locality-constrained affine subspace coding (LASC). Firstly, the positive training samples are clustered into similar entities which represent similar viewpoint. Then Principal Component Analysis (PCA) is used to obtain the shared feature of each viewpoint. Finally, the samples that can be reconstructed by linear approximation using their top- k nearest shared feature with a small error are regarded as a correct detection. No negative samples are required for our method. Histograms of orientated gradient (HOG) features are used as the feature descriptors, and the sliding window scheme is adopted to detect humans in images. The proposed method exploits the sparse property of intrinsic information and the correlations among the multiple-views samples. Experimental results on the INRIA and SDL human datasets show that the proposed method achieves a higher performance than the state-of-the-art methods in form of effect and efficiency.

  12. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE PAGES

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; ...

    2018-05-04

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  13. Preparation, applications, and digital simulation of carbon interdigitated array electrodes.

    PubMed

    Liu, Fei; Kolesov, Grigory; Parkinson, B A

    2014-08-05

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow.

  14. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  15. Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly(styrene-co-divinylbenzene) composites and separation by capillary electrophoresis.

    PubMed

    Murtada, Khaled; de Andrés, Fernando; Ríos, Angel; Zougagh, Mohammed

    2018-04-20

    Poly(styrene-co-divinylbenzene)-coated magnetic multiwalled carbon nanotube composite synthesized by in-situ high temperature combination and precipitation polymerization of styrene-co-divinylbenzene has been employed as a magnetic sorbent for the solid phase extraction of antidepressants in human urine samples. Fluoxetine, venlafaxine, citalopram and sertraline were, afterwards, separated and determined by capillary electrophoresis with diode array detection. The presence of magnetic multiwalled carbon nanotubes in native poly(styrene-co-divinylbenzene) not only simplified sample treatment but also enhanced the adsorption efficiencies, obtaining extraction recoveries higher than 89.5% for all analytes. Moreover, this composite can be re-used at least 10 times without loss of efficiency and limits of detection ranging from 0.014 to 0.041 μg mL -1 were calculated. Additionally, precision values ranging from 0.08 to 7.50% and from 0.21 to 3.05% were obtained for the responses and for the migration times of the analytes, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Reactive Searching and Infotaxis in Odor Source Localization

    PubMed Central

    Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique

    2014-01-01

    Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching. PMID:25330317

  17. Reactive searching and infotaxis in odor source localization.

    PubMed

    Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique

    2014-10-01

    Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.

  18. Surveying drainage culvert use by carnivores: sampling design and cost-benefit analyzes of track-pads vs. video-surveillance methods.

    PubMed

    Mateus, Ana Rita A; Grilo, Clara; Santos-Reis, Margarida

    2011-10-01

    Environmental assessment studies often evaluate the effectiveness of drainage culverts as habitat linkages for species, however, the efficiency of the sampling designs and the survey methods are not known. Our main goal was to estimate the most cost-effective monitoring method for sampling carnivore culvert using track-pads and video-surveillance. We estimated the most efficient (lower costs and high detection success) interval between visits (days) when using track-pads and also determined the advantages of using each method. In 2006, we selected two highways in southern Portugal and sampled 15 culverts over two 10-day sampling periods (spring and summer). Using the track-pad method, 90% of the animal tracks were detected using a 2-day interval between visits. We recorded a higher number of crossings for most species using video-surveillance (n = 129) when compared with the track-pad technique (n = 102); however, the detection ability using the video-surveillance method varied with type of structure and species. More crossings were detected in circular culverts (1 m and 1.5 m diameter) than in box culverts (2 m to 4 m width), likely because video cameras had a reduced vision coverage area. On the other hand, carnivore species with small feet such as the common genet Genetta genetta were detected less often using the track-pad surveying method. The cost-benefit analyzes shows that the track-pad technique is the most appropriate technique, but video-surveillance allows year-round surveys as well as the behavior response analyzes of species using crossing structures.

  19. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

  20. Detection and Identification: Instrumentation and Calibration for Air/Liquid/Surface-borne Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.

    2013-04-01

    Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.

  1. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.

    PubMed

    Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun

    2015-10-15

    This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection.

  2. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands

    PubMed Central

    Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun

    2015-01-01

    This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection. PMID:26469768

  3. Measurement-Device-Independent Quantum Key Distribution over 200 km

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

    2014-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

  4. Biofiltration vs conventional activated sludge plants: what about priority and emerging pollutants removal?

    PubMed

    Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G

    2014-04-01

    This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.

  5. Discrepant epidemiological patterns between classical and atypical scrapie in sheep flocks under French TSE control measures.

    PubMed

    Fediaevsky, Alexandre; Gasqui, Patrick; Calavas, Didier; Ducrot, Christian

    2010-09-01

    The occurrence of secondary cases of atypical and classical scrapie was examined in 340 outbreaks of atypical and 296 of classical sheep scrapie detected in France during active surveillance programmes between 2002 and 2007. The prevalence of atypical scrapie in these flocks was 0.05% under selective culling and 0.07% under intensified monitoring i.e. not significantly different from that detected during active surveillance of the general population (P>0.5), whereas these figures were much higher for classical scrapie (3.67% and 0.25%, respectively, P<10(-5)). In addition the number of atypical scrapie cases per outbreak did not indicate clustering. The results suggest that atypical scrapie occurs spontaneously or is not particularly contagious, and that the control measures in force allowed appropriate control of classical scrapie but were not more efficient than active surveillance in detecting cases of atypical scrapie. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector

    PubMed Central

    2017-01-01

    Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324

  7. Surface engineered biosensors for the early detection of cancer

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin

    Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was integrated with current measurement facilities in a single biochip to discriminate tumor cells from blood with higher efficiency and selectivity. This biochip can be an implemented as a point-of-care device for the early detection of cancer at cellular level.

  8. An approach to holistically assess (dairy) farm eco-efficiency by combining Life Cycle Analysis with Data Envelopment Analysis models and methodologies.

    PubMed

    Soteriades, A D; Faverdin, P; Moreau, S; Charroin, T; Blanchard, M; Stott, A W

    2016-11-01

    Eco-efficiency is a useful guide to dairy farm sustainability analysis aimed at increasing output (physical or value added) and minimizing environmental impacts (EIs). Widely used partial eco-efficiency ratios (EIs per some functional unit, e.g. kg milk) can be problematic because (i) substitution possibilities between EIs are ignored, (ii) multiple ratios can complicate decision making and (iii) EIs are not usually associated with just the functional unit in the ratio's denominator. The objective of this study was to demonstrate a 'global' eco-efficiency modelling framework dealing with issues (i) to (iii) by combining Life Cycle Analysis (LCA) data and the multiple-input, multiple-output production efficiency method Data Envelopment Analysis (DEA). With DEA each dairy farm's outputs and LCA-derived EIs are aggregated into a single, relative, bounded, dimensionless eco-efficiency score, thus overcoming issues (i) to (iii). A novelty of this study is that a model providing a number of additional desirable properties was employed, known as the Range Adjusted Measure (RAM) of inefficiency. These properties altogether make RAM advantageous over other DEA models and are as follows. First, RAM is able to simultaneously minimize EIs and maximize outputs. Second, it indicates which EIs and/or outputs contribute the most to a farm's eco-inefficiency. Third it can be used to rank farms in terms of eco-efficiency scores. Thus, non-parametric rank tests can be employed to test for significant differences in terms of eco-efficiency score ranks between different farm groups. An additional DEA methodology was employed to 'correct' the farms' eco-efficiency scores for inefficiencies attributed to managerial factors. By removing managerial inefficiencies it was possible to detect differences in eco-efficiency between farms solely attributed to uncontrollable factors such as region. Such analysis is lacking in previous dairy studies combining LCA with DEA. RAM and the 'corrective' methodology were demonstrated with LCA data from French specialized dairy farms grouped by region (West France, Continental France) and feeding strategy (regardless of region). Mean eco-efficiency score ranks were significantly higher for farms with 30% maize in the total forage area before correcting for managerial inefficiencies. Mean eco-efficiency score ranks were higher for West than Continental farms, but significantly higher only after correcting for managerial inefficiencies. These results helped identify the eco-efficiency potential of each region and feeding strategy and could therefore aid advisors and policy makers at farm or region/sector level. The proposed framework helped better measure and understand (dairy) farm eco-efficiency, both within and between different farm groups.

  9. [Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas].

    PubMed

    Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen

    2014-02-01

    To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost and equipment. (2) The frequency of the KRAS mutation is correlated with gender. BRAF mutation is correlated with primary tumor site, TNM stage, histological types and histological grades.(3) BRAF gene mutation is an independent prognostic marker for colorectal carcinomas.

  10. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods.

    PubMed

    Westergaard Mulberg, Mads; Taskova, Maria; Thomsen, Rasmus P; Okholm, Anders H; Kjems, Jørgen; Astakhova, Kira

    2017-08-17

    For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84 nm mean diameter, modified with additional alkyne and amino groups for bioconjugation. By using click and NHS chemistries, the new nanoparticles were attached to target-specific DNA probes that were used in fluorimetry and fluorescence microscopy. Overall, these fluorescent nanoparticles and their oligonucleotide derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics of DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network

    NASA Astrophysics Data System (ADS)

    Raj, Nithin; Jagadanand, G.; George, Saly

    2018-04-01

    The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, G; Zaitseva, N; Cherepy, N

    Efficient, readily-available, low-cost, high-energy neutron detectors can play a central role in detecting illicit nuclear weapons since neutrons are a strong indication for the presence of fissile material such as Plutonium and Highly-Enriched Uranium. The main challenge in detecting fast neutrons consists in the discrimination of the signal from the gamma radiation background. At present, the only well-investigated organic crystal scintillator for fast neutron detection, in a n/{gamma} mixed field, is stilbene, which while offering good pulse shape discrimination, is not widely used because of its limited availability and high cost. In this work we report the results of ourmore » studies made with a number of new organic crystals, which exhibit pulse shape discrimination for detection of fast neutrons. In particular 1,1,4,4-tetraphenyl-1,3-butadiene features a light yield higher than anthracene and a Figure of Merit (FOM) for the pulse shape discrimination better than stilbene. New crystals are good candidates for the low-cost solution growth method, thus representing promising organic scintillators for widespread deployment for high-energy neutron detection.« less

  13. Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.

    PubMed

    Hudak, Paul F

    2004-01-01

    This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.

  14. Evaluation of collimation and imaging configuration in scintimammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, B.M.W.; Frey, E.C.; Wessell, D.E.

    1996-12-31

    Conventional scintimammography (SM) with {sup 99m}Tc sestamibi has been limited to taking a single lateral view of the breast using a parallel-hole high resolution (LEHR) collimator. The collimator is placed close to the breast for best possible spatial resolution. However, the collimator geometry precludes imaging the breast from other views. We evaluated using a pinhole collimator instead of a LEHR collimator in SM for improved spatial resolution and detection efficiency, and to allow additional imaging views. Results from theoretical calculations indicated that pinhole collimators could be designed with higher spatial resolution and detection efficiency than LEHR when imaging small tomore » medium size breasts. The geometrical shape of the pinhole collimator allows imaging of the breasts from both the lateral and craniocaudal views. The dual-view images allow better determination of the location of the tumors within the breast and improved detection of tumors located in the medial region of the breast. A breast model that simulates the shape and composition of the breast and breast tumors with different sizes and locations was added to an existing 3D mathematical cardiac-torso (MCAT) phantom. A cylindrically shaped phantom with 10 cm diameter and spherical inserts with different sizes and {sup 99m}Tc sestamibi uptakes with respect to the background provide physical models of breast with tumors. Simulation studies using the breast and MCAT phantoms and experimental studies using the cylindrical phantom confirmed the utility of the pinhole collimator in SM for improved breast tumor detection.« less

  15. Adaptive Gaussian mixture models for pre-screening in GPR data

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Due to the large amount of data generated by vehicle-mounted ground penetrating radar (GPR) antennae arrays, advanced feature extraction and classification can only be performed on a small subset of data during real-time operation. As a result, most GPR based landmine detection systems implement "pre-screening" algorithms to processes all of the data generated by the antennae array and identify locations with anomalous signatures for more advanced processing. These pre-screening algorithms must be computationally efficient and obtain high probability of detection, but can permit a false alarm rate which might be higher than the total system requirements. Many approaches to prescreening have previously been proposed, including linear prediction coefficients, the LMS algorithm, and CFAR-based approaches. Similar pre-screening techniques have also been developed in the field of video processing to identify anomalous behavior or anomalous objects. One such algorithm, an online k-means approximation to an adaptive Gaussian mixture model (GMM), is particularly well-suited to application for pre-screening in GPR data due to its computational efficiency, non-linear nature, and relevance of the logic underlying the algorithm to GPR processing. In this work we explore the application of an adaptive GMM-based approach for anomaly detection from the video processing literature to pre-screening in GPR data. Results with the ARA Nemesis landmine detection system demonstrate significant pre-screening performance improvements compared to alternative approaches, and indicate that the proposed algorithm is a complimentary technique to existing methods.

  16. Network Community Detection based on the Physarum-inspired Computational Framework.

    PubMed

    Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili

    2016-12-13

    Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.

  17. Exploiting Habitat and Gear Patterns for Efficient Detection of Rare and Non-native Benthos and Fish in Great Lakes Coastal ecosystems

    EPA Science Inventory

    There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...

  18. A new comparison of hyperspectral anomaly detection algorithms for real-time applications

    NASA Astrophysics Data System (ADS)

    Díaz, María.; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    Due to the high spectral resolution that remotely sensed hyperspectral images provide, there has been an increasing interest in anomaly detection. The aim of anomaly detection is to stand over pixels whose spectral signature differs significantly from the background spectra. Basically, anomaly detectors mark pixels with a certain score, considering as anomalies those whose scores are higher than a threshold. Receiver Operating Characteristic (ROC) curves have been widely used as an assessment measure in order to compare the performance of different algorithms. ROC curves are graphical plots which illustrate the trade- off between false positive and true positive rates. However, they are limited in order to make deep comparisons due to the fact that they discard relevant factors required in real-time applications such as run times, costs of misclassification and the competence to mark anomalies with high scores. This last fact is fundamental in anomaly detection in order to distinguish them easily from the background without any posterior processing. An extensive set of simulations have been made using different anomaly detection algorithms, comparing their performances and efficiencies using several extra metrics in order to complement ROC curves analysis. Results support our proposal and demonstrate that ROC curves do not provide a good visualization of detection performances for themselves. Moreover, a figure of merit has been proposed in this paper which encompasses in a single global metric all the measures yielded for the proposed additional metrics. Therefore, this figure, named Detection Efficiency (DE), takes into account several crucial types of performance assessment that ROC curves do not consider. Results demonstrate that algorithms with the best detection performances according to ROC curves do not have the highest DE values. Consequently, the recommendation of using extra measures to properly evaluate performances have been supported and justified by the conclusions drawn from the simulations.

  19. Rapid and Sensitive Detection of Cardiac Troponin I for Point-of-Care Tests Based on Red Fluorescent Microspheres.

    PubMed

    Cai, Yanxue; Kang, Keren; Li, Qianru; Wang, Yu; He, Xiaowei

    2018-05-07

    A reliable lateral flow immunoassay (LFIA) based on a facile one-step synthesis of single microspheres in combining with immunochromatography technique was developed to establish a new point-of-care test (POCT) for the rapid and early detection of cardiac troponin I (cTnI), a kind of cardiac specific biomarker for acute myocardial infarction (AMI). The double layered microspheres with clear core-shell structures were produced using soap-free emulsion polymerization method with inexpensive compounds (styrene and acrylic acid). The synthetic process was simple, rapid and easy to control due to one-step synthesis without any complicated procedures. The microspheres are nanostructure with high surface area, which have numerous carboxyl groups on the out layer, resulting in high-efficiency coupling between the carrier and antibody via amide bond. Meanwhile, the red fluorescent dye, Nile-red (NR), was wrapped inside the microspheres to improve its stability, as well to reduce the background noise, because of its higher emission wavelength than interference from real plasma samples. The core-shell structures provided different functional areas to separate antibody and dyes, so the immunoassay has highly sensitive, wide working curves in the range of 0⁻40 ng/mL, low limits of detection (LOD) at 0.016 ng/mL, and limits of quantification (LOQ) at 0.087 ng/mL with coefficient of variations (CV) of 10%. This strategy suggested an outstanding platform for LFIA, with good reproducibility and stability to straightforwardly analyze the plasma samples without washing steps, thereby reducing the operating procedures for non-professionals and promoting detection efficiency. The whole detection process can be completed in less than 15 min. This novel immunoassay offers a reliable and favorable analytical result by detecting the real samples, indicating that it holds great potential as a new alternative for biomolecule detection in complex samples, for the early detection of cardiac specific biomarkers.

  20. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    PubMed

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  1. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus"

    PubMed Central

    Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium “Candidatus Liberibacter asiaticus” (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer. PMID:29772016

  2. The Impact of Rurality and Disadvantage on the Diagnostic Interval for Breast Cancer in a Large Population-Based Study of 3202 Women in Queensland, Australia.

    PubMed

    Youl, Philippa H; Aitken, Joanne F; Turrell, Gavin; Chambers, Suzanne K; Dunn, Jeffrey; Pyke, Christopher; Baade, Peter D

    2016-11-19

    Delays in diagnosing breast cancer (BC) can lead to poorer outcomes. We investigated factors related to the diagnostic interval in a population-based cohort of 3202 women diagnosed with BC in Queensland, Australia. Interviews ascertained method of detection and dates of medical/procedural appointments, and clinical information was obtained from medical records. Time intervals were calculated from self-recognition of symptoms (symptom-detected) or mammogram (screen-detected) to diagnosis (diagnostic interval (DI)). The cohort included 1560 women with symptom-detected and 1642 with screen-detected BC. Symptom-detected women had higher odds of DI of >60 days if they were Indigenous (OR = 3.12, 95% CI = 1.40, 6.98); lived in outer regional (OR = 1.50, 95% CI = 1.09, 2.06) or remote locations (OR = 2.46, 95% CI = 1.39, 4.38); or presented with a "non-lump" symptom (OR = 1.84, 95% CI = 1.43, 2.36). For screen-detected BC, women who were Indigenous (OR = 2.36, 95% CI = 1.03, 5.80); lived in remote locations (OR = 2.35, 95% CI = 1.24, 4.44); or disadvantaged areas (OR = 1.69, 95% CI = 1.17, 2.43) and attended a public screening facility (OR = 2.10, 95% CI = 1.40, 3.17) had higher odds of DI > 30 days. Our study indicates a disadvantage in terms of DI for rural, disadvantaged and Indigenous women. Difficulties in accessing primary care and diagnostic services are evident. There is a need to identify and implement an efficient and effective model of care to minimize avoidable longer diagnostic intervals.

  3. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  4. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.

    PubMed

    Ungvári, Tamás; Gogolák, Péter; Bagdány, Miklós; Damjanovich, László; Bene, László

    2016-04-01

    Dual laser flow cytometric energy transfer (FCET)--elaborated by Trón et al. in 1984--is an efficient and rapid way of measuring FRET on large cell populations. FRET efficiency and the donor and acceptor concentrations are determined from one donor and two acceptor signals. In this communication this method is extended towards the domain of receptor dynamics by the detection of polarized components of the three intensities. By enabling a complete description of the proximity and dynamics of FRET-systems, the new measuring scheme allows a more refined description of both the structure and dynamics of cell surface receptor clusters at the nano-scale and beyond. Associated donor fraction, limiting anisotropy and rotational correlation time of the donor, acceptor anisotropy and cell-by-cell estimation of the orientation factor for FRET (κ2) are available in the steady state on a single FRET sample in a very rapid and statistically efficient way offered by flow cytometry. For a more sensitive detection of conformational changes the "polarized FRET indices"--quantities composed from FRET efficiency and anisotropies--are proposed. The method is illustrated by measurements on a FRET system with changing FRET-fraction and on a two donor-one acceptor-system, when the existence of receptor trimers are proven by the detection of "hetero-FRET induced homo-FRET relief", i.e. the diminishing of homo-FRET between the two donors in the presence of a donor quencher. The method also offers higher sensitivity for assessing conformational changes at the nano-scale, due to its capability for the simultaneous detection of changes of proximity and relative orientations of the FRET donor and acceptor. Although the method has been introduced in the context of FRET, it is more general: It can be used for monitoring triple-anisotropy correlations also in those cases when FRET actually does not occur, e.g. for interactions occuring beyond the Förster-distance R0. Interpretation of κ2 has been extended. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spectral analysis of fundamental signal and noise performances in photoconductors for mammography.

    PubMed

    Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse; Yun, Seungman; Cunningham, Ian A

    2012-05-01

    This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI(2), PbI(2), PbO, and TlBr, for x-ray spectra typically used in mammography. It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). The quantum efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI(2), PbI(2), and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm(-2), a-Se, HgI(2), and PbI(2) provide similar DQE values to PbO and TlBr. The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.

  6. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  7. Efficient photocatalytic degradation of perfluorooctanoic acid by a wide band gap p-block metal oxyhydroxide InOOH

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Wu, Miaomiao; Yang, Jingwen; Wang, Zhengmei; Chen, Mindong; Teng, Fei

    2017-09-01

    In this work, we prepared a new wide band gap semiconductor, p-block metal oxyhydroxide InOOH, which exhibits efficient activity for perfluorooctanoic acid (PFOA) degradation under mild conditions and UV light irradiation. The apparent rate constant for PFOA degradation by InOOH is 27.6 times higher than that for P25 titania. Results show that ionized PFOA (C7F15COO-) can be adsorbed much more efficiently on the surface of InOOH than P25. Then, the adsorbed C7F15COO- can be decomposed directly by photo-generated holes to form C7F15COOrad radicals. This process is the key step for the photocalytic degradation of PFOA. Major degradation intermediates, fluoride ions and perfluorinated carboxylic acids (PFCAs) with shorter chain lengths were detected during PFOA degradation. A possible pathway for photocatalytic degradation of PFOA is proposed based on the experimental results. Therefore, this studies indicates a potential new material and method for the efficient treatment of PFCA pollutants under mild conditions.

  8. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    PubMed Central

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing. PMID:22312268

  9. Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.

    2014-01-01

    We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.

  10. Factors influencing the chance of cows being pregnant 30 days after the herd voluntary waiting period.

    PubMed

    Löf, E; Gustafsson, H; Emanuelson, U

    2014-01-01

    The objective of this study was to study factors affecting a reproductive performance indicator at the cow level adjusted for herd management strategy. Associations between the outcome variable, pregnant or not at the herd voluntary waiting period (VWP) plus 30d (pregnant at VWP+30), and the predictor variables were analyzed using a multivariable, generalized estimation equations model that adjusted for clustering of the data at the herd level. The statistical analysis was stratified on parity. In total, 132,721 cows were retained for analyses, of which 29,113 (22%) were pregnant at VWP+30d. Of the nonpregnant cows, 81,483 cows had records of artificial inseminations (AI) and 22,125 cows had no records of AI. The chance of pregnancy was higher for cows of the Swedish Red and for other/crossbreeds compared with Swedish Holstein, for cows from herds with high heat detection efficiency compared with cows from herds with medium and low heat detection efficiency, for cows from herds with long VWP (i.e., >51d) compared with cows from herds with short VWP (<51d), and for cows in freestalls compared with cows in tiestalls. The chance for pregnancy was lower for cows with severe problems at claw trimming compared with cows with no problems at trimming (only for second- and higher-parity cows), for cows that had a record of reproduction-related disease, for cows that had a record of any other disease compared with cows without record, for second- and higher-parity cows with records of dystocia compared with cows with no record of dystocia, for first-parity cows in the group with the highest milk yield compared with first-parity cows in the group with the lowest milk yield, for cows of third and higher parity in the group with the lowest milk yield compared with cows in higher yielding groups, for cows bred in summer compared with those bred in winter-spring (not significant for first-parity cows), and for cows with a twin birth had compared with cows with a single birth. We observed associations of the dose-response type, such that when the milk fat-to-protein ratio increased, the chance for pregnancy decreased, and as the somatic cell count increased, the chance for pregnancy decreased. In conclusion, factors that are known to affect reproductive efficiency also affect the chance of cows being pregnant at the herd VWP plus 30d. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Optimization of single photon detection model based on GM-APD

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Yang, Yi; Hao, Peiyu

    2017-11-01

    One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.

  12. Significantly higher activity of a cytoplasmic hammerhead ribozyme than a corresponding nuclear counterpart: engineered tRNAs with an extended 3′ end can be exported efficiently and specifically to the cytoplasm in mammalian cells

    PubMed Central

    Kuwabara, Tomoko; Warashina, Masaki; Koseki, Shiori; Sano, Masayuki; Ohkawa, Jun; Nakayama, Kazuhisa; Taira, Kazunari

    2001-01-01

    Hammerhead ribozymes were expressed under the control of similar tRNA promoters, localizing transcripts either in the cytoplasm or the nucleus. The tRNAVal-driven ribozyme (tRNA-Rz; tRNA with extra sequences at the 3′ end) that has been used in our ribozyme studies was exported efficiently into the cytoplasm and ribozyme activity was detected only in the cytoplasmic fraction. Both ends of the transported tRNA-Rz were characterized comprehensively and the results confirmed that tRNA-Rz had unprocessed 5′ and 3′ ends. Furthermore, it was also demonstrated that the activity of the exported ribozyme was significantly higher than that of the ribozyme which remained in the nucleus. We suggest that it is possible to engineer tRNA-Rz, which can be exported to the cytoplasm based on an understanding of secondary structures, and then tRNA-driven ribozymes may be co-localized with their target mRNAs in the cytoplasm of mammalian cells. PMID:11433023

  13. Improved Hyperthermia Treatment of Tumors Under Consideration of Magnetic Nanoparticle Distribution Using Micro-CT Imaging.

    PubMed

    Dähring, H; Grandke, J; Teichgräber, U; Hilger, I

    2015-12-01

    Heterogeneous magnetic nanoparticle (MNP) distributions within tumors can cause regions of temperature under dosage and reduce the therapeutic efficiency. Here, micro-computed tomography (CT) imaging was used as a tool to determine the MNP distribution in vivo. The therapeutic success was evaluated based on tumor volume and temperature distribution. Tumor-bearing mice were intratumorally injected with iron oxide particles. MNP distribution was assessed by micro-CT with a low radiation dose protocol. MNPs were clearly visible, and the exact distribution to nontumor structures was detected by micro-CT. Knowledge of the intratumoral MNP distribution allowed the generation of higher temperatures within the tumor and led to higher temperature values after exposure to an alternating magnetic field (AMF). Consequently, the tumor size after 28 days was reduced to 14 and 73 % of the initial tumor volume for the MNP/AMF/CT and MNP/AMF groups, respectively. The MNP distribution pattern mainly governed the generated temperature spots in the tumor. Knowing the MNP distribution enabled individualized hyperthermia treatment and improved the overall therapeutic efficiency.

  14. Adding run history to CLIPS

    NASA Technical Reports Server (NTRS)

    Tuttle, Sharon M.; Eick, Christoph F.

    1991-01-01

    To debug a C Language Integrated Production System (CLIPS) program, certain 'historical' information about a run is needed. It would be convenient for system builders to have the capability to request such information. We will discuss how historical Rete networks can be used for answering questions that help a system builder detect the cause of an error in a CLIPS program. Moreover, the cost of maintaining a historical Rete network is compared with that for a classical Rete network. We will demonstrate that the cost for assertions is only slightly higher for a historical Rete network. The cost for handling retraction could be significantly higher; however, we will show that by using special data structures that rely on hashing, it is also possible to implement retractions efficiently.

  15. Multicoil resonance-based parallel array for smart wireless power delivery.

    PubMed

    Mirbozorgi, S A; Sawan, M; Gosselin, B

    2013-01-01

    This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.

  16. Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency.

    PubMed

    Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca

    2014-12-01

    In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.

  17. Monte Carlo calculation of the sensitivity of a commercial dose calibrator to gamma and beta radiation.

    PubMed

    Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O

    2004-06-01

    The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.

  18. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band.

    PubMed

    Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel

    2012-12-17

    We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

  19. Particle Size, Composition, and Ocean Temperature Govern the Global Distribution of Particle Transfer Efficiency to the Mesopelagic

    NASA Astrophysics Data System (ADS)

    Cram, J. A.; Weber, T. S.; Leung, S.; Deutsch, C. A.

    2016-02-01

    New analyses of geochemical tracer data detect significant differences between ocean basins in the depth scale of particle remineralization, with deepest in high latitudes, shallowest in the subtropical gyres, and intermediate in the tropics. We evaluate the possible causes of this pattern using a mechanistic model of particle dynamics that includes microbial colonization, detachment, and degradation of sinking particles. The model represents the size structure of particles, the effects of mineral ballast (diagnosed from alkalinity and silicate distributions) and seawater temperature (which influences particle velocity and microbial metabolic rates). We find that diagnosed spatial patterns in particle flux profiles can be best reproduced through a combination of surface particle size distribution and temperature, which both favor low transfer efficiency in subtropical gyres, and high transfer efficiency in higher latitudes and intermediate tropical values. Particle mineral content is shown to significantly modulate these patterns, albeit with a high remaining uncertainty. Implications of these mechanisms for changes in biological carbon storage in a warmer ocean are examined.

  20. CZT drift strip detectors for high energy astrophysics

    NASA Astrophysics Data System (ADS)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Caroli, E.; Auricchio, N.

    2010-12-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions. We report on experimental investigations on the CZT drift detector developed DTU Space. It is operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this detector configuration. The CZT drift strip detector (10 mm×10 mm×2.5 mm) was characterized in both standard illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection efficiency and energy resolution are compared for both configurations . The PTF configuration provided a higher efficiency in agreement with calculations. The detector energy resolution was found to be the same (3 keV FWHM at 122 keV) in both in PPF and PTF . The depth sensing capabilities offered by drift strip detectors was investigated by illuminating the detector using a collimated photon beam of 57Co radiation in PTF configuration. The width (300μm FWHM at 122 keV) of the measured depth distributions was almost equal to the finite beam size. However, the data indicate that the best achievable depth resolution for the CZT drift detector is 90μm FWHM at 122 keV and that it is determined by the electronic noise from the setup.

  1. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants.

    PubMed

    Berglund, Björn; Dienus, Olaf; Sokolova, Ekaterina; Berglind, Emma; Matussek, Andreas; Pettersson, Thomas; Lindgren, Per-Eric

    2017-11-15

    Giardia intestinalis, Cryptosporidium spp., Entamoeba histolytica and Dientamoeba fragilis are parasitic protozoa and causative agents of gastroenteritis in humans. G. intestinalis and Cryptosporidium spp. in particular are the most common protozoa associated with waterborne outbreaks in high-income countries. Surveillance of protozoan prevalence in wastewater and evaluation of wastewater treatment removal efficiencies of protozoan pathogens is therefore imperative for assessment of human health risk. In this study, influent and effluent wastewater samples from three wastewater treatment plants in Sweden were collected over nearly one year and assessed for prevalence of parasitic protozoa. Quantitative real-time PCR using primers specific for the selected protozoa Cryptosporidium spp., G. intestinalis, E. histolytica, Entamoeba dispar and D. fragilis was used for protozoan DNA detection and assessment of wastewater treatment removal efficiencies. Occurrence of G. intestinalis, E. dispar and D. fragilis DNA was assessed in both influent (44, 30 and 39 out of 51 samples respectively) and effluent wastewater (14, 9 and 33 out of 51 samples respectively) in all three wastewater treatment plants. Mean removal efficiencies of G. intestinalis, E. dispar and D. fragilis DNA quantities, based on all three wastewater treatment plants studied varied between 67 and 87%, 37-75% and 20-34% respectively. Neither E. histolytica nor Cryptosporidium spp. were detected in any samples. Overall, higher quantities of protozoan DNA were observed from February to June 2012. The high prevalence of protozoa in influent wastewater indicates the need for continued monitoring of these pathogens in wastewater-associated aquatic environments to minimise the potential risk for human infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  3. Detection of Epistasis for Flowering Time Using Bayesian Multilocus Estimation in a Barley MAGIC Population

    PubMed Central

    Mathew, Boby; Léon, Jens; Sannemann, Wiebke; Sillanpää, Mikko J.

    2018-01-01

    Gene-by-gene interactions, also known as epistasis, regulate many complex traits in different species. With the availability of low-cost genotyping it is now possible to study epistasis on a genome-wide scale. However, identifying genome-wide epistasis is a high-dimensional multiple regression problem and needs the application of dimensionality reduction techniques. Flowering Time (FT) in crops is a complex trait that is known to be influenced by many interacting genes and pathways in various crops. In this study, we successfully apply Sure Independence Screening (SIS) for dimensionality reduction to identify two-way and three-way epistasis for the FT trait in a Multiparent Advanced Generation Inter-Cross (MAGIC) barley population using the Bayesian multilocus model. The MAGIC barley population was generated from intercrossing among eight parental lines and thus, offered greater genetic diversity to detect higher-order epistatic interactions. Our results suggest that SIS is an efficient dimensionality reduction approach to detect high-order interactions in a Bayesian multilocus model. We also observe that many of our findings (genomic regions with main or higher-order epistatic effects) overlap with known candidate genes that have been already reported in barley and closely related species for the FT trait. PMID:29254994

  4. Imaging characteristics of scintimammography using parallel-hole and pinhole collimators

    NASA Astrophysics Data System (ADS)

    Tsui, B. M. W.; Wessell, D. E.; Zhao, X. D.; Wang, W. T.; Lewis, D. P.; Frey, E. C.

    1998-08-01

    The purpose of the study is to investigate the imaging characteristics of scintimammography (SM) using parallel-hole (PR) and pinhole (PN) collimators in a clinical setting. Experimental data were acquired from a phantom that models the breast with small lesions using a low energy high resolution (LEHR) PR and a PN collimator. At close distances, the PN collimator provides better spatial resolution and higher detection efficiency than the PR collimator, at the expense of a smaller field-of-view (FOV). Detection of small breast lesions can be further enhanced by noise smoothing, field uniformity correction, scatter subtraction and resolution recovery filtering. Monte Carlo (MC) simulation data were generated from the 3D MCAT phantom that realistically models the Tc-99m sestamibi uptake and attenuation distributions in an average female patient. For both PR and PN collimation, the scatter to primary ratio (S/P) decreases from the base of the breast to the nipple and is higher in the left than right breast due to scatter of photons from the heart. Results from the study add to understanding of the imaging characteristics of SM using PR and PN collimators and assist in the design of data acquisition and image processing methods to enhance the detection of breast lesions using SM.

  5. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane.

    PubMed

    Chandra, Amaresh; Keizerweerd, Amber T; Que, Youxiong; Grisham, Michael P

    2015-08-01

    Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials (setts) are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of C. falcatum. C. falcatum genomic DNA was isolated from pure mycelium culture and infected tissues. Four sets of primers corresponding to a unique DNA sequence specific to C. falcatum were designed. Specificity of the LAMP test was checked with DNA of another fungal pathogen of sugarcane, Puccinia melanocephala, as well as two closely-related species, Colletotrichum fructivorum and Colletotrichum acutatum. No reaction was found with the three pathogens. When C. falcatum DNA from pure culture was used in a detection limit analysis, sensitivity of the LAMP method was observed to be ten times higher than that of conventional PCR; however, sensitivity was only 5 times higher when DNA from C. falcatum-infected tissues was used. Using the LAMP assay, C. falcatum DNA is amplified with high specificity, efficiency, and rapidity under isothermal conditions. Moreover, visual judgment of color change in <1 h without further post-amplification processing makes the LAMP method convenient, economical, and useful in diagnostic laboratories and the field.

  6. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin.

    PubMed

    Peng, Jinyun; Huang, Qing; Zhuge, Wenfeng; Liu, Yuxia; Zhang, Cuizong; Yang, Wei; Xiang, Gang

    2018-05-30

    In this study, we developed a novel photoelectrochemical (PEC) sensor for the highly sensitive detection of erythromycin by functionalising graphene oxide (GO) with nickel tetra-amined phthalocyanine (NiTAPc) through covalent bonding, which resulted in the formation of NiTAPc-Gr. The fabricated sensor showed a higher PEC efficiency under blue light, exhibiting a peak wavelength of 456 nm, as compared to that of the monomer. Further, the NiTAPc-Gr/indium tin oxide (ITO) sensor exhibited a photocurrent that was 50-fold higher than that for a GO/ITO sensor under the same conditions. Under optimal conditions, the NiTAPc-Gr PEC sensor showed a linear response for erythromycin concentrations ranging from 0.40 to 120.00 μmol L -1 , with the minimum limit for detection being 0.08 μmol L -1 . Thus, the NiTAPc-Gr sensor exhibited superior performance and excellent PEC characteristics, high stability, and good reproducibility with respect to the sensing of erythromycin. Moreover, it is convenient to use, fast, small, and cheap to produce. Hence, it should find wide use in the analysis of erythromycin in real-world applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less

  8. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.

    PubMed

    Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M

    2016-06-01

    High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  9. APPI-MS: Effects of mobile phases and VUV lamps on the detection of PAH compounds

    PubMed Central

    Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A.

    2009-01-01

    The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of non-polar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e., ≤100 μL/min), while at a higher flow, photon absorption and ion-molecule reactions become significant. Under certain circumstances, APPI signal and S/N have been observed to excel at higher flow, which may be due to a non-photoionzation mechanism. To better understand APPI at higher flow rates, we have selected three lamps (Xe, Kr and Ar) and four mobile phases typical for reverse-phase, high-pressure liquid chromatography: acetonitrile, methanol, (1:1) acetonitrile:water and (1:1) methanol:water. As test compounds, three polyaromatic hydrocarbons are studied: benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and benz[a]anthracene. We find that solvent photoabsorption cross-section is not the only parameter in explaining relative signal intensity, but that solvent photo-ion chemistry can also play a significant role. Three conclusions from this investigation are: (i) Methanol photoionization leads to protonated methanol clusters that can result in chemical ionization of analyte molecule; (ii) Use of the Ar lamp often results in greater signal and S/N; (iii) Acetonitrile photoionization is less efficient and resulting clusters are too strongly bound to efficiently chemically ionize the analyte, so that analyte ion formation is dominated by direct photoionization. PMID:17188507

  10. APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds.

    PubMed

    Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A

    2007-04-01

    The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of nonpolar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e.,

  11. Extended long-wavelength lambda = 11-15-micron GaAs/Al(x)Ga(1-x)As quantum-well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Zussman, A.; Levine, B. F.; Kuo, J. M.; De Jong, J.

    1991-01-01

    Success has been achieved in extending the spectral wavelength of GaAs/Al(x)Ga(1-x)As quantum-well infrared photodetectors to significantly longer wavelengths of 11-15 micron. High responsivity of 0.5 A/W, high quantum efficiency of 12 percent, and high detectivity as well as an excellent noise equivalent temperature difference of 4 mK have been achieved at T = 50 K. High performance of 19 mK has also been achieved at an even higher temperature of 60 K.

  12. Differentially coherent quadrature-quadrature phase shift keying (Q2PSK)

    NASA Astrophysics Data System (ADS)

    Saha, Debabrata; El-Ghandour, Osama

    The quadrature-quadrature phase-shift-keying (Q2PSK) signaling scheme uses the vertices of a hypercube of dimension four. A generalized Q2PSK signaling format for differentially coherent detection at the receiver is considered. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. The symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/Nb. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK.

  13. Sensitive Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    We demonstrated upconversion assisted detection of a 2.05-micron signal by sum frequency generation to generate a 700-nm light using a bulk periodically poled lithium niobate crystal. The achieved 94% intrinsic upconversion efficiency and 22.58% overall detection efficiency at a pW level of 2.05 micron pave the path to detect extremely weak infrared (IR) signals for remote sensing applications.

  14. Supramolecular control over recognition and efficient detection of picric acid.

    PubMed

    Béreau, Virginie; Duhayon, Carine; Sutter, Jean-Pascal

    2014-10-18

    Bimetallic Schiff-base Al(3+) complexes bearing ester functions at the periphery of the ligands are shown to be efficient fluorescent chemosensors for picric acid detection. The prominent role of an association between the chemosensor and the picric acid in the detection process is demonstrated. The detection of picric acid in water is achieved with the sensor deposited on paper.

  15. High-order synchronization of hair cell bundles

    NASA Astrophysics Data System (ADS)

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-12-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.

  16. Detection of unmanned aerial vehicles using a visible camera system.

    PubMed

    Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C

    2017-01-20

    Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.

  17. High-order synchronization of hair cell bundles

    PubMed Central

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-01-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells. PMID:27974743

  18. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

    2014-04-15

    Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of the LTQ-Orbitrap mass spectrometer for the analysis of polymerase chain reaction products.

    PubMed

    Manduzio, Hélène; Ezan, Eric; Fenaille, François

    2010-12-30

    We have investigated the potential and robustness of the off-line coupling of polymerase chain reaction (PCR) with electrospray ionization mass spectrometry (ESI-MS), for further applications in the screening of single-nucleotide polymorphisms (SNPs). This was based on recently reported data demonstrating that anion-exchange solid-phase extraction was the most efficient technique for efficiently desalting PCR products, with a recovery of ∼70%. Results showed that this purification approach efficiently removes almost all the chemicals commonly added to PCR buffers. ESI-MS analysis of a model 114-bp PCR product performed on the LTQ-Orbitrap instrument demonstrated that detection limits in the nM range along with an average mass measurement uncertainty of 9.15 ± 7.11 ppm can be routinely obtained using an external calibration. The PCR/ESI-MS platform was able to detect just a few copies of a targeted oligonucleotide. However, it was shown that if two PCR products are present in a mixture in a ratio higher than 10 to 1, the lower abundance one might not be reproducibly detected. Applications to SNPs demonstrated that an LTQ-Orbitrap with a resolution of 30 000 (at m/z 400) easily identified a single (A ↔ G) switch, i.e. a 16 Da difference, in binary mixtures of ∼ 35 kDa PCR products. Complementary experiments also showed that the combination of endonucleases and ESI-MS could be used to confirm base composition and sequence, and thus to screen for unknown polymorphisms in specific sequences. For example, a single (T ↔ A) switch (9 Da mass difference) was successfully identified in a 114-bp PCR product. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Orderly arranged fluorescence dyes as a highly efficient chemiluminescence resonance energy transfer probe for peroxynitrite.

    PubMed

    Wang, Zhihua; Teng, Xu; Lu, Chao

    2015-03-17

    Chemiluminescence (CL) probes for reactive oxygen species (ROS) are commonly based on a redox reaction between a CL reagent and ROS, leading to poor selectivity toward a specific ROS. The energy-matching rules in the chemiluminescence resonance energy transfer (CRET) process between a specific ROS donor and a suitable fluorescence dye acceptor is a promising method for the selective detection of ROS. Nevertheless, higher concentrations of fluorescence dyes can lead to the intractable aggregation-caused quenching effect, decreasing the CRET efficiency. In this report, we fabricated an orderly arranged structure of calcein-sodium dodecyl sulfate (SDS) molecules to improve the CRET efficiency between ONOOH* donor and calcein acceptor. Such orderly arranged calcein-SDS composites can distinguish peroxynitrite (ONOO(-)) from a variety of other ROS owing to the energy matching in the CRET process between ONOOH* donor and calcein acceptor. Under the optimal experimental conditions, ONOO(-) could be assayed in the range of 1.0-20.0 μM, and the detection limit for ONOO(-) [signal-to-noise ratio (S/N) = 3] was 0.3 μM. The proposed strategy has been successfully applied in both detecting ONOO(-) in cancer mouse plasma samples and monitoring the generation of ONOO(-) from 3-morpholinosydnonimine (SIN-1). Recoveries from cancer mouse plasma samples were in the range of 96-105%. The success of this work provides a unique opportunity to develop a CL tool to monitor ONOO(-) with high selectivity in a specific manner. Improvement of selectivity and sensitivity of CL probes holds great promise as a strategy for developing a wide range of probes for various ROS by tuning the types of fluorescence dyes.

  1. Fabrication of selective chemical sensor with ternary ZnO/SnO2/Yb2O3 nanoparticles.

    PubMed

    Rahman, Mohammed M; Alam, M M; Asiri, Abdullah M; Islam, M A

    2017-08-01

    Construction of highly efficient toxic chemical sensors is the key approach for the determination of carcinogenic chemicals in the environment and ecosystem. We report here, an efficient acetone chemical sensor based on the analytical performances such as sensitivity, lower-detection limit, reproducibility, and good linearity. The proposed acetone-detecting electrode was introduced by the implementation of ZnO/SnO 2 /Yb 2 O 3 nanoparticles (NPs) as a successful electron mediator with glassy carbon electrode (GCE) assembly. The prepared NPs of ZnO/SnO 2 /Yb 2 O 3 were well crystalline-doped nanomaterial and produced by implementation of hydrothermal procedure at low temperature. The conventional methods such as Fourier-transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV/vis), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and powder x-ray diffraction (XRD) were utilized for characterization of prepared NPs in terms of morphological, elemental, optical and structural properties. The large linear dynamic range (LDR) of 0.34nmolL -1 to 3.4mmolL -1 with lower detection limit (S/N=3) of 0.05±0.002nmolL -1 and a higher sensitivity of 17.09µAmmolL -1 cm -2 were exhibited by lab-made fabricated sensor based on ZnO/SnO 2 /Yb 2 O 3 NPs for selective acetone detection. In shortly, the ZnO/SnO 2 /Yb 2 O 3 NPs are utilized as an excellent electron mediator with Nafion/GCE assembly in a chemical sensor for acetone detection even at the very low concentration. Therefore, the chemical sensor is fabricated with ZnO/SnO 2 /Yb 2 O 3 NPs may be a promising highly sensitive sensor by reliable I-V detection method for the effective detection of hazardous and carcinogenic chemicals in medical as well as health-care fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR

    PubMed Central

    Waldron, Anna M.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.

    2015-01-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 104-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n = 54) and sheep fecal and tissue (n = 90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. PMID:25609725

  3. Efficiency of histidine rich protein II-based rapid diagnostic tests for monitoring malaria transmission intensities in an endemic area

    NASA Astrophysics Data System (ADS)

    Modupe, Dokunmu Titilope; Iyabo, Olasehinde Grace; Oladoke, Oladejo David; Oladeji, Olanrewaju; Abisola, Akinbobola; Ufuoma, Adjekukor Cynthia; Faith, Yakubu Omolara; Humphrey, Adebayo Abiodun

    2018-04-01

    In recent years there has been a global decrease in the prevalence of malaria due to scaling up of control measures, hence global control efforts now target elimination and eradication of the disease. However, a major problem associated with elimination is asymptomatic reservoir of infection especially in endemic areas. This study aims to determine the efficiency of histidine rich protein II (HRP-2) based rapid diagnostic tests (RDT) for monitoring transmission intensities in an endemic community in Nigeria during the pre-elimination stage. Plasmodium falciparum asymptomatic malaria infection in healthy individuals and symptomatic cases were detected using HRP-2. RDT negative tests were re-checked by microscopy and by primer specific PCR amplification of merozoite surface protein 2 (msp-2) for asexual parasites and Pfs25 gene for gametocytes in selected samples to detect low level parasitemia undetectable by microscopy. The mean age of the study population (n=280) was 6.12 years [95% CI 5.16 - 7.08, range 0.5 - 55], parasite prevalence was 44.6% and 36.3% by microscopy and RDT respectively (p =0.056). The parasite prevalence of 61.5% in children aged >2 - 10 years was significantly higher than 3.7% rate in adults >18years (p < 0.0001, χ2 = 60.45). RDT detected additional 29.6% asymptomatic cases but a lower specificity of 68.8% in symptomatic carriers. In 15 selected RDT positive samples, only 6 were positive by PCR and no gametocyte was detected. The results indicate that HRP-2 RDTs are a vital tool for understanding transmission dynamics and detecting immune-suppressed, recent and asymptomatic infections, thus crucial to tackle low level transmission and eliminating malaria in endemic areas.

  4. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  5. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  6. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens

    PubMed Central

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  7. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    PubMed

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Occurrence and removal of phenolic endocrine disrupting chemicals in the water treatment processes

    NASA Astrophysics Data System (ADS)

    Lv, Xuemin; Xiao, Sanhua; Zhang, Gang; Jiang, Pu; Tang, Fei

    2016-03-01

    This paper evaluated the occurrence and removal efficiency of four selected phenolic endocrine disrupting chemicals (bisphenol A (BPA), octylphenol (OP), nonylphenol (NP) and diethylstilbestrol (DES)) in two drinking waterworks in Jiangsu province which take source water from Taihu Lake. The recombined yeast estrogen screen (YES) and liquid chromatography tandem mass spectrometry (LC-MS/MS) were applied to assess the estrogenicity and detect the estrogens in the samples. The estrogen equivalents (EEQs) ranged from nd (not detected) to 2.96 ng/L, and the estrogenic activities decreased along the processes. Among the 32 samples, DES prevailed in all samples, with concentrations ranging 1.46-12.0 ng/L, BPA, OP and NP were partially detected, with concentrations ranging from nd to 17.73 ng/L, nd to 0.49 ng/L and nd to 3.27 ng/L, respectively. DES was found to be the main contributor to the estrogenicity (99.06%), followed by NP (0.62%), OP (0.23%) and BPA (0.09%). From the observation of treatment efficiency, the advanced treatment processes presented much higher removal ratio in reducing DES, the biodegradation played an important role in removing BPA, ozonation and pre-oxidation showed an effective removal on all the four estrogens; while the conventional ones can also reduce all the four estrogens.

  9. Multi-resolution model-based traffic sign detection and tracking

    NASA Astrophysics Data System (ADS)

    Marinas, Javier; Salgado, Luis; Camplani, Massimo

    2012-06-01

    In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

  10. Occurrence and removal of phenolic endocrine disrupting chemicals in the water treatment processes

    PubMed Central

    Lv, Xuemin; Xiao, Sanhua; Zhang, Gang; Jiang, Pu; Tang, Fei

    2016-01-01

    This paper evaluated the occurrence and removal efficiency of four selected phenolic endocrine disrupting chemicals (bisphenol A (BPA), octylphenol (OP), nonylphenol (NP) and diethylstilbestrol (DES)) in two drinking waterworks in Jiangsu province which take source water from Taihu Lake. The recombined yeast estrogen screen (YES) and liquid chromatography tandem mass spectrometry (LC-MS/MS) were applied to assess the estrogenicity and detect the estrogens in the samples. The estrogen equivalents (EEQs) ranged from nd (not detected) to 2.96 ng/L, and the estrogenic activities decreased along the processes. Among the 32 samples, DES prevailed in all samples, with concentrations ranging 1.46–12.0 ng/L, BPA, OP and NP were partially detected, with concentrations ranging from nd to 17.73 ng/L, nd to 0.49 ng/L and nd to 3.27 ng/L, respectively. DES was found to be the main contributor to the estrogenicity (99.06%), followed by NP (0.62%), OP (0.23%) and BPA (0.09%). From the observation of treatment efficiency, the advanced treatment processes presented much higher removal ratio in reducing DES, the biodegradation played an important role in removing BPA, ozonation and pre-oxidation showed an effective removal on all the four estrogens; while the conventional ones can also reduce all the four estrogens. PMID:26953121

  11. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  12. Myasthenia Gravis Impairment Index: Responsiveness, meaningful change, and relative efficiency.

    PubMed

    Barnett, Carolina; Bril, Vera; Kapral, Moira; Kulkarni, Abhaya V; Davis, Aileen M

    2017-12-05

    To study responsiveness and meaningful change of the Myasthenia Gravis Impairment Index (MGII) and its relative efficiency compared to other measures. We enrolled 95 patients receiving prednisone, IV immunoglobulin (IVIg), or plasma exchange (PLEX) and 54 controls. Patients were assessed with the MGII and other measures-including the Quantitative Myasthenia Gravis Score, Myasthenia Gravis Composite, and Myasthenia Gravis Activities of Daily Living-at baseline and 3-4 weeks after treatment. Statistical markers of responsiveness included between-groups and within-group differences, and we estimated the relative efficiency of the MGII compared to other measures. Patient-meaningful change was assessed with an anchor-based method, using the patient's impression of change. We determined the minimal detectable change (MDC) and the minimal important difference (MID) at the group and individual level. Treated patients had a higher change in MGII scores than controls (analysis of covariance p < 0.001). The ocular domain changed more with prednisone than with IVIg/PLEX (effect size 0.67 and 0.13, analysis of covariance p = 0.001). The generalized domain changed more with IVIg/PLEX than with prednisone (effect size 0.50 and 0.22, analysis of covariance p = 0.07). For the total MGII score, the individual MDC95 was 9.1 and the MID was 5.5 for individuals and 8.1 for groups. Relative efficiency ratios were >1 favoring the MGII. The MGII demonstrated responsiveness to prednisone, IVIg, and PLEX in patients with myasthenia. There is a differential response in ocular and generalized symptoms to type of therapy. The MGII has higher relative efficiency than comparison measures and is viable for use in clinical trials. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  13. Use of an extensive radio receiver network to document Pacific lamprey (Lampetra tridentata) entrance efficiency at fishways in the Lower Columbia River, USA

    USGS Publications Warehouse

    Moser, M.L.; Matter, A.L.; Stuehrenberg, L.C.; Bjornn, T.C.

    2002-01-01

    We used an extensive network of more than 170 radio receiving stations to document fine-scale passage efficiency of adult anadromous Pacific lamprey at Bonneville and The Dalles Dams in the lower Columbia River in the northwestern U.S.A. Each spring from 1997 to 2000, we released 197-299 lamprey with surgically implanted radio transmitters. Unique transmitter codes and the date and time of reception at each antenna site were downloaded electronically, and initial processing was conducted to eliminate false positive signals. The resulting large Oracle database was analyzed using an Arc View-based coding protocol. Underwater antennas positioned outside the fishway entrances detected lamprey approaches, and antennas positioned immediately inside the entrances indicated successful entries. Entrance efficiency (the number of lamprey that successfully entered a fishway divided by the number that approached that fishway) was compared for different types of entrances (main entrances versus orifice entrances) and entrance locations (powerhouse versus spillway). Lamprey used orifice-type entrances less frequently than main entrances, and passage success was generally low (< 50%) at all entrances to fishways at Bonneville Dam (the lowest dam in the system). Lamprey activity at the entrances was highest at night, and entrance success was significantly higher at The Dalles Dam (the next dam upstream from Bonneville Dam) than at Bonneville Dam. In 1999 and 2000, construction modifications were made to Bonneville Dam spillway entrances, and water velocity at these entrances was reduced at night. Modifications to increase lamprey attachment at the entrances improved lamprey entrance efficiency, but entrance efficiency during reduced velocity tests was not significantly higher than during control conditions.

  14. Effect of β-mannanase domain from Trichoderma reesei on its biochemical characters and synergistic hydrolysis of sugarcane bagasse.

    PubMed

    Ma, Lijuan; Ma, Qing; Cai, Rui; Zong, Zhiyou; Du, Liping; Guo, Gaojie; Zhang, Yingying; Xiao, Dongguang

    2018-05-01

    β-mannanase is a key enzyme for hydrolyzing mannan, a major constituent of hemicellulose, which is the second most abundant polysaccharide in nature. Different structural domains greatly affect its biochemical characters and catalytic efficiency. However, the effects of linker and carbohydrate-binding module (CBM) on β-mannanase from Trichoderma reesei (Man1) have not yet been fully described. The present study aimed to determine the influence of different domains on the expression efficiency, biochemical characteristics and hemicellulosic deconstruction of Man1. The expression efficiency was improved after truncating CBM. Activities of Man1 and Man1ΔCBM (CBM) in the culture supernatant after 168 h of induction were 34.5 and 42.9 IU mL -1 , although a value of only 0.36 IU mL -1 was detected for Man1ΔLCBM (lacking CBM and linker). Man1 showed higher thermostability than Man1ΔCBM at low temperature, whereas Man1ΔCBM had a higher specificity for galactomannan (K m  = 2.5 mg mL -1 ) than Man1 (K m  = 4.0 mg mL -1 ). Both Man1 and Man1ΔCBM could synergistically improve the hydrolysis of cellulose, galactomannan and pretreated sugarcane bagasse, with a 10-30% improvement of the reducing sugar yield. Linker and CBM domains were vital for mannanase activity and expression efficiency. CBM affected the thermostability and adsorption ability of Man1. The results obtained in the present study should help guide the rational design and directional modification of Man with respect to improving its catalytic efficiency. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. The Efficiency of Higher Education Institutions in England Revisited: Comparing Alternative Measures

    ERIC Educational Resources Information Center

    Johnes, Geraint; Tone, Kaoru

    2017-01-01

    Data envelopment analysis (DEA) has often been used to evaluate efficiency in the context of higher education institutions. Yet there are numerous alternative non-parametric measures of efficiency available. This paper compares efficiency scores obtained for institutions of higher education in England, 2013-2014, using three different methods: the…

  16. Under-sampling in a Multiple-Channel Laser Vibrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corey, Jordan

    2007-03-01

    Laser vibrometry is a technique used to detect vibrations on objects using the interference of coherent light with itself. Most vibrometry systems process only one target location at a time, but processing multiple locations simultaneously provides improved detection capabilities. Traditional laser vibrometry systems employ oversampling to sample the incoming modulated-light signal, however as the number of channels increases in these systems, certain issues arise such a higher computational cost, excessive heat, increased power requirements, and increased component cost. This thesis describes a novel approach to laser vibrometry that utilizes undersampling to control the undesirable issues associated with over-sampled systems. Undersamplingmore » allows for significantly less samples to represent the modulated-light signals, which offers several advantages in the overall system design. These advantages include an improvement in thermal efficiency, lower processing requirements, and a higher immunity to the relative intensity noise inherent in laser vibrometry applications. A unique feature of this implementation is the use of a parallel architecture to increase the overall system throughput. This parallelism is realized using a hierarchical multi-channel architecture based on off-the-shelf programmable logic devices (PLDs).« less

  17. Improved reconstruction and sensing techniques for personnel screening in three-dimensional cylindrical millimeter-wave portal scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.

    2011-05-01

    The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less

  18. Detection of reactive oxygen species in mainstream cigarette smoke by a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Shi-jie; Li, Song-zhan

    2009-07-01

    A mass of reactive oxygen species(ROS) are produced in the process of smoking. Superfluous ROS can induce the oxidative stress in organism, which will cause irreversible damage to cells. Fluorescent probe is taken as a marker of oxidative stress in biology and has been applied to ROS detection in the field of biology and chemistry for high sensitivity, high simplicity of data collection and high resolution. As one type of fluorescent probe, dihydrorhodamine 6G (dR6G) will be oxidized to the fluorescent rhodamine 6G, which could be used to detect ROS in mainstream cigarette smoke. We investigated the action mechanism of ROS on dR6G, built up the standard curve of R6G fluorescence intensity with its content, achieved the variation pattern of R6G fluorescence intensity with ROS content in mainstream cigarette smoke and detected the contents of ROS from the 4 types of cigarettes purchased in market. The result shows that the amount of ROS has close relationship with the types of tobacco and cigarette production technology. Compared with other detecting methods such as electronic spin resonance(ESR), chromatography and mass spectrometry, this detection method by the fluorescent probe has higher efficiency and sensitivity and will have wide applications in the ROS detection field.

  19. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping.

    PubMed

    He, Fei; Zhou, Wanjun; Cai, Ren; Yan, Tizhen; Xu, Xiangmin

    2018-04-01

    In this study, we aimed to assess the performance of two whole-genome amplification methods, multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycle (MALBAC), for β-thalassemia genotyping and single-nucleotide polymorphism (SNP)/copy-number variant (CNV) detection using two DNA sequencing assays. We collected peripheral blood, cell lines, and discarded embryos, and carried out MALBAC and MDA on single-cell and five-cell samples. We detected and statistically analyzed differences in the amplification efficiency, positive predictive value, sensitivity, allele dropout (ADO) rate, SNPs, and CV values between the two methods. Through Sanger sequencing at the single-cell and five-cell levels, we showed that both the amplification rate and ADO rate of MDA were better than those using MALBAC, and the sensitivity and positive predictive value obtained from MDA were higher than those from MALBAC for β-thalassemia genotyping. Using next-generation sequencing (NGS) at the single-cell level, we confirmed that MDA has better properties than MALBAC for SNP detection. However, MALBAC was more stable and homogeneous than MDA using low-depth NGS at the single-cell level for CNV detection. We conclude that MALBAC is the better option for CNV detection, while MDA is better suited for SNV detection.

  20. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  1. Development of a new class of flexible polymeric membranes for sensing, nanofiltration & cascaded separation

    NASA Astrophysics Data System (ADS)

    Du, Nian

    The last decade has witnessed an explosion of interests in the science and technology of engineered nanomaterials. While the benefits of nanotechnology are widely publicized, the discussion about the transformation of nanomaterials in the environment, and their potential impacts on human health has just begun. Nanoscale particles, whether ultrafine, nano, engineered, intentional, or incidental, pose significant health effects. New approaches for environmental monitoring of nanomaterials at high sensitivity and in real-time are particularly needed. Since nanoparticles must be isolated from complex environmental and biological matrices, the most effective and simple method of isolating engineered nanomaterials from air or water is filtration. Hence the overall project objective of this work is to develop innovative methods that can simultaneously remove, detect and inactivate diverse nanostructured materials. At the center of the technology is a novel class of polymeric filters capable of simultaneously removing and detecting metal and metal oxide nanoparticles. This project reports the development of a new class of self-standing, flexible, phase-inverted, poly(amic) acid membranes with experimentally-controlled nanopores ranging from less than 10nm to greater than 100nm. Compared to most commercial filter membranes, phase-inverted PAA membranes were found to exhibit superior durability and higher efficiency. The filtration efficiency was ˜99.97% for a number of nanoparticles including Quantum Dots, TiO2, Au and Ag. This work also showed that PAA membranes could be used to separate mixtures of nanoparticles. Although the separation does not show much selectivity according to the NPs’ chemical composition, it shows the ability to separate efficiently based on nanoparticle size. PAA showed an excellent performance not only for nanoparticle isolation at sub-nanometer size ranges, but also as a platform for the detection of engineered nanoparticles at low ppb levels. We demonstrated the application of phase-inverted PAA membranes for quantitative detection of silver NPs using commercial food supplements, and the results were confirmed with AAS, SEM and EDS. Selective detection was achieved in the presence of high concentrations of other metal nanoparticles such as zinc oxide and gold NPs, and silver ions.

  2. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions.

    PubMed

    White, K; Büning, H; Kritz, A; Janicki, H; McVey, J; Perabo, L; Murphy, G; Odenthal, M; Work, L M; Hallek, M; Nicklin, S A; Baker, A H

    2008-03-01

    Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.

  3. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples.

    PubMed

    Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin

    2018-09-30

    Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.

  4. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.

  5. Evaluation of the Biological Sampling Kit (BiSKit) for Large-Area Surface Sampling

    PubMed Central

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Klima-Comba, Amy K.; Stevens, Vanessa L.; Emanuel, Peter A.

    2004-01-01

    Current surface sampling methods for microbial contaminants are designed to sample small areas and utilize culture analysis. The total number of microbes recovered is low because a small area is sampled, making detection of a potential pathogen more difficult. Furthermore, sampling of small areas requires a greater number of samples to be collected, which delays the reporting of results, taxes laboratory resources and staffing, and increases analysis costs. A new biological surface sampling method, the Biological Sampling Kit (BiSKit), designed to sample large areas and to be compatible with testing with a variety of technologies, including PCR and immunoassay, was evaluated and compared to other surface sampling strategies. In experimental room trials, wood laminate and metal surfaces were contaminated by aerosolization of Bacillus atrophaeus spores, a simulant for Bacillus anthracis, into the room, followed by settling of the spores onto the test surfaces. The surfaces were sampled with the BiSKit, a cotton-based swab, and a foam-based swab. Samples were analyzed by culturing, quantitative PCR, and immunological assays. The results showed that the large surface area (1 m2) sampled with the BiSKit resulted in concentrations of B. atrophaeus in samples that were up to 10-fold higher than the concentrations obtained with the other methods tested. A comparison of wet and dry sampling with the BiSKit indicated that dry sampling was more efficient (efficiency, 18.4%) than wet sampling (efficiency, 11.3%). The sensitivities of detection of B. atrophaeus on metal surfaces were 42 ± 5.8 CFU/m2 for wet sampling and 100.5 ± 10.2 CFU/m2 for dry sampling. These results demonstrate that the use of a sampling device capable of sampling larger areas results in higher sensitivity than that obtained with currently available methods and has the advantage of sampling larger areas, thus requiring collection of fewer samples per site. PMID:15574898

  6. Stable-isotope-labeled Histone Peptide Library for Histone Post-translational Modification and Variant Quantification by Mass Spectrometry *

    PubMed Central

    Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.

    2014-01-01

    To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields. PMID:25000943

  7. The Internal Efficiency in Higher Education: An Analysis Based on Economies of Scope

    ERIC Educational Resources Information Center

    Gang, Cheng; Keming, Wu

    2008-01-01

    Among the studies of the internal efficiency in higher education, most have focused on the scale of university (the economies of scale), but little on internal operating efficiency in higher education, especially on the combined efficiency of outputs (the economies of scope). There are few theoretical discussions or experimental research on…

  8. Cancer Detection Using Neural Computing Methodology

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Kohen, Hamid S.; Bearman, Gregory H.; Seligson, David B.

    2001-01-01

    This paper describes a novel learning methodology used to analyze bio-materials. The premise of this research is to help pathologists quickly identify anomalous cells in a cost efficient method. Skilled pathologists must methodically, efficiently and carefully analyze manually histopathologic materials for the presence, amount and degree of malignancy and/or other disease states. The prolonged attention required to accomplish this task induces fatigue that may result in a higher rate of diagnostic errors. In addition, automated image analysis systems to date lack a sufficiently intelligent means of identifying even the most general regions of interest in tissue based studies and this shortfall greatly limits their utility. An intelligent data understanding system that could quickly and accurately identify diseased tissues and/or could choose regions of interest would be expected to increase the accuracy of diagnosis and usher in truly automated tissue based image analysis.

  9. Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers.

    PubMed

    Stolyarov, Alexander M; Gumennik, Alexander; McDaniel, William; Shapira, Ofer; Schell, Brent; Sorin, Fabien; Kuriki, Ken; Benoit, Gilles; Rose, Aimee; Joannopoulos, John D; Fink, Yoel

    2012-05-21

    We demonstrate an in-fiber gas phase chemical detection architecture in which a chemiluminescent (CL) reaction is spatially and spectrally matched to the core modes of hollow photonic bandgap (PBG) fibers in order to enhance detection efficiency. A peroxide-sensitive CL material is annularly shaped and centered within the fiber's hollow core, thereby increasing the overlap between the emission intensity and the intensity distribution of the low-loss fiber modes. This configuration improves the sensitivity by 0.9 dB/cm compared to coating the material directly on the inner fiber surface, where coupling to both higher loss core modes and cladding modes is enhanced. By integrating the former configuration with a custom-built optofluidic system designed for concomitant controlled vapor delivery and emission measurement, we achieve a limit-of-detection of 100 parts per billion (ppb) for hydrogen peroxide vapor. The PBG fibers are produced by a new fabrication method whereby external gas pressure is used as a control knob to actively tune the transmission bandgaps through the entire visible range during the thermal drawing process.

  10. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    PubMed Central

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  11. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    PubMed

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  12. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl.

    PubMed

    Zhang, Can; Cui, Hanyu; Han, Yufeng; Yu, Fangfang; Shi, Xiaoman

    2018-02-01

    A biomimetic enzyme-linked immunosorbent assay (BELISA) which was based on molecularly imprinted polymers on paper (MIPs-paper) with specific recognition was developed. As a detector, the surface of paper was modified with γ-MAPS by hydrolytic action and anchored the MIP layer on γ-MAPS modified-paper by copolymerization to construct the artificial antibody Through a series of experimentation and verification, we successful got the MIPs-paper and established BELISA for the detection of carbaryl. The development of MIPs-paper based on BELISA was applied to detect carbaryl in real samples and validated by an enzyme-linked immunosorbent assay (ELISA) based on anti-carbaryl biological antibody. The results of these two methods (BELISA and ELISA) were well correlated (R 2 =0.944). The established method of MIPs-paper BELISA exhibits the advantages of low cost, higher stability and being re-generable, which can be applied as a convenient tool for the fast and efficient detection of carbaryl. Copyright © 2017. Published by Elsevier Ltd.

  13. Characterization of combustion-generated carbonaceous nanoparticles by size-dependent ultraviolet laser photoionization.

    PubMed

    Commodo, Mario; Sgro, Lee Anne; Minutolo, Patrizia; D'Anna, Andrea

    2013-05-16

    Photoelectric charging of particles is a powerful tool for online characterization of submicrometer aerosol particles. Indeed photoionization based techniques have high sensitivity and chemical selectivity. Moreover, they yield information on electronic properties of the material and are sensitive to the state of the surface. In the present study the photoionization charging efficiency, i.e., the ratio between the generated positive ions and the corresponding neutral ones, for different classes of flame-generated carbonaceous nanoparticles was measured. The fifth harmonics of a Nd:YAG laser, 213 nm (5.82 eV), was used as an ionization source for the combustion generated nanoparticles, whereas a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the flame conditions. In particular, we observed that the richer the flame is, i.e., the higher the equivalent ratio is, the higher the photon charging efficiency is. We hypothesized that such an increase in the photoionization propensity of the carbonaceous nanoparticles from richer flame condition is associated to the presence within the particles of larger aromatic moieties. The results clearly show that photoionization is a powerful diagnostic tool for the physical-chemical characterization of combustion aerosol, and it may lead to further insights into the soot formation mechanism.

  14. Hepascore and hyaluronic acid as markers of fibrosis in liver disease of mixed aetiology.

    PubMed

    Costelloe, Seán J; Theocharidou, Eleni; Tsochatzis, Emmanuel; Thalassinos, Evangelos; Martin, Nicholas; Fede, Guiseppe; Thomas, Michael; Burroughs, Anthony K

    2015-03-01

    To evaluate hyaluronic acid (HA) and Hepascore as diagnostic replacements for liver biopsy in a population with mixed liver disease. The utility of HA concentration and Hepascore for staging fibrosis, detecting any fibrosis and detecting advanced fibrosis, was assessed in 73 consecutive patients, with varied liver pathologies requiring biopsy. Subgroup analyses compared utility of disease-specific and universal cut-offs for HA and Hepascore. Forty-one patients (56.2%) had liver fibrosis on biopsy. HA and Hepascore varied significantly with METAVIR stage, although ranges overlapped, precluding their use in staging fibrosis. When detecting any fibrosis (METAVIR F1-F4), HA and Hepascore had areas under the receiver operator characteristic curve of 0.63 and 0.66, respectively, and approximately two-thirds of patients were correctly categorized using optimal cut-offs. For detection of advanced fibrosis (METAVIR F3/4), HA and Hepascore had areas under the receiver operator characteristic curve of 0.81 and 0.80, respectively, and three-quarters of patients were correctly categorized using optimal cut-offs. In subgroup analysis, locally derived, disease-specific cut-offs in hepatitis C virus patients yielded greatest diagnostic efficiency, whereas the tests performed worst in cryptogenic aetiologies. HA and Hepascore cannot accurately stage hepatic fibrosis in this population. Locally derived, disease-specific cut-offs for HA gave the higher diagnostic efficiency observed. Although HA and Hepascore may be useful where the disease aetiology is known, particularly in established hepatitis C virus, the high cost of false positives and false negatives are such that neither a reliable enough to replace biopsy without substantial further characterization.

  15. A novel semi-transductive learning framework for efficient atypicality detection in chest radiographs

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Mohammad; Balasubramanian, Vineeth; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2012-03-01

    Inductive learning refers to machine learning algorithms that learn a model from a set of training data instances. Any test instance is then classified by comparing it to the learned model. When the set of training instances lend themselves well to modeling, the use of a model substantially reduces the computation cost of classification. However, some training data sets are complex, and do not lend themselves well to modeling. Transductive learning refers to machine learning algorithms that classify test instances by comparing them to all of the training instances, without creating an explicit model. This can produce better classification performance, but at a much higher computational cost. Medical images vary greatly across human populations, constituting a data set that does not lend itself well to modeling. Our previous work showed that the wide variations seen across training sets of "normal" chest radiographs make it difficult to successfully classify test radiographs with an inductive (modeling) approach, and that a transductive approach leads to much better performance in detecting atypical regions. The problem with the transductive approach is its high computational cost. This paper develops and demonstrates a novel semi-transductive framework that can address the unique challenges of atypicality detection in chest radiographs. The proposed framework combines the superior performance of transductive methods with the reduced computational cost of inductive methods. Our results show that the proposed semitransductive approach provides both effective and efficient detection of atypical regions within a set of chest radiographs previously labeled by Mayo Clinic expert thoracic radiologists.

  16. Enzymatic Digestion for Improved Bacteria Separation from Leafy Green Vegetables.

    PubMed

    Wang, Danhui; Wang, Ziyuan; He, Fei; Kinchla, Amanda J; Nugen, Sam R

    2016-08-01

    An effective and rapid method for the separation of bacteria from food matrix remains a bottleneck for rapid bacteria detection for food safety. Bacteria can strongly attach to a food surface or internalize within the matrix, making their isolation extremely difficult. Traditional methods of separating bacteria from food routinely involve stomaching, blending, and shaking. However, these methods may not be efficient at removing all the bacteria from complex matrices. Here, we investigate the benefits of using enzyme digestion followed by immunomagnetic separation to isolate Salmonella from spinach and lettuce. Enzymatic digestion using pectinase and cellulase was able to break down the structure of the leafy green vegetables, resulting in the detachment and release of Salmonella from the leaves. Immunomagnetic separation of Salmonella from the liquefied sample allowed an additional separation step to achieve a more pure sample without leaf debris that may benefit additional downstream applications. We have investigated the optimal combination of pectinase and cellulase for the digestion of spinach and lettuce to improve sample detection yields. The concentrations of enzymes used to digest the leaves were confirmed to have no significant effect on the viability of the inoculated Salmonella. Results reported that the recovery of the Salmonella from the produce after enzyme digestion of the leaves was significantly higher (P < 0.05) than traditional sample preparation methods to separate bacteria (stomaching and manually shaking). The results demonstrate the potential for use of enzyme digestion prior to separation can improve the efficiency of bacteria separation and increase the likelihood of detecting pathogens in the final detection assay.

  17. Cryptosporidium Oocyst Detection in Water Samples: Floatation Technique Enhanced with Immunofluorescence Is as Effective as Immunomagnetic Separation Method

    PubMed Central

    Koompapong, Khuanchai; Sutthikornchai, Chantira

    2009-01-01

    Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 101, 102, and 103 per 10 µl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 102 per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting. PMID:19967082

  18. Cryptosporidium oocyst detection in water samples: floatation technique enhanced with immunofluorescence is as effective as immunomagnetic separation method.

    PubMed

    Koompapong, Khuanchai; Sutthikornchai, Chantira; Sukthana, Yowalark

    2009-12-01

    Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 10(1), 10(2), and 10(3) per 10 microl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 10(2) per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.

  19. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?

    PubMed

    Tang, Xuguang; Li, Hengpeng; Desai, Ankur R; Nagy, Zoltan; Luo, Juhua; Kolb, Thomas E; Olioso, Albert; Xu, Xibao; Yao, Li; Kutsch, Werner; Pilegaard, Kim; Köstner, Barbara; Ammann, Christof

    2014-12-15

    A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.

  20. Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions.

    PubMed

    Wang, Xin; Ramström, Olof; Yan, Mingdi

    2011-10-21

    Glyconanomaterials, an emerging class of bio-functional nanomaterials, have shown promise in detecting, imaging and targeting proteins, bacteria, and cells. In this article, we report that dynamic light scattering (DLS) can be used as an efficient tool to study glyconanoparticle (GNP)--lectin interactions. Silica and Au nanoparticles (NPs) conjugated with D-mannose (Man) and D-galactose (Gal) were treated with the lectins Concanavalin A (Con A) and Ricinus communis agglutinin (RCA(120)), and the hydrodynamic volumes of the resulting aggregates were measured by DLS. The results showed that the particle size grew with increasing lectin concentration. The limit of detection (LOD) was determined to be 2.9 nM for Con A with Man-conjugated and 6.6 nM for RCA(120) with Gal-conjugated silica NPs (35 nm), respectively. The binding affinity was also determined by DLS and the results showed 3-4 orders of magnitude higher affinity of GNPs than the free ligands with lectins. The assay sensitivity and affinity were particle size dependent and decreased with increasing particle diameter. Because the method relies on the particle size growth, it is therefore general and can be applied to nanomaterials of different compositions.

  1. Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Park, Minho; Ashitate, Yoshitomo; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidhu P.; Gioux, Sylvain

    2013-12-01

    We report the design, characterization, and validation of an optimized simultaneous color and near-infrared (NIR) fluorescence rigid endoscopic imaging system for minimally invasive surgery. This system is optimized for illumination and collection of NIR wavelengths allowing the simultaneous acquisition of both color and NIR fluorescence at frame rates higher than 6.8 fps with high sensitivity. The system employs a custom 10-mm diameter rigid endoscope optimized for NIR transmission. A dual-channel light source compatible with the constraints of an endoscope was built and includes a plasma source for white light illumination and NIR laser diodes for fluorescence excitation. A prism-based 2-CCD camera was customized for simultaneous color and NIR detection with a highly efficient filtration scheme for fluorescence imaging of both 700- and 800-nm emission dyes. The performance characterization studies indicate that the endoscope can efficiently detect fluorescence signal from both indocyanine green and methylene blue in dimethyl sulfoxide at the concentrations of 100 to 185 nM depending on the background optical properties. Finally, we performed the validation of this imaging system in vivo during a minimally invasive procedure for thoracic sentinel lymph node mapping in a porcine model.

  2. Optimized Vibration Chamber for Landslide Sensory and Alarm System

    NASA Astrophysics Data System (ADS)

    Ismail, Eliza Sabira Binti; Hadi Habaebi, Mohamed; Daoud, Jamal I.; Rafiqul Islam, Md

    2017-11-01

    Landslide is one of natural hazard that is not unfamiliar disaster in Malaysia. Malaysia has experienced this disaster many times since 1969. This natural hazard has become a major research concern for Malaysian government when many people were injured badly and even had been killed. Many previous research works published in the open literature aimed at designing a system that could detect landslide in early stage before the landslide becomes catastrophic. This paper presents the early works on a major work-in-progress landslide early warning system for Malaysian environment. The aim of this system is to develop the most efficiently reliable cost-effective system in which slight earth movements are monitored continuously. The challenge this work aims at is to work with a low budget system that produces efficient performance. Hence, the material used is off-the-shelf. Early design optimization results of the vibration sensor used is quite promising detecting the slightest faint tremors, which are amplified using the best vibration chamber available. It is shown that the choice of proper pipe length and diameter dimensions in combination to a gravel to exaggerate the produced higher sensitivity level noise of 5 dB.

  3. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency.

  4. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; hide

    2015-01-01

    The Fast Plasma Investigation (FPI) on NASAs Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30 ms for electrons; 150 ms for ions) and spatially differentiated measurements of the full 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity, the reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions of magnetically reconnecting plasmas. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated using the plateau curve technique. In this, a fixed detection threshold is set. The detection system count rate is then measured as a function of MCP voltage to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection system discrimination threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully describe the behavior of the detection system and individually characterize each of its fundamental parameters. To improve this situation, we have developed a detailed phenomenological description of the detection system, its behavior and its signal, crosstalk and noise sources. Based on this, we have devised a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. More precise calibration is highly desirable as the instruments will produce higher quality raw data that will require less post-acquisition data correction using results from in-flight pitch angle distribution measurements and ground calibration measurements. The detection system description and the fundamental concepts of this new calibration method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters and how to choose the optimum detection system operating point. This new method has been successfully applied to achieve a highly accurate calibration of the DESs and DISs of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown that, with further detailed modeling, this method can be extended for use in flight to achieve and maintain a highly accurate detection system calibration across a large number of instruments during the mission.

  5. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    NASA Astrophysics Data System (ADS)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying standoff distances to assess current sensor performance and benefits.

  6. Jet-induced star formation in 3C 285 and Minkowski's Object

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.

    2015-02-01

    How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski's Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski's Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ~70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski's Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski's Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy. The molecular gas appears to be in a compact reservoir, which could be evidence of an early phase of the gas accretion after a recent merger event in 3C 285. No kinematic signature of a molecular outflow is detected by the 30 m telescope. Interestingly, 3C 285/09.6 and Minkowski's Object are not detected in CO. The cold gas mass upper limits are consistent with a star formation induced by the compression of dense ambient material by the jet. The depletion time scales in 3C 285/09.6 and Minkowski's Object are of the order of and even shorter than what is found in 3C 285, NGC 541, and local spiral galaxies (109 yr). The upper limit of the molecular gas surface density in 3C 285/09.6 at least follows a Schmidt-Kennicutt law if the emitting region is very compact, as suggested by the Hα emission, while Minkowski's Object is found to have a much higher star formation efficiency lower limit (very short depletion time). Higher sensitivity is necessary to detect CO in the star-forming spots, and higher spatial resolution is required to map the emission in these jet-induced star-forming regions. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  7. Efficient Personalized Mispronunciation Detection of Taiwanese-Accented English Speech Based on Unsupervised Model Adaptation and Dynamic Sentence Selection

    ERIC Educational Resources Information Center

    Wu, Chung-Hsien; Su, Hung-Yu; Liu, Chao-Hong

    2013-01-01

    This study presents an efficient approach to personalized mispronunciation detection of Taiwanese-accented English. The main goal of this study was to detect frequently occurring mispronunciation patterns of Taiwanese-accented English instead of scoring English pronunciations directly. The proposed approach quickly identifies personalized…

  8. Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells.

    PubMed

    Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei

    2018-04-04

    Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.

  9. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    PubMed

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  10. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection

    NASA Astrophysics Data System (ADS)

    Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu

    2018-01-01

    The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.

  11. High-sensitivity detection of biological amines using fast Hadamard transform CE coupled with photolytic optical gating.

    PubMed

    Braun, Kevin L; Hapuarachchi, Suminda; Fernandez, Facundo M; Aspinwall, Craig A

    2007-08-01

    Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.

  12. Parallel heuristics for scalable community detection

    DOE PAGES

    Lu, Hao; Halappanavar, Mahantesh; Kalyanaraman, Ananth

    2015-08-14

    Community detection has become a fundamental operation in numerous graph-theoretic applications. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method ismore » also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains. Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number or fewer iterations, while providing real speedups of up to 16x using 32 threads.« less

  13. Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing.

    PubMed

    Dai, Jingjing; Vu, Danh; Nagel, Susan; Lin, Chung-Ho; Fidalgo de Cortalezzi, Maria

    2017-12-06

    The authors describe a molecularly imprinted polymer (MIP) that enables detection of 2-butoxyethanol (2BE), a pollutant associated with hydraulic fracturing contamination. Detection is based on a combination of a colloidal crystal templating and a molecular imprinting. The MIPs are shown to display higher binding capacity for 2BE compared to non-imprinted films (NIPs), with imprinting efficiencies of ∼ 2. The tests rely on the optical effects that are displayed by the uniformly ordered porous structure of the material. The reflectance spectra of the polymer films have characteristic Bragg peaks whose location varies with the concentration of 2BE. Peaks undergo longwave red shifts up to 50 nm on exposure of the MIP to 2BE in concentrations in the range from 1 ppb to 100 ppm. This allows for quantitative estimates of the 2BE concentrations present in aqueous solutions. The material is intended for use in the early detection of contamination at hydraulic fracturing sites. Graphical abstract Molecularly imprinted polymers (MIPs) sensor with the sensing ability on reflectance spectra responding to the presence of 2-butoxyethanol (2BE) for early detection of hydraulic fracking contamination.

  14. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8-100% sensitivity, 100% specificity, 86-89% efficiency and a limit of detection of 12-400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82-90% efficiency and limit of detection of 120-4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.

  15. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745

  16. Guidelines to indirectly measure and enhance detection efficiency of stationary PIT tag interrogation systems in streams

    USGS Publications Warehouse

    Connolly, Patrick J.; Wolf, Keith; O'Neal, Jennifer S.

    2010-01-01

    With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.

  17. Guidelines for calculating and enhancing detection efficiency of PIT tag interrogation systems

    USGS Publications Warehouse

    Connolly, Patrick J.

    2010-01-01

    With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.

  18. Effect of thermal annealing on carrier localization and efficiency of spin detection in GaAsSb epilayers grown on InP

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun

    2018-04-01

    The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.

  19. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    PubMed

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Analysis of waveguide architectures of InGaN/GaN diode lasers by nearfield optical microscopy

    NASA Astrophysics Data System (ADS)

    Friede, Sebastian; Tomm, Jens W.; Kühn, Sergei; Hoffmann, Veit; Wenzel, Hans

    2017-02-01

    Waveguide (WG) architectures of 420-nm emitting InAlGaN/GaN diode lasers are analyzed by photoluminescence (PL) and photocurrent (PC) spectroscopy using a nearfield scanning optical microscope (NSOM) for excitation and detection. The measurements with a spatial resolution of 100 nm are implemented by scanning the fiber tip along the unprepared front facets of standard devices. PL is collected by the fiber tip, whereas PCs are extracted from the contacts that are anyway present for power supply. The mechanisms of signal generation are addressed in detail. The components of the `optical active region', multiple quantum wells (MQW), WGs, and cladding layers are separately inspected. Even separate analysis of p- and n-sections of the WG become possible. Defect levels are detected in the p-part of the WG. Their presence is consistent with the doping by Mg. An increased efficiency of carrier capture into InGaN/GaN WGs compared to GaN WGs is observed. Thus, beyond the improved optical confinement, the electrical confinement is improved, as well. NSOM PL and PC at GaN based devices do not reach the clarity and spatial resolution for WG mode analysis as seen before for GaAs based devices. This is due to higher modal absorption and higher WG losses. NSOM based optical analysis turns out to be an efficient tool for analysis of single layers grown into InAlGaN/GaN diode laser structures, even if this analysis is done at a packaged ready-to-work device.

  1. Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Wang, Han; Jiang, Zhenyu; Jin, Xiangliang; Luo, Jun

    2014-12-01

    Two silicon-based ultraviolet (UV) and blue-extended photodiodes are presented, which were fabricated for light detection in the ultraviolet/blue spectral range. Stripe-shaped and octagon-ring-shaped structures were designed to verify parameters of the UV-responsivity, UV-selectivity, breakdown voltage, and response time. The ultra-shallow lateral pn junction had been successfully realized in a standard 0.5-μm complementary metal oxide semiconductor (CMOS) process to enlarge the pn junction area, enhance the absorption of UV light, and improve the responsivity and quantum efficiency. The test results illustrated that the stripe-shaped structure has the lower breakdown voltage, higher UV-responsicity, and higher UV-selectivity. But the octagon-ring-shaped structure has the lower dark current. The response time of both structures was almost the same.

  2. Development and application of a high-performance liquid chromatography method using monolithic columns for the analysis of ecstasy tablets.

    PubMed

    Mc Fadden, Kim; Gillespie, John; Carney, Brian; O'Driscoll, Daniel

    2006-07-07

    A rapid and selective HPLC method using monolithic columns was developed for the separation and quantification of the principal amphetamines in ecstasy tablets. Three monolithic (Chromolith RP18e) columns of different lengths (25, 50 and 100 mm) were assessed. Validation studies including linearity, selectivity, precision, accuracy and limit of detection and quantification were carried out using the Chromolith SpeedROD, RP-18e, 50 mm x 4.6 mm column. Column backpressure and van Deemter plots demonstrated that monolithic columns provide higher efficiency at higher flow rates when compared to particulate columns without the loss of peak resolution. Application of the monolithic column to a large number of ecstasy tablets seized in Ireland ensured its suitability for the routine analysis of ecstasy tablets.

  3. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Masetti, Marco; Beretta, Giovanni Pietro

    2017-10-01

    The expected long-term efficiency of vertical cutoff walls coupled to pump-and-treat technologies to contain solute plumes in highly heterogeneous aquifers was analyzed. A well-characterized case study in Italy, with a hydrogeological database of 471 results from hydraulic tests performed on the aquifer and the surrounding 2-km-long cement-bentonite (CB) walls, was used to build a conceptual model and assess a representative remediation site adopting coupled technologies. In the studied area, the aquifer hydraulic conductivity Ka [m/d] is log-normally distributed with mean E (Ya) = 0.32 , variance σYa2 = 6.36 (Ya = lnKa) and spatial correlation well described by an exponential isotropic variogram with integral scale less than 1/12 the domain size. The hardened CB wall's hydraulic conductivity, Kw [m/d], displayed strong scaling effects and a lognormal distribution with mean E (Yw) = - 3.43 and σYw2 = 0.53 (Yw =log10Kw). No spatial correlation of Kw was detected. Using this information, conservative transport was simulated across a CB wall in spatially correlated 1-D random Ya fields within a numerical Monte Carlo framework. Multiple scenarios representing different Kw values were tested. A continuous solute source with known concentration and deterministic drains' discharge rates were assumed. The efficiency of the confining system was measured by the probability of exceedance of concentration over a threshold (C∗) at a control section 10 years after the initial solute release. It was found that the stronger the aquifer heterogeneity, the higher the expected efficiency of the confinement system and the lower the likelihood of aquifer pollution. This behavior can be explained because, for the analyzed aquifer conditions, a lower Ka generates more pronounced drawdown in the water table in the proximity of the drain and consequently a higher advective flux towards the confined area, which counteracts diffusive fluxes across the walls. Thus, a higher σYa2 results in a larger amount of low Ka values in the proximity of the drain, and a higher probability of not exceeding C∗ .

  4. On-chip detection of non-classical light by scalable integration of single-photon detectors

    PubMed Central

    Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk

    2015-01-01

    Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346

  5. Absolute detection efficiencies of low energy H, H -, H +, H 2+ and H 3+ incident on a multichannel plate detector

    NASA Astrophysics Data System (ADS)

    Peko, B. L.; Stephen, T. M.

    2000-12-01

    Measured absolute detection efficiencies are presented for H, H - and H n+ ( n=1,2,3) impacting a commercially available, dual multichannel plate (MCP) electron multiplier at kinetic energies ranging from 30 to 1000 eV. Measurements involving isotopic substitutions (D, D -, D n+) and Ar + are also presented. In addition, atomic hydrogen detection efficiencies relative to those of H + and H - are given, as they may have a more universal application. For the three charge states, H, H + and H -, the absolute detection efficiencies are markedly different at low energies and converge to a nearly uniform value of ˜70% with increasing projectile energy. The energy dependence is strongest for H +, varying nearly three orders of magnitude over the energy range studied, and weakest for H -, varying by less than one order of magnitude. In general, for the low energy positive ions at a given energy, the lighter the incident particle mass, the greater the probability of its detection.

  6. Flock Foraging Efficiency in Relation to Food Sensing Ability and Distribution: a Simulation Study

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2013-08-01

    Flocking may be an advantageous strategy for acquiring food resources. The degree of advantage is related to two factors: the ability of flock members to detect food resources and patterns of food distribution in the environment. To understand foraging efficiency as a function of these factors, I constructed a two-dimensional (2D) flocking model incorporating the two factors. At the start of the simulation, food particles were heterogeneously distributed. The heterogeneity, H, was characterized as a value ranging from 0.0 to 1.0. For each flock member, food sensing ability was defined by two variables: sensing distance, R and sensing angle, θ. Foraging efficiency of a flock was defined as the time, τ, required for a flock to consume all the available food resources. Simulation results showed that flock foraging is most efficient when individuals had an intermediate sensing ability (R = 60), but decreased for low (R < 60) and high (R > 60) sensing ability. When R > 60, patterns in foraging efficiency with increasing sensing distance and food resource aggregation were less consistent. This inconsistency was due to instability of the flock and a higher rate of individuals failing to capture target food resources. In addition, I briefly discuss the benefits obtained by foraging in flocks from an evolutionary perspective.

  7. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.

    PubMed

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2013-09-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .

  8. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation

    PubMed Central

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2014-01-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  9. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  10. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-06-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  11. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection.

    PubMed

    Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Terai, Hirotaka

    2014-04-07

    We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector (SSPD) array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics within the small range of 7.19-7.23 K of superconducting transition temperature and 15.8-17.8 μA of superconducting switching current. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency (SDE) in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

  12. TESAT laser communication terminal performance results on 5.6Gbit coherent inter satellite and satellite to ground links

    NASA Astrophysics Data System (ADS)

    Gregory, M.; Heine, F.; Kämpfner, H.; Meyer, R.; Fields, R.; Lunde, C.

    2017-11-01

    The increasing demand on high speed communication networks has stimulated the development of optical free space data transmission during the last years. TESAT has developed a laser communication terminal (LCT) that fulfills the need of a power efficient system whose capability has been successfully demonstrated at bidirectional space-to-space links and bidirectional space-to-ground links (SGLs) at a data rate of 5.625 GBit/s with a homodyne detection scheme and a BPSK modulation format. In comparison to a direct detection system, the homodyne detection scheme works as a bandpass filter. The transmission is immune to false light and even data transmission with the sun in the receiver field of view (FOV) is possible. Compared to common RF transmission which is implemented on spacecrafts for data transmission, optical transmission provides not only higher transmission rates (factor 10) but also shows excellent security features since the laser beams directivity making it immune to interception.

  13. Lymphoproliferative and Gamma Interferon Responses to Stress-Regulated Mycobacterium avium subsp. paratuberculosis Recombinant Proteins

    PubMed Central

    Gurung, Ratna B.; Begg, Douglas J.; Purdie, Auriol C.; de Silva, Kumudika; Bannantine, John P.

    2014-01-01

    Johne's disease in ruminants is a chronic infection of the intestines caused by Mycobacterium avium subsp. paratuberculosis. An important strategy to control disease is early detection, and a potentially efficient method for early detection is measurement of cell-mediated immune responses developed by the host in response to exposure or infection. One method is to measure lymphoproliferation and cytokine release from the host cells when exposed to the organism or parts of the organism. In this study, 10 recombinant M. avium subsp. paratuberculosis proteins known to be upregulated under in vitro stress conditions were evaluated by examining their ability to evoke memory as a result of exposure by vaccination or oral challenge with live Mycobacterium avium subsp. paratuberculosis. Out of 10 proteins, MAP2698c was found to induce higher cell-mediated immune responses in vaccinated and challenged sheep in comparison to healthy controls. The findings suggest that not all stress-regulated proteins have the diagnostic potential to detect cell-mediated immune responses in ovine paratuberculosis. PMID:24695774

  14. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis.

    PubMed

    Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M

    2013-02-01

    Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.

  15. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  16. Sampling efficacy for the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Stringer, Lloyd D; Suckling, David Maxwell; Baird, David; Vander Meer, Robert K; Christian, Sheree J; Lester, Philip J

    2011-10-01

    Cost-effective detection of invasive ant colonies before establishment in new ranges is imperative for the protection of national borders and reducing their global impact. We examined the sampling efficiency of food-baits and pitfall traps (baited and nonbaited) in detecting isolated red imported fire ant (Solenopsis invicta Buren) nests in multiple environments in Gainesville, FL. Fire ants demonstrated a significantly higher preference for a mixed protein food type (hotdog or ground meat combined with sweet peanut butter) than for the sugar or water baits offered. Foraging distance success was a function of colony size, detection trap used, and surveillance duration. Colony gyne number did not influence detection success. Workers from small nests (0- to 15-cm mound diameter) traveled no >3 m to a food source, whereas large colonies (>30-cm mound diameter) traveled up to 17 m. Baited pitfall traps performed best at detecting incipient ant colonies followed by nonbaited pitfall traps then food baits, whereas food baits performed well when trying to detect large colonies. These results were used to create an interactive model in Microsoft Excel, whereby surveillance managers can alter trap type, density, and duration parameters to estimate the probability of detecting specified or unknown S. invicta colony sizes. This model will support decision makers who need to balance the sampling cost and risk of failure to detect fire ant colonies.

  17. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].

    PubMed

    Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia

    2014-04-01

    The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.

  18. Linking the mobilization of dissolved organic matter in catchments and its removal in drinking water treatment to its molecular characteristics.

    PubMed

    Raeke, Julia; Lechtenfeld, Oliver J; Tittel, Jörg; Oosterwoud, Marieke R; Bornmann, Katrin; Reemtsma, Thorsten

    2017-04-15

    Drinking water reservoirs in the Northern Hemisphere are largely affected by the decadal-long increase in riverine dissolved organic carbon (DOC) concentrations. The removal of DOC in drinking water treatment is costly and predictions are needed to link DOC removal efficiency to its mobilization in catchments, both of which are determined by the molecular composition. To study the effect of hydrological events and land use on the molecular characteristics of dissolved organic matter (DOM), 36 samples from three different catchment areas in the German low mountain ranges, with DOC concentrations ranging from 3 to 32 mg L -1 , were examined. Additionally, nine pairs of samples from downstream drinking water reservoirs were analyzed before and after flocculation. The molecular composition and the age of DOM were analyzed using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and radiocarbon ( 14 C) analysis. At elevated discharge in a forested catchment comparatively younger, more oxygenated and unsaturated molecules of higher molecular weight were preferentially mobilized, likely linked to the reductive mobilization of iron. DOM with highly similar molecular characteristics (O/C ratio > 0.5, m/z > 500) could also be efficiently removed through flocculation in drinking water treatment. The proportion of DOM removed through flocculation ranged between 43% and 73% of DOC and was highest at elevated discharge. In catchment areas with a higher percentage of grassland and agriculture a higher proportion of DOM molecules containing sulfur and nitrogen was detected, which in turn could be less efficiently flocculated. Altogether, it was shown that DOM that is released during large hydrological events can be efficiently flocculated again, suggesting a reversal of similar chemical mechanisms in both processes. Since the occurrence of heavy rainfall events is predicted to increase in the future, event-driven mobilization of DOC may continue to challenge drinking water production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The conservation value of degraded forests for agile gibbons Hylobates agilis.

    PubMed

    Lee, David C; Powell, Victoria J; Lindsell, Jeremy A

    2015-01-01

    All gibbon species are globally threatened with extinction yet conservation efforts are undermined by a lack of population and ecological data. Agile gibbons (Hylobates agilis) occur in Sumatra, Indonesia and adjacent mainland Southeast Asia. Population densities are known from four sites (three in Sumatra) while little is known about their ability to tolerate habitat degradation. We conducted a survey of agile gibbons in Harapan Rainforest, a lowland forest site in Sumatra. The area has been severely degraded by selective logging and encroachment but is now managed for ecosystem restoration. We used two survey methods: an established point count method for gibbons with some modifications, and straight line transects using auditory detections. Surveys were conducted in the three main forest types prevalent at the site: high, medium, and low canopy cover secondary forests. Mean group density estimates were higher from point counts than from line transects, and tended to be higher in less degraded forests within the study site. We consider points more time efficient and reliable than transects since detectability of gibbons was higher from points per unit effort. We recommend the additional use of Distance sampling methods to account for imperfect detection and provide other recommendations to improve surveys of gibbons. We estimate that the site holds at least 6,070 and as many as 11,360 gibbons. Our results demonstrate that degraded forests can be extremely important for the conservation of agile gibbons and that efforts to protect and restore such sites could contribute significantly to the conservation of the species. © 2014 Wiley Periodicals, Inc.

  20. Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.

    Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less

  1. Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron

    DOE PAGES

    Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...

    2018-04-09

    Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less

  2. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species.

    PubMed

    Schmelzle, Molly C; Kinziger, Andrew P

    2016-07-01

    Environmental DNA (eDNA) monitoring approaches promise to greatly improve detection of rare, endangered and invasive species in comparison with traditional field approaches. Herein, eDNA approaches and traditional seining methods were applied at 29 research locations to compare method-specific estimates of detection and occupancy probabilities for endangered tidewater goby (Eucyclogobius newberryi). At each location, multiple paired seine hauls and water samples for eDNA analysis were taken, ranging from two to 23 samples per site, depending upon habitat size. Analysis using a multimethod occupancy modelling framework indicated that the probability of detection using eDNA was nearly double (0.74) the rate of detection for seining (0.39). The higher detection rates afforded by eDNA allowed determination of tidewater goby occupancy at two locations where they have not been previously detected and at one location considered to be locally extirpated. Additionally, eDNA concentration was positively related to tidewater goby catch per unit effort, suggesting eDNA could potentially be used as a proxy for local tidewater goby abundance. Compared to traditional field sampling, eDNA provided improved occupancy parameter estimates and can be applied to increase management efficiency across a broad spatial range and within a diversity of habitats. © 2015 John Wiley & Sons Ltd.

  3. Acoustic mirror effect increases prey detection distance in trawling bats

    NASA Astrophysics Data System (ADS)

    Siemers, Björn M.; Baur, Eric; Schnitzler, Hans-Ulrich

    2005-06-01

    Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called ‘trawling behaviour’. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.

  4. Acoustic mirror effect increases prey detection distance in trawling bats.

    PubMed

    Siemers, Björn M; Baur, Eric; Schnitzler, Hans-Ulrich

    2005-06-01

    Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called 'trawling behaviour'. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.

  5. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood.

    PubMed

    Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro

    2015-01-01

    Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.

  6. Optimal Matched Filter in the Low-number Count Poisson Noise Regime and Implications for X-Ray Source Detection

    NASA Astrophysics Data System (ADS)

    Ofek, Eran O.; Zackay, Barak

    2018-04-01

    Detection of templates (e.g., sources) embedded in low-number count Poisson noise is a common problem in astrophysics. Examples include source detection in X-ray images, γ-rays, UV, neutrinos, and search for clusters of galaxies and stellar streams. However, the solutions in the X-ray-related literature are sub-optimal in some cases by considerable factors. Using the lemma of Neyman–Pearson, we derive the optimal statistics for template detection in the presence of Poisson noise. We demonstrate that, for known template shape (e.g., point sources), this method provides higher completeness, for a fixed false-alarm probability value, compared with filtering the image with the point-spread function (PSF). In turn, we find that filtering by the PSF is better than filtering the image using the Mexican-hat wavelet (used by wavdetect). For some background levels, our method improves the sensitivity of source detection by more than a factor of two over the popular Mexican-hat wavelet filtering. This filtering technique can also be used for fast PSF photometry and flare detection; it is efficient and straightforward to implement. We provide an implementation in MATLAB. The development of a complete code that works on real data, including the complexities of background subtraction and PSF variations, is deferred for future publication.

  7. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor

    NASA Astrophysics Data System (ADS)

    Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra

    2017-08-01

    Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.

  8. Online Detection of Broken Rotor Bar Fault in Induction Motors by Combining Estimation of Signal Parameters via Min-norm Algorithm and Least Square Method

    NASA Astrophysics Data System (ADS)

    Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin

    2017-11-01

    Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.

  9. [Quant efficiency of the detection as a quality parameter of the visualization equipment].

    PubMed

    Morgun, O N; Nemchenko, K E; Rogov, Iu V

    2003-01-01

    The critical parameter of notion "quant efficiency of detection" is defined in the paper. Different methods of specifying the detection quant efficiency (DQE) are under discussion. Thus, techniques of DQE determination for a whole unit and means of DQE finding at terminal space frequency are addressed. The notion of DQE at zero frequency is in the focus of attention. Finally, difficulties occurring in determining the above parameter as well as its disadvantages (as a parameter characterizing the quality of X-ray irradiation visualizing systems) are also discussed.

  10. Modeling Occupancy of Hosts by Mistletoe Seeds after Accounting for Imperfect Detectability

    PubMed Central

    Fadini, Rodrigo F.; Cintra, Renato

    2015-01-01

    The detection of an organism in a given site is widely used as a state variable in many metapopulation and epidemiological studies. However, failure to detect the species does not necessarily mean that it is absent. Assessing detectability is important for occupancy (presence—absence) surveys; and identifying the factors reducing detectability may help improve survey precision and efficiency. A method was used to estimate the occupancy status of host trees colonized by mistletoe seeds of Psittacanthus plagiophyllus as a function of host covariates: host size and presence of mistletoe infections on the same or on the nearest neighboring host (the cashew tree Anacardium occidentale). The technique also evaluated the effect of taking detectability into account for estimating host occupancy by mistletoe seeds. Individual host trees were surveyed for presence of mistletoe seeds with the aid of two or three observers to estimate detectability and occupancy. Detectability was, on average, 17% higher in focal-host trees with infected neighbors, while decreased about 23 to 50% from smallest to largest hosts. The presence of mistletoe plants in the sample tree had negligible effect on detectability. Failure to detect hosts as occupied decreased occupancy by 2.5% on average, with maximum of 10% for large and isolated hosts. The method presented in this study has potential for use with metapopulation studies of mistletoes, especially those focusing on the seed stage, but also as improvement of accuracy in occupancy models estimates often used for metapopulation dynamics of tree-dwelling plants in general. PMID:25973754

  11. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species

    Treesearch

    Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight

    2015-01-01

    Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...

  12. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  13. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2017-07-17

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  14. Endoscopic ultrasound-guided fine-needle aspiration for suspected malignancies adjacent to the gastrointestinal tract.

    PubMed

    Gambitta, Pietro; Armellino, Antonio; Forti, Edoardo; Vertemati, Maurizio; Colombo, Paola Enrica; Aseni, Paolo

    2014-07-14

    To investigate the impact of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) in association with a multidisciplinary team evaluation for the detection of gastrointestinal malignancies. A cohort of 1019 patients with suspected malignant lesions adjacent to the gastrointestinal tract received EUS-FNA after a standardized multidisciplinary team evaluation (MTE) and were divided into 4 groups according to their specific malignant risk score (MRS). Patients with a MRS of 0 (without detectable risk of malignancy) received only EUS without FNA. For patients with a MRS score ranging from 1 (low risk) - through 2 (intermediate risk) - to 3 (high risk), EUS-FNA cytology of the lesion was planned for a different time and was prioritized for those patients at higher risk for cancer. The accuracy, efficiency and quality assessment for the early detection of patients with potentially curable malignant lesions were evaluated for the whole cohort and in the different classes of MRSs. The time to definitive cytological diagnosis (TDCD), accuracy, sensitivity, specificity, positive and negative predictive values, and the rate of inconclusive tests were calculated for all patients and for each MRS group. A total of 1019 patients with suspected malignant lesions were evaluated by EUS-FNA. In 515 patients of 616 with true malignant lesions the tumor was diagnosed by EUS-FNA; 421 patients with resectable lesions received early surgical treatment, and 94 patients received chemo-radiotherapy. The overall diagnostic accuracy for the 1019 lesions in which a final diagnosis was obtained by EUS-FNA was 0.95. When patients were stratified by MTE into 4 classes of MRSs, a higher rate of patients in the group with higher cancer risk (MRS-3) received early treatment and EUS-FNA showed the highest level of accuracy (1.0). TDCD was also shorter in the MRS-3 group. The number of patients who received surgical treatment or chemo-radiotherapy was significantly higher in the MRS-3 patient group (36.3% in MRS-3, 10.7% in MRS-2, and 3.5% in MRS-1). EUS-FNA can effectively detect a curable malignant lesions at an earlier time and at a higher rate in patients with a higher cancer risk that were evaluated using MTE.

  15. Analysis of the restricting factors of laser countermeasure active detection technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yufa; Sun, Xiaoquan

    2016-07-01

    The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.

  16. Halo independent comparison of direct dark matter detection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondolo, Paolo; Gelmini, Graciela B., E-mail: paolo@physics.utah.edu, E-mail: gelmini@physics.ucla.edu

    We extend the halo-independent method of Fox, Liu, and Weiner to include energy resolution and efficiency with arbitrary energy dependence, making it more suitable for experiments to use in presenting their results. Then we compare measurements and upper limits on the direct detection of low mass ( ∼ 10 GeV) weakly interacting massive particles with spin-independent interactions, including the upper limit on the annual modulation amplitude from the CDMS collaboration. We find that isospin-symmetric couplings are severely constrained both by XENON100 and CDMS bounds, and that isospin-violating couplings are still possible at the lowest energies, while the tension of themore » higher energy CoGeNT bins with the CDMS modulation constraint remains. We find the CRESST-II signal is not compatible with the modulation signals of DAMA and CoGeNT.« less

  17. RT-CW: widely tunable semiconductor THz QCL sources

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Lu, Q. Y.

    2016-09-01

    Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.

  18. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography

    NASA Astrophysics Data System (ADS)

    Tang, Ning; Jiang, Yang; Qu, Hemi; Duan, Xuexin

    2017-12-01

    Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH3 and NO2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.

  19. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography.

    PubMed

    Tang, Ning; Jiang, Yang; Qu, Hemi; Duan, Xuexin

    2017-12-01

    Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH 3 and NO 2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.

  20. Suggestions for improving the efficiency of ground-based neutron monitors for detecting solar neutrons

    NASA Technical Reports Server (NTRS)

    Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.

    1985-01-01

    On the occasion of the June 3, 1982 intense gamma-ray solar flare a significant increase in counting rate due to solar neutrons was observed by the neutron monitors of Junsfraujoch and Lomnicky Stit located at middle latitudes and high altitudes. In spite of a larger detector employed and of the smaller solar zenith angle, the amplitude of the same event observed at Rome was much smaller and the statistical fluctuations of the salactic cosmic ray background higher than the ones registered at the two mountain stations, because of the greater atmospheric depth at which the Rome monitor is located. The effeciency for detecting a solar neutron event by a NM-64 monitor as a function of the Sun zenith angle, atmospheric depth and threshold rigidity of the station was studied.

  1. Efficient human face detection in infancy.

    PubMed

    Jakobsen, Krisztina V; Umstead, Lindsey; Simpson, Elizabeth A

    2016-01-01

    Adults detect conspecific faces more efficiently than heterospecific faces; however, the development of this own-species bias (OSB) remains unexplored. We tested whether 6- and 11-month-olds exhibit OSB in their attention to human and animal faces in complex visual displays with high perceptual load (25 images competing for attention). Infants (n = 48) and adults (n = 43) passively viewed arrays containing a face among 24 non-face distractors while we measured their gaze with remote eye tracking. While OSB is typically not observed until about 9 months, we found that, already by 6 months, human faces were more likely to be detected, were detected more quickly (attention capture), and received longer looks (attention holding) than animal faces. These data suggest that 6-month-olds already exhibit OSB in face detection efficiency, consistent with perceptual attunement. This specialization may reflect the biological importance of detecting conspecific faces, a foundational ability for early social interactions. © 2015 Wiley Periodicals, Inc.

  2. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease.

    PubMed

    Ayers, Jacob I; Schutt, Charles R; Shikiya, Ronald A; Aguzzi, Adriano; Kincaid, Anthony E; Bartz, Jason C

    2011-03-01

    Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrP(Sc), is an essential component of the infectious agent, the strain-specific relationship between PrP(Sc) properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrP(Sc) from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrP(Sc) in neurons and glia. We found that short incubation period strains were characterized by more efficient PrP(Sc) amplification and higher PrP(Sc) conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrP(Sc) in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrP(Sc) did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrP(Sc) in neurons.

  3. Research on Influencing Factors of Biological Filtration Tower Treating Toluene Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Changping; Cao, Ziqing; Lu, Yuqi; Du, Linggai

    2017-05-01

    Through the orthogonal experimental design, the optimal combination of Triton X-100, nitrogen source, Fe2+, temperature, concentration of antibiotics, pH and spray quantity was determined with surfactants, nitrogen and iron elements as additive, by which the key influencing factors were determined. In the test, the removal efficiency of the second groups was higher than that of the eighth groups, which were 89% and 87%, respectively. The best combination of a group of removal was as follows: nitrogen source concentration was 2 g ·L-1, antibiotic concentration was 300 U·mL-1, the concentration of Triton X-100 was 0.05 mL·L-1, Fe2+ concentration was 14 mL·L-1, pH was 7, the temperature was 34°C, spray amount was 6 L ·h-1. The antibiotic concentration was the most important factor on the removal efficiency of the toluene. The concentration of gas in each layer of toluene was detected; the curve of the outlet concentration in the optimal combination and the average state was obtained. The removal efficiency of the optimal combination was much better than the average, and it was found that the removal rate decreased with the increase of the height of the filling layer. The change of oxygen content in each layer was detected which was no significant change. It showed that oxygen was not the limiting factor of the removal of toluene by microorganisms. Keywords: surfactants; biological filtration tower; toluene; orthogonal test

  4. The clustered regularly interspaced short palindromic repeats/associated proteins system for the induction of gene mutations and phenotypic changes in Bombyx mori.

    PubMed

    Song, Jia; Che, Jiaqian; You, Zhengying; Ye, Xiaogang; Li, Jisheng; Ye, Lupeng; Zhang, Yuyu; Qian, Qiujie; Zhong, Boxiong

    2016-12-01

    To probe the general phenomena of gene mutations, Bombyx mori, the lepidopterous model organism, was chosen as the experimental model. To easily detect phenotypic variations, the piggyBac system was utilized to introduce two marker genes into the silkworm, and 23.4% transposition efficiency aided in easily breeding a new strain for the entire experiment. Then, the clustered regularly interspaced short palindromic repeats/an associated protein (Cas9) system was utilized. The results showed that the Cas9 system can induce efficient gene mutations and the base changes could be detected since the G 0 individuals in B. mori; and that the mutation rates on different target sites were diverse. Next, the gRNA2-targeted site that generated higher mutation rate was chosen, and the experimental results were enumerated. First, the mutation proportion in G 1 generation was 30.1%, and some gene mutations were not inherited from the G 0 generation; second, occasionally, base substitutions did not lead to variation in the amino-acid sequence, which decreased the efficiency of phenotypic changes compared with that of genotypic changes. These results laid the foundation for better use of the Cas9 system in silkworm gene editing. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L.

    PubMed

    Silveira, Graciele Lurdes; Lima, Maria Gabriela Franco; Reis, Gabriela Barreto Dos; Palmieri, Marcel José; Andrade-Vieria, Larissa Fonseca

    2017-07-01

    Studies that help understand the mechanisms of action of environmental pollutants are extremely important in environmental toxicology. In this context, assays using plants as models stand out for their simplicity and low performance cost. Among the plants used for this purpose, Allium cepa L. is the model most commonly applied for cytogenotoxic tests, while Lactuca sativa L., already widely used in phytotoxic investigations, has been gaining prominence in cytotoxic analyses. The present study aimed to compare the responses of A. cepa and L. sativa via macroscopic (root growth) and microscopic analyses (cell cycle and DNA fragmentation via TdT-mediated deoxy-uracil nick and labeling (TUNEL) and comet assays) after exposure of their roots to environmental pollutants with known cytogenotoxic mechanisms. Both species presented sensitive and efficient response to the applied tests after exposure to the DNA-alkylating agent Methyl Methanesulfonate (MMS), the heavy metal Cadmium, the aluminum industry waste Spent Potliner (SPL) and the herbicide Atrazine. However, they differed regarding the responses to the evaluated endpoints. Overall, A. cepa was more efficient in detecting clastogenic changes, arising from DNA breakage, while L. sativa rather detected aneugenic alterations, related to chromosome segregation in mitosis. In the tests applied to verify DNA fragmentation (comet and TUNEL assays), A. cepa presented higher sensitivity. In conclusion, both models are efficient to evaluate toxicological risks of environmental pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of a two photon/laser induced fluorescence technique for the detection of atmospheric OH radicals

    NASA Technical Reports Server (NTRS)

    Bradshaw, John

    1990-01-01

    The development of a new mid-IR laser source was the primary goal. Backward propagating stimulated D2 Raman frequency down conversion of a commercially available 1.06 micron Nd:YAG laser was shown to generate an efficient source of 1.56 micron radiation with near diffraction limited beam quality. The efficient generation of a 2.9 micron laser source was also achieved using backward propagating CH4 Raman frequency down conversion of the 1.56 micron pump. Slightly higher efficiencies were obtained for frequency down conversion of the 1.06 micron Nd:YAG using the H2 Raman shift yielding a near diffraction limited source in the 200 mJ range at 1.9 micron. Similar conversion efficiencies are anticipated as a result of extending the wavelength coverage of recently available Ti:sapphire pulse laser to not only cover the 740 to 860 nm fundamental wavelength range but also the .95 to 1.15 and 1.06 to 1.33 micron range using D2 and H2, respectively. The anticipated sensitivity of a TP-LIF OH sensor using this mid-IR source would give signal limited detection of 1.4 x 10(exp 5) OH/cu cm under boundary layer conditions and 5.5 x 10(exp 4) OH/cu cm under free troposphere sampling conditions for a five minute signal integration period. This level of performance coupled with the techniques non-perturbing nature and freedom from both interferences and background would allow reliable tropospheric OH measurement to be obtained under virtually any ambient condition of current interest, including interstitial and sampling.

  7. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  8. A new method for evaluating radon and thoron alpha-activities per unit volume inside and outside various natural material samples by calculating SSNTD detection efficiencies for the emitted alpha-particles and measuring the resulting track densities.

    PubMed

    Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S

    2001-08-01

    A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.

  9. a Comparison of Three Hurst Exponent Approaches to Predict Nascent Bubbles in S&P500 Stocks

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, M.; Sánchez-Granero, M. A.; Muñoz Torrecillas, M. J.; McKelvey, Bill

    Since the pioneer contributions due to Vandewalle and Ausloos, the Hurst exponent has been applied by econophysicists as a useful indicator to deal with investment strategies when such a value is above or below 0.5, the Hurst exponent of a Brownian motion. In this paper, we hypothesize that the self-similarity exponent of financial time series provides a reliable indicator for herding behavior (HB) in the following sense: if there is HB, then the higher the price, the more the people will buy. This will generate persistence in the stocks which we shall measure by their self-similarity exponents. Along this work, we shall explore whether there is some connections between the self-similarity exponent of a stock (as a HB indicator) and the stock’s future performance under the assumption that the HB will last for some time. With this aim, three approaches to calculate the self-similarity exponent of a time series are compared in order to determine which performs best to identify the transition from random efficient market behavior to HB and hence, to detect the beginning of a bubble. Generalized Hurst Exponent, Detrended Fluctuation Analysis, and GM2 algorithms have been tested. Traditionally, researchers have focused on identifying the beginning of a crash. We study the beginning of the transition from efficient market behavior to a market bubble, instead. Our empirical results support that the higher (respectively the lower) the self-similarity index, the higher (respectively the lower) the mean of the price change, and hence, the better (respectively the worse) the performance of the corresponding stock. This would imply, as a consequence, that the transition process from random efficient market to HB has started. For experimentation purposes, S&P500 stock Index constituted our main data source.

  10. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    PubMed Central

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active enzymes on NPs as the basis for a highly rapid and sensitive biomarker detection platform. This addresses a key challenge in developing a PoCT platform for time sensitive and difficult to diagnose pathologies. PMID:26605916

  11. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.

    PubMed

    Uhrbrand, K; Koponen, I K; Schultz, A C; Madsen, A M

    2018-04-01

    The aim of this study was to identify the most efficient sampling method for quantitative PCR-based detection of airborne human norovirus (NoV). A comparative experiment was conducted in an aerosol chamber using aerosolized murine norovirus (MNV) as a surrogate for NoV. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers: Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP sampler with four different filter types: NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P < 0·05) higher recovery of aerosolized MNV than 3P and NIO. A higher recovery was also found for GSP compared with TC, albeit not significantly. Finally, recovery of aerosolized MNV was significantly (P < 0·05) higher using NY than PC, PTFE and GEL filters. The GSP sampler combined with a nylon filter was found to be the best method for personal filter-based sampling of airborne NoV. The identification of a suitable NoV air sampler is an important step towards studying the association between exposure to airborne NoV and infection. © 2017 The Society for Applied Microbiology.

  12. Trimethylamine (TMA) biofiltration and transformation in biofilters.

    PubMed

    Ding, Ying; Shi, Ji-Yan; Wu, Wei-Xiang; Yin, Jun; Chen, Ying-Xu

    2007-05-08

    Bioremoval of trimethylamine (TMA) in two three-stage biofilters packed with compost (A) and sludge (B), respectively, was investigated. Both biofilters were operated with an influent TMA concentration of 19.2-57.2mgm(-3) for 67 days. Results showed that all of the inlet TMA could be removed by both biofilters. However, removal efficiency and transformation of TMA in each section of both biofilters was different. In the Introduction section, TMA removal efficiency and maximum elimination capacity of the compost medium were greater than those of sludge medium under higher inlet TMA concentration. In comparison with biofilter A, considerably higher NH(3) concentrations in effluent of all three sections in biofilter B were observed after day 19. Although, NO(2)(-)-N concentration in each section of biofilter A was relatively lower, NO(3)(-)-N content in each section of biofilter A increased after day 26, especially in the Materials and method section which increased remarkably due to a lesser amount of TMA and higher ammonia oxidation and nitrification in compost medium. In contrast, neither NO(2)(-)-N nor NO(3)(-)-N were detected in either section of biofilter B at any time throughout the course of the experiment. The cumulative results indicated that compost is more favorable for the growth of TMA-degrading and nitrifying bacteria as compared to the sludge and could be a highly suitable packing material for biodegradation and transformation of TMA.

  13. Efficient Means of Detecting Neutral Atoms in Space

    NASA Astrophysics Data System (ADS)

    Zinicola, W. N.

    2006-12-01

    This summer, The Society of Physics Students granted me the opportunity to participate in an internship for The National Aeronautics and Space Administration (NASA) and The University of Maryland. Our chief interest was analyzing low energy neutral atoms that were created from random interactions of ions in space plasma. From detecting these neutrals one can project a image of what the plasma's composition is, and how this plasma changes through interactions with the solar wind. Presently, low energy neutral atom detectors have poor efficiency, typically in the range of 1%. Our goal was to increase this efficiency. To detect low energy neutrals we must first convert them from neutral molecules to negatively charged ions. Once converted, these "new" negatively charged ions can be easily detected and completely analyzed giving us information about their energy, mass, and instantaneous direction. The efficiency of the detector is drastically affected by the surface used for converting these neutrals. My job was first to create thin metal conversion surfaces. Then, using an X-ray photoelectron spectrometer, analyze atomic surface composition and gather work function values. Once the work function values were known we placed the surfaces in our neutral detector and measured their conversion efficiencies. Finally, a relation between the work function of the metal surface an its conversion efficiency was generated. With this relationship accurately measured one could use this information to help give suggestions on what surface would be the best to increase our detection efficiency. If we could increase the efficiency of these low energy neutral atom detectors by even 1% we would be able to decrease the size of the detector therefore making it cheaper and more applicable for space exploration.* * A special thanks to Dr. Michael Coplan of the University of Maryland for his support and guidance through all my research.

  14. System performance enhancement with pre-distorted OOFDM signal waveforms in DM/DD systems.

    PubMed

    Sánchez, C; Ortega, B; Capmany, J

    2014-03-24

    In this work we propose a pre-distortion technique for the mitigation of the nonlinear distortion present in directly modulated/detected OOFDM systems and explore the system performance achieved under varying system parameters. Simulation results show that the proposed pre-distortion technique efficiently mitigates the nonlinear distortion, achieving transmission information rates around 40 Gbits/s and 18.5 Gbits/s over 40 km and 100 km of single mode fiber links, respectively, under optimum operating conditions. Moreover, the proposed pre-distortion technique can potentially provide higher system performance to that obtained with nonlinear equalization at the receiver.

  15. Algorithms for classification of astronomical object spectra

    NASA Astrophysics Data System (ADS)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  16. Modeling and Investigation of Heavy Oxide and Alkali-Halide Scintillators for Potential Use in Neutron and Gamma Detection Systems

    DTIC Science & Technology

    2015-06-01

    INVESTIGATION OF HEAVY OXIDE AND ALKALI-HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS by Jeremy S. Cadiente June...AND ALKALI- HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy S. Cadiente 7...fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma- neutron radiation detectors. The

  17. Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Qasaimeh, Mohammad A.; Wu, Yichao C.; Bose, Suman; Menachery, Anoop; Talluri, Srikanth; Gonzalez, Gabriel; Fulciniti, Mariateresa; Karp, Jeffrey M.; Prabhala, Rao H.; Karnik, Rohit

    2017-04-01

    The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40-70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2-5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20-24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45-184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration.

  18. Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency.

    PubMed

    King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A

    2017-07-18

    Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.

  19. Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen.

    PubMed

    Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju

    2016-12-01

    Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Extensive Horizontal Gene Transfer during Staphylococcus aureus Co-colonization In Vivo

    PubMed Central

    McCarthy, Alex J.; Loeffler, Anette; Witney, Adam A.; Gould, Katherine A.; Lloyd, David H.; Lindsay, Jodi A.

    2014-01-01

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. PMID:25260585

  1. Machine learning search for variable stars

    NASA Astrophysics Data System (ADS)

    Pashchenko, Ilya N.; Sokolovsky, Kirill V.; Gavras, Panagiotis

    2018-04-01

    Photometric variability detection is often considered as a hypothesis testing problem: an object is variable if the null hypothesis that its brightness is constant can be ruled out given the measurements and their uncertainties. The practical applicability of this approach is limited by uncorrected systematic errors. We propose a new variability detection technique sensitive to a wide range of variability types while being robust to outliers and underestimated measurement uncertainties. We consider variability detection as a classification problem that can be approached with machine learning. Logistic Regression (LR), Support Vector Machines (SVM), k Nearest Neighbours (kNN), Neural Nets (NN), Random Forests (RF), and Stochastic Gradient Boosting classifier (SGB) are applied to 18 features (variability indices) quantifying scatter and/or correlation between points in a light curve. We use a subset of Optical Gravitational Lensing Experiment phase two (OGLE-II) Large Magellanic Cloud (LMC) photometry (30 265 light curves) that was searched for variability using traditional methods (168 known variable objects) as the training set and then apply the NN to a new test set of 31 798 OGLE-II LMC light curves. Among 205 candidates selected in the test set, 178 are real variables, while 13 low-amplitude variables are new discoveries. The machine learning classifiers considered are found to be more efficient (select more variables and fewer false candidates) compared to traditional techniques using individual variability indices or their linear combination. The NN, SGB, SVM, and RF show a higher efficiency compared to LR and kNN.

  2. Study of the detective quantum efficiency for the kinestatic charge detector as a megavoltage imaging device

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.

    2003-06-01

    Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).

  3. Assessment of frequency specific auditory steady-state response using amplitude modulation with 2-order exponential envelope.

    PubMed

    Cevallos-Larrea, Pablo; Pereira, Thobias; Santos, Wagner; Frota, Silvana M; Infantosi, Antonio F; Ichinose, Roberto M; Tierra-Criollo, Carlos

    2016-08-01

    This study investigated the performance of Frequency Specific Auditory Steady-State Response (FS-ASSR) detection elicited by the amplitude modulated tone with 2-order exponential envelope (AM2), using objective response detection (ORD) techniques of Spectral F-Test (SFT) and Magnitude Squared Coherence (MSC). ASSRs from 24 normal hearing adults were obtained during binaural multi-tone stimulation of amplitude-modulation (AM) and AM2 at intensities of 60, 45 and 30 dBSPL. The carrier frequencies were 500, 1000, 2000, and 4000 Hz, modulated between 77 and 105 Hz. AM2 achieve FS-ASSR amplitudes higher than AM by 16%, 18% and 12% at 60, 45 and 30 dBSPL, respectively, with a major increase at 500 Hz (22.5%). AMS2PL increased the Detection Rate (DR) up to 8.3% at 500 Hz for 30 dBSPL, which is particularly beneficial for FS-ASSR detection near the hearing threshold. In addition, responses in 1000 and 4000 Hz were consistently increased. The MSC and SFT presented no differences in Detection Rate (DR). False Detection Rate (FDR) was close to 5% for both techniques and tones. Detection times to reach DR over 90% were 3.5 and 4.9 min at 60 and 45 dBSPL, respectively. Further investigation concerning efficient multiple FS-ASSR is still necessary, such as testing subjects with hearing loss.

  4. Ionization imaging—A new method to search for 0- ν ββ decay

    NASA Astrophysics Data System (ADS)

    Chinowski, W.; Goldschmidt, A.; Nygren, D.; Bernstein, A.; Heffner, M.; Millaud, J.

    2007-10-01

    We present a new method to search for 0- ν ββ decay in 136Xe, the Ionization Imaging Chamber. This concept is based on 3-D track reconstruction by detection of ionization, without avalanche gain, in a novel time projection chamber (TPC) geometry. The rejection efficiency of external charged particle backgrounds is optimized by the realization of a maximal, fully active, closed, and ex post facto variable fiducial surface. Event localization within the fiducial volume and detailed event reconstruction mitigate external neutral particle backgrounds; larger detectors offer higher rejection efficiencies. Energy resolution at the Q-value of 2.5 MeV is expected to be better than 1% FWHM, reducing the potential impact of allowed 2- ν ββ decays. Scaling from ˜25 kg prototype to 1000+ kg target mass is graceful. A new possible methodology for the identification of the daughter barium nucleus is also described.

  5. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  6. Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, T.; Sepaniak, M.J.; Guiochon, G.

    1997-08-01

    The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.

    Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX 2/WX 2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxialmore » strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less

  8. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice

    PubMed Central

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A.; Stumpf, Sina K.; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions. PMID:28149504

  9. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.

    PubMed

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  10. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    PubMed

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  11. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    NASA Astrophysics Data System (ADS)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  12. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Workmore » is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)« less

  13. A coumarin-based "turn-on" fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties.

    PubMed

    Guha, Subarna; Lohar, Sisir; Sahana, Animesh; Banerjee, Arnab; Safin, Damir A; Babashkina, Maria G; Mitoraj, Mariusz P; Bolte, Michael; Garcia, Yann; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2013-07-28

    An efficient Al(3+) receptor, 6-(2-hydroxybenzylideneamino)-2H-chromen-2-one (HBC), has been synthesized by condensing salicylaldehyde with 6-aminocoumarin. The molecular structure of HBC has been determined by a single crystal X-ray analysis. It was established that in the presence of Al(3+), HBC shows 25 fold enhancement of fluorescence intensity which might be attributed to the chelation-enhanced fluorescence (CHEF) process. HBC binds Al(NO3)3 in a 1 : 1 stoichiometry with a binding constant (K) of 7.9 × 10(4) M(-1). Fe(3+) and Mn(2+) quench the emission intensity of the [HBC + Al(3+)] system to an insignificant extent at a concentration 10 times higher compared to that of Al(3+). HBC is highly efficient in the detection of intracellular Al(3+) under a fluorescence microscope.

  14. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    PubMed

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magie, Robert J.; Morris, Matthew S.; Ledgerwood, Richard D.

    In 2008, we sampled migrating juvenile Pacific salmonids Oncorhynchus spp. tagged with passive integrated transponder (PIT) tags using a surface pair trawl in the upper Columbia River estuary (rkm 61-83). The cod-end of the trawl was replaced with a cylindrical PIT-tag detection antenna with an 86-cm-diameter fish-passage opening and two detection coils connected in series. The pair trawl was 105 m long with a 91.5-m opening between the wings and a sample depth of 4.9 m. Also during 2008, we finalized the development of a prototype 'matrix' antenna, which was larger than previous antennas by a considerable magnitude. The matrixmore » antenna consisted of 6 coils: a 3-coil front component and a 3-coil rear component, which were separated by 1.5-m of net mesh. The fish-passage opening was 2.5 m wide by 3.0 m tall and was attached to a standard-size pair trawl net. Intermittent sampling with a single crew began on 7 March and targeted yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. Daily sampling using two crews began on 30 April and continued through 14 June; during this period we detected 2.7% of all juvenile salmonids previously detected at Bonneville Dam--a measure of sample efficiency. Sampling with a single crew continued through 20 August and targeted subyearling Chinook salmon. We detected 7,397 yearling Chinook salmon, 2,735 subyearling Chinook salmon, 291 coho salmon O. kisutch, 5,950 steelhead, and 122 sockeye salmon O. nerka in the upper estuary. We deployed the matrix antenna system and the older, cylindrical antenna system (86-cm-diameter fish-passage opening) simultaneously in mid-May 2008 to test matrix detection efficiency. The cylindrical antenna system had been used successfully in 2007 and early 2008. Because distribution of migrating salmonids in the estuary changes rapidly, we felt that a tandem sampling effort between the two systems was the only way to truly evaluate comparative detection efficiency. We deployed both systems within 1 km of each other during a period of high fish densities on 13, 14, and 15 May. Detections of the matrix system surpassed those of the cylindrical system by 53% in 14 h of simultaneous sampling (total detections 716 and 339, respectively). We believe that the higher detection rate observed with the matrix system was due to fewer smolts escaping the trawl entrance and to more smolts readily passing through the larger fish-passage opening. After tandem sampling, we continued exclusive use of the matrix system for the remainder of the 2008 juvenile migration season. Mean survival rates from Lower Granite to Bonneville Dam for yearling Chinook salmon and steelhead were 42% (SE = 3.7%) and 46% (SE = 1.5%), respectively. Over 358,000 PIT-tagged salmonids were transported, and we detected 4,619 of these fish.« less

  17. Spectral analysis of fundamental signal and noise performances in photoconductors for mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse

    2012-05-15

    Purpose: This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI{sub 2}, PbI{sub 2}, PbO, and TlBr, for x-ray spectra typically used in mammography. Methods: It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). Results: The quantummore » efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI{sub 2}, PbI{sub 2}, and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm{sup -2}, a-Se, HgI{sub 2}, and PbI{sub 2} provide similar DQE values to PbO and TlBr. Conclusions: The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.« less

  18. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    NASA Astrophysics Data System (ADS)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  19. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  20. Quadrature-quadrature phase-shift keying

    NASA Astrophysics Data System (ADS)

    Saha, Debabrata; Birdsall, Theodore G.

    1989-05-01

    Quadrature-quadrature phase-shift keying (Q2PSK) is a spectrally efficient modulation scheme which utilizes available signal space dimensions in a more efficient way than two-dimensional schemes such as QPSK and MSK (minimum-shift keying). It uses two data shaping pulses and two carriers, which are pairwise quadrature in phase, to create a four-dimensional signal space and increases the transmission rate by a factor of two over QPSK and MSK. However, the bit error rate performance depends on the choice of pulse pair. With simple sinusoidal and cosinusoidal data pulses, the Eb/N0 requirement for Pb(E) = 10 to the -5 is approximately 1.6 dB higher than that of MSK. Without additional constraints, Q2PSK does not maintain constant envelope. However, a simple block coding provides a constant envelope. This coded signal substantially outperforms MSKS and TFM (time-frequency multiplexing) in bandwidth efficiency. Like MSK, Q2PSK also has self-clocking and self-synchronizing ability. An optimum class of pulse shapes for use in Q2PSK-format is presented. One suboptimum realization achieves the Nyquist rate of 2 bits/s/Hz using binary detection.

Top