Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
Upon Generating (2+1)-dimensional Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Bai, Yang; Wu, Lixin
2016-06-01
Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.
NASA Astrophysics Data System (ADS)
Li, Shouguang; Teng, Fei; Chen, Mindong; Li, Na; Hua, Xia; Wang, Kai; Li, Min
2014-05-01
The novel three-dimensional (3D) silver phosphate tetrapods (TA) are synthesized and employed as a super capacitor electrode material. The electrochemical properties are investigated by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). It is interesting that compared with irregular silver phosphate particles (IA), TA shows a higher capacitance (250 vs. 160 F g-1), and a higher coulombic efficiency (80% vs. 74%), which is mainly ascribed to the 3D microstructure and its high conductivity. To the best of our knowledge, this is the first report on silver phosphate as a super capacitor material.
Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert
2014-01-01
Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-07
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
NASA Astrophysics Data System (ADS)
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-01
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
One-dimensional super Calabi-Yau manifolds and their mirrors
NASA Astrophysics Data System (ADS)
Noja, S.; Cacciatori, S. L.; Piazza, F. Dalla; Marrani, A.; Re, R.
2017-04-01
We apply a definition of generalised super Calabi-Yau variety (SCY) to supermanifolds of complex dimension one. One of our results is that there are two SCY's having reduced manifold equal to P^1, namely the projective super space P^{.1|2} and the weighted projective super space W{P}_{(2)}^{.1|1} . Then we compute the corresponding sheaf cohomology of superforms, showing that the cohomology with picture number one is infinite dimensional, while the de Rham cohomology, which is what matters from a physical point of view, remains finite dimensional. Moreover, we provide the complete real and holomorphic de Rham cohomology for generic projective super spaces {P}^{.n|m} . We also determine the automorphism groups: these always match the dimension of the projective super group with the only exception of {P}^{.1|2} , whose automorphism group turns out to be larger than the projective super group. By considering the cohomology of the super tangent sheaf, we compute the deformations of {P}^{.1|m} , discovering that the presence of a fermionic structure allows for deformations even if the reduced manifold is rigid. Finally, we show that {P}^{.1|2} is self-mirror, whereas W{P}_{(2)}^{.1|1} has a zero dimensional mirror. Also, the mirror map for {P}^{.1|2} naturally endows it with a structure of N = 2 super Riemann surface.
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian
2016-01-01
Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959
Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Mafra, Carlos R.; Schlotterer, Oliver
2015-09-01
In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.
Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore; Lozano, Aurelie; Kambadur, Prabhanjan; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis
2018-02-07
The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.
Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators
NASA Astrophysics Data System (ADS)
Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.
2017-08-01
A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.
von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.
2017-01-01
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646
BFV-BRST quantization of two-dimensional supergravity
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations (∂3-g++=∂2-χ++=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner.
Spontaneous supersymmetry breaking in two dimensional lattice super QCD
Catterall, Simon; Veernala, Aarti
2015-10-02
We report on a non-perturbative study of two dimensional N=(2,2) super QCD. Our lattice formulation retains a single exact supersymmetry at non-zero lattice spacing, and contains N f fermions in the fundamental representation of a U(N c) gauge group. The lattice action we employ contains an additional Fayet-Iliopoulos term which is also invariant under the exact lattice supersymmetry. This work constitutes the first numerical study of this theory which serves as a toy model for understanding some of the issues that are expected to arise in four dimensional super QCD. As a result, we present evidence that the exact supersymmetrymore » breaks spontaneously when N f < N c in agreement with theoretical expectations.« less
Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy
NASA Astrophysics Data System (ADS)
Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine
2015-07-01
Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
NASA Astrophysics Data System (ADS)
Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.
2016-12-01
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.
2016-01-01
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane. PMID:27929085
BFV-BRST quantization of two-dimensional supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less
Geometric structures of super-(Diff(S/sup 1/)/S/sup 1/)*
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidke, W.B.; Vokos, S.P.
Superconformal invariance is of central importance to a perturbative and non-perturbative formulation of stringy theory. The group that describes the invariances of the superstring is the super-Virasoro group, Super-Diff(S/sup 1/). The super-reparameterizations of the circle that leave a point fixed compose the quotient space Super-(Diff(S/sup 1/)/S/sup 1/). We investigate the holomorphic geometry of this infinite-dimensional Kaehler supermanifold and calculate its curvature. copyright 1989 Academic Press, Inc.
Curvature of Super Diff(S/sup 1/)/S/sup 1/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, P.; Ramond, P.
Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds DiffS/sup 1//S/sup 1/ and Super DiffS/sup 1//S/sup 1/ using standard finite-dimensional coset space techniques. We regularize the infinity by zeta-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion.
4D and 2D superconformal index with surface operator
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2011-08-01
We study the superconformal index of the mathcal{N} = 4 super-Yang-Milles theory on S 3 × S 1 with the half BPS superconformal surface operator (defect) inserted at the great circle of S 3. The half BPS superconformal surface operators preserve the same supersymmetry as well as the symmetry of the chemical potential used in the definition of the superconformal index, so the structure and the parameterization of the superconformal index remain unaffected by the presence of the surface operator. On the surface defect, a two-dimensional (4, 4) superconformal field theory resides, and the four-dimensional super-conformal index may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal field theory coupled with the four-dimensional bulk system. We construct the matrix model that computes the superconformal index with the surface operator when it couples with the bulk mathcal{N} = 4 super-Yang-Milles theory through the defect hypermultiplets on it.
Super resolution imaging of HER2 gene amplification
NASA Astrophysics Data System (ADS)
Okada, Masaya; Kubo, Takuya; Masumoto, Kanako; Iwanaga, Shigeki
2016-02-01
HER2 positive breast cancer is currently examined by counting HER2 genes using fluorescence in situ hybridization (FISH)-stained breast carcinoma samples. In this research, two-dimensional super resolution fluorescence microscopy based on stochastic optical reconstruction microscopy (STORM), with a spatial resolution of approximately 20 nm in the lateral direction, was used to more precisely distinguish and count HER2 genes in a FISH-stained tissue section. Furthermore, by introducing double-helix point spread function (DH-PSF), an optical phase modulation technique, to super resolution microscopy, three-dimensional images were obtained of HER2 in a breast carcinoma sample approximately 4 μm thick.
High Efficiency Thermoelectric Materials and Devices
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2013-01-01
Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..
Lew, Matthew D.; Thompson, Michael A.; Badieirostami, Majid; Moerner, W. E.
2010-01-01
The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-resolution imaging. We characterize the localization precision of a unique method for 3D superresolution imaging featuring a double-helix point spread function (DH-PSF). The DH-PSF is designed to have two lobes that rotate about their midpoint in any transverse plane as a function of the axial position of the emitter. In effect, the PSF appears as a double helix in three dimensions. By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the standard PSF throughout a 2 μm depth of field. Comparisons between the DH-PSF and other methods for 3D super-resolution are briefly discussed. We also illustrate the applicability of the DH-PSF for imaging weak emitters in biological systems by tracking the movement of quantum dots in glycerol and in live cells. PMID:20563317
3MRA UNCERTAINTY AND SENSITIVITY ANALYSIS
This presentation discusses the Multimedia, Multipathway, Multireceptor Risk Assessment (3MRA) modeling system. The outline of the presentation is: modeling system overview - 3MRA versions; 3MRA version 1.0; national-scale assessment dimensionality; SuperMUSE: windows-based super...
The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup
NASA Astrophysics Data System (ADS)
Lehrer, G. I.; Zhang, R. B.
2017-01-01
We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension ( m|2 n) and the Brauer algebra with parameter m - 2 n. The result may be interpreted either in terms of the group scheme OSp( V) over C, where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra {Λ}. We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.
Two-dimensional N = 2 Super-Yang-Mills Theory
NASA Astrophysics Data System (ADS)
August, Daniel; Wellegehausen, Björn; Wipf, Andreas
2018-03-01
Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.
Remote Semi-State Preparation as SuperDense Quantum Teleportation
NASA Astrophysics Data System (ADS)
Bernstein, Herbert J.
2011-03-01
Recent advances in experimental technique make SuperDense Teleportation (SDT) possible. The effect uses remote state preparation to send more state-specifying parameters per bit than ordinary quantum teleportation (QT) can transmit. SDT uses a maximal entanglement to teleport the relative phases of an {n}-dimensional equimodular state. This means that one can send only {n}-1 of the total (2 n - 2) parameters -- comprising the relative phases and amplitudes -- of a general state. Nevertheless, for {n} >= 3 , SDT sends more of these state-specifying parameters than QT for a given number of classical bits. In the limit of large {n} the ratio is 2 to 1, hence the nomenclature Bennett suggested, SDT, by analogy with Super Dense Coding. Alice's measurements and Bob's transformations are simpler than in QT. The roles of Charles the state chooser, and Diana who deploys it, are different than in QT. I briefly review possible experimental realizations, including two that are under consideration at the present time by an experimental group leading in higher-dimension entanglement work. Supported in part by NSF grants PHY97-22614 & 07-58149 & KITP, UCSB, including an ITP Scholar-ship.
Super-resolution links vinculin localization to function in focal adhesions.
Giannone, Grégory
2015-07-01
Integrin-based focal adhesions integrate biochemical and biomechanical signals from the extracellular matrix and the actin cytoskeleton. The combination of three-dimensional super-resolution imaging and loss- or gain-of-function protein mutants now links the nanoscale dynamic localization of proteins to their activation and function within focal adhesions.
Multiframe super resolution reconstruction method based on light field angular images
NASA Astrophysics Data System (ADS)
Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao
2017-12-01
The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.
Super-resolution in a defocused plenoptic camera: a wave-optics-based approach.
Sahin, Erdem; Katkovnik, Vladimir; Gotchev, Atanas
2016-03-01
Plenoptic cameras enable the capture of a light field with a single device. However, with traditional light field rendering procedures, they can provide only low-resolution two-dimensional images. Super-resolution is considered to overcome this drawback. In this study, we present a super-resolution method for the defocused plenoptic camera (Plenoptic 1.0), where the imaging system is modeled using wave optics principles and utilizing low-resolution depth information of the scene. We are particularly interested in super-resolution of in-focus and near in-focus scene regions, which constitute the most challenging cases. The simulation results show that the employed wave-optics model makes super-resolution possible for such regions as long as sufficiently accurate depth information is available.
Super-integrable Calogero-type systems admit maximal number of Poisson structures
NASA Astrophysics Data System (ADS)
Gonera, C.; Nutku, Y.
2001-07-01
We present a general scheme for constructing the Poisson structure of super-integrable dynamical systems of which the rational Calogero-Moser system is the most interesting one. This dynamical system is 2 N-dimensional with 2 N-1 first integrals and our construction yields 2 N-1 degenerate Poisson tensors that each admit 2( N-1) Casimirs. Our results are quite generally applicable to all super-integrable systems and form an alternative to the traditional bi-Hamiltonian approach.
Ye, Lin; Yu, Chih Hao; Jiang, PengJu; Qiu, Lin; Ng, Olivia T W; Yung, Ken K L; He, Heyong; Tsang, Shik Chi
2010-09-28
Confocal fluorescence demonstrates that single molecules of dye-labelled Cytochrome C or B5 containing paramagnetic Fe(III) can be magnetically placed into the interstices of super-crystal which is composed of three dimensional regular arrays of Fe(3)O(4) nanoparticles.
Chakkarapani, Suresh Kumar; Sun, Yucheng; Lee, Seungah; Fang, Ning; Kang, Seong Ho
2018-05-22
Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.
Wang, Yilin; Kanchanawong, Pakorn
2016-12-01
Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.
NASA Astrophysics Data System (ADS)
Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu
2017-12-01
A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.
Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries.
Luo, Shu; Wang, Ke; Wang, Jiaping; Jiang, Kaili; Li, Qunqing; Fan, Shoushan
2012-05-02
Binder-free LiCoO(2) -SACNT cathodes with excellent flexibility and conductivity are obtained by constructing a continuous three-dimensional super-aligned carbon nanotube (SACNT) framework with embedded LiCoO(2) particles. These binder-free cathodes display much better cycling stability, greater rate performance, and higher energy density than classical cathodes with binder. Various functional binder-free SACNT composites can be mass produced by the ultrasonication and co-deposition method described in this paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Constraints and Superspin for SuperPoincare Algebras in Diverse Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqua, Andrea; Zumino, Bruno
2004-04-27
We generalize to arbitrary dimension the construction of a covariant and supersymmetric constraint for the massless superPoincare algebra, which was given for the eleven-dimensional case in a previous work. We also contrast it with a similar construction appropriate to the massive case. Finally we show that the constraint uniquely fixes the representation of the algebra.
Passive Standoff Super Resolution Imaging using Spatial-Spectral Multiplexing
2017-08-14
94 5.0 Four -Dimensional Object-Space Data Reconstruction Using Spatial...103 5.3 Four -dimensional scene reconstruction using SSM...transitioning to systems based on spectrally resolved longitudinal spatial coherence interferometry. This document also includes research related to four
NASA Astrophysics Data System (ADS)
Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.
2017-11-01
The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.
Huang, Yu-tin; Johansson, Henrik
2013-04-26
We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.
Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data.
Veganzones, Miguel A; Simoes, Miguel; Licciardi, Giorgio; Yokoya, Naoto; Bioucas-Dias, Jose M; Chanussot, Jocelyn
2016-01-01
Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.
Goodwyn, Pablo Perez; De Souza, Emerson; Fujisaki, Kenji; Gorb, Stanislav
2008-05-01
Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique. The mould surface exhibited super-hydrophobic properties similar to the original insect surface. The average water contact angle (CA) of the mould was 164.7 degrees , whereas the CA of the flat polymer was about 92 degrees . These results show that (i) in water striders, the topography of the surface plays a dominant role in super-hydrophobicity, (ii) very low surface energy bulk material (typically smaller than 0.020 N m(-1)) is not necessary to achieve super-hydrophobicity; and (3) the two-step moulding technique may be used to mimic quite complex biological functional surfaces.
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya
2018-05-01
We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.
Super Talbot effect in indefinite metamaterial.
Zhao, Wangshi; Huang, Xiaoyue; Lu, Zhaolin
2011-08-01
The Talbot effect (or the self-imaging effect) can be observed for a periodic object with a pitch larger than the diffraction limit of an imaging system, where the paraxial approximation is applied. In this paper, we show that the super Talbot effect can be achieved in an indefinite metamaterial even when the period is much smaller than the diffraction limit in both two-dimensional and three-dimensional numerical simulations, where the paraxial approximation is not applied. This is attributed to the evanescent waves, which carry the information about subwavelength features of the object, can be converted into propagating waves and then conveyed to far field by the metamaterial, where the permittivity in the propagation direction is negative while the transverse ones are positive. The indefinite metamaterial can be approximated by a system of thin, alternating multilayer metal and insulator (MMI) stack. As long as the loss of the metamaterial is small enough, deep subwavelength image size can be obtained in the super Talbot effect.
NASA Astrophysics Data System (ADS)
Brdar, S.; Seifert, A.
2018-01-01
We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.
Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes.
Jia, Guo; Shi, Ze-Jiao; Xia, Ying-Dong; Wei, Qi; Chen, Yong-Hua; Xing, Gui-Chuan; Huang, Wei
2018-01-22
Solution processed organic-inorganic hybrid perovskites are emerging as a new generation materials for optoelectronics. However, the electroluminescence is highly limited in light emitting diodes (LED) due to the low exciton binding energy and the great challenge in stability. Here, we demonstrate a super air stable quasi-two dimensional perovskite film employing hydrophobic fluorine-containing organics as barrier layers, which can store in ambient for more than 4 months with no change. The dramatically reduced grain size of the perovskite crystal in contrast to three dimensional (3D) perovskites was achieved. Together with the natural quantum well of quasi-two dimensional perovskite confining the excitons to recombination, the LED exhibited the maximum luminance of 1.2 × 10 3 cd/m 2 and current efficiency up to 0.3 cd/A, which is twenty fold enhancement than that of LED based on 3D analogues under the same condition.
Aberrations in stimulated emission depletion (STED) microscopy
NASA Astrophysics Data System (ADS)
Antonello, Jacopo; Burke, Daniel; Booth, Martin J.
2017-12-01
Like all methods of super-resolution microscopy, stimulated emission depletion (STED) microscopy can suffer from the effects of aberrations. The most important aspect of a STED microscope is that the depletion focus maintains a minimum, ideally zero, intensity point that is surrounded by a region of higher intensity. It follows that aberrations that cause a non-zero value of this minimum intensity are the most detrimental, as they inhibit fluorescence emission even at the centre of the depletion focus. We present analysis that elucidates the nature of these effects in terms of the different polarisation components at the focus for two-dimensional and three-dimensional STED resolution enhancement. It is found that only certain low-order aberration modes can affect the minimum intensity at the Gaussian focus. This has important consequences for the design of adaptive optics aberration correction systems.
Higher T-duality in M-theory via local supersymmetry
NASA Astrophysics Data System (ADS)
Sati, Hisham; Schreiber, Urs
2018-06-01
By analyzing super-torsion and brane super-cocycles, we derive a new duality in M-theory, which takes the form of a higher version of T-duality in string theory. This involves a new topology change mechanism abelianizing the 3-sphere associated with the C-field topology to the 517-torus associated with exceptional-generalized super-geometry. Finally we explain parity symmetry in M-theory within exceptional-generalized super-spacetime at the same level of spherical T-duality, namely as an isomorphism on 7-twisted cohomology.
NASA Astrophysics Data System (ADS)
Chinone, N.; Yamasue, K.; Hiranaga, Y.; Honda, K.; Cho, Y.
2012-11-01
Scanning nonlinear dielectric microscopy (SNDM) can be used to visualize polarization distributions in ferroelectric materials and dopant profiles in semiconductor devices. Without using a special sharp tip, we achieved an improved lateral resolution in SNDM through the measurement of super-higher-order nonlinearity up to the fourth order. We observed a multidomain single crystal congruent LiTaO3 (CLT) sample, and a cross section of a metal-oxide-semiconductor (MOS) field-effect-transistor (FET). The imaged domain boundaries of the CLT were narrower in the super-higher-order images than in the conventional image. Compared to the conventional method, the super-higher-order method resolved the more detailed structure of the MOSFET.
On the Psychometric Study of Human Life History Strategies.
Richardson, George B; Sanning, Blair K; Lai, Mark H C; Copping, Lee T; Hardesty, Patrick H; Kruger, Daniel J
2017-01-01
This article attends to recent discussions of validity in psychometric research on human life history strategy (LHS), provides a constructive critique of the extant literature, and describes strategies for improving construct validity. To place the psychometric study of human LHS on more solid ground, our review indicates that researchers should (a) use approaches to psychometric modeling that are consistent with their philosophies of measurement, (b) confirm the dimensionality of life history indicators, and (c) establish measurement invariance for at least a subset of indicators. Because we see confirming the dimensionality of life history indicators as the next step toward placing the psychometrics of human LHS on more solid ground, we use nationally representative data and structural equation modeling to test the structure of middle adult life history indicators. We found statistically independent mating competition and Super-K dimensions and the effects of parental harshness and childhood unpredictability on Super-K were consistent with past research. However, childhood socioeconomic status had a moderate positive effect on mating competition and no effect on Super-K, while unpredictability did not predict mating competition. We conclude that human LHS is more complex than previously suggested-there does not seem to be a single dimension of human LHS among Western adults and the effects of environmental components seem to vary between mating competition and Super-K.
Rolling and tumbling: status of the SuperAGILE experiment
NASA Astrophysics Data System (ADS)
Del Monte, E.; Costa, E.; di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Argan, A.; Trois, A.
2010-07-01
The SuperAGILE experiment is the hard X-ray monitor of the AGILE mission. It is a 2 x one-dimensional imager, with 6-arcmin angular resolution in the energy range 18 - 60 keV and a field of view in excess of 1 steradian. SuperAGILE is successfully operating in orbit since Summer 2007, providing long-term monitoring of bright sources and prompt detection and localization of gamma-ray bursts. Starting on October 2009 the AGILE mission lost its reaction wheel and the satellite attitude is no longer stabilized. The current mode of operation of the AGILE satellite is a Spinning Mode, around the Sun-pointing direction, with an angular velocity of about 0.8 degree/s (corresponding to 8 times the SuperAGILE point spread function every second). In these new conditions, SuperAGILE continuously scans a much larger fraction of the sky, with much smaller exposure to each region. In this paper we review some of the results of the first 2.5 years of "standard" operation of SuperAGILE, and show how new implementations in the data analysis software allows to continue the hard X-ray sky monitoring by SuperAGILE also in the new attitude conditions.
On the evolution of the Universe
NASA Astrophysics Data System (ADS)
Kondratenko, P. O.
2014-12-01
In this paper a model of creation and evolution of the universe in which the laws of physics are performed. The model implies that our Universe is a part of a Super-Universe as a separate layer in the fiber space, and the information communication exists between adjacent layers through the single point. During the formation of Super-Universe it was filled first a one-dimensional World of Field-time, then a two-dimensional (1+1) World was filled with energy and Planck's particles which carry the electric and magnetic charges. Completion of two-dimensional world filling leads to a "transfusion" of energy into the neighboring three-dimensional World which presents a world of known quarks which have the fractional electric charges, color charges, and spins. The next step is a "transfusion" of energy into the four-dimensional (3+1) World and the birth of the particles of this World. Evolution of this World has a completion by the brane creation of five-dimensional World. This evolution is accompanying by the birth of the entire set of stable and unstable heavy nuclei and atoms. A filling of each new layer at the fiber space does not bring the entropy into this space (i.e. cold and completely deterministic start of evolution). The proposed model supports the anthropic principle in the Universe.
Extremal higher spin black holes
NASA Astrophysics Data System (ADS)
Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.
2016-04-01
The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping
2015-07-01
Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.
One-loop tests of supersymmetric gauge theories on spheres
Minahan, Joseph A.; Naseer, Usman
2017-07-14
Here, we show that a recently conjectured form for perturbative supersymmetric partition functions on spheres of general dimension d is consistent with the at space limit of 6-dimensional N = 1 super Yang-Mills. We also show that the partition functions for N = 1 8- and 9-dimensional theories are consistent with their known at space limits.
GAC: Gene Associations with Clinical, a web based application.
Zhang, Xinyan; Rupji, Manali; Kowalski, Jeanne
2017-01-01
We present GAC, a shiny R based tool for interactive visualization of clinical associations based on high-dimensional data. The tool provides a web-based suite to perform supervised principal component analysis (SuperPC), an approach that uses both high-dimensional data, such as gene expression, combined with clinical data to infer clinical associations. We extended the approach to address binary outcomes, in addition to continuous and time-to-event data in our package, thereby increasing the use and flexibility of SuperPC. Additionally, the tool provides an interactive visualization for summarizing results based on a forest plot for both binary and time-to-event data. In summary, the GAC suite of tools provide a one stop shop for conducting statistical analysis to identify and visualize the association between a clinical outcome of interest and high-dimensional data types, such as genomic data. Our GAC package has been implemented in R and is available via http://shinygispa.winship.emory.edu/GAC/. The developmental repository is available at https://github.com/manalirupji/GAC.
Super-stable Poissonian structures
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2012-10-01
In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.
Contact microspherical nanoscopy: from fundamentals to biomedical applications
NASA Astrophysics Data System (ADS)
Astratov, V. N.; Maslov, A. V.; Brettin, A.; Blanchette, K. F.; Nesmelov, Y. E.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.
2017-02-01
The mechanisms of super-resolution imaging by contact microspherical or microcylindrical nanoscopy remain an enigmatic question since these lenses neither have an ability to amplify the near-fields like in the case of far-field superlens, nor they have a hyperbolic dispersion similar to hyperlenses. In this work, we present results along two lines. First, we performed numerical modeling of super-resolution properties of two-dimensional (2-D) circular lens in the limit of wavelength-scale diameters, λ <= D <= 2λ, and relatively high indices of refraction, n=2. Our preliminary results on imaging point dipoles indicate that the resolution is generally close to λ/4 however on resonance with whispering gallery modes it may be slightly higher. Second, experimentally, we used actin protein filaments for the resolution quantification in microspherical nanoscopy. The critical feature of our approach is based on using arrayed cladding layer with strong localized surface plasmon resonances. This layer is used for enhancing plasmonic near-field illumination of our objects. In combination with the magnification of virtual image, this technique resulted in the lateral resolution of actin protein filaments on the order of λ/7.
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-06-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.
NASA Astrophysics Data System (ADS)
Malmi Kakkada, Abdul; Li, Xin; Samanta, Himadri S.; Sinha, Sumit; Thirumalai, Dave
2018-02-01
Collective migration dominates many phenomena, from cell movement in living systems to abiotic self-propelling particles. Focusing on the early stages of tumor evolution, we enunciate the principles involved in cell dynamics and highlight their implications in understanding similar behavior in seemingly unrelated soft glassy materials and possibly chemokine-induced migration of CD8$^{+}$ T cells. We performed simulations of tumor invasion using a minimal three dimensional model, accounting for cell elasticity and adhesive cell-cell interactions as well as cell birth and death to establish that cell growth rate-dependent tumor expansion results in the emergence of distinct topological niches. Cells at the periphery move with higher velocity perpendicular to the tumor boundary, while motion of interior cells is slower and isotropic. The mean square displacement, $\\Delta(t)$, of cells exhibits glassy behavior at times comparable to the cell cycle time, while exhibiting super-diffusive behavior, $\\Delta (t) \\approx t^{\\alpha}$ ($\\alpha > 1$), at longer times. We derive the value of $\\alpha \\approx 1.33$ using a field theoretic approach based on stochastic quantization. In the process we establish the universality of super-diffusion in a class of seemingly unrelated non-equilibrium systems. Super diffusion at long times arises only if there is an imbalance between cell birth and death rates. Our findings for the collective migration, which also suggests that tumor evolution occurs in a polarized manner, are in quantitative agreement with {\\it in vitro} experiments. Although set in the context of tumor invasion the findings should also hold in describing collective motion in growing cells and in active systems where creation and annihilation of particles play a role.
Sensing Super-position: Visual Instrument Sensor Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.; Schipper, John F.
2006-01-01
The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.
Additional Results of Glaze Icing Scaling in SLD Conditions
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching
2016-01-01
New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 inches and the scale model had a chord of 21 inches. Reference tests were run with airspeeds of 100 and 130.3 knots and with MVD's of 85 and 170 microns. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number W (sub eL). The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the non-dimensional water-film thickness expression and the film Weber number W (sub ef). All tests were conducted at 0 degrees angle of arrival. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For non-dimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-dimensional ice shape profiles at any selected span-wise location from the high fidelity 3-dimensional scanned ice shapes obtained in the IRT.
Higher spin Chern-Simons theory and the super Boussinesq hierarchy
NASA Astrophysics Data System (ADS)
Gutperle, Michael; Li, Yi
2018-05-01
In this paper, we construct a map between a solution of supersymmetric Chern-Simons higher spin gravity based on the superalgebra sl(3|2) with Lifshitz scaling and the N = 2 super Boussinesq hierarchy. We show that under this map the time evolution equations of both theories coincide. In addition, we identify the Poisson structure of the Chern-Simons theory induced by gauge transformation with the second Hamiltonian structure of the super Boussinesq hierarchy.
Super-convergence of Discontinuous Galerkin Method Applied to the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Atkins, Harold L.
2009-01-01
The practical benefits of the hyper-accuracy properties of the discontinuous Galerkin method are examined. In particular, we demonstrate that some flow attributes exhibit super-convergence even in the absence of any post-processing technique. Theoretical analysis suggest that flow features that are dominated by global propagation speeds and decay or growth rates should be super-convergent. Several discrete forms of the discontinuous Galerkin method are applied to the simulation of unsteady viscous flow over a two-dimensional cylinder. Convergence of the period of the naturally occurring oscillation is examined and shown to converge at 2p+1, where p is the polynomial degree of the discontinuous Galerkin basis. Comparisons are made between the different discretizations and with theoretical analysis.
Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery
NASA Astrophysics Data System (ADS)
Prasad, S.; Yu, Z.
The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.
Petersson, N. Anders; Sjogreen, Bjorn
2015-07-20
We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less
From Environment to Mating Competition and Super-K in a Predominantly Urban Sample of Young Adults.
Richardson, George B; Dariotis, Jacinda K; Lai, Mark H C
2017-01-01
Recent research suggests human life history strategy (LHS) may be subsumed by multiple dimensions, including mating competition and Super-K, rather than one. In this study, we test whether a two-dimensional structure best fit data from a predominantly urban sample of young adults ages 18-24. We also test whether latent life history dimensions are associated with environmental harshness and unpredictability as predicted by life history theory. Results provide evidence that a two-dimensional model best fit the data. Furthermore, a moderate inverse residual correlation between mating competition and Super-K was found, consistent with a life history trade-off. Our findings suggest that parental socioeconomic status may enhance investment in mating competition, that harshness might persist into young adulthood as an important correlate of LHS, and that unpredictability may not have significant effects in young adulthood. These findings further support the contention that human LHS is multidimensional and environmental effects on LHS are more complex than previously suggested. The model presented provides a parsimonious explanation of an array of human behaviors and traits and can be used to inform public health initiatives, particularly with respect to the potential impact of environmental interventions.
Genetic dissection of the α-globin super-enhancer in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, Deborah; Hughes, Jim R.; Babbs, Christian
Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less
Genetic dissection of the α-globin super-enhancer in vivo
Hay, Deborah; Hughes, Jim R.; Babbs, Christian; ...
2016-07-04
Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less
Thibodeau, Asa; Márquez, Eladio J; Shin, Dong-Guk; Vera-Licona, Paola; Ucar, Duygu
2017-10-31
Broad domain promoters and super enhancers are regulatory elements that govern cell-specific functions and harbor disease-associated sequence variants. These elements are characterized by distinct epigenomic profiles, such as expanded deposition of histone marks H3K27ac for super enhancers and H3K4me3 for broad domains, however little is known about how they interact with each other and the rest of the genome in three-dimensional chromatin space. Using network theory methods, we studied chromatin interactions between broad domains and super enhancers in three ENCODE cell lines (K562, MCF7, GM12878) obtained via ChIA-PET, Hi-C, and Hi-CHIP assays. In these networks, broad domains and super enhancers interact more frequently with each other compared to their typical counterparts. Network measures and graphlets revealed distinct connectivity patterns associated with these regulatory elements that are robust across cell types and alternative assays. Machine learning models showed that these connectivity patterns could effectively discriminate broad domains from typical promoters and super enhancers from typical enhancers. Finally, targets of broad domains in these networks were enriched in disease-causing SNPs of cognate cell types. Taken together these results suggest a robust and unique organization of the chromatin around broad domains and super enhancers: loci critical for pathologies and cell-specific functions.
The D 2 k R 4 invariants of mathcal{N} = 8 supergravity
NASA Astrophysics Data System (ADS)
Freedman, Daniel Z.; Tonni, Erik
2011-04-01
The existence of a linearized SUSY invariant for mathcal{N} = 8 supergravity whose gravitational components are usually called R 4 was established long ago by on-shell super-space arguments. Superspace and string theory methods have also established analogous higher dimensional D 2 k R 4 invariants. However, very little is known about the SUSY completions of these operators which involve other fields of the theory. In this paper we find the detailed component expansion of the linearized R 4 invariant starting from the corresponding superamplitude which generates all component matrix elements of the operator. It is then quite straightforward to extend results to the entire set of D 2 k R 4 operators.
GAC: Gene Associations with Clinical, a web based application
Zhang, Xinyan; Rupji, Manali; Kowalski, Jeanne
2018-01-01
We present GAC, a shiny R based tool for interactive visualization of clinical associations based on high-dimensional data. The tool provides a web-based suite to perform supervised principal component analysis (SuperPC), an approach that uses both high-dimensional data, such as gene expression, combined with clinical data to infer clinical associations. We extended the approach to address binary outcomes, in addition to continuous and time-to-event data in our package, thereby increasing the use and flexibility of SuperPC. Additionally, the tool provides an interactive visualization for summarizing results based on a forest plot for both binary and time-to-event data. In summary, the GAC suite of tools provide a one stop shop for conducting statistical analysis to identify and visualize the association between a clinical outcome of interest and high-dimensional data types, such as genomic data. Our GAC package has been implemented in R and is available via http://shinygispa.winship.emory.edu/GAC/. The developmental repository is available at https://github.com/manalirupji/GAC. PMID:29263780
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-01-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668
Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds
NASA Astrophysics Data System (ADS)
Licht, Stuart; Naschitz, Vera; Liu, Bing; Ghosh, Susanta; Halperin, Nadezhda; Halperin, Leonid; Rozen, Dmitri
The chemical preparation of high purity potassium and barium ferrates for alkaline electrochemical storage are presented. The synthesized salts are used to demonstrate a variety of high capacity super-iron (Zn anode) alkaline AAA cell configurations which utilize these Fe(V) salts. Results of 500 days, full stability, of the synthesized K 2FeO 4 are presented. Synthetic pathways yielding 80-100 g of 96.5-99.5% pure K 2FeO 4 and BaFeO 4 are presented, and the products of these syntheses are demonstrated to provide a high energy electrochemical discharge in a variety of AAA alkaline cells. BaFeO 4 super-iron alkaline AAA cells provide over 0.8 W h during 2.8 Ω discharge, yielding over 200% higher capacity than conventional alkaline batteries. The barium super-iron cell configurations studied provide higher capacity than the potassium super-iron alkaline cell configurations studied.
Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...
2015-06-15
Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less
Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.
Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu
2018-04-01
Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.
Super long viewing distance light homogeneous emitting three-dimensional display
NASA Astrophysics Data System (ADS)
Liao, Hongen
2015-04-01
Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
Magnetofermionic condensate in two dimensions
Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.
2016-01-01
Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; ...
2016-10-03
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less
An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-08-01
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.
Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin
2015-01-01
Super- and sub-critical water treatments have been of interest as novel methods for protein hydrolysis. In the present study, we studied the effect of sub-critical water (Sub-H2O, 300℃, 80 bar) treatment as well as super-critical water (Super-H2O, 400℃, 280 bar) treatment on the physicochemical properties of porcine skin (PS), which has abundant collagen. Porcine skin was subjected to pre-thermal treatment by immersion in water at 70℃, and then treated with sub- or super-critical water. Physicochemical properties of the hydrolysates, such as molecular weight distribution, free amino acid content, amino acid profile, pH, color, and water content were determined. For the molecular weight distribution analysis, 1 kDa hydrolyzed porcine skin (H-PS) was produced by Super-H2O or Sub-H2O treatment. The free amino acid content was 57.18 mM and 30.13 mM after Sub-H2O and Super-H2O treatment, respectively. Determination of amino acid profile revealed that the content of Glu (22.5%) and Pro (30%) was higher after Super-H2O treatment than after Sub-H2O treatment, whereas the content of Gly (28%) and Ala (13.1%) was higher after Sub-H2O treatment. Super-H2O or Sub-H2O treatment affected the pH of PS, which changed from 7.29 (Raw) to 9.22 (after Sub-H2O treatment) and 9.49 (after Super-H2O treatment). Taken together, these results showed that Sub-H2O treatment was slightly more effective for hydrolysis than Super-H2O was. However, both Sub-H2O and Super-H2O treatments were effective processing methods for hydrolysis of PS collagen in a short time and can be regarded as a green chemistry technology. PMID:26761798
Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin.
Jo, Yeon-Ji; Kim, Jae-Hyeong; Jung, Kyung-Hun; Min, Sang-Gi; Chun, Ji-Yeon
2015-01-01
Super- and sub-critical water treatments have been of interest as novel methods for protein hydrolysis. In the present study, we studied the effect of sub-critical water (Sub-H2O, 300℃, 80 bar) treatment as well as super-critical water (Super-H2O, 400℃, 280 bar) treatment on the physicochemical properties of porcine skin (PS), which has abundant collagen. Porcine skin was subjected to pre-thermal treatment by immersion in water at 70℃, and then treated with sub- or super-critical water. Physicochemical properties of the hydrolysates, such as molecular weight distribution, free amino acid content, amino acid profile, pH, color, and water content were determined. For the molecular weight distribution analysis, 1 kDa hydrolyzed porcine skin (H-PS) was produced by Super-H2O or Sub-H2O treatment. The free amino acid content was 57.18 mM and 30.13 mM after Sub-H2O and Super-H2O treatment, respectively. Determination of amino acid profile revealed that the content of Glu (22.5%) and Pro (30%) was higher after Super-H2O treatment than after Sub-H2O treatment, whereas the content of Gly (28%) and Ala (13.1%) was higher after Sub-H2O treatment. Super-H2O or Sub-H2O treatment affected the pH of PS, which changed from 7.29 (Raw) to 9.22 (after Sub-H2O treatment) and 9.49 (after Super-H2O treatment). Taken together, these results showed that Sub-H2O treatment was slightly more effective for hydrolysis than Super-H2O was. However, both Sub-H2O and Super-H2O treatments were effective processing methods for hydrolysis of PS collagen in a short time and can be regarded as a green chemistry technology.
[Super sweet corn hybrid sh2 adaptability for industrial canning process].
Ortiz de Bertorelli, Ligia; De Venanzi, Frank; Alfonzo, Braunnier; Camacho, Candelario
2002-12-01
The super sweet corns Krispy king, Victor and 324 (sh2 hybrids) were evaluated to determine their adaptabilities to the industrial canning process as whole kernels. All these hybrids and Bonanza (control) were sown in San Joaquín (Carabobo, Venezuela), harvested and canned. After 110 days storage at room temperature they were analyzed to be compared physically, chemically and sensorially with Bonanza hybrid. Results did not show significant differences among most of the physical characteristics, except for percentage of broken kernels which was higher in 324 hybrid. Chemical parameters showed significant differences (P < 0.05) comparing each super sweet hybrid with Bonanza. The super sweet hybrids presented a higher sugar content and soluble solid of the brine than Bonanza, also a lower pH. The super sweet whole kernel presented a lower soluble solids content than Bonanza but they were not significant (Krispy king and 324). Appearance, odor and overall quality were the same for super sweet hybrids and Bonanza (su). Color, flavor and sweetness were better for 324 than all the other hybrids. Super sweet hybrids presented a very good adaptation to the canning process, having as an advantage that doesn't require sugar addition in the brine and a very good texture (firm and crispy).
Genetic dissection of the α-globin super-enhancer in vivo
Hay, Deborah; Hughes, Jim R.; Rode, Christina; Li, Pik-Shan; Pennacchio, Len A.; Sloane-Stanley, Jacqueline A.; Ayyub, Helena; Butler, Sue; Sauka-Spengler, Tatjana; Gibbons, Richard J.; Smith, Andrew J.H.; Wood, William G.; Higgs, Douglas R.
2016-01-01
Many genes determining cell identity are regulated by clusters of mediator-bound enhancer elements collectively referred to as super-enhancers. These have been proposed to manifest higher-order properties important in development and disease. Here, we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer singly and in informative combinations, we demonstrate that each constituent enhancer appears to act independently and in an additive fashion with respect to hematologic phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. PMID:27376235
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
Super-Luminal Effects for Finsler Branes as a Way to Preserve the Paradigm of Relativity Theories
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2013-06-01
Using Finsler brane solutions [see details and methods in: S. Vacaru, Class. Quant. Grav. 28:215001, 2011], we show that neutrinos may surpass the speed of light in vacuum which can be explained by trapping effects from gravity theories on eight dimensional (co) tangent bundles on Lorentzian manifolds to spacetimes in general and special relativity. In nonholonomic variables, the bulk gravity is described by Finsler modifications depending on velocity/momentum coordinates. Possible super-luminal phenomena are determined by the width of locally anisotropic brane (spacetime) and induced by generating functions and integration functions and constants in coefficients of metrics and nonlinear connections. We conclude that Finsler brane gravity trapping mechanism may explain neutrino super-luminal effects and almost preserve the paradigm of Einstein relativity as the standard one for particle physics and gravity.
D=10 Chiral Tensionless Super p-BRANES
NASA Astrophysics Data System (ADS)
Bozhilov, P.
We consider a model for tensionless (null) super-p-branes with N chiral supersymmetries in ten-dimensional flat space-time. After establishing the symmetries of the action, we give the general solution of the classical equations of motion in a particular gauge. In the case of a null superstring (p=1) we find the general solution in an arbitrary gauge. Then, using a harmonic superspace approach, the initial algebra of first- and second-class constraints is converted into an algebra of Lorentz-covariant, BFV-irreducible, first-class constraints only. The corresponding BRST charge is as for a first rank dynamical system.
First-principles study of giant thermoelectric power in incommensurate TlInSe2
NASA Astrophysics Data System (ADS)
Ishikawa, M.; Nakayama, T.; Wakita, K.; Shim, Y. G.; Mamedov, N.
2018-04-01
Ternary thallium compound TlInSe2 exhibits a giant Seebeck effect below around 410 K, where Tl atoms form one dimensional incommensurate (IC) arrays. To clarify the origin of large thermoelectric power in the IC phase, the electronic properties of Tl-atom super-structured TlInSe2 were studied using the first-principles calculations. It was shown that the super-structures induce strong binding states between Se-p orbitals in the nearest neighboring layers and produce large density of states near lower conduction bands, which might be one of the origins to produce large thermoelectric power.
Capelli bitableaux and Z-forms of general linear Lie superalgebras.
Brini, A; Teolis, A G
1990-01-01
The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang, E-mail: lig2@mskcc.org; Wei, Jie; Kadbi, Mo
Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions;more » the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been reconstructed with adequate temporal (2 Hz) and spatial (2 × 2 × 2 mm{sup 3}) resolutions. Further TR-4DMRI characterization and improvement are necessary before clinical applications. Multi-breathing cycles can be examined, providing patient-specific breathing irregularities and motion statistics for future 4D radiation therapy.« less
Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A
2010-07-01
To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Supermultiplet of β-deformations from twistors
NASA Astrophysics Data System (ADS)
Milián, Segundo P.
2017-09-01
We consider the supermultiplet of linearized beta-deformation of 𝒩 = 4 super-Yang-Mills (SYM). It was previously studied on the gravitational side. We study the supermultiplet of beta-deformations on the field theory side and we compare two finite-dimensional representations of psl(4|4,R) algebra. We show that they are related by an intertwining operator. We develop a twistor-based approach which could be useful for studying other finite-dimensional and nonunitary representations in AdS/CFT correspondence.
Liu, Jian; Wang, Chunlei; Guo, Pan; Shi, Guosheng; Fang, Haiping
2013-12-21
Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
Super-resolution reconstruction of hyperspectral images.
Akgun, Toygar; Altunbasak, Yucel; Mersereau, Russell M
2005-11-01
Hyperspectral images are used for aerial and space imagery applications, including target detection, tracking, agricultural, and natural resource exploration. Unfortunately, atmospheric scattering, secondary illumination, changing viewing angles, and sensor noise degrade the quality of these images. Improving their resolution has a high payoff, but applying super-resolution techniques separately to every spectral band is problematic for two main reasons. First, the number of spectral bands can be in the hundreds, which increases the computational load excessively. Second, considering the bands separately does not make use of the information that is present across them. Furthermore, separate band super-resolution does not make use of the inherent low dimensionality of the spectral data, which can effectively be used to improve the robustness against noise. In this paper, we introduce a novel super-resolution method for hyperspectral images. An integral part of our work is to model the hyperspectral image acquisition process. We propose a model that enables us to represent the hyperspectral observations from different wavelengths as weighted linear combinations of a small number of basis image planes. Then, a method for applying super resolution to hyperspectral images using this model is presented. The method fuses information from multiple observations and spectral bands to improve spatial resolution and reconstruct the spectrum of the observed scene as a combination of a small number of spectral basis functions.
Kopek, Benjamin G.; Paez-Segala, Maria G.; Shtengel, Gleb; Sochacki, Kem A.; Sun, Mei G.; Wang, Yalin; Xu, C. Shan; van Engelenburg, Schuyler B.; Taraska, Justin W.; Looger, Loren L.; Hess, Harald F.
2017-01-01
Our groups have recently developed related approaches for sample preparation for super-resolution imaging within endogenous cellular environments using correlative light and electron microscopy (CLEM). Four distinct techniques for preparing and acquiring super-resolution CLEM datasets on aldehyde-fixed specimens are provided, including Tokuyasu cryosectioning, whole-cell mount, cell unroofing and platinum replication, and resin embedding and sectioning. Choice of the best protocol for a given application depends on a number of criteria that are discussed in detail. Tokuyasu cryosectioning is relatively rapid but is limited to small, delicate specimens. Whole-cell mount has the simplest sample preparation but is restricted to surface structures. Cell unroofing and platinum replica creates high-contrast, 3-dimensional images of the cytoplasmic surface of the plasma membrane, but is more challenging than whole-cell mount. Resin embedding permits serial sectioning of large samples, but is limited to osmium-resistant probes, and is technically difficult. Expected results from these protocols include super-resolution localization (~10–50 nm) of fluorescent targets within the context of electron microscopy ultrastructure, which can help address cell biological questions. These protocols can be completed in 2–7 days, are compatible with a number of super-resolution imaging protocols, and are broadly applicable across biology. PMID:28384138
Superelement Analysis of Tile-Reinforced Composite Armor
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
1998-01-01
Super-elements can greatly improve the computational efficiency of analyses of tile-reinforced structures such as the hull of the Composite Armored Vehicle. By taking advantage of the periodicity in this type of construction, super-elements can be used to simplify the task of modeling, to virtually eliminate the time required to assemble the stiffness matrices, and to reduce significantly the analysis solution time. Furthermore, super-elements are fully transferable between analyses and analysts, so that they provide a consistent method to share information and reduce duplication. This paper describes a methodology that was developed to model and analyze large upper hull components of the Composite Armored Vehicle. The analyses are based on two types of superelement models. The first type is based on element-layering, which consists of modeling a laminate by using several layers of shell elements constrained together with compatibility equations. Element layering is used to ensure the proper transverse shear deformation in the laminate rubber layer. The second type of model uses three-dimensional elements. Since no graphical pre-processor currently supports super-elements, a special technique based on master-elements was developed. Master-elements are representations of super-elements that are used in conjunction with a custom translator to write the superelement connectivities as input decks for ABAQUS.
Precipitation Kinetics of M23C6 Carbides in the Super304H Austenitic Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Zhou, Qingwen; Ping, Shaobo; Meng, Xiaobo; Wang, Ruikun; Gao, Yan
2017-12-01
The precipitation kinetics of M23C6 carbides in Super304H and TP304H steels were investigated using the selective-etching method, SEM backscattered electron images and Image-Pro-Plus 6.0 software. Precipitation-temperature-time (PTT) diagrams of M23C6 carbides in the as-received Super304H (fine grains), coarsened Super304H (coarse grains) and TP304H (coarse grains) steels all show the typical C-shaped character with nose temperature range from 800 to 850 °C. Compared with the TP304H steel, the same trend is found of the PTT curve of M23C6 carbides for both kinds of Super304H steels, but their start lines move to the right and finish lines to the left. The preferential formation of Nb(C,N) phase at grain boundaries in the Super304H steels inhibited the nucleation of M23C6 carbides in the early stage of precipitation, causing the right shift of the start line of PTT curve. The main reason for the left shift of the finish line of the two Super304H steels was the quicker growing and coarsening rate of M23C6 in the later precipitation stage due to their higher C content than in TP304H. For the difference in PPT curves between the two grain sizes of the Super304H steel, the lower diffusion rate of atoms in the coarse-grained Super304H steel may explain its righter finish line than the fine-grained counterpart, while the reason for its lefter start line is due to the higher solute segregation along coarse-grained boundaries.
Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael
2012-01-01
Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521
A Novel 2-D Programmable Photonic Time Delay Device for MM-Wave Signal Processing Applications
NASA Technical Reports Server (NTRS)
Yao, X.; Maleki, L.
1994-01-01
We describe a novel programmable photonic true time delay device that has the properties of low loss, inherent two dimensionality with a packing density exceeding 25 lines/cm super 2, virtually infinite bandwidth, and is easy to manufacture.
Ku, Taeyun; Swaney, Justin; Park, Jeong-Yoon; Albanese, Alexandre; Murray, Evan; Cho, Jae Hun; Park, Young-Gyun; Mangena, Vamsi; Chen, Jiapei; Chung, Kwanghun
2016-09-01
The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.
Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations
NASA Astrophysics Data System (ADS)
Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli
2017-04-01
We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d > 1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.
Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis
Suzuki, Hiroshi I.; Young, Richard A; Sharp, Phillip A
2017-01-01
Summary Super-enhancers are an emerging sub-class of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and a unrecognized higher-order property of super-enhancers in RNA processing beyond transcription. PMID:28283057
NASA Astrophysics Data System (ADS)
Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun
2017-02-01
Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.
NASA Astrophysics Data System (ADS)
Park, Byullee; Lee, Hongki; Upputuri, Paul Kumar; Pramanik, Manojit; Kim, Donghyun; Kim, Chulhong
2018-02-01
Super-resolution microscopy has been increasingly important to delineate nanoscale biological structures or nanoparticles. With these increasing demands, several imaging modalities, including super-resolution fluorescence microscope (SRFM) and electron microscope (EM), have been developed and commercialized. These modalities achieve nanoscale resolution, however, SRFM cannot image without fluorescence, and sample preparation of EM is not suitable for biological specimens. To overcome those disadvantages, we have numerically studied the possibility of superresolution photoacoustic microscopy (SR-PAM) based on near-field localization of light. Photoacoustic (PA) signal is generally acquired based on optical absorption contrast; thus it requires no agents or pre-processing for the samples. The lateral resolution of the conventional photoacoustic microscopy is limited to 200 nm by diffraction limit, therefore reducing the lateral resolution is a major research impetus. Our approach to breaking resolution limit is to use laser pulses of extremely small spot size as a light source. In this research, we simulated the PA signal by constructing the three dimensional SR-PAM system environment using the k-Wave toolbox. As the light source, we simulated ultrashort light pulses using geometrical nanoaperture with near-field localization of surface plasmons. Through the PA simulation, we have successfully distinguish cuboids spaced 3 nm apart. In the near future, we will develop the SR-PAM and it will contribute to biomedical and material sciences.
Regularity of Solutions of the Nonlinear Sigma Model with Gravitino
NASA Astrophysics Data System (ADS)
Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao
2018-02-01
We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.
1987-05-01
Bruxism : a report and a case report. J. Dent. Med., 9:189-199, 1954. 138. Super, S: A modified occlusal splint for segmental osteotomy fixation. J. Oral...minimize linear dimensional change prior to the clinical use of a removable acrylic resin orthosis. . .. . . . . TABLE OF CONTENTS Title...distortion and clinical use of an orthosis having a precise and accurate fit. V % N II. LITERATURE REVIEW A. Terminology The therapeutic use of interocclusal
Propagation of Bessel-X pulses in a hybrid photonic crystal
NASA Astrophysics Data System (ADS)
Chung, K. B.
2018-05-01
We report the propagation of Bessel-X pulses in a two-dimensional hybrid photonic crystal, investigated by the finite-difference time-domain method, in which broadband super-collimation and the propagation of self-collimated ultrashort pulses were reported. We first show the propagation of Bessel-X pulses in two-dimensional free space, whose transverse branches diverge rapidly with propagation. We then show that Bessel-X pulses propagate with their transverse and longitudinal shapes almost unchanged in the hybrid photonic crystal.
NASA Astrophysics Data System (ADS)
Unni, Vineet; Sankara Narayanan, E. M.
2017-04-01
This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria; Yoshida, Haruo
2010-09-01
We formulate the necessary conditions for the maximal super-integrability of a certain family of classical potentials defined in the constant curvature two-dimensional spaces. We give examples of homogeneous potentials of degree -2 on {\\bb E}^2 as well as their equivalents on {\\bb S}^2 and {\\bb H}^2 for which these necessary conditions are also sufficient. We show explicit forms of the additional first integrals which can always be chosen as a polynomial with respect to the momenta and which can be of an arbitrary high degree with respect to the momenta.
Accelerating cross-validation with total variation and its application to super-resolution imaging
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Ikeda, Shiro; Akiyama, Kazunori; Kabashima, Yoshiyuki
2017-12-01
We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ_1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian; Guo, Pan; University of Chinese Academy of Sciences, Beijing 100049
Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surfacemore » atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.« less
Soibam, Benjamin
2017-11-01
Super-enhancers are characterized by high levels of Mediator binding and are major contributors to the expression of their associated genes. They exhibit high levels of local chromatin interactions and a higher order of local chromatin organization. On the other hand, lncRNAs can localize to specific DNA sites by forming a RNA:DNA:DNA triplex, which in turn can contribute to local chromatin organization. In this paper, we characterize a new class of lncRNAs called super-lncRNAs that target super-enhancers and which can contribute to the local chromatin organization of the super-enhancers. Using a logistic regression model based on the number of RNA:DNA:DNA triplex sites a lncRNA forms within the super-enhancer, we identify 442 unique super-lncRNA transcripts in 27 different human cell and tissue types; 70% of these super-lncRNAs were tissue restricted. They primarily harbor a single triplex-forming repeat domain, which forms an RNA:DNA:DNA triplex with multiple anchor DNA sites (originating from transposable elements) within the super-enhancers. Super-lncRNAs can be grouped into 17 different clusters based on the tissue or cell lines they target. Super-lncRNAs in a particular cluster share common short structural motifs and their corresponding super-enhancer targets are associated with gene ontology terms pertaining to the tissue or cell line. Super-lncRNAs may use these structural motifs to recruit and transport necessary regulators (such as transcription factors and Mediator complexes) to super-enhancers, influence chromatin organization, and act as spatial amplifiers for key tissue-specific genes associated with super-enhancers. © 2017 Soibam; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra
NASA Astrophysics Data System (ADS)
Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio
2018-03-01
By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.
Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.
Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin
2015-01-01
This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.
Epstein-Barr Virus oncoprotein super-enhancers control B cell growth
Zhou, Hufeng; Schmidt, Stefanie CS; Jiang, Sizun; Willox, Bradford; Bernhardt, Katharina; Liang, Jun; Johannsen, Eric C; Kharchenko, Peter; Gewurz, Benjamin E; Kieff, Elliott; Zhao, Bo
2015-01-01
Summary Super-enhancers are clusters of gene-regulatory sites bound by multiple transcription factors that govern cell transcription, development, phenotype, and oncogenesis. By examining Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs), we identified four EBV oncoproteins and five EBV-activated NF-κB subunits co-occupying ~1800 enhancer sites. Of these, 187 had markedly higher and broader histone H3K27ac signals characteristic of super-enhancers, and were designated “EBV super-enhancers”. EBV super-enhancer-associated genes included the MYC and BCL2 oncogenes, enabling LCL proliferation and survival. EBV super-enhancers were enriched for B cell transcription factor motifs and had a high co-occupancy of the transcription factors STAT5 and NFAT. EBV super-enhancer-associated genes were more highly expressed than other LCL genes. Disrupting EBV super-enhancers by the bromodomain inhibitor, JQ1 or conditionally inactivating an EBV oncoprotein or NF-κB decreased MYC or BCL2 expression and arrested LCL growth. These findings provide insight into mechanisms of EBV-induced lymphoproliferation and identify potential therapeutic interventions. PMID:25639793
A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.
Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui
2017-09-01
Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Turing instability in reaction-diffusion systems with nonlinear diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemskov, E. P., E-mail: zemskov@ccas.ru
2013-10-15
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
Three-dimensional Simulations of Jets from Keplerian Disks: Self-regulatory Stability
NASA Astrophysics Data System (ADS)
Ouyed, Rachid; Clarke, David A.; Pudritz, Ralph E.
2003-01-01
We present the extension of previous two-dimensional simulations of the time-dependent evolution of nonrelativistic outflows from the surface of Keplerian accretion disks to three dimensions. As in the previous work, we investigate the outflow that arises from a magnetized accretion disk that is initially in hydrostatic balance with its surrounding cold corona. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. We find that the mechanism of jet acceleration is identical to what was established from the previous two-dimensional simulations. The three-dimensional results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfvén surface of the outflow. Beyond the Alfvén surface, however, the jet in three dimensions becomes unstable to nonaxisymmetric, Kelvin-Helmholtz instabilities. The most important result of our work is that while the jet is unstable at super-Alfvénic speeds, it survives the onset of unstable modes that appear in this physical regime. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfvénic Mach number within the jet is maintained to the order of unity. This is accomplished in at least two ways. First, the poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfvén speed is sufficiently high to reduce the average jet Alfvénic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz ``flute'' modes (m>=2) reduces the efficiency with which the jet material is accelerated and transfers kinetic energy of the outflow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfvén speed and thereby reducing the Alfvénic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way. Our simulations also show that jets can acquire corkscrew or wobbling types of geometries in this relatively stable end state depending on the nature of the perturbations on them. Finally, we suggest that jets go into alternating periods of low and high activity since the disappearance of unstable modes in the sub-Alfvénic regime enables another cycle of acceleration to super-Alfvénic speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoud, Mahmoud A., E-mail: mmahmoud@gatech.edu
The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. Themore » calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.« less
Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Lee, Eve J.
2018-06-01
The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.
Phillips, Benjamin U; Heath, Christopher J; Ossowska, Zofia; Bussey, Timothy J; Saksida, Lisa M
2017-09-01
Operant testing is a widely used and highly effective method of studying cognition in rodents. Performance on such tasks is sensitive to reinforcer strength. It is therefore advantageous to select effective reinforcers to minimize training times and maximize experimental throughput. To quantitatively investigate the control of behavior by different reinforcers, performance of mice was tested with either strawberry milkshake or a known powerful reinforcer, super saccharin (1.5% or 2% (w/v) saccharin/1.5% (w/v) glucose/water mixture). Mice were tested on fixed (FR)- and progressive-ratio (PR) schedules in the touchscreen-operant testing system. Under an FR schedule, both the rate of responding and number of trials completed were higher in animals responding for strawberry milkshake versus super saccharin. Under a PR schedule, mice were willing to emit similar numbers of responses for strawberry milkshake and super saccharin; however, analysis of the rate of responding revealed a significantly higher rate of responding by animals reinforced with milkshake versus super saccharin. To determine the impact of reinforcer strength on cognitive performance, strawberry milkshake and super saccharin-reinforced animals were compared on a touchscreen visual discrimination task. Animals reinforced by strawberry milkshake were significantly faster to acquire the discrimination than animals reinforced by super saccharin. Taken together, these results suggest that strawberry milkshake is superior to super saccharin for operant behavioral testing and further confirms that the application of response rate analysis to multiple ratio tasks is a highly sensitive method for the detection of behavioral differences relevant to learning and motivation.
5D Super Yang-Mills on Y p, q Sasaki-Einstein Manifolds
NASA Astrophysics Data System (ADS)
Qiu, Jian; Zabzine, Maxim
2015-01-01
On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as Y p, q manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of a certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large N behaviour for the case of single hypermultiplet in adjoint representation and we derive the N 3-behaviour in this case.
Bäcklund Transformations in 10D SUSY Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Gervais, Jean-Loup
A Bäcklund transformation is derived for the Yang's type (super) equations previously derived (hep-th/9811108) by M. Saveliev and the author, from the ten-dimensional super-Yang-Mills field equations in an on-shell light cone gauge. It is shown to be based upon a particular gauge transformation satisfying nonlinear conditions which ensure that the equations retain the same form. These Yang's type field equations are shown to be precisely such that they automatically provide a solution of these conditions. This Bäcklund transformation is similar to the one proposed by A. Leznov for self-dual Yang-Mills in four dimensions. In the introduction a personal recollection on the birth of supersymmetry is given.
Super Yang-Mills theory with impurity walls and instanton moduli spaces
NASA Astrophysics Data System (ADS)
Cherkis, Sergey A.; O'Hara, Clare; Sämann, Christian
2011-06-01
We explore maximally supersymmetric Yang-Mills theory with walls of impurities respecting half of the supersymmetries. The walls carry fundamental or bifundamental matter multiplets. We employ three-dimensional N=2 superspace language to identify the Higgs branch of this theory. We find that the vacuum conditions determining the Higgs branch are exactly the bow equations yielding Yang-Mills instantons on a multi-Taub-NUT space. Under electric-magnetic duality, the super Yang-Mills theory describing the bulk is mapped to itself, while the fundamental- and bifundamental-carrying impurity walls are interchanged. We perform a one-loop computation on the Coulomb branch of the dual theory to find the asymptotic metric on the original Higgs branch.
Three dimensional reflectance properties of superconductor-dielectric photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, G. N., E-mail: gnpandey@amity.edu; Sancheti, Bhagyashree; Pandey, J. P.
2016-05-06
In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.
Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji
2008-06-23
We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.
Bahuaud, D; Mørkøre, T; Langsrud, Ø; Sinnes, K; Veiseth, E; Ofstad, R; Thomassen, M S
2008-11-15
The aim of this study was to evaluate the impact of super-chilling on the quality of Atlantic salmon (Salmo salar) pre-rigor fillets. The fillets were kept for 45min in a super-chilling tunnel at -25°C with an air speed in the tunnel at 2.5m/s, to reach a fillet core temperature of -1.5°C, prior to ice storage in a cold room for 4 weeks. Super-chilling seemed to form intra- and extracellular ice crystals in the upper layer of the fillets and prevent myofibre contraction. Lysosome breakages followed by release of cathepsin B and L during storage and myofibre-myofibre detachments were accelerated in the super-chilled fillets. Super-chilling resulted in higher liquid leakage and increased myofibre breakages in the fillets, while texture values of fillets measured instrumentally were not affected by super-chilling one week after treatment. Optimisation of the super-chilling technique is needed to avoid the formation of ice crystals, which may cause irreversible destruction of the myofibres, in order to obtain high quality products. Copyright © 2008 Elsevier Ltd. All rights reserved.
Comparison of properties of tablets and energy profile of compaction of two spray-dried lactoses.
Muzíková, Jitka; Sináglová, Pavla
2013-01-01
The paper compared two spray-dried lactoses Flowlac 100 and SuperTab 14SD from the standpoint of tensile strength and disintegration time of tablets, the effect of an addition of the lubricant magnesium stearate and silicified microcrystalline cellulose on these properties, and also from the standpoint of the energy profile of compression. The comparison of the values was performed at the compression force of 15 kN. The strength of tablets was higher in the case of SuperTab 14SD, an increase in the concentration of magnesium stearate did not decrease tablet strength. Prosolv SMCC 90 increased the strength of tablets and made it equal for both lactoses, but it also increased the sensitivity to the added lubricant. The disintegration time of tablets was shorter in the case of SuperTab 14SD, an increased concentration of magnesium stearate prolonged it, and an addition of Prosolv SMCC 90 shortened it and made it equal for both lactoses. From the energy standpoint, the maximal energy was higher in the case of SuperTab 14SD, an addition of Prosolv SMCC 90 increased it and again made it equal for both lactoses. The differences in the values of the maximal energy were primarily due to the values of the energy for friction and the energy accumulated by the tablet after compression, and there was no marked difference in the values of the energy of decompression. SuperTab 14SD showed a higher plasticity than Flowlac 100.
DMD-based LED-illumination super-resolution and optical sectioning microscopy.
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.
DMD-based LED-illumination Super-resolution and optical sectioning microscopy
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Super-sensitive phase estimation with coherent boosted light using parity measurements
NASA Astrophysics Data System (ADS)
Xu, Lan; Tan, Qing-Shou
2018-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11665010), the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, China (Grant No. QSQC1414), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 17B055).
Qian, Jianjun; Yang, Jian; Xu, Yong
2013-09-01
This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.
Super-Laplacians and their symmetries
NASA Astrophysics Data System (ADS)
Howe, P. S.; Lindström, U.
2017-05-01
A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.
GRID-seq reveals the global RNA-chromatin interactome
Li, Xiao; Zhou, Bing; Chen, Liang; Gou, Lan-Tao; Li, Hairi; Fu, Xiang-Dong
2017-01-01
Higher eukaryotic genomes are bound by a large number of coding and non-coding RNAs, but approaches to comprehensively map the identity and binding sites of these RNAs are lacking. Here we report a method to in situ capture global RNA interactions with DNA by deep sequencing (GRID-seq), which enables the comprehensive identification of the entire repertoire of chromatin-interacting RNAs and their respective binding sites. In human, mouse and Drosophila cells, we detected a large set of tissue-specific coding and non-coding RNAs that are bound to active promoters and enhancers, especially super-enhancers. Assuming that most mRNA-chromatin interactions indicate the physical proximity of a promoter and an enhancer, we constructed a three-dimensional global connectivity map of promoters and enhancers, revealing transcription activity-linked genomic interactions in the nucleus. PMID:28922346
NASA Astrophysics Data System (ADS)
Yang, Zhan-Ying; Xue, Pan-Pan; Zhao, Liu; Shi, Kang-Jie
2008-11-01
Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1.
Three dimensional δf simulations of beams in the SSC
NASA Astrophysics Data System (ADS)
Koga, J.; Tajima, T.; Machida, S.
1993-12-01
A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.
Care of a Homebound Super Obese Patient: A Case Study.
Pagels, Jamie Lynn
2016-03-01
Obesity is becoming more prevalent in the United States with almost 40% of the population being overweight or obese. A new category, defining super obesity as a body mass index of 50 or higher, has been added. The purpose of this article is to use a case study to develop a more thorough understanding of the complex care needs of the super obese patient and how home healthcare clinicians can use technology to advocate for super obese patients who are home and bedbound. A review of the literature and discussion will be provided. Potential technologies involved in provision of care will also be explored. Finally, a summary of the case along with proposed solutions will be offered.
Near-infrared structure of fast and slow-rotating disk galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu
We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less
Electrocardiographic parameters predict super-response in cardiac resynchronization therapy.
Cvijić, Marta; Žižek, David; Antolič, Bor; Zupan, Igor
2015-01-01
Cardiac resynchronization therapy (CRT) is an established treatment for heart failure patients. However, determinants of response to CRT remain elusive. The aim of the study was to assess the value of ECG parameters to predict super-response in CRT patients. A 12-lead surface ECG was recorded at baseline and immediately after CRT-device implantation. Baseline ECG parameters (QRS duration, bundle branch morphology, axis, PR interval, QTc, intrinsicoid deflection) and post-implant paced QRS duration were analyzed; relative change in QRS duration was calculated. Decrease of left ventricular end-systolic volume ≥30% after 12 months was classified as super-response. In group of 101 patients, 32 (31.7%) were super-responders. There were no significant differences in baseline ECG parameters between super-responders and other patients. Post-implant QRS duration was shorter in super-responders (148 ± 22 ms vs. 162 ± 28 ms; P=0.010). Only in super-responders was significant QRS reduction observed after implantation. Relative QRS shortening was higher in super-responders (12.1% (6.8 to 22.2) vs. 1.7% (-11.9 to 11.8); P=0.005). In a multivariable analysis post-implant QRS duration and relative QRS shortening remained independent predictor of super-response. Absolute post-implant QRS duration and relative QRS shortening are the only ECG parameters associated with super-response in CRT. Further prospective studies on larger population are warranted to determine our findings. Copyright © 2015 Elsevier Inc. All rights reserved.
Johns, Jennifer; Nolan, Garry; Monack, Denise
2013-01-01
Host-to-host transmission of a pathogen ensures its successful propagation and maintenance within a host population. A striking feature of disease transmission is the heterogeneity in host infectiousness. It has been proposed that within a host population, 20% of the infected hosts, termed super-shedders, are responsible for 80% of disease transmission. However, very little is known about the immune state of these super-shedders. In this study, we used the model organism Salmonella enterica serovar Typhimurium, an important cause of disease in humans and animal hosts, to study the immune state of super-shedders. Compared to moderate shedders, super-shedder mice had an active inflammatory response in both the gastrointestinal tract and the spleen but a dampened TH1 response specific to the secondary lymphoid organs. Spleens from super-shedder mice had higher numbers of neutrophils, and a dampened T cell response, characterized by higher levels of regulatory T cells (Tregs), fewer T-bet+ (TH1) T cells as well as blunted cytokine responsiveness. Administration of the cytokine granulocyte colony stimulating factor (G-CSF) and subsequent neutrophilia was sufficient to induce the super-shedder immune phenotype in moderate-shedder mice. Similar to super-shedders, these G-CSF-treated moderate-shedders had a dampened TH1 response with fewer T-bet+ T cells and a loss of cytokine responsiveness. Additionally, G-CSF treatment inhibited IL-2-mediated TH1 expansion. Finally, depletion of neutrophils led to an increase in the number of T-bet+ TH1 cells and restored their ability to respond to IL-2. Taken together, we demonstrate a novel role for neutrophils in blunting IL-2-mediated proliferation of the TH1 immune response in the spleens of mice that are colonized by high levels of S. Typhimurium in the gastrointestinal tract. PMID:23754944
C/O Ratios in Exoplanetary Atmospheres
NASA Astrophysics Data System (ADS)
Madhusudhan, N.
2012-04-01
Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Elemental abundance ratios, such as the C/O ratio, of planetary atmospheres provide important constraints on planetary interior compositions and formation conditions, and on the chemical and dynamical processes in the atmospheres. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.
C/O Ratios In Exoplanetary Atmospheres - New Results And Major Implications
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku
2012-01-01
Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Atmospheric C/O ratios provide important constraints on chemical and dynamical processes in the atmospheres, and on the planetary interior compositions and formation scenarios. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio assumed. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.
Shot noise and Fano factor in tunneling in three-band pseudospin-1 Dirac-Weyl systems
NASA Astrophysics Data System (ADS)
Zhu, Rui; Hui, Pak Ming
2017-06-01
Tunneling through a potential barrier of height V0 in a two-dimensional system with a band structure consisting of three bands with a flat band intersecting the touching apices of two Dirac cones is studied. Results of the transmission coefficient at various incident angles, conductivity, shot noise, and Fano factor in this pseudospin-1 Dirac-Weyl system are presented and contrasted with those in graphene which is typical of a pseudospin-1/2 system. The pseudospin-1 system is found to show a higher transmission and suppressed shot noise in general. Significant differences in the shot noise and Fano factor due to the super Klein tunneling effect that allows perfect transmission at all incident angles under certain conditions are illustrated. For Fermi energy EF =V0 / 2, super Klein tunneling leads to a noiseless conductivity that takes on the maximum value 2e2 DkF / (πh) for 0 ≤EF ≤V0. This gives rise to a minimum Fano factor, in sharp contrast with that of a local maximum in graphene. For EF =V0, the band structure of pseudospin-1 system no longer leads to a quantized value of the conductivity as in graphene. Both the conductivity and the shot noise show a minimum with the Fano factor approaching 1/4, which is different from the value of 1/3 in graphene.
Super Bowl Sunday: risky business for at-risk (male) drinkers?
Dearing, Ronda L; Twaragowski, Cheryl L; Smith, Philip H; Homish, Gregory G; Connors, Gerard J; Walitzer, Kimberly S
2014-08-01
Major sporting events and other festive occasions are typically associated with alcohol consumption; however, little is known about risky drinking during events such as the "Super Bowl." We sought to determine whether drinking on Super Bowl Sunday differed from Saturdays (the heaviest drinking day of the week) surrounding the date of the Super Bowl among at-risk drinkers. Heavy drinking participants (N = 208) were recruited via advertisements for a 2-year prospective study of drinking behaviors. From this larger sample, 196 were selected for whom the date of the Super Bowl was included in their daily alcohol consumption reports (including reports of abstinence on those days) for 2006, 2007, and/or 2008. Participants' average age was 36.4 (SD = 12.9); 49.5% were women. Participants at the point of recruitment were not seeking treatment and had not been in alcohol treatment in the past year. Analyses using multilevel modeling comparing Super Bowl Sunday to Saturdays indicated that men drank more alcohol on Super Bowl Sunday across all 3 years, whereas women's drinking was higher in only one of the 3 years. CONCLUSIONS/IMPORTANCE: These findings suggest that heavy drinking during the Super Bowl (and in association with other sporting events), particularly among men, warrants additional attention due to the potential for deleterious public health consequences.
Three-Dimensional Nanobiocomputing Architectures With Neuronal Hypercells
2007-06-01
Neumann architectures, and CMOS fabrication. Novel solutions of massive parallel distributed computing and processing (pipelined due to systolic... and processing platforms utilizing molecular hardware within an enabling organization and architecture. The design technology is based on utilizing a...Microsystems and Nanotechnologies investigated a novel 3D3 (Hardware Software Nanotechnology) technology to design super-high performance computing
Super-BMS3 algebras from {N}=2 flat supergravities
NASA Astrophysics Data System (ADS)
Lodato, Ivano; Merbis, Wout
2016-11-01
We consider two possible flat space limits of three dimensional {N}=(1, 1) AdS supergravity. They differ by how the supercharges are scaled with the AdS radius ℓ: the first limit (democratic) leads to the usual super-Poincaré theory, while a novel `twisted' theory of supergravity stems from the second (despotic) limit. We then propose boundary conditions such that the asymptotic symmetry algebras at null infinity correspond to supersymmetric extensions of the BMS algebras previously derived in connection to non- and ultra-relativistic limits of the {N}=(1, 1) Virasoro algebra in two dimensions. Finally, we study the supersymmetric energy bounds and find the explicit form of the asymptotic and global Killing spinors of supersymmetric solutions in both flat space supergravity theories.
NASA Technical Reports Server (NTRS)
Marconi, F.; Salas, M.; Yaeger, L.
1976-01-01
A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
NASA Technical Reports Server (NTRS)
Marconi, F.; Yaeger, L.
1976-01-01
A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
Enhancing multi-spot structured illumination microscopy with fluorescence difference
NASA Astrophysics Data System (ADS)
Ward, Edward N.; Torkelsen, Frida H.; Pal, Robert
2018-03-01
Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested.
Wegel, Eva; Göhler, Antonia; Lagerholm, B Christoffer; Wainman, Alan; Uphoff, Stephan; Kaufmann, Rainer; Dobbie, Ian M
2016-06-06
Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques.
NASA Astrophysics Data System (ADS)
Guo, Wei; Zhang, Qin; Xiao, Haibo; Xu, Jie; Li, Qintao; Pan, Xiaohui; Huang, Zhiyong
2014-09-01
The super-hydrophobic and super-oleophilic properties of various materials have been utilized to separate oil from water. These properties induce both oil penetration and water slide off. This research demonstrates that the mesh with both super-hydrophobic and oleophobic properties, with a water contact angle (WCA) higher than 150° and oil contact angle (OCA) near 140°, can also be used to separate oil from. Oil has a higher probability than water of entering into the interstice of the Cu mesh surface and passing through it due to the capillarity effect, van der Waals attractions and the effects of gravitational pressure. The modified mesh surface can easily adsorb the oil, which then forms a film, due to the very strong adhesion properties of the oil molecules. The oil film then contributes to the water sliding off. These properties can be used to separate oil from water with separation efficiencies reaching 99.3%. Additionally, the separation of an oil/water mixture using sand permeated with oil yielded separation efficiencies exceeding 90%.
Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J
2017-05-19
Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.
Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity
Knodel, Gino; Lisbao, Pedro; Liu, James T.
2016-06-06
Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional N = 2 super-gravity [1]. Here in the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there aremore » $$\\frac{1}{2}$$ -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of N = 2 supergravity are connected to the solutions found here in the c → ∞ limit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Hannah; Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main; Bleicher, Marcus
2009-05-15
The elliptic flow excitation function calculated in a full (3+1) dimensional hybrid Boltzmann approach with an intermediate hydrodynamic stage for heavy ion reactions from GSI Schwerionen Synchrotron to the highest CERN Super Proton Synchrotron (SPS) energies is discussed in the context of the experimental data. In this study, we employ a hadron gas equation of state to investigate the differences in the dynamics and viscosity effects. The specific event-by-event setup with initial conditions and freeze-out from a nonequilibrium transport model allows for a direct comparison between ideal fluid dynamics and transport simulations. At higher SPS energies, where the pure transportmore » calculation cannot account for the high elliptic flow values, the smaller mean free path in the hydrodynamic evolution leads to higher elliptic flow values. In contrast to previous studies within pure hydrodynamics, the more realistic initial conditions employed here and the inclusion of a sequential final state hadronic decoupling provides results that are in line with the experimental data almost over the whole energy range from E{sub lab}=2-160A GeV. Thus, this new approach leads to a substantially different shape of the v{sub 2}/{epsilon} scaling curve as a function of (1/SdN{sub ch}/dy) in line with the experimental data compared to previous ideal hydrodynamic calculations. This hints at a strong influence of the initial conditions for the hydrodynamic evolution on the finally observed v{sub 2} values, thus questioning the standard interpretation that the hydrodynamic limit is only reached at BNL Relativistic Heavy Ion Collider energies.« less
Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation
NASA Astrophysics Data System (ADS)
Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.
2018-02-01
We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.
Sullivan, Elizabeth A; Dickinson, Jan E; Vaughan, Geraldine A; Peek, Michael J; Ellwood, David; Homer, Caroline S E; Knight, Marian; McLintock, Claire; Wang, Alex; Pollock, Wendy; Jackson Pulver, Lisa; Li, Zhuoyang; Javid, Nasrin; Denney-Wilson, Elizabeth; Callaway, Leonie
2015-12-02
Super-obesity is associated with significantly elevated rates of obstetric complications, adverse perinatal outcomes and interventions. The purpose of this study was to determine the prevalence, risk factors, management and perinatal outcomes of super-obese women giving birth in Australia. A national population-based cohort study. Super-obese pregnant women (body mass index (BMI) >50 kg/m(2) or weight >140 kg) who gave birth between January 1 and October 31, 2010 and a comparison cohort were identified using the Australasian Maternity Outcomes Surveillance System (AMOSS). Outcomes included maternal and perinatal morbidity and mortality. Prevalence estimates calculated with 95% confidence intervals (CIs). Adjusted odds ratios (ORs) were calculated using multivariable logistic regression. 370 super-obese women with a median BMI of 52.8 kg/m(2) (range 40.9-79.9 kg/m(2)) and prevalence of 2.1 per 1 000 women giving birth (95% CI: 1.96-2.40). Super-obese women were significantly more likely to be public patients (96.2%), smoke (23.8%) and be socio-economically disadvantaged (36.2%). Compared with other women, super-obese women had a significantly higher risk for obstetric (adjusted odds ratio (AOR) 2.42, 95% CI: 1.77-3.29) and medical (AOR: 2.89, 95% CI: 2.64-4.11) complications during pregnancy, birth by caesarean section (51.6%) and admission to special care (HDU/ICU) (6.2%). The 372 babies born to 365 super-obese women with outcomes known had significantly higher rates of birthweight ≥ 4500 g (AOR 19.94, 95 % CI: 6.81-58.36), hospital transfer (AOR 3.81, 95 % CI: 1.93-7.55) and admission to Neonatal Intensive Care Unit (NICU) (AOR 1.83, 95% CI: 1.27-2.65) compared to babies of the comparison group, but not prematurity (10.5% versus 9.2%) or perinatal mortality (11.0 (95% CI: 4.3-28.0) versus 6.6 (95% CI: 2.6- 16.8) per 1 000 singleton births). Super-obesity in pregnancy in Australia is associated with increased rates of pregnancy and birth complications, and with social disadvantage. There is an urgent need to further address risk factors leading to super-obesity among pregnant women and for maternity services to better address pre-pregnancy and pregnancy care to reduce associated inequalities in perinatal outcomes.
Xu, Yong; Dugat-Bony, Eric; Zaheer, Rahat; Selinger, Lorna; Barbieri, Ruth; Munns, Krysty; McAllister, Tim A; Selinger, L Brent
2014-01-01
Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed "super-shedders". A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a "normal" microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.
Szymkowiak, Dorota; Montgomery, Ann Elizabeth; Johnson, Erin E; Manning, Todd; O'Toole, Thomas P
2017-10-01
Acute health care utilization often occurs among persons experiencing homelessness. However, knowing which individuals will be persistent super-utilizers of acute care is less well understood. The objective of the study was to identify those more likely to be persistent super-utilizers of acute care services. We conducted a latent class analysis of secondary data from the Veterans Health Administration Corporate Data Warehouse, and Homeless Operations Management and Evaluation System. The study sample included 16,912 veterans who experienced homelessness and met super-utilizer criteria in any quarter between July 1, 2014 and December 31, 2015. The latent class analysis included veterans' diagnoses and acute care utilization. Medical, mental health, and substance use morbidity rates were high. More than half of the sample utilized Veterans Health Administration Homeless Programs concurrently with their super-utilization of acute care. There were 7 subgroups of super-utilizers, which varied considerably on the degree to which their super-utilization persisted over time. Approximately a third of the sample met super-utilizer criteria for ≥3 quarters; this group was older and disproportionately male, non-Hispanic white, and unmarried, with lower rates of post-9/11 service and higher rates of rural residence and service-connected disability. They were much more likely to be currently homeless with more medical, mental health, and substance use morbidity. Only a subset of homeless veterans were persistent super-utilizers, suggesting the need for more targeted interventions.
Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy
2018-01-01
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958
Lew, Matthew D; von Diezmann, Alexander R S; Moerner, W E
2013-02-25
Automated processing of double-helix (DH) microscope images of single molecules (SMs) streamlines the protocol required to obtain super-resolved three-dimensional (3D) reconstructions of ultrastructures in biological samples by single-molecule active control microscopy. Here, we present a suite of MATLAB subroutines, bundled with an easy-to-use graphical user interface (GUI), that facilitates 3D localization of single emitters (e.g. SMs, fluorescent beads, or quantum dots) with precisions of tens of nanometers in multi-frame movies acquired using a wide-field DH epifluorescence microscope. The algorithmic approach is based upon template matching for SM recognition and least-squares fitting for 3D position measurement, both of which are computationally expedient and precise. Overlapping images of SMs are ignored, and the precision of least-squares fitting is not as high as maximum likelihood-based methods. However, once calibrated, the algorithm can fit 15-30 molecules per second on a 3 GHz Intel Core 2 Duo workstation, thereby producing a 3D super-resolution reconstruction of 100,000 molecules over a 20×20×2 μm field of view (processing 128×128 pixels × 20000 frames) in 75 min.
Guffei, Amanda; Sarkar, Rahul; Klewes, Ludger; Righolt, Christiaan; Knecht, Hans; Mai, Sabine
2010-12-01
Hodgkin's lymphoma is characterized by the presence of mono-nucleated Hodgkin cells and bi- to multi-nucleated Reed-Sternberg cells. We have recently shown telomere dysfunction and aberrant synchronous/asynchronous cell divisions during the transition of Hodgkin cells to Reed-Sternberg cells.1 To determine whether overall changes in nuclear architecture affect genomic instability during the transition of Hodgkin cells to Reed-Sternberg cells, we investigated the nuclear organization of chromosomes in these cells. Three-dimensional fluorescent in situ hybridization revealed irregular nuclear positioning of individual chromosomes in Hodgkin cells and, more so, in Reed-Sternberg cells. We characterized an increasingly unequal distribution of chromosomes as mono-nucleated cells became multi-nucleated cells, some of which also contained chromosome-poor 'ghost' cell nuclei. Measurements of nuclear chromosome positions suggested chromosome overlaps in both types of cells. Spectral karyotyping then revealed both aneuploidy and complex chromosomal rearrangements: multiple breakage-bridge-fusion cycles were at the origin of the multiple rearranged chromosomes. This conclusion was challenged by super resolution three-dimensional structured illumination imaging of Hodgkin and Reed-Sternberg nuclei. Three-dimensional super resolution microscopy data documented inter-nuclear DNA bridges in multi-nucleated cells but not in mono-nucleated cells. These bridges consisted of chromatids and chromosomes shared by two Reed-Sternberg nuclei. The complexity of chromosomal rearrangements increased as Hodgkin cells developed into multi-nucleated cells, thus indicating tumor progression and evolution in Hodgkin's lymphoma, with Reed-Sternberg cells representing the highest complexity in chromosomal rearrangements in this disease. This is the first study to demonstrate nuclear remodeling and associated genomic instability leading to the generation of Reed-Sternberg cells of Hodgkin's lymphoma. We defined nuclear remodeling as a key feature of Hodgkin's lymphoma, highlighting the relevance of nuclear architecture in cancer.
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Super free fall for a container composed of diverging flat plates
NASA Astrophysics Data System (ADS)
Medina, A.; Torres, A.; Peralta, S.; Weidman, P. D.
2010-11-01
We have analyzed experimentally and theoretically the characteristics of the upper free surface of a liquid column released from rest in a vertical container whose cross-section opens slowly in the downward direction. In distinction with the work of Villermaux and Pomeau (2010) for a conical container, we consider a container composed of slightly inclined flat surfaces. At small times for which viscous effects can be neglected, the free surface moves downward with an acceleration larger than gravity. The existence of a nipple centered on the upper free surface with amplitude an increasing function of time is observed. A one-dimensional model of the initial acceleration for flat, slightly expanding walls reproduces the observed super free fall experiments fairly well. Details of the nipple development will be presented.
Enhancing multi-spot structured illumination microscopy with fluorescence difference
Torkelsen, Frida H.
2018-01-01
Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested. PMID:29657751
Review on Material Synthesis and Characterization of Sodium (Na) Super-Ionic Conductor (NASICON)
NASA Astrophysics Data System (ADS)
Kimpa, M. I.; Mayzan, M. Z. H.; Yabagi, J. A.; Nmaya, M. M.; Isah, K. U.; Agam, M. A.
2018-04-01
Sodium (Na) Super Ionic Conductor (NASICON) has general formula Na1+ x Zr2P3- xSi x O12 (0 ≤x ≤ 3) derived from its parent compound, sodium zirconium phosphate NaZr2(PO4)3 (NZP) which belong to a rhombohedral crystal structure. This material consists of three-dimensional structure with interesting features such as low thermal expansion coefficient, thermal stability, gas sensor and nuclear waste immobilization that make it viable for industrial applications. Current study presents comprehensive studies on the synthesis and essential characteristics required to understand the theory behind the mechanism that justifies the study of NASICON structure and its application such as lithium ion rechargeable battery, gas sensor, and nuclear waste immobilization and so on.
NASA Astrophysics Data System (ADS)
Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui
2016-07-01
Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.
Risk factors for Escherichia coli O157 shedding and super-shedding by dairy heifers at pasture.
Williams, K J; Ward, M P; Dhungyel, O P; Hall, E J S
2015-04-01
We undertook a longitudinal study within a cohort of 52 dairy heifers maintained under constant management systems and sampled weekly to investigate a comprehensive range of risk factors which may influence shedding or super-shedding of E. coli O157 (detected by direct faecal culture and immunomagnetic separation). E. coli O157 was detected from 416/933 (44.6%) samples (faeces and recto-anal mucosal swabs) and 32 (3.4%) samples enumerated at >10000 c.f.u./g. Weekly point prevalence ranged from 9.4% to 94.3%. Higher temperature (P < 0.001), rainfall (P = 0.02), relative humidity (P < 0.001), pasture growth (P = 0.013) and body score (P = 0.029) were positively associated with increased shedding. Higher rainfall (P < 0.001), hide contamination (P = 0.002) and increased faecal consistency (P = 0.023) were positively associated with super-shedding. Increased solar exposure had a negative effect on both shedding and super-shedding within bivariate analyses but in the final multivariate model for shedding demonstrated a positive effect (P = 0.017). Results suggest that environmental factors are important in E. coli O157 shedding in cattle.
Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint
NASA Astrophysics Data System (ADS)
Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida
2016-11-01
A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.
Xarray: multi-dimensional data analysis in Python
NASA Astrophysics Data System (ADS)
Hoyer, Stephan; Hamman, Joe; Maussion, Fabien
2017-04-01
xarray (http://xarray.pydata.org) is an open source project and Python package that provides a toolkit and data structures for N-dimensional labeled arrays, which are the bread and butter of modern geoscientific data analysis. Key features of the package include label-based indexing and arithmetic, interoperability with the core scientific Python packages (e.g., pandas, NumPy, Matplotlib, Cartopy), out-of-core computation on datasets that don't fit into memory, a wide range of input/output options, and advanced multi-dimensional data manipulation tools such as group-by and resampling. In this contribution we will present the key features of the library and demonstrate its great potential for a wide range of applications, from (big-)data processing on super computers to data exploration in front of a classroom.
Cooperative single-photon subradiant states in a three-dimensional atomic array
NASA Astrophysics Data System (ADS)
Jen, H. H.
2016-11-01
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.
A super high-rate sulfidogenic system for saline sewage treatment.
Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao
2016-11-01
This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m 3 ·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m 3 ·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s -1 ) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zaheer, Rahat; Selinger, Lorna; Barbieri, Ruth; Munns, Krysty; McAllister, Tim A.; Selinger, L. Brent
2014-01-01
Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed “super-shedders”. A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a “normal” microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7. PMID:24858731
Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique
NASA Astrophysics Data System (ADS)
Michaels, Joshua A.
With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to 60 days for a relatively small enhancement area) severely limits the practical usefulness of fraction-area super-resolution. Fractional-area super-resolution is very sensitive to relative input image co-registration, which must be accurate to a sub-pixel degree. However, use of this technique, if input conditions permit, could be applied as a "pinpoint" super-resolution technique. Such an application could be possible by only applying it to only very small areas with very good input image co-registration.
Chromatography of blood-clotting factors and serum proteins on columns of diatomaceous earth.
MILSTONE, J H
1955-07-20
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered.
CHROMATOGRAPHY OF BLOOD-CLOTTING FACTORS AND SERUM PROTEINS ON COLUMNS OF DIATOMACEOUS EARTH
Milstone, J. H.
1955-01-01
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered. PMID:13242761
Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers
NASA Astrophysics Data System (ADS)
Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan
2018-03-01
Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.
Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2014-12-01
Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.
3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research
X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of
Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang
2013-01-01
Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity. PMID:24287676
Rapid black hole growth under anisotropic radiation feedback
NASA Astrophysics Data System (ADS)
Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Omukai, Kazuyuki
2017-07-01
Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102-105 M⊙) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10° below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become high-redshift supermassive BHs.
Habibollahi, Peiman; Shin, Benjamin; Shamchi, Sara P; Wachtel, Heather; Fraker, Douglas L; Trerotola, Scott O
2018-01-01
Parathyroid venous sampling (PAVS) is usually reserved for patients with persistent or recurrent hyperparathyroidism after parathyroidectomy with inconclusive noninvasive imaging studies. A retrospective study was performed to evaluate the diagnostic efficacy of super-selective PAVS (SSVS) in patients needing revision neck surgery with inconclusive imaging. Patients undergoing PAVS between 2005 and 2016 due to persistent or recurrent hyperparathyroidism following surgery were reviewed. PAVS was performed in all patients using super-selective technique. Single-value measurements within central neck veins performed as part of super-selective PAVS were used to simulate selective venous sampling (SVS) and allow for comparison to data, which might be obtained in a non-super-selective approach. 32 patients (mean age 51 ± 15 years; 8 men and 24 women) met inclusion and exclusion criteria. The sensitivity and positive predictive value (PPV) of SSVS for localizing the source of elevated PTH to a limited area in the neck or chest was 96 and 84%, respectively. Simulated SVS, on the other hand, had a sensitivity of 28% and a PPV of 89% based on the predefined gold standard. SSVS had a significantly higher sensitivity compared to simulated SVS (p < 0.001). SSVS is highly effective in localizing the source of hyperparathyroidism in patients undergoing revision surgery for hyperparathyroidism in whom noninvasive imaging studies are inconclusive. SSVS data had also markedly higher sensitivity for localizing disease in these patients compared to simulated SVS.
SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2015-03-01
The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less
Sakabe, N; Sakabe, K; Sasaki, K
2004-01-01
Galaxy is a Weissenberg-type high-speed high-resolution and highly accurate fully automatic data-collection system using two cylindrical IP-cassettes each with a radius of 400 mm and a width of 450 mm. It was originally developed for static three-dimensional analysis using X-ray diffraction and was installed on bending-magnet beamline BL6C at the Photon Factory. It was found, however, that Galaxy was also very useful for time-resolved protein crystallography on a time scale of minutes. This has prompted us to design a new IP-conveyor-belt Weissenberg-mode data-collection system called Super Galaxy for time-resolved crystallography with improved time and crystallographic resolution over that achievable with Galaxy. Super Galaxy was designed with a half-cylinder-shaped cassette with a radius of 420 mm and a width of 690 mm. Using 1.0 A incident X-rays, these dimensions correspond to a maximum resolutions of 0.71 A in the vertical direction and 1.58 A in the horizontal. Upper and lower screens can be used to set the frame size of the recorded image. This function is useful not only to reduce the frame exchange time but also to save disk space on the data server. The use of an IP-conveyor-belt and many IP-readers make Super Galaxy well suited for time-resolved, monochromatic X-ray crystallography at a very intense third-generation SR beamline. Here, Galaxy and a conceptual design for Super Galaxy are described, and their suitability for use as data-collection systems for macromolecular time-resolved monochromatic X-ray crystallography are compared.
A novel super-resolution camera model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli
2015-05-01
Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouxelin, Pascal Nicolas; Strydom, Gerhard
Best-estimate plus uncertainty analysis of reactors is replacing the traditional conservative (stacked uncertainty) method for safety and licensing analysis. To facilitate uncertainty analysis applications, a comprehensive approach and methodology must be developed and applied. High temperature gas cooled reactors (HTGRs) have several features that require techniques not used in light-water reactor analysis (e.g., coated-particle design and large graphite quantities at high temperatures). The International Atomic Energy Agency has therefore launched the Coordinated Research Project on HTGR Uncertainty Analysis in Modeling to study uncertainty propagation in the HTGR analysis chain. The benchmark problem defined for the prismatic design is represented bymore » the General Atomics Modular HTGR 350. The main focus of this report is the compilation and discussion of the results obtained for various permutations of Exercise I 2c and the use of the cross section data in Exercise II 1a of the prismatic benchmark, which is defined as the last and first steps of the lattice and core simulation phases, respectively. The report summarizes the Idaho National Laboratory (INL) best estimate results obtained for Exercise I 2a (fresh single-fuel block), Exercise I 2b (depleted single-fuel block), and Exercise I 2c (super cell) in addition to the first results of an investigation into the cross section generation effects for the super-cell problem. The two dimensional deterministic code known as the New ESC based Weighting Transport (NEWT) included in the Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.1.2 package was used for the cross section evaluation, and the results obtained were compared to the three dimensional stochastic SCALE module KENO VI. The NEWT cross section libraries were generated for several permutations of the current benchmark super-cell geometry and were then provided as input to the Phase II core calculation of the stand alone neutronics Exercise II 1a. The steady state core calculations were simulated with the INL coupled-code system known as the Parallel and Highly Innovative Simulation for INL Code System (PHISICS) and the system thermal-hydraulics code known as the Reactor Excursion and Leak Analysis Program (RELAP) 5 3D using the nuclear data libraries previously generated with NEWT. It was observed that significant differences in terms of multiplication factor and neutron flux exist between the various permutations of the Phase I super-cell lattice calculations. The use of these cross section libraries only leads to minor changes in the Phase II core simulation results for fresh fuel but shows significantly larger discrepancies for spent fuel cores. Furthermore, large incongruities were found between the SCALE NEWT and KENO VI results for the super cells, and while some trends could be identified, a final conclusion on this issue could not yet be reached. This report will be revised in mid 2016 with more detailed analyses of the super-cell problems and their effects on the core models, using the latest version of SCALE (6.2). The super-cell models seem to show substantial improvements in terms of neutron flux as compared to single-block models, particularly at thermal energies.« less
Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.
Li, Huijun; Tan, Yu Jun; Liu, Sijun; Li, Lin
2018-04-04
A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca-GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.
Liang, Zhichun; Crepeau, Richard H; Freed, Jack H
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
Sliding Contact Bearings for Service to 700 C
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1996-01-01
Cylindrical, sliding contact bearings made entirely of a self-lubricating powder metallurgy composite (PM212) or of super alloy shells lined with clad PM212 were tested in an oscillating mode at temperatures from 25 to 700 C. Tests of 100 hr duration or longer were conducted at a bearing unit load of 3.45 Mpa (500 psi). Shorter duration tests at various unit loads up to 24.1 Mpa (3500 psi) were also conducted. In comparison tests, bearings lubricated with PM212 had superior anti-wear characteristics compared to the baseline, unlubricated, super alloy bearings: no galling of PM212-lubricated bearings occurred, while severe surface damage including galling occurred, especially at high loads, during the baseline tests. A heat treatment procedure, which dimensionally stabilizes PM212 and thereby minimizes clearance changes during high temperature bearing operation, is described.
Tsirelson's bound and supersymmetric entangled states
Borsten, L.; Brádler, K.; Duff, M. J.
2014-01-01
A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakoglou, K.; School of Physics, Nuclear and Elementary Particle Physics Department, Aristotle University of Thessaloniki; Daskaloyannis, C.
The mathematical structure of a mixed paraparticle system (combining both parabosonic and parafermionic degrees of freedom) commonly known as the Relative Parabose Set, will be investigated and a braided group structure will be described for it. A new family of realizations of an arbitrary Lie superalgebra will be presented and it will be shown that these realizations possess the valuable representation-theoretic property of transferring invariably the super-Hopf structure. Finally two classes of virtual applications will be outlined: The first is of interest for both mathematics and mathematical physics and deals with the representation theory of infinite dimensional Lie superalgebras, whilemore » the second is of interest in theoretical physics and has to do with attempts to determine specific classes of solutions of the Skyrme model.« less
Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; No, You-Shin
2017-12-01
In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.
Gaarder, M Ø; Bahuaud, D; Veiseth-Kent, E; Mørkøre, T; Thomassen, M S
2012-05-01
The aim of the present experiment was to measure the protease activities in ice-stored and super-chilled Atlantic salmon (Salmo salar) fillets, and the effect on texture. Pre-rigour fillets of Atlantic salmon were either super-chilled to a core temperature of -1.5°C or directly chilled on ice prior to 144h of ice storage. A significantly higher calpain activity was detected in the super-chilled fillets at 6h post-treatment compared to the ice-stored fillets and followed by a significant decrease below its initial level, while the calpastatin activity was significantly lower for the super-chilled fillets at all time points. The cathepsin B+L and B activities increased significantly with time post-treatment; however, no significant differences were observed at any time points between the two treatments. For the ice stored fillets, the cathepsin L activity decreased significantly from 6 to 24h post-treatment and thereafter increased significantly to 144h post-treatment. There was also a significantly lower cathepsin L activity in the super-chilled fillets at 0h post-treatment. No significant difference in breaking force was detected; however, a significant difference in maximum compression (Fmax) was detected at 24h post-treatment with lower Fmax in the super-chilled fillets. This experiment showed that super-chilling had a significant effect on the protease activities and the ATP degradation in salmon fillets. The observed difference in Fmax may be a result of these observed differences, and may indicate a softening of the super-chilled salmon muscle at 24h post-treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhou, Jian; Wu, Yonggang; Xia, Zihuan; Qin, Xuefei; Zhang, Zongyi
2017-11-27
Single nanowire solar cells show great promise for next-generation photovoltaics and for powering nanoscale devices. Here, we present a detailed study of light absorption in a single standing semiconductor-dielectric core-shell nanowire (CSNW). We find that the CSNW structure can not only concentrate the incident light into the structure, but also confine most of the concentrated light to the semiconductor core region, which boosts remarkably the light absorption cross-section of the semiconductor core. The CSNW can support multiple higher-order HE modes, as well as Fabry-Pérot (F-P) resonance, compared to the bare nanowire (BNW). Overlapping of the adjacent higher-order HE modes results in broadband light absorption enhancement in the solar radiation spectrum. Results based on detailed balance analysis demonstrate that the super light concentration of the single CSNW gives rise to higher short-circuit current and open-circuit voltage, and thus higher apparent power conversion efficiency (3644.2%), which goes far beyond that of the BNW and the Shockley-Queisser limit that restricts the performance of a planar counterparts. Our study shows that the single CSNW can be a promising platform for construction of high performance nanoscale photodetectors, nanoelectronic power sources, super miniature cells, and diverse integrated nanosystems.
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
Multiband super-resolution imaging of graded-index photonic crystal flat lens
NASA Astrophysics Data System (ADS)
Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun
2018-05-01
Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.
NASA Astrophysics Data System (ADS)
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.
2018-04-01
This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.
Robust video super-resolution with registration efficiency adaptation
NASA Astrophysics Data System (ADS)
Zhang, Xinfeng; Xiong, Ruiqin; Ma, Siwei; Zhang, Li; Gao, Wen
2010-07-01
Super-Resolution (SR) is a technique to construct a high-resolution (HR) frame by fusing a group of low-resolution (LR) frames describing the same scene. The effectiveness of the conventional super-resolution techniques, when applied on video sequences, strongly relies on the efficiency of motion alignment achieved by image registration. Unfortunately, such efficiency is limited by the motion complexity in the video and the capability of adopted motion model. In image regions with severe registration errors, annoying artifacts usually appear in the produced super-resolution video. This paper proposes a robust video super-resolution technique that adapts itself to the spatially-varying registration efficiency. The reliability of each reference pixel is measured by the corresponding registration error and incorporated into the optimization objective function of SR reconstruction. This makes the SR reconstruction highly immune to the registration errors, as outliers with higher registration errors are assigned lower weights in the objective function. In particular, we carefully design a mechanism to assign weights according to registration errors. The proposed superresolution scheme has been tested with various video sequences and experimental results clearly demonstrate the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hongbo; Qiao, Zemin; Liu, Xiao
Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibitmore » lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.« less
On the definition and K-theory realization of a modular functor
NASA Astrophysics Data System (ADS)
Kriz, Igor; Lai, Luhang
We present a definition of a (super)-modular functor which includes certain interesting cases that previous definitions do not allow. We also introduce a notion of topological twisting of a modular functor, and construct formally a realization by a 2-dimensional topological field theory valued in twisted K-modules. We discuss, among other things, the N = 1-supersymmetric minimal models from the point of view of this formalism.
NASA Astrophysics Data System (ADS)
Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian
2014-11-01
In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m2g-1 to ~345 m2g-1, while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 +/- 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.
Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian
2014-11-06
In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.
Investigation of Super Learner Methodology on HIV-1 Small Sample: Application on Jaguar Trial Data.
Houssaïni, Allal; Assoumou, Lambert; Marcelin, Anne Geneviève; Molina, Jean Michel; Calvez, Vincent; Flandre, Philippe
2012-01-01
Background. Many statistical models have been tested to predict phenotypic or virological response from genotypic data. A statistical framework called Super Learner has been introduced either to compare different methods/learners (discrete Super Learner) or to combine them in a Super Learner prediction method. Methods. The Jaguar trial is used to apply the Super Learner framework. The Jaguar study is an "add-on" trial comparing the efficacy of adding didanosine to an on-going failing regimen. Our aim was also to investigate the impact on the use of different cross-validation strategies and different loss functions. Four different repartitions between training set and validations set were tested through two loss functions. Six statistical methods were compared. We assess performance by evaluating R(2) values and accuracy by calculating the rates of patients being correctly classified. Results. Our results indicated that the more recent Super Learner methodology of building a new predictor based on a weighted combination of different methods/learners provided good performance. A simple linear model provided similar results to those of this new predictor. Slight discrepancy arises between the two loss functions investigated, and slight difference arises also between results based on cross-validated risks and results from full dataset. The Super Learner methodology and linear model provided around 80% of patients correctly classified. The difference between the lower and higher rates is around 10 percent. The number of mutations retained in different learners also varys from one to 41. Conclusions. The more recent Super Learner methodology combining the prediction of many learners provided good performance on our small dataset.
Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium
NASA Astrophysics Data System (ADS)
Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos
2017-05-01
Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.
The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binns, W. R.; Bose, R. G.; Braun, D. L.
2014-06-10
The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible andmore » to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.« less
THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.;
2014-01-01
The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z < or = 60 and measures the energy spectra of the more abundant elements for Z < or = 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.
Ryu, Shinsei; Takayanagi, Tadashi
2006-05-12
A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS(3). We also compare the entropy computed in AdS(5)XS(5) with that of the free N=4 super Yang-Mills theory.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Bitterly, Jack G
1947-01-01
The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
Lew, Matthew D.; Lee, Steven F.; Badieirostami, Majid; Moerner, W. E.
2011-01-01
We describe the corkscrew point spread function (PSF), which can localize objects in three dimensions throughout a 3.2 µm depth of field with nanometer precision. The corkscrew PSF rotates as a function of the axial (z) position of an emitter. Fisher information calculations show that the corkscrew PSF can achieve nanometer localization precision with limited numbers of photons. We demonstrate three-dimensional super-resolution microscopy with the corkscrew PSF by imaging beads on the surface of a triangular polydimethylsiloxane (PDMS) grating. With 99,000 photons detected, the corkscrew PSF achieves a localization precision of 2.7 nm in x, 2.1 nm in y, and 5.7 nm in z. PMID:21263500
Lew, Matthew D; Lee, Steven F; Badieirostami, Majid; Moerner, W E
2011-01-15
We describe the corkscrew point spread function (PSF), which can localize objects in three dimensions throughout a 3.2 μm depth of field with nanometer precision. The corkscrew PSF rotates as a function of the axial (z) position of an emitter. Fisher information calculations show that the corkscrew PSF can achieve nanometer localization precision with limited numbers of photons. We demonstrate three-dimensional super-resolution microscopy with the corkscrew PSF by imaging beads on the surface of a triangular polydimethylsiloxane (PDMS) grating. With 99,000 photons detected, the corkscrew PSF achieves a localization precision of 2.7 nm in x, 2.1 nm in y, and 5.7 nm in z.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Nikita; ITEP, Moscow; Shatashvili, Samson
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence ismore » the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.« less
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
N = 1 supercurrents of eleven-dimensional supergravity
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Butter, Daniel; Linch, William D.
2018-05-01
Eleven-dimensional supergravity can be formulated in superspaces locally of the form X × Y where X is 4D N = 1 conformal superspace and Y is an arbitrary 7-manifold admitting a G 2-structure. The eleven-dimensional 3-form and the stable 3-form on Y define the lowest component of a gauge superfield on X × Y that is chiral as a superfield on X. This chiral field is part of a tensor hierarchy giving rise to a superspace Chern-Simons action and its real field strength defines a lifting of the Hitchin functional on Y to the G 2 superspace X × Y . These terms are those of lowest order in a superspace Noether expansion in seven N = 1 conformal gravitino superfields Ψ. In this paper, we compute the O(Ψ) action to all orders in the remaining fields. The eleven-dimensional origin of the resulting non-linear structures is parameterized by the choice of a complex spinor on Y encoding the off-shell 4D N = 1 subalgebra of the eleven-dimensional super-Poincaré algebra.
NASA Astrophysics Data System (ADS)
de Larquier, S.; Ruohoniemi, J. M.; Baker, J. B. H.; Ravindran Varrier, N.; Lester, M.
2011-10-01
Under geomagnetically quiet conditions, the daytime midlatitude ionosphere is mainly influenced by solar radiation: typically, electron densities in the ionosphere peak around solar noon. Previous observations from the Millstone Hill incoherent scatter radar (ISR) have evidenced the presence of evening electron densities higher than daytime densities during the summer. The recent development of midlatitude Super Dual Auroral Radar Network (SuperDARN) radars over North America and Japan has revealed an evening enhancement in ground backscatter during the summer. SuperDARN observations are compared to data from the Millstone Hill ISR, confirming a direct relation between the observed evening enhancements in electron densities and ground backscatter. Statistics over a year of data from the Blackstone radar show that the enhancement occurs during sunset for a few hours from April to September. The evening enhancement observed by both SuperDARN and the Millstone Hill ISR is shown to be related to recent satellite observations reporting an enhancement in electron densities over a wide range of longitudes in the Northern Hemisphere midlatitude sector during summer time. Finally, global results from the International Reference Ionosphere (IRI) and the horizontal wind model (HWM07) are presented in relation with previously published experimental results and proposed mechanisms of the evening enhancement, namely, thermospheric horizontal winds and geomagnetic field configuration. It is shown that the IRI captures the features of the evening enhancement as observed by SuperDARN radars and satellites.
TADs are 3D structural units of higher-order chromosome organization in Drosophila
Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo
2018-01-01
Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869
Perspectives on super-shedding of Escherichia coli O157:H7 by cattle.
Munns, Krysty D; Selinger, L Brent; Stanford, Kim; Guan, Leluo; Callaway, Todd R; McAllister, Tim A
2015-02-01
Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium, with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term "super-shedder" has been applied to cattle that shed concentrations of E. coli O157:H7 ≥ 10⁴ colony-forming units/g feces. Super-shedders have been reported to have a substantial impact on the prevalence and transmission of E. coli O157:H7 in the environment. The specific factors responsible for super-shedding are unknown, but are presumably mediated by characteristics of the bacterium, animal host, and environment. Super-shedding is sporadic and inconsistent, suggesting that biofilms of E. coli O157:H7 colonizing the intestinal epithelium in cattle are intermittently released into feces. Phenotypic and genotypic differences have been noted in E. coli O157:H7 recovered from super-shedders as compared to low-shedding cattle, including differences in phage type (PT21/28), carbon utilization, degree of clonal relatedness, tir polymorphisms, and differences in the presence of stx2a and stx2c, as well as antiterminator Q gene alleles. There is also some evidence to support that the native fecal microbiome is distinct between super-shedders and low-shedders and that low-shedders have higher levels of lytic phage within feces. Consequently, conditions within the host may determine whether E. coli O157:H7 can proliferate sufficiently for the host to obtain super-shedding status. Targeting super-shedders for mitigation of E. coli O157:H7 has been proposed as a means of reducing the incidence and spread of this pathogen to the environment. If super-shedders could be easily identified, strategies such as bacteriophage therapy, probiotics, vaccination, or dietary inclusion of plant secondary compounds could be specifically targeted at this subpopulation. Evidence that super-shedder isolates share a commonality with isolates linked to human illness makes it imperative that the etiology of this phenomenon be characterized.
Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions
NASA Astrophysics Data System (ADS)
Peebles, Jonathan Lee
Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by "ponderomotive scaling'" is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as "super-ponderomotive" electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions. Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 1018 W/cm2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of "injected" pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kalpha imaging. The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.
Computer simulations of phase field drops on super-hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Fedeli, Livio
2017-09-01
We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.
Super-resolution Imaging of Chemical Synapses in the Brain
Dani, Adish; Huang, Bo; Bergan, Joseph; Dulac, Catherine; Zhuang, Xiaowei
2010-01-01
Determination of the molecular architecture of synapses requires nanoscopic image resolution and specific molecular recognition, a task that has so far defied many conventional imaging approaches. Here we present a super-resolution fluorescence imaging method to visualize the molecular architecture of synapses in the brain. Using multicolor, three-dimensional stochastic optical reconstruction microscopy, the distributions of synaptic proteins can be measured with nanometer precision. Furthermore, the wide-field, volumetric imaging method enables high-throughput, quantitative analysis of a large number of synapses from different brain regions. To demonstrate the capabilities of this approach, we have determined the organization of ten protein components of the presynaptic active zone and the postsynaptic density. Variations in synapse morphology, neurotransmitter receptor composition, and receptor distribution were observed both among synapses and across different brain regions. Combination with optogenetics further allowed molecular events associated with synaptic plasticity to be resolved at the single-synapse level. PMID:21144999
Investigation into Cause of High Temperature Failure of Boiler Superheater Tube
NASA Astrophysics Data System (ADS)
Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.
2015-04-01
The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.
Robust measurement of supernova ν e spectra with future neutrino detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku
Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less
NASA Astrophysics Data System (ADS)
Granero, Luis; Ferreira, Carlos; Zalevsky, Zeev; García, Javier; Micó, Vicente
2016-07-01
Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample's range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional restriction concerning the object field of view (FOV) must be imposed to the technique. Experimental results are reported for both a synthetic object (USAF resolution test target) and a biological sample (swine sperm sample) validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).
Black hole thermodynamics and heat engines in conformal gravity
NASA Astrophysics Data System (ADS)
Xu, Hao; Sun, Yuan; Zhao, Liu
The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.
Limit Theorems and Their Relation to Solute Transport in Simulated Fractured Media
NASA Astrophysics Data System (ADS)
Reeves, D. M.; Benson, D. A.; Meerschaert, M. M.
2003-12-01
Solute particles that travel through fracture networks are subject to wide velocity variations along a restricted set of directions. This may result in super-Fickian dispersion along a few primary scaling directions. The fractional advection-dispersion equation (FADE), a modification of the original advection-dispersion equation in which a fractional derivative replaces the integer-order dispersion term, has the ability to model rapid, non-Gaussian solute transport. The FADE assumes that solute particle motions converge to either α -stable or operator stable densities, which are modeled by spatial fractional derivatives. In multiple dimensions, the multi-fractional dispersion derivative dictates the order and weight of differentiation in all directions, which correspond to the statistics of large particle motions in all directions. This study numerically investigates the presence of super- Fickian solute transport through simulated two-dimensional fracture networks. An ensemble of networks is gen
Robust measurement of supernova ν e spectra with future neutrino detectors
Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku
2018-01-25
Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less
Burning rate for steel-cased, pressed binderless HMX
NASA Technical Reports Server (NTRS)
Fifer, R. A.; Cole, J. E.
1980-01-01
The burning behavior of pressed binderless HMX laterally confined in 6.4 mm i.d. steel cases was measured over the pressure range 1.45 to 338 MPa in a constant pressure strand burner. The measured regression rates are compared to those reported previously for unconfined samples. It is shown that lateral confinement results in a several-fold decrease in the regression rate for the coarse particle size HMX above the transition to super fast regression. For class E samples, confinement shifts the transition to super fast regression from low pressure to high pressure. These results are interpreted in terms of the previously proposed progressive deconsolidation mechanism. Preliminary holographic photography and closed bomb tests are also described. Theoretical one dimensional modeling calculations were carried out to predict the expected flame height (particle burn out distance) as a function of particle size and pressure for binderless HMX burning by a progressive deconsolidation mechanism.
Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves
NASA Astrophysics Data System (ADS)
Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua
2017-09-01
In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.
Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel
NASA Astrophysics Data System (ADS)
Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.
2014-08-01
Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.
Holographic complexity and noncommutative gauge theory
NASA Astrophysics Data System (ADS)
Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei
2018-03-01
We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.
Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Bai, M; Du, L-F; Xing, J-F
2017-06-01
The purpose of this study was to explore the value of two-dimensional ShearWave ™ Elastography (2D-SWE) on quantitatively evaluating the change of the content of collagen fibres in penis. Twenty male Sprague Dawley rats were divided into the pre-sexual maturity group (Group 1) and the sexual decline group (Group 2) according to age. The ultrafast ultrasound device Aixplorer ® (SuperSonic Imagine, Aix-en-Provence, France) was used for 2D-SWE imaging of penis, and the measurement index was shear wave stiffness (SWS). The immunohistochemistry was used to analyse the content of collagen fibres in penis, and the measurement index was positive area percentage (PAP). The differences of SWS between the two groups and PAP between the two groups were analysed. SWS of Group 1 and Group 2 was 10.18 ± 1.09 and 8.02 ± 1.34 kPa, and SWS of Group 2 was significantly lower than Group 1 (p < .01). PAP of Group 1 and Group 2 was 4.83 ± 3.61% and 16.41 ± 10.02%, and PAP of Group 2 was significantly higher than Group 1 (p < .01). Our results indicate that when the content of collagen fibres changes, SWS of penis measured with 2D-SWE would change significantly as well. Two-dimensional SWE can be used to quantitatively evaluate the change of the content of collagen fibres in penis. © 2016 Blackwell Verlag GmbH.
Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals.
Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J; Jiang, Lin; Chi, Lifeng
2016-04-22
We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications.
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Model based LV-reconstruction in bi-plane x-ray angiography
NASA Astrophysics Data System (ADS)
Backfrieder, Werner; Carpella, Martin; Swoboda, Roland; Steinwender, Clemens; Gabriel, Christian; Leisch, Franz
2005-04-01
Interventional x-ray angiography is state of the art in diagnosis and therapy of severe diseases of the cardiovascular system. Diagnosis is based on contrast enhanced dynamic projection images of the left ventricle. A new model based algorithm for three dimensional reconstruction of the left ventricle from bi-planar angiograms was developed. Parametric super ellipses are deformed until their projection profiles optimally fit measured ventricular projections. Deformation is controlled by a simplex optimization procedure. A resulting optimized parameter set builds the initial guess for neighboring slices. A three dimensional surface model of the ventricle is built from stacked contours. The accuracy of the algorithm has been tested with mathematical phantom data and clinical data. Results show conformance with provided projection data and high convergence speed makes the algorithm useful for clinical application. Fully three dimensional reconstruction of the left ventricle has a high potential for improvements of clinical findings in interventional cardiology.
Brownian Dynamics simulations of model colloids in channel geometries and external fields
NASA Astrophysics Data System (ADS)
Siems, Ullrich; Nielaba, Peter
2018-04-01
We review the results of Brownian Dynamics simulations of colloidal particles in external fields confined in channels. Super-paramagnetic Brownian particles are well suited two- dimensional model systems for a variety of problems on different length scales, ranging from pedestrian walking through a bottleneck to ions passing ion-channels in living cells. In such systems confinement into channels can have a great influence on the diffusion and transport properties. Especially we will discuss the crossover from single file diffusion in a narrow channel to the diffusion in the extended two-dimensional system. Therefore a new algorithm for computing the mean square displacement (MSD) on logarithmic time scales is presented. In a different study interacting colloidal particles were dragged over a washboard potential and are additionally confined in a two-dimensional micro-channel. In this system kink and anti-kink solitons determine the depinning process of the particles from the periodic potential.
NASA Astrophysics Data System (ADS)
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
NASA Astrophysics Data System (ADS)
Gu, Linhao Gu; Lu, Shiping; Liu, Chunming; Liu, Jingang; Zhang, Suyuan; Chu, Rensheng; Ma, Changwen
2017-09-01
This paper presents development of 130mm S460G1-Z35 by using low carbon Nb-Ni-Mo-V-Ti micro-alloying design and two-stage rolling, quenching and tempering process. For the super heavy gauge high-strength structural steel, the yield strength is higher than 450MPa, the tensile strength is higher than 550MPa, the elongation is greater than 20%, the low temperature(-40) impact energy value is not less than 250J, the z-direction section shrinkage is more than 65%, and the welding performance is good. The plate are successfully applied to the engineering construction of the city of dreams in Macau.
Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case
NASA Astrophysics Data System (ADS)
Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann
2017-04-01
Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.
Supergeometry in Locally Covariant Quantum Field Theory
NASA Astrophysics Data System (ADS)
Hack, Thomas-Paul; Hanisch, Florian; Schenkel, Alexander
2016-03-01
In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc to S* Alg to the category of super-*-algebras, which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc to eS* Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the enriched framework. As examples we analyze the superparticle in 1|1-dimensions and the free Wess-Zumino model in 3|2-dimensions.
NASA Astrophysics Data System (ADS)
Baker, J. B.; Greenwald, R. A.; Yin, Y.; Ruohoniemi, J. M.; Clausen, L.; Frissell, N. A.; Ribeiro, A. J.
2009-12-01
The Super Dual Auroral Radar Network (SuperDARN) provides continuous Doppler measurements of ionospheric plasma convection over extended spatial scales with high temporal resolution. First generation SuperDARN radars were constructed at magnetic latitudes near 60 degrees to optimize coverage during periods of moderate geomagnetic activity. In recent years there has been an expansion of the network to middle latitudes to increase coverage during enhanced geomagnetic activity, such as during magnetic storms. In this paper we present measurements of prompt penetration electric fields and sub-auroral ion drift (SAID) events observed by the Wallops and Blackstone radars at middle latitudes. Together, these two radars provide a capability to continuously examine the temporal evolution of these features over an extended local time sector. We present case studies and statistical results showing that transient sub-auroral flow enhancements occur over a wide range of magnetospheric disturbance levels and are often highly correlated with activity at higher latitudes.
Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu
2015-01-01
Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871
THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman
2012-03-20
We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary massmore » even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.« less
Strings on plane-waves and spin chains on orbifolds
NASA Astrophysics Data System (ADS)
Sadri, Darius
This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane-wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the "Penrose limit". In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T-duality are also studied, as are BPS Dp-branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of the three-sphere giant graviton, and place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, giving a two dimensional (worldsheet) description of giant gravitons. Chapter four presents some new ideas regarding the relation between super-conformal gauge theories and string theories with three-dimensional target spaces, possible relations of these systems to Hamiltonian lattice gauge theories, and integrable spin chains. We consider N = 1, D = 4 superconformal SU( N)px q Yang-Mills theories dual to AdS5 x S5/Zp x Zq orbifolds. We show that a specific sector of this dilatation operator can be thought of as the transfer matrix for a three-dimensional statistical mechanical system, which in turn is equivalent to a 2 + 1-dimensional string theory where the spatial slices are discretized on a triangular lattice, and comment on the integrability of this N = 1 gauge theory, its connection to three-dimensional lattice gauge theories, extensions to six-dimensional string theories, AdS/CFT type dualities and finally their construction via orbifolds and brane-box models. In the process we discover a new class of almost-BPS BMN type operators with large engineering dimensions but controllably small anomalous corrections.
Sensing Super-Position: Human Sensing Beyond the Visual Spectrum
NASA Technical Reports Server (NTRS)
Maluf, David A.; Schipper, John F.
2007-01-01
The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The human brain is superior to most existing computer systems in rapidly extracting relevant information from blurred, noisy, and redundant images. From a theoretical viewpoint, this means that the available bandwidth is not exploited in an optimal way. While image-processing techniques can manipulate, condense and focus the information (e.g., Fourier Transforms), keeping the mapping as direct and simple as possible might also reduce the risk of accidentally filtering out important clues. After all, especially a perfect non-redundant sound representation is prone to loss of relevant information in the non-perfect human hearing system. Also, a complicated non-redundant image-to-sound mapping may well be far more difficult to learn and comprehend than a straightforward mapping, while the mapping system would increase in complexity and cost. This work will demonstrate some basic information processing for optimal information capture for headmounted systems.
High energy scattering in QCD and in quantum gravity
NASA Astrophysics Data System (ADS)
Lipatov, L. N.
2014-06-01
The theory of the high energy scattering in QCD is based on the BFKL equation for the Pomeron wave function and on its generalization for composite multi-gluon states in the crossing channel. At a large number of colors the equations for the gluon composite states have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry and integrability. High energy QCD interactions local in the particle rapidities are formulated in the form of the gauge invariant effective action. In the maximally extended N = 4 super-symmetry the Pomeron turns out to be dual to the reggeized graviton in the 10-dimensional anti-de-Sitter space. As a result, the Gribov calculus for the Pomeron interactions should be reformulated here as a generally covariant effective field theory for the reggeized gravitons. We construct the corresponding effective action, which gives a possibility to calculate their trajectory and couplings. The graviton trajectory in the leading order contains an ultraviolet divergency meaning the presence of the double-logarithmic (DL) terms. We sum the DL contributions in all orders of the perturbation theory in the Einstein-Hilbert gravity and in its super-symmetric generalizations. In the N = 8 super gravity the ratio of the scattering amplitude in the DL approximation to the Born expression tends to zero at large energies.
Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun
2015-01-01
The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.
2017-03-01
Most planetary bodies are moving in the solar wind, in a stellar wind, or in a plasma flow within the magnetosphere of a planet. The interaction of the body with the flowing plasma provides us with various interaction types, which mainly depend on the flow speed, the magnetization of the body, its conductivity, the presence of an ionosphere, and the size of the body. We establish two cornerstones representing highly magnetized obstacles embedded in a super-Alfvénic and sub-Alfvénic plasma. Those two cornerstones complete the two cornerstones defined in our previous study on inert obstacles in super-Alfvénic and sub-Alfvénic regimes. Tracking the transitions between these cornerstones enable better understanding of the feedback of the obstacle onto the plasma flow. Each interaction is studied by means of the hybrid model simulation code AIKEF. The results are summarized in three dimensional diagrams showing the current structures, which serve as a basis for our descriptions. We identify the major currents such as telluric, magnetosonic, Chapman-Ferraro, and bow-shock currents as the signatures of the particular state of development of the interaction region. We show that each type of interactions can be identified by studying the shape and the magnitude of its specific currents.
NASA Astrophysics Data System (ADS)
Garcia-Giron, A.; Romano, J. M.; Liang, Y.; Dashtbozorg, B.; Dong, H.; Penchev, P.; Dimov, S. S.
2018-05-01
The paper reports a laser patterning method for producing surfaces with dual scale topographies on ferritic stainless steel plates that are hardened by low temperature plasma surface alloying. Nitrogen and carbon based gasses were used in the alloying process to obtain surface layers with an increased hardness from 172 HV to 1001 HV and 305 HV, respectively. Then, a nanosecond infrared laser was used to pattern the plasma treated surfaces and thus to obtain super-hydrophobicity, by creating cell- or channel-like surface structures. The combined surface hardening and laser patterning approach allowed super-hydrophobic surfaces to be produced on both nitrided and carburised stainless steel plates with effective contact angles higher than 150°. The hardened layers on nitrided samples had cracks and was delaminated after the laser patterning while on plasma carburised samples remained intact. The results showed that by applying the proposed combined approach it is possible to retain the higher hardness of the nitrided stainless steel plates and at the same time to functionalise them to obtain super-hydrophobic properties.
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
NASA Astrophysics Data System (ADS)
Bouchal, Petr; Bouchal, Zdeněk
2017-10-01
In the past decade, probe-based super-resolution using temporally resolved localization of emitters became a groundbreaking imaging strategy in fluorescence microscopy. Here we demonstrate a non-diffractive vortex microscope (NVM), enabling three-dimensional super-resolution fluorescence imaging and localization and tracking of metal and dielectric nanoparticles. The NVM benefits from vortex non-diffractive beams (NBs) creating a double-helix point spread function that rotates under defocusing while maintaining its size and shape unchanged. Using intrinsic properties of the NBs, the dark-field localization of weakly scattering objects is achieved in a large axial range exceeding the depth of field of the microscope objective up to 23 times. The NVM was developed using an upright microscope Nikon Eclipse E600 operating with a spiral lithographic mask optimized using Fisher information and built into an add-on imaging module or microscope objective. In evaluation of the axial localization accuracy the root mean square error below 18 nm and 280 nm was verified over depth ranges of 3.5 μm and 13.6 μm, respectively. Subwavelength gold and polystyrene beads were localized with isotropic precision below 10 nm in the axial range of 3.5 μm and the axial precision reduced to 30 nm in the extended range of 13.6 μm. In the fluorescence imaging, the localization with isotropic precision below 15 nm was demonstrated in the range of 2.5 μm, whereas in the range of 8.3 μm, the precision of 15 nm laterally and 30-50 nm axially was achieved. The tracking of nanoparticles undergoing Brownian motion was demonstrated in the volume of 14 × 10 × 16 μm3. Applicability of the NVM was tested by fluorescence imaging of LW13K2 cells and localization of cellular proteins.
Large Structure in the Far Wakes of Two-Dimensional Bluff Bodies,
1984-01-01
triggered along with a strobe flash to record the streakline pattern on film . The electronic synchronizing controller for the smoke-wire operation was built...Super 35 mm camera with motor drive was used, along with a General Radio Model 1540 Stroboscope. We had the best success with Kodak Tri-x film pushed one...location being considered, its entire history is contained in the streakline pattern, and may confuse the intepretation . The conclusion from this
3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research
X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of revealing full cellular ultrastructure without requiring fixation, staining, or sectioning.
Arrays of strongly coupled atoms in a one-dimensional waveguide
NASA Astrophysics Data System (ADS)
Ruostekoski, Janne; Javanainen, Juha
2017-09-01
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and super-radiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide, including the emergence of narrow Fano resonances, can be understood by the resonance features of the eigenmodes. We describe a method based on super-radiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description of how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.
Passive Super-Low Frequency electromagnetic prospecting technique
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik
We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less
Wang, Lingling; Zhang, Zhenzhen; Zhang, Jing; Zhang, Lei
2016-09-09
The synthesis of a magnetic nanoporous three dimensional graphene (3DG)/ZnFe2O4 composite has been achieved. Through formation of graphene hydrogel, ZnFe2O4 magnetic particles was successfully introduced into the nanoporous 3DG, resulting in a magnetic porous carbon material. The morphology, structure, and magnetic behavior of the as-prepared 3DG/ZnFe2O4 were characterized by using the techniques of SEM, XRD, BET, VSM, FTIR, Raman and TGA. The 3DG/ZnFe2O4 has a high specific surface area and super paramagnetism. Its performance was evaluated by the magnetic solid-phase extraction of nine bisphenol analogs (BPs) from water samples followed by HPLC analysis, and showed excellent adsorption capability for the nine target compounds. Under optimized condition, the lower method detection limits (0.05-0.18ngmL(-1)), the higher enrichment factors (800 fold) and good recoveries (95.1-103.8%) with relative standard deviation (RSD) values less than 6.2% were achieved. The results indicated that the developed method based on the use of 3DG/ZnFe2O4 as the magnetic adsorbent has the advantages of convenience and high efficiency, and can be successfully applied to detect the nine BPs in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity
Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...
2015-01-15
We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less
GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shang-Fei; Hori, Yasunori; Lin, D. N. C.
Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptivemore » regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super-Earths and mini-Neptunes (at least to some extent)« less
What's all the talk about? Topic modelling in a mental health Internet support group.
Carron-Arthur, Bradley; Reynolds, Julia; Bennett, Kylie; Bennett, Anthony; Griffiths, Kathleen M
2016-10-28
The majority of content in an Internet Support Group (ISG) is contributed by 1 % of the users ('super users'). Computational methods, such as topic modelling, can provide a large-scale quantitative objective description of this content. Such methods may provide a new perspective on the nature of engagement on ISGs including the role of super users and their possible effect on other users. A topic model was computed for all posts (N = 131,004) in the ISG BlueBoard using Latent Dirichlet Allocation. A model containing 25 topics was selected on the basis of intelligibility as determined by diagnostic metrics and qualitative investigation. This model yielded 21 substantive topics for further analysis. Two chi-square tests were conducted separately for each topic to ascertain: (i) if the odds of super users' and other users' posting differed for each topic; and (ii) if for super users the odds of posting differed depending on whether the response was to a super user or to another user. The 21 substantive topics covered a range of issues related to mental health and peer-support. There were significantly higher odds that super users wrote content on 13 topics, with the greatest effects being for Parenting Role (OR [95%CI] = 7.97 [7.85-8.10]), Co-created Fiction (4.22 [4.17-4.27]), Mental Illness (3.13 [3.11-3.16]) and Positive Change (2.82 [2.79-2.84]). There were significantly lower odds for super users on 7 topics, with the greatest effects being for the topics Depression (OR = 0.27 [0.27-0.28]), Medication (0.36 [0.36-0.37]), Therapy (0.55 [0.54-0.55]) and Anxiety (0.55 [0.55-0.55]). However, super users were significantly more likely to write content on 5 out of these 7 topics when responding to other users than when responding to fellow super users. The findings suggest that super users serve the role of emotionally supportive companions with a focus on topics broadly resembling the consumer/carer model of recovery. Other users engage in topics with a greater focus on experiential knowledge, disclosure and informational support, a pattern resembling the clinical symptom-focussed approach to recovery. However, super users modify their content in response to other users in a manner consistent with being 'active help providers'.
Microfluidic platforms for gallium-based liquid metal alloy
NASA Astrophysics Data System (ADS)
Kim, Daeyoung
As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non-wetting property and became moveable by applying a magnetic field. Finally, using its metallic and liquid properties, microfluidic-based applications of gallium-based liquid metal alloy such as inkjet printing and reconfigurable photomask were investigated. A clog-free and oxide-free inkjet printing technique was developed by incorporating HCl-impregnated paper as orifice. Inkjet-printed liquid metal line can be used as a metallic interconnect even with significant deformation of the flexible substrate. Additionally, based on its ultraviolet light blocking property, a reconfigurable photolithography using gallium-based liquid metal alloy was demonstrated in a PDMS-based 7-segments microfluidic channel by showing single digit numbers ('0'˜'9') with attainable minimum feature size of 10 microm.
NASA Astrophysics Data System (ADS)
Zasso, A.; Argentini, T.; Bayati, I.; Belloli, M.; Rocchi, D.
2017-12-01
The super long fjord crossings in E39 Norwegian project pose new challenges to long span bridge design and construction technology. Proposed solutions should consider the adoption of bridge deck with super long spans or floating solutions for at least one of the towers, due to the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate the aeroelastic bridge response including the wave forcing on the floating.
Garrick, Lloyd M; Saito, Norimichi
2012-01-01
Summary Various arylsulfur pentafluorides, ArSF5, have long been desired in both academic and industrial areas, and ArSF5 compounds have attracted considerable interest in many areas such as medicines, agrochemicals, and other new materials, since the highly stable SF5 group is considered a “super-trifluoromethyl group” due to its significantly higher electronegativity and lipophilicity. This article describes the first practical method for the production of various arylsulfur pentafluorides and their higher homologues, bis- and tris(sulfur pentafluorides), from the corresponding diaryl disulfides or aryl thiols. The method consists of two steps: (Step 1) treatment of a diaryl disulfide or an aryl thiol with chlorine in the presence of an alkali metal fluoride, and (step 2) treatment of the resulting arylsulfur chlorotetrafluoride with a fluoride source, such as ZnF2, HF, and Sb(III/V) fluorides. The intermediate arylsulfur chlorotetrafluorides were isolated by distillation or recrystallization and characterized. The aspects of these new reactions are revealed and reaction mechanisms are discussed. As the method offers considerable improvement over previous methods in cost, yield, practicality, applicability, and large-scale production, the new processes described here can be employed as the first practical methods for the economical production of various arylsulfur pentafluorides and their higher homologues, which could then open up a new era of “super-trifluoromethyl” arene chemistry and its applications in many areas. PMID:22509218
Cooperative single-photon subradiant states in a three-dimensional atomic array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, H.H., E-mail: sappyjen@gmail.com
2016-11-15
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less
Hickey, B A; Kempshall, P J; Metcalfe, A J; Forster, M C
2012-04-01
As part of the national initiative to reduce waiting times for joint replacement surgery in Wales, the Cardiff and Vale NHS Trust referred 224 patients to the NHS Treatment Centre in Weston-Super-Mare for total knee replacement (TKR). A total of 258 Kinemax TKRs were performed between November 2004 and August 2006. Of these, a total of 199 patients (232 TKRs, 90%) have been followed up for five years. This cohort was compared with 258 consecutive TKRs in 250 patients, performed at Cardiff and Vale Orthopaedic Centre (CAVOC) over a similar time period. The five year cumulative survival rate was 80.6% (95% confidence interval (CI) 74.0 to 86.0) in the Weston-Super-Mare cohort and 95.0% (95% CI 90.2 to 98.2) in the CAVOC cohort with revision for any reason as the endpoint. The relative risk for revision at Weston-Super-Mare compared with CAVOC was 3.88 (p < 0.001). For implants surviving five years, the mean Oxford knee scores (OKS) and mean EuroQol (EQ-5D) scores were similar (OKS: Weston-Super-Mare 29 (2 to 47) vs CAVOC 29.8 (3 to 48), p = 0.61; EQ-5D: Weston-Super-Mare 0.53 (-0.38 to 1.00) vs CAVOC 0.55 (-0.32 to 1.00), p = 0.79). Patients with revised TKRs had significantly lower Oxford knee and EQ-5D scores (p < 0.001). The results show a higher revision rate for patients operated at Weston-Super-Mare Treatment Centre, with a reduction in functional outcome and quality of life after revision. This further confirms that patients moved from one area to another for joint replacement surgery fare poorly.
Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope
Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.
2013-01-01
In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668
Gofton, Wade; Fitch, David A
2016-03-01
The purpose of this study was to compare the in-hospital costs associated with the tissue-sparing supercapsular percutaneously-assisted total hip (SuperPath) and traditional Lateral surgical techniques for total hip replacement (THR). Between April 2013 and January 2014, in-hospital costs were reviewed for all THRs performed using the SuperPath technique by a single surgeon and all THRs performed using the Lateral technique by another surgeon at the same institution. Overall, costs were 28.4% higher in the Lateral group. This was largely attributable to increased costs associated with transfusion (+92.5%), patient rooms (+60.4%), patient food (+62.8%), narcotics (+42.5%), physical therapy (+52.5%), occupational therapy (+88.6%), and social work (+92.9%). The only costs noticeably increased for SuperPath were for imaging (+105.9%), and this was because the SuperPath surgeon performed intraoperative radiographs on all patients while the Lateral surgeon did not. The use of the SuperPath technique resulted in in-hospital cost reductions of over 28%, suggesting that this tissue-sparing surgical technique can be cost-effective primarily by facilitating early mobilisation and patient discharge even during a surgeon's initial experience with the approach.
Balsamo, Sandor; Tibana, Ramires Alsamir; Nascimento, Dahan da Cunha; de Farias, Gleyverton Landim; Petruccelli, Zeno; de Santana, Frederico dos Santos; Martins, Otávio Vanni; de Aguiar, Fernando; Pereira, Guilherme Borges; de Souza, Jéssica Cardoso; Prestes, Jonato
2012-01-01
The super-set is a widely used resistance training method consisting of exercises for agonist and antagonist muscles with limited or no rest interval between them – for example, bench press followed by bent-over rows. In this sense, the aim of the present study was to compare the effects of different super-set exercise sequences on the total training volume. A secondary aim was to evaluate the ratings of perceived exertion and fatigue index in response to different exercise order. On separate testing days, twelve resistance-trained men, aged 23.0 ± 4.3 years, height 174.8 ± 6.75 cm, body mass 77.8 ± 13.27 kg, body fat 12.0% ± 4.7%, were submitted to a super-set method by using two different exercise orders: quadriceps (leg extension) + hamstrings (leg curl) (QH) or hamstrings (leg curl) + quadriceps (leg extension) (HQ). Sessions consisted of three sets with a ten-repetition maximum load with 90 seconds rest between sets. Results revealed that the total training volume was higher for the HQ exercise order (P = 0.02) with lower perceived exertion than the inverse order (P = 0.04). These results suggest that HQ exercise order involving lower limbs may benefit practitioners interested in reaching a higher total training volume with lower ratings of perceived exertion compared with the leg extension plus leg curl order. PMID:22371654
Abelian tensor hierarchy in 4D N = 1 conformal supergravity
NASA Astrophysics Data System (ADS)
Aoki, Shuntaro; Higaki, Tetsutaro; Yamada, Yusuke; Yokokura, Ryo
2016-09-01
We consider Abelian tensor hierarchy in four-dimensional N = 1 supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce p-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the super-forms. As a result, each of form fields is expressed by a single gauge invariant superfield. We also show the relation between the superspace formalism and the superconformal tensor calculus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less
Solution of non-continuum flows using BGK-type model with enforced relaxation of moments
NASA Astrophysics Data System (ADS)
Alekseenko, Alexander; Gimelshein, Sergey; Nguyen, Truong; Vedula, Prakash
2016-11-01
A BGK-type model with velocity dependent collision frequency and enforced relaxation rates for selected moments is applied to simulation of one- and two-dimensional super sonic flows. Relaxation rates of the moments are estimated by evaluating the full Boltzmann collision integral several times during the simulation. The solutions show improvements in velocity and temperature profiles as compared to the classical ES-BGK model. However, enforcement of relaxation rates for high order moments increases stiffness of the model.
Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Kempton, Eliza M.-R.; Mbarek, Rostom
2015-12-01
Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At higher temperatures, clouds are formed from a variety of materials including metals, metal oxides, and aluminosilicates.
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Cadby, Ashley
2017-02-01
Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.
Ultra-low specific on-resistance 700V LDMOS with a buried super junction layer
NASA Astrophysics Data System (ADS)
Wang, Hai-Shi; Li, Zhi-you; Li, Ke; Qiao, Ming
2018-01-01
An ultra-low specific on-resistance 700 V lateral double-diffused MOSFET (LDMOS) with a buried super junction (BSJ) layer is proposed. [1-9] Buried P-pillars in the LDMOS can be depleted by neighboring N-pillars, overlying and underlying N-drift regions simultaneously, thus allowing a higher doping concentration. Consequently, the doping concentration of either the N-drift regions or N-pillars, or both, may also be increased therewith to compensate the surplus charges in the P-pillars. Compared with conventional surface super junction (SSJ) LDMOS, in which the super junction layer is implemented at the upper surface of the drift region, and P-pillars can only be depleted by the adjacent N-pillars and the N-drift regions beneath, the proposed novel LDMOS structure may have a lower specific on-resistance (Ron,sp) while maintain the same breakdown voltage (BV). Simulation results indicate that the Ron,sp of the novel structure is only 80.5 mΩ cm2 with a high BV of 750 V, which is reduced by 17% in comparison with the Ron,sp of a conventional SSJ LDMOS.
ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A
2016-04-05
We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.
Super-Eddington stellar winds driven by near-surface energy deposition
NASA Astrophysics Data System (ADS)
Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill
2016-05-01
We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.
An anatomically oriented breast model for MRI
NASA Astrophysics Data System (ADS)
Kutra, Dominik; Bergtholdt, Martin; Sabczynski, Jörg; Dössel, Olaf; Buelow, Thomas
2015-03-01
Breast cancer is the most common cancer in women in the western world. In the breast cancer care-cycle, MRIis e.g. employed in lesion characterization and therapy assessment. Reading of a single three dimensional image or comparing a multitude of such images in a time series is a time consuming task. Radiological reporting is done manually by translating the spatial position of a finding in an image to a generic representation in the form of a breast diagram, outlining quadrants or clock positions. Currently, registration algorithms are employed to aid with the reading and interpretation of longitudinal studies by providing positional correspondence. To aid with the reporting of findings, knowledge about the breast anatomy has to be introduced to translate from patient specific positions to a generic representation. In our approach we fit a geometric primitive, the semi-super-ellipsoid to patient data. Anatomical knowledge is incorporated by fixing the tip of the super-ellipsoid to the mammilla position and constraining its center-point to a reference plane defined by landmarks on the sternum. A coordinate system is then constructed by linearly scaling the fitted super-ellipsoid, defining a unique set of parameters to each point in the image volume. By fitting such a coordinate system to a different image of the same patient, positional correspondence can be generated. We have validated our method on eight pairs of baseline and follow-up scans (16 breasts) that were acquired for the assessment of neo-adjuvant chemotherapy. On average, the location predicted and the actual location of manually set landmarks are within a distance of 5.6 mm. Our proposed method allows for automatic reporting simply by uniformly dividing the super-ellipsoid around its main axis.
Super Yang Mills, matrix models and geometric transitions
NASA Astrophysics Data System (ADS)
Ferrari, Frank
2005-03-01
I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).
Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun
2018-06-15
We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.
NASA Astrophysics Data System (ADS)
Gao, Wenshuai; Shi, Liran; Ouyang, Zhongwen; Xia, Zhengcai; Wang, Zhe; Liu, Bingjie; Li, Hexuan; Zou, Youming; Yu, Lu; Zhang, Lei; Pi, Li; Qu, Zhe; Zhang, Yuheng
2018-07-01
The spin dynamics of the two-dimensional triangular-lattice antiferromagnet AgCrS2 is investigated by electron spin resonance (ESR) spectroscopy. The g-factor is found to show an unusual non-monotonously temperature dependent behavior, which, along with the super-Curie behavior observed in the ESR intensity data, provides clear evidence for the competition between ferromagnetic and antiferromagnetic fluctuations at temperatures well above T N. On approaching the Néel temperature T N from above, the linewidth is found to diverge. Such a divergent behavior could be well described by the Kawamura–Miyashita model due to Z2 type magnetic vortex–antivortex pairing, which is consistent with the expectation for a 2D Heisenberg magnetic system.
Critical string from non-Abelian vortex in four dimensions
Shifman, M.; Yung, A.
2015-09-25
In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2) gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP(2,2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. Lastly, we show that the world-sheet theory onmore » the vortex supported in this bulk model is the bona fide critical string.« less
NASA Astrophysics Data System (ADS)
Motoyui, Nobuyuki; Yamada, Mitsuru
We investigate a two-dimensional N = 2 supersymmetric model which consists of n chiral superfields with Kähler potential. When we define quantum observables, we are always plagued by operator ordering problem. Among various ways to fix the operator order, we rely upon the supersymmetry. We demonstrate that the correct operator order is given by requiring the super-Poincaré algebra by carrying out the canonical Dirac bracket quantization. This is shown to be also true when the supersymmetry algebra has a central extension by the presence of topological soliton. It is also shown that the path of soliton is a straight line in the complex plane of superpotential W and triangular mass inequality holds. One half of supersymmetry is broken by the presence of soliton.
HABITABLE ZONES OF POST-MAIN SEQUENCE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, Ramses M.; Kaltenegger, Lisa
Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons tomore » super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.« less
All-optical control and super-resolution imaging of quantum emitters in layered materials.
Kianinia, Mehran; Bradac, Carlo; Sontheimer, Bernd; Wang, Fan; Tran, Toan Trong; Nguyen, Minh; Kim, Sejeong; Xu, Zai-Quan; Jin, Dayong; Schell, Andreas W; Lobo, Charlene J; Aharonovich, Igor; Toth, Milos
2018-02-28
Layered van der Waals materials are emerging as compelling two-dimensional platforms for nanophotonics, polaritonics, valleytronics and spintronics, and have the potential to transform applications in sensing, imaging and quantum information processing. Among these, hexagonal boron nitride (hBN) is known to host ultra-bright, room-temperature quantum emitters, whose nature is yet to be fully understood. Here we present a set of measurements that give unique insight into the photophysical properties and level structure of hBN quantum emitters. Specifically, we report the existence of a class of hBN quantum emitters with a fast-decaying intermediate and a long-lived metastable state accessible from the first excited electronic state. Furthermore, by means of a two-laser repumping scheme, we show an enhanced photoluminescence and emission intensity, which can be utilized to realize a new modality of far-field super-resolution imaging. Our findings expand current understanding of quantum emitters in hBN and show new potential ways of harnessing their nonlinear optical properties in sub-diffraction nanoscopy.
Perturbative tests for a large-N reduced model of {N} = {4} super Yang-Mills theory
NASA Astrophysics Data System (ADS)
Ishiki, Goro; Shimasaki, Shinji; Tsuchiya, Asato
2011-11-01
We study a non-perturbative formulation of {N} = {4} super Yang-Mills theory (SYM) on R × S 3 in the planar limit proposed in arXiv:0807.2352. This formulation is based on the large- N reduction, and the theory can be described as a particular large- N limit of the plane wave matrix model (PWMM), which is obtained by dimensionally reducing the original theory over S 3. In this paper, we perform some tests for this proposal. We construct an operator in the PWMM that corresponds to the Wilson loop in SYM in the continuum limit and calculate the vacuum expectation value of the operator for the case of the circular contour. We find that our result indeed agrees with the well-known result first obtained by Erickson, Semenoff and Zarembo. We also compute the beta function at the 1-loop level based on this formulation and see that it is indeed vanishing.
Perturbative tests for a large-N reduced model of mathcal{N} = {4} super Yang-Mills theory
NASA Astrophysics Data System (ADS)
Ishiki, Goro; Shimasaki, Shinji; Tsuchiya, Asato
2012-02-01
We study a non-perturbative formulation of mathcal{N} = {4} super Yang-Mills theory (SYM) on R × S 3 in the planar limit proposed in arXiv:0807.2352. This formulation is based on the large- N reduction, and the theory can be described as a particular large- N limit of the plane wave matrix model (PWMM), which is obtained by dimensionally reducing the original theory over S 3. In this paper, we perform some tests for this proposal. We construct an operator in the PWMM that corresponds to the Wilson loop in SYM in the continuum limit and calculate the vacuum expectation value of the operator for the case of the circular contour. We find that our result indeed agrees with the well-known result first obtained by Erickson, Semenoff and Zarembo. We also compute the beta function at the 1-loop level based on this formulation and see that it is indeed vanishing.
Xu, Zhaoyang; Zhou, Huan; Tan, Sicong; Jiang, Xiangdong; Wu, Weibing; Shi, Jiangtao; Chen, Peng
2018-01-01
With the worsening of the oil-product pollution problem, oil-water separation has attracted increased attention in recent years. In this study, a porous three-dimensional (3D) carbon aerogel based on cellulose nanofibers (CNFs), poly(vinyl alcohol) (PVA) and graphene oxide (GO) was synthesized by a facile and green approach. The resulting CNF/PVA/GO aerogels were synthesized through an environmentally friendly freeze-drying process and then carbonized to yield CNF/PVA/GO carbon aerogels with low density (18.41 mg cm -3 ), high porosity (98.98%), a water contact angle of 156° (super-hydrophobic) and high oil absorption capacity (97 times its own weight). The carbonization treatment of the CNF/PVA/GO aerogel not only improved the hydrophobic properties but also enhanced the adsorption capacity and specific surface area. Given the many good performance characteristics and the facile preparation process of carbon aerogels, these materials are viable candidates for use in oil-water separation and environmental protection.
Quantitative evaluation of software packages for single-molecule localization microscopy.
Sage, Daniel; Kirshner, Hagai; Pengo, Thomas; Stuurman, Nico; Min, Junhong; Manley, Suliana; Unser, Michael
2015-08-01
The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.
2016-01-01
We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939
PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it
2015-10-20
We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{submore » ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.« less
Rajagopalan, Ranjusha; Chen, Bo; Zhang, Zhicheng; Wu, Xing-Long; Du, Yonghua; Huang, Ying; Li, Bing; Zong, Yun; Wang, Jie; Nam, Gwang-Hyeon; Sindoro, Melinda; Dou, Shi Xue; Liu, Hua Kun; Zhang, Hua
2017-03-01
The methodology employed here utilizes the sodium super ion conductor type sodium iron phosphate wrapped with conducting carbon network to generate a stable Fe 3+ /Fe 4+ redox couple, thereby exhibiting higher operating voltage and energy density of sodium-ion batteries. This new class of sodium iron phosphate wrapped by carbon also displays a cycling stability with >96% capacity retention after 200 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quaternionic (super) twistors extensions and general superspaces
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio; Pervushin, Victor N.
2017-09-01
In a attempt to treat a supergravity as a tensor representation, the four-dimensional N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded extension of the ordinary Penrose-twistor formulation, performed in a previous work of the authors [D. J. Cirilo-Lombardo and V. N. Pervushin, Int. J. Geom. Methods Mod. Phys., doi: http://dx.doi.org/10.1142/S0219887816501139.], with N = p + k. These quaternionic superspaces have 4 + k(N - k) even-quaternionic coordinates and 4N odd-quaternionic coordinates, where each coordinate is a quaternion composed by four ℂ-fields (bosons and fermions respectively). The fields content as the dimensionality (even and odd sectors) of these superspaces are given and exemplified by selected physical cases. In this case, the number of fields of the supergravity is determined by the number of components of the tensor representation of the four-dimensional N-extended quaternionic superspaces. The role of tensorial central charges for any N even USp(N) = Sp(N, ℍℂ) ∩ U(N, ℍℂ) is elucidated from this theoretical context.
Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2013-01-01
Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the “thermal transfer speed” to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm2/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ. PMID:23989589
Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2013-01-01
Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.
NASA Astrophysics Data System (ADS)
Liu, Jianxing; Laghrouche, Salah; Wack, Maxime
2014-06-01
In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.
Reconstruction of 3d Models from Point Clouds with Hybrid Representation
NASA Astrophysics Data System (ADS)
Hu, P.; Dong, Z.; Yuan, P.; Liang, F.; Yang, B.
2018-05-01
The three-dimensional (3D) reconstruction of urban buildings from point clouds has long been an active topic in applications related to human activities. However, due to the structures significantly differ in terms of complexity, the task of 3D reconstruction remains a challenging issue especially for the freeform surfaces. In this paper, we present a new reconstruction algorithm which allows the 3D-models of building as a combination of regular structures and irregular surfaces, where the regular structures are parameterized plane primitives and the irregular surfaces are expressed as meshes. The extraction of irregular surfaces starts with an over-segmented method for the unstructured point data, a region growing approach based the adjacent graph of super-voxels is then applied to collapse these super-voxels, and the freeform surfaces can be clustered from the voxels filtered by a thickness threshold. To achieve these regular planar primitives, the remaining voxels with a larger flatness will be further divided into multiscale super-voxels as basic units, and the final segmented planes are enriched and refined in a mutually reinforcing manner under the framework of a global energy optimization. We have implemented the proposed algorithms and mainly tested on two point clouds that differ in point density and urban characteristic, and experimental results on complex building structures illustrated the efficacy of the proposed framework.
Adaptive optics improves multiphoton super-resolution imaging
NASA Astrophysics Data System (ADS)
Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari
2018-02-01
Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.
Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.
Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi
2018-04-12
Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.
Super-response to cardiac resynchronization therapy may predict late phrenic nerve stimulation.
Juliá, Justo; López-Gil, María; Fontenla, Adolfo; Lozano, Álvaro; Villagraz, Lola; Salguero, Rafael; Arribas, Fernando
2017-11-22
Changes in the anatomical relationship between left phrenic nerve and coronary veins may occur due to the reverse remodelling observed in super-responders to cardiac resynchronization therapy (CRT) and might be the underlying mechanism in patients developing late-onset phrenic nerve stimulation (PNS) without evidence of lead dislodgement (LD). In this study, we sought to evaluate the role of super-response (SR) to CRT as a potential predictor of late-onset PNS. Consecutive patients implanted with a left ventricular (LV) lead in a single centre were retrospectively analysed. Phrenic nerve stimulation was classified as 'early' when it occurred within 3 months of implantation and 'late' for occurrences thereafter. 'Late' PNS was considered related to LD (LD-PNS) when LV threshold differed by > 1 V or impedance >250 Ω from baseline values or in case of radiological displacement. Cases not meeting the former criteria were classified as 'non-LD-PNS'. Super-response was defined as a decrease ≥30% of the left ventricluar end-systolic volume at 1-year echocardiography. At 32 ± 7 months follow-up, PNS occurred in 20 of 139 patients. Late non-LD-PNS incidence was significantly higher in the SR group (8/61; 13.1%) when compared with the non-SR (1/78; 1.3%) (P = 0.010). Super-response remained the only predictor of non-LD-PNS at multivariate analysis (odds ratio: 11.62, 95% confidence interval 1.41-95.68, P = 0.023). Incidence of late non-LD-PNS is higher among SR to CRT, suggesting a potential role of the changes in the anatomical relationship between left phrenic nerve and coronary veins. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Done, Chris; Ward, Martin; Gardner, Emma
2017-10-01
We present a detailed multiwavelength study of an unobscured, highly super-Eddington Type-1 QSO RX J0439.6-5311. We combine the latest XMM-Newton observation with all archival data from infrared to hard X-rays. The optical spectrum is very similar to that of 1H 0707-495 in having extremely weak [O III] and strong Fe II emission lines, although the black hole mass is probably slightly higher at 5-10 × 106 M⊙. The broad-band spectral energy distribution is uniquely well defined due to the extremely low Galactic and intrinsic absorption, so the bolometric luminosity is tightly constrained. The optical/UV accretion disc continuum is seen down to 900 Å, showing that there is a standard thin disc structure down to R ≥ 190-380 Rg and determining the mass accretion rate through the outer disc. This predicts a much higher bolometric luminosity than observed, indicating that there must be strong wind and/or advective energy losses from the inner disc, as expected for a highly super-Eddington accretion flow. Significant outflows are detected in both the narrow-line region (NLR) and broad-line region (BLR) emission lines, confirming the presence of a wind. We propose a global picture for the structure of a super-Eddington accretion flow where the inner disc puffs up, shielding much of the potential NLR material, and show how inclination angle with respect to this and the wind can explain very different X-ray properties of RX J0439.6-5311 and 1H 0707-495. Therefore, this source provides strong supporting evidence that 'simple' and 'complex' super-Eddington NLS1s can be unified within the same accretion flow scenario but with different inclination angles. We also propose that these extreme NLS1s could be the low-redshift analogues of weak emission-line quasars.
Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng
2016-07-06
Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.
Ordering nanoparticles with polymer brushes
NASA Astrophysics Data System (ADS)
Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.
2017-12-01
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.
NASA Astrophysics Data System (ADS)
Thibado, Paul; Kumar, Pradeep; Singh, Surendra
Internet-of-Things (IoT) is projected to become a multi-trillion-dollar market, but most applications cannot afford replacing batteries on such a large scale, driving the need for battery alternatives. We recently discovered that freestanding graphene membranes are in perpetual motion when held at room temperature. Surprisingly, the random up-down motion of the membrane does not follow classical Brownian motion, but instead is super-diffusive at short times and sub-diffusive at long times. Furthermore, the velocity probability distribution function is non-Gaussian and follows the heavy-tailed Cauchy-Lorentz distribution, consistent with Lévy flights. Molecular dynamics simulations reveal that mechanical buckling is spontaneously occurring, and that this is the mechanism responsible for the anomalous movement. Bucking in this system occurs when the local material suddenly flips from concave to convex. The higher kinetic energy associated with this motion is derived from the surrounding thermal waste heat, and it may be converted into an electrical current and used as the active component of small power generators known as ambient vibration energy harvesters. thibado@uark.edu.
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
Hilton, C; Fisher, W; Lopez, A; Sanders, C
1997-09-01
To design and test a simple, easily modifiable system for calculating faculty productivity in teaching, research, administration, and patient care in which all areas of endeavor would be recognized and high productivity in one area would produce results similar to high productivity in another at the Louisiana State University School of Medicine in New Orleans. A relative-value and time-based system was designed in 1996 so that similar efforts in the four areas would produce similar scores, and a profile reflecting the authors' estimates of high productivity ("super faculty") was developed for each area. The activity profiles of 17 faculty members were used to test the system. "Super-faculty" scores in all areas were similar. The faculty members' mean scores were higher for teaching and research than for administration and patient care, and all four mean scores were substantially lower than the respective totals for the "super faculty". In each category the scores of those faculty members who scored above the mean in that category were used to calculate new mean scores. The mean scores for these faculty members were similar to those for the "super faculty" in teaching and research but were substantially lower for administration and patient care. When the mean total score of the eight faculty members predicted to have total scores below the group mean was compared with the mean total score of the nine faculty members predicted to have total scores above the group mean, the difference was significant (p < .0001). For the former, every score in each category was below the mean, with the exception of one faculty member's score in one category. Of the latter, eight had higher scores in teaching and four had higher scores in teaching and research combined. This system provides a quantitative method for the equal recognition of faculty productivity in a number of areas, and it may be useful as a starting point for other academic units exploring similar issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allu, Srikanth; Velamur Asokan, Badri; Shelton, William A
A generalized three dimensional computational model based on unied formulation of electrode- electrolyte-electrode system of a electric double layer supercapacitor has been developed. The model accounts for charge transport across the solid-liquid system. This formulation based on volume averaging process is a widely used concept for the multiphase ow equations ([28] [36]) and is analogous to porous media theory typically employed for electrochemical systems [22] [39] [12]. This formulation is extended to the electrochemical equations for a supercapacitor in a consistent fashion, which allows for a single-domain approach with no need for explicit interfacial boundary conditions as previously employed ([38]).more » In this model it is easy to introduce the spatio-temporal variations, anisotropies of physical properties and it is also conducive for introducing any upscaled parameters from lower length{scale simulations and experiments. Due to the irregular geometric congurations including porous electrode, the charge transport and subsequent performance characteristics of the super-capacitor can be easily captured in higher dimensions. A generalized model of this nature also provides insight into the applicability of 1D models ([38]) and where multidimensional eects need to be considered. In addition, simple sensitivity analysis on key input parameters is performed in order to ascertain the dependence of the charge and discharge processes on these parameters. Finally, we demonstarted how this new formulation can be applied to non-planar supercapacitors« less
Metal-Doped Silver Oxide Films as a Mask Layer for the Super-RENS Disk
NASA Astrophysics Data System (ADS)
Shima, Takayuki; Buechel, Dorothea; Mihalcea, Christophe; Kim, Jooho; Atoda, Nobufumi; Tominaga, Junji
Various kinds of metal (Co, Pd, Pt and Au) were doped into Ag2O and AgO sputtered films to study its effect on the thermal decomposition process. The oxygen composition ratio was evaluated by the X-ray fluorescence spectroscopy method after annealing up to 260,oC. The optical transmittance change was measured during heating of the film to 600,oC. Noble metal doping was found to modify the AgO decomposition process, and the oxygen content decreased gradually compared to the undoped case. Super-RENS disks with a metal-doped AgO mask were prepared, and the laser power necessary for super-resolutional readout was evaluated. It slightly shifted to the higher-power side when the noble metal was doped, and this agrees with the modification of the decomposition process.Japan Science and Technology Corporation, Domestic Research Fellow
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...
2016-01-01
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
The structure of plant photosystem I super-complex at 2.8 Å resolution
Mazor, Yuval; Borovikova, Anna; Nelson, Nathan
2015-01-01
Most life forms on Earth are supported by solar energy harnessed by oxygenic photosynthesis. In eukaryotes, photosynthesis is achieved by large membrane-embedded super-complexes, containing reaction centers and connected antennae. Here, we report the structure of the higher plant PSI-LHCI super-complex determined at 2.8 Å resolution. The structure includes 16 subunits and more than 200 prosthetic groups, which are mostly light harvesting pigments. The complete structures of the four LhcA subunits of LHCI include 52 chlorophyll a and 9 chlorophyll b molecules, as well as 10 carotenoids and 4 lipids. The structure of PSI-LHCI includes detailed protein pigments and pigment–pigment interactions, essential for the mechanism of excitation energy transfer and its modulation in one of nature's most efficient photochemical machines. DOI: http://dx.doi.org/10.7554/eLife.07433.001 PMID:26076232
Division Algebras, Supersymmetry and Higher Gauge Theory
NASA Astrophysics Data System (ADS)
Huerta, John Gmerek
2011-12-01
Starting from the four normed division algebras---the real numbers, complex numbers, quaternions and octonions, with dimensions k = 1, 2, 4 and 8, respectively---a systematic procedure gives a 3-cocycle on the Poincare Lie superalgebra in dimensions k + 2 = 3, 4, 6 and 10. A related procedure gives a 4-cocycle on the Poincare Lie superalgebra in dimensions k+3 = 4, 5, 7 and 11. The existence of these cocycles follow from certain spinor identities that hold only in these dimensions, and which are closely related to the existence of superstring and super-Yang--Mills theory in dimensions k + 2, and super-2-brane theory in dimensions k + 3. In general, an (n+1)-cocycle on a Lie superalgebra yields a 'Lie n-superalgebra': that is, roughly speaking, an n-term chain complex equipped with a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the Poincare superalgebra in dimensions 3, 4, 6, and 10, and Lie 3-superalgebras extending the Poincare superalgebra in dimensions 4, 5, 7 and 11. As shown in Sati, Schreiber and Stasheff's work on generalized connections valued in Lie n-superalgebras, Lie 2-superalgebra connections describe the parallel transport of strings, while Lie 3-superalgebra connections describe the parallel transport of 2-branes. Moreover, in the octonionic case, these connections concisely summarize the fields appearing in 10- and 11-dimensional supergravity. Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a 'Lie n-supergroup' that is hugely infinite-dimensional. However, when the Lie n-superalgebra is obtained from an (n + 1)-cocycle on a nilpotent Lie superalgebra, there is a geometric procedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup. In general, a smooth (n+1)-cocycle on a supergroup yields a 'Lie n-supergroup': that is, a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the 3-cocycle in dimensions 3, 4, 6 and 10, we obtain a Lie 2-supergroup extending the Poincare supergroup in those dimensions, and similarly integrating the 4-cocycle in dimensions 4, 5, 7 and 11, we obtain a Lie 3-supergroup extending the Poincare supergroup in those dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-15
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.« less
NASA Astrophysics Data System (ADS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
Supercritical fluid extraction. Principles and practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, M.A.; Krukonis, V.J.
This book is a presentation of the fundamentals and application of super-critical fluid solvents (SCF). The authors cover virtually every facet of SCF technology: the history of SCF extraction, its underlying thermodynamic principles, process principles, industrial applications, and analysis of SCF research and development efforts. The thermodynamic principles governing SCF extraction are covered in depth. The often complex three-dimensional pressure-temperature composition (PTx) phase diagrams for SCF-solute mixtures are constructed in a coherent step-by-step manner using the more familiar two-dimensional Px diagrams. The experimental techniques used to obtain high pressure phase behavior information are described in detail and the advantages andmore » disadvantages of each technique are explained. Finally, the equations used to model SCF-solute mixtures are developed, and modeling results are presented to highlight the correlational strengths of a cubic equation of state.« less
On an algebraic structure of dimensionally reduced magical supergravity theories
NASA Astrophysics Data System (ADS)
Fukuchi, Shin; Mizoguchi, Shun'ya
2018-06-01
We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.
NASA Technical Reports Server (NTRS)
Stevens-Rayburn, D. R.; Mengel, J. G.; Harris, I.; Mayr, H. G.
1989-01-01
A three-dimensional spectral model for the Venusion thermosphere is presented which uses spherical harmonics to represent the horizontal variations in longitude and latitude and which uses Fourier harmonics to represent the LT variations due to atmospheric rotation. A differencing scheme with tridiagonal block elimination is used to perform the height integration. Quadratic nonlinearities are taken into account. In the second part, numerical results obtained with the model are shown to reproduce the observed broad daytime maxima in CO2 and CO and the significantly larger values at dawn than at dusk. It is found that the diurnal variations in He are most sensitive to thermospheric superrotation, and that, given a globally uniform atmosphere as input, larger heating rates yield a larger temperature contrast between day and night.
Rail inspection system based on iGPS
NASA Astrophysics Data System (ADS)
Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping
2018-05-01
Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.
(Super)symmetries of semiclassical models in theoretical and condensed matter physics
NASA Astrophysics Data System (ADS)
Ngome, J.-P.
2011-03-01
Van Holten's covariant algorithm for deriving conserved quantities is presented, with particular attention paid to Runge-Lenz-type vectors. The classical dynamics of isospin-carrying particles is reviewed. Physical applications including non-Abelian monopole-type systems in diatoms, introduced by Moody, Shapere and Wilczek, are considered. Applied to curved space, the formalism of van Holten allows us to describe the dynamical symmetries of generalized Kaluza-Klein monopoles. The framework is extended to supersymmetry and applied to the SUSY of the monopoles. Yet another application concerns the three-dimensional non-commutative oscillator.
New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro
2018-03-01
We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.
Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Kiggans, Jim; Wood, David L
2013-09-01
Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. Copyright © 2013 Elsevier Inc. All rights reserved.
Super-resolution method for face recognition using nonlinear mappings on coherent features.
Huang, Hua; He, Huiting
2011-01-01
Low-resolution (LR) of face images significantly decreases the performance of face recognition. To address this problem, we present a super-resolution method that uses nonlinear mappings to infer coherent features that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face image. Canonical correlation analysis is applied to establish the coherent subspaces between the principal component analysis (PCA) based features of high-resolution (HR) and LR face images. Then, a nonlinear mapping between HR/LR features can be built by radial basis functions (RBFs) with lower regression errors in the coherent feature space than in the PCA feature space. Thus, we can compute super-resolved coherent features corresponding to an input LR image according to the trained RBF model efficiently and accurately. And, face identity can be obtained by feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Facial Recognition Technology, University of Manchester Institute of Science and Technology, and Olivetti Research Laboratory databases show that the proposed method outperforms the state-of-the-art face recognition algorithms for single LR image in terms of both recognition rate and robustness to facial variations of pose and expression.
Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly
Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.
2015-01-01
Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638
High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsche, C.T.; Krogh, M.L.; Crist, C.E.
1993-05-01
AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.
Supporting lander and rover operation: a novel super-resolution restoration technique
NASA Astrophysics Data System (ADS)
Tao, Yu; Muller, Jan-Peter
2015-04-01
Higher resolution imaging data is always desirable to critical rover engineering operations, such as landing site selection, path planning, and optical localisation. For current Mars missions, 25cm HiRISE images have been widely used by the MER & MSL engineering team for rover path planning and location registration/adjustment. However, 25cm is not high enough resolution to be able to view individual rocks (≤2m in size) or visualise the types of sedimentary features that rover onboard cameras might observe. Nevertheless, due to various physical constraints (e.g. telescope size and mass) from the imaging instruments themselves, one needs to be able to tradeoff spatial resolution and bandwidth. This means that future imaging systems are likely to be limited to resolve features larger than 25cm. We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution image from the non-redundant sub-pixel information contained in multiple lower resolution raw images [Tao & Muller 2015]. We will demonstrate with experiments performed using 5-10 overlapped 25cm HiRISE images for MER-A, MER-B & MSL to resolve 5-10cm super resolution images that can be directly compared to rover imagery at a range of 5 metres from the rover cameras but in our case can be used to visualise features many kilometres away from the actual rover traverse. We will demonstrate how these super-resolution images together with image understanding software can be used to quantify rock size-frequency distributions as well as measure sedimentary rock layers for several critical sites for comparison with rover orthorectified image mosaic to demonstrate optimality of using our super-resolution resolved image to better support future lander and rover operation in future. We present the potential of super-resolution for virtual exploration to the ˜400 HiRISE areas which have been viewed 5 or more times and the potential application of this technique to all of the ESA ExoMars Trace Gas orbiter CaSSiS stereo, multi-angle and colour camera images from 2017 onwards. Acknowledgements: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No.312377 PRoViDE.
Krambeck, Amy; Wijnstok, Nienke; Olbert, Peter; Mitroi, George; Bariol, Simon; Shah, Hemendra N; El-Abd, Ahmed S; Onal, Bulent; de la Rosette, Jean
2017-01-01
Although ureteroscopy (URS) has been established as a viable treatment for stones in obese patients, its safety and success has not been fully elucidated. The current study describes the worldwide prevalence of obesity in patients with urolithiasis and examines trends in URS outcomes, safety, and efficacy. This study utilized the Clinical Research Office of the Endourological Society (CROES) URS Global Study, which was a prospective, multicenter study including 11,885 patients treated with URS for urinary stones at 1 of 114 urology departments across 32 countries. The relationship between body mass index (BMI), diabetes, and creatinine, with retreatment, stone-free rates, complications, and long hospital stay, was examined with a multivariate logistic regression analyses. Of the 10,099 URS patients with BMI data, 17.4% were obese and 2.2% were super obese. Overall, 86.7% patients were stone free and 16.8% required retreatment. Higher BMI was associated with lower stone-free rates, and any deviation from normal weight was associated with higher retreatment rates. In multivariate analysis controlling for several variables including stone size, the association between BMI and lower stone-free rates with higher retreatment rates persisted. Intraoperative complications occurred in 518 (5.1%) patients, and 343 (3.4%) experienced a postoperative complication. Postoperative complications were more frequent in the underweight and super obese subjects, and there was no relationship between BMI and intraoperative complications. Although URS for stone disease was found to be an overall safe procedure for obese and super obese patients, efficacy of the procedure may be lower compared with normal-weight subjects and higher retreatment rates may be necessary.
Outgassing on stagnant-lid super-Earths
NASA Astrophysics Data System (ADS)
Dorn, C.; Noack, L.; Rozel, A. B.
2018-06-01
Aims: We explore volcanic CO2-outgassing on purely rocky, stagnant-lid exoplanets of different interior structures, compositions, thermal states, and age. We focus on planets in the mass range of 1-8 M⊕ (Earth masses). We derive scaling laws to quantify first- and second-order influences of these parameters on volcanic outgassing after 4.5 Gyr of evolution. Methods: Given commonly observed astrophysical data of super-Earths, we identify a range of possible interior structures and compositions by employing Bayesian inference modeling. The astrophysical data comprise mass, radius, and bulk compositional constraints; ratios of refractory element abundances are assumed to be similar to stellar ratios. The identified interiors are subsequently used as input for two-dimensional (2D) convection models to study partial melting, depletion, and outgassing rates of CO2. Results: In total, we model depletion and outgassing for an extensive set of more than 2300 different super-Earth cases. We find that there is a mass range for which outgassing is most efficient ( 2-3 M⊕, depending on thermal state) and an upper mass where outgassing becomes very inefficient ( 5-7 M⊕, depending on thermal state). At small masses (below 2-3 M⊕) outgassing positively correlates with planet mass, since it is controlled by mantle volume. At higher masses (above 2-3 M⊕), outgassing decreases with planet mass, which is due to the increasing pressure gradient that limits melting to shallower depths. In summary, depletion and outgassing are mainly influenced by planet mass and thermal state. Interior structure and composition only moderately affect outgassing rates. The majority of outgassing occurs before 4.5 Gyr, especially for planets below 3 M⊕. Conclusions: We conclude that for stagnant-lid planets, (1) compositional and structural properties have secondary influence on outgassing compared to planet mass and thermal state, and (2) confirm that there is a mass range for which outgassing is most efficient and an upper mass limit, above which no significant outgassing can occur. Our predicted trend of CO2-atmospheric masses can be observationally tested for exoplanets. These findings and our provided scaling laws are an important step in order to provide interpretative means for upcoming missions such as JWST and E-ELT, that aim at characterizing exoplanet atmospheres.
Longitudinal study of Escherichia coli O157 shedding and super shedding in dairy heifers.
Williams, K J; Ward, M P; Dhungyel, O P
2015-04-01
A longitudinal study was conducted to assess the methods available for detection of Escherichia coli O157 and to investigate the prevalence and occurrence of long-term shedding and super shedding in a cohort of Australian dairy heifers. Samples were obtained at approximately weekly intervals from heifers at pasture under normal management systems. Selective sampling techniques were used with the aim of identifying heifers with a higher probability of shedding or super shedding. Rectoanal mucosal swabs (RAMS) and fecal samples were obtained from each heifer. Direct culture of feces was used for detection and enumeration. Feces and RAMS were tested by enrichment culture. Selected samples were further tested retrospectively by immunomagnetic separation of enriched samples. Of 784 samples obtained, 154 (19.6%) were detected as positive using culture methods. Adjusting for selective sampling, the prevalence was 71 (15.6%) of 454. In total, 66 samples were detected as positive at >10(2) CFU/g of which 8 were >10(4) CFU/g and classed as super shedding. A significant difference was observed in detection by enriched culture of RAMS and feces. Dairy heifers within this cohort exhibited variable E. coli O157 shedding, consistent with previous estimates of shedding. Super shedding was detected at a low frequency and inconsistently from individual heifers. All detection methods identified some samples as positive that were not detected by any other method, indicating that the testing methods used will influence survey results.
Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili
2016-09-01
Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanowire modified carbon fibers for enhanced electrical energy storage
NASA Astrophysics Data System (ADS)
Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong
2013-09-01
The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.
Role of Turbulent Damping in Cosmic Ray Galactic Winds
NASA Astrophysics Data System (ADS)
Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen
2018-06-01
Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.
2010-12-01
Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.
Analysis of the total kinetic energy of fission fragments with the Langevin equation
NASA Astrophysics Data System (ADS)
Usang, M. D.; Ivanyuk, F. A.; Ishizuka, C.; Chiba, S.
2017-12-01
We analyzed the total kinetic energy (TKE) of fission fragments with three-dimensional Langevin calculations for a series of actinides and Fm isotopes at various excitation energies. This allowed us to establish systematic trends of TKE with Z2/A1 /3 of the fissioning system and as a function of excitation energy. In the mass-energy distributions of fission fragments we see the contributions from the standard, super-long, and super-short (in the case of 258Fm) fission modes. For the fission fragments mass distribution of 258Fm we obtained a single peak mass distribution. The decomposition of TKE into the prescission kinetic energy and Coulomb repulsion showed that decrease of TKE with growing excitation energy is accompanied by a decrease of prescission kinetic energy. It was also found that transport coefficients (friction and inertia tensors) calculated by a microscopic model and by macroscopic models give drastically different behaviors of TKE as a function of excitation energy. The results obtained with microscopic transport coefficients are much closer to experimental data than those calculated with macroscopic ones.
Dai, Zhaohe; Liu, Luqi; Qi, Xiaoying; Kuang, Jun; Wei, Yueguang; Zhu, Hongwei; Zhang, Zhong
2016-01-01
Efficient assembly of carbon nanotube (CNT) based cellular solids with appropriate structure is the key to fully realize the potential of individual nanotubes in macroscopic architecture. In this work, the macroscopic CNT sponge consisting of randomly interconnected individual carbon nanotubes was grown by CVD, exhibiting a combination of super-elasticity, high strength to weight ratio, fatigue resistance, thermo-mechanical stability and electro-mechanical stability. To deeply understand such extraordinary mechanical performance compared to that of conventional cellular materials and other nanostructured cellular architectures, a thorough study on the response of this CNT-based spongy structure to compression is conducted based on classic elastic theory. The strong inter-tube bonding between neighboring nanotubes is examined, believed to play a critical role in the reversible deformation such as bending and buckling without structural collapse under compression. Based on in-situ scanning electron microscopy observation and nanotube deformation analysis, structural evolution (completely elastic bending-buckling transition) of the carbon nanotubes sponges to deformation is proposed to clarify their mechanical properties and nonlinear electromechanical coupling behavior. PMID:26732143
Local structural effects in Sr 3NiRhO 6 across magnetic transitions
Singh, Navneet; Khalid, S.; Bindu, R.
2016-04-06
Here, we investigate the temperature dependence of the structural parameters of quasi-one-dimensional Sr 3NiRhO 6 across the region of magnetic phase transitions using Ni K-edge and Sr K-edge x-ray absorption spectroscopy (XAS). The features in the x-ray absorption near-edge region are identified using multiple scattering calculations. The temperature-dependent extended x-ray absorption fine structure (EXAFS) studies show that the setting of the intra-chain super exchange interaction starts at ~200 K, which is well above the first transition temperature (45 K) revealed by magnetic susceptibility studies. The onset of the inter-chain super–super exchange interaction appears to be at ~125 K. Interestingly, themore » role played by direct exchange interaction between the Ni 3d and Rh 4d states in stabilising the magnetic interaction is less significant. The present results shed light on the generic features exhibited by isostructural compounds and may help in identifying the magnetic exchange pathways useful for understanding the unusual properties exhibited by such compounds.« less
Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.
Bergmann, Stephan; Wrede, Oliver; Huser, Thomas; Hellweg, Thomas
2018-02-14
We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio
2009-04-01
The physical meaning of the particularly simple non-degenerate supermetric, introduced in the previous part by the authors, is elucidated and the possible connection with processes of topological origin in high energy physics is analyzed and discussed. New possible mechanism of the localization of the fields in a particular sector of the supermanifold is proposed and the similarity and differences with a 5-dimensional warped model are shown. The relation with gauge theories of supergravity based in the OSP(1/4) group is explicitly given and the possible original action is presented. We also show that in this non-degenerate super-model the physic states, in contrast with the basic states, are observables and can be interpreted as tomographic projections or generalized representations of operators belonging to the metaplectic group Mp(2). The advantage of geometrical formulations based on non-degenerate super-manifolds over degenerate ones is pointed out and the description and the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the point of view of the possible vacuum solutions.
Super-Planckian far-field radiative heat transfer
NASA Astrophysics Data System (ADS)
Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.
2018-01-01
We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.
Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion
NASA Astrophysics Data System (ADS)
Wang, Fengge; Yang, Songlin; Ma, Huifeng; Shen, Ping; Wei, Nan; Wang, Meng; Xia, Yang; Deng, Yun; Ye, Yong-Hong
2018-01-01
Microsphere-assisted imaging is an extraordinary simple technology that can obtain optical super-resolution under white-light illumination. Here, we introduce a method to improve the resolution of a microsphere lens by increasing its numerical aperture. In our proposed structure, BaTiO3 glass (BTG) microsphere lenses are semi-immersed in a S1805 layer with a refractive index of 1.65, and then, the semi-immersed microspheres are fully embedded in an elastomer with an index of 1.4. We experimentally demonstrate that this structure, in combination with a conventional optical microscope, can clearly resolve a two-dimensional 200-nm-diameter hexagonally close-packed (hcp) silica microsphere array. On the contrary, the widely used structure where BTG microsphere lenses are fully immersed in a liquid or elastomer cannot even resolve a 250-nm-diameter hcp silica microsphere array. The improvement in resolution through the proposed structure is due to an increase in the effective numerical aperture by semi-immersing BTG microsphere lenses in a high-refractive-index S1805 layer. Our results will inform on the design of microsphere-based high-resolution imaging systems.
Han, Yaozhen; Liu, Xiangjie
2016-05-01
This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
HELIOSPHERIC STRUCTURE: THE BOW WAVE AND THE HYDROGEN WALL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zank, G. P.; Heerikhuisen, J.; Pogorelov, N. V.
2013-01-20
Recent IBEX observations indicate that the local interstellar medium (LISM) flow speed is less than previously thought (23.2 km s{sup -1} rather than 26 km s{sup -1}). Reasonable LISM plasma parameters indicate that the LISM flow may be either marginally super-fast magnetosonic or sub-fast magnetosonic. This raises two challenging questions: (1) Can a LISM model that is barely super-fast or sub-fast magnetosonic account for Ly{alpha} observations that rely critically on the additional absorption provided by the hydrogen wall (H-wall)? and (2) If the LISM flow is weakly super-fast magnetosonic, does the transition assume the form of a traditional shock ormore » does neutral hydrogen (H) mediate shock dissipation and hence structure through charge exchange? Both questions are addressed using three three-dimensional self-consistently coupled magnetohydrodynamic plasma-kinetic H models with different LISM magnetic field strengths (2, 3, and 4 {mu}G) as well as plasma and neutral H number densities. The 2 and 3 {mu}G models are fast magnetosonic far upwind of the heliopause whereas the 4 {mu}G model is fully subsonic. The 2 {mu}G model admits a broad ({approx}50-75 AU) bow-shock-like structure. The 3 {mu}G model has a smooth super-fast-sub-fast magnetosonic transition that resembles a very broad, {approx}200 AU thick, bow wave. A theoretical analysis shows that the transition from a super-fast to a sub-fast magnetosonic downstream state is due to the charge exchange of fast neutral H and hot neutral H created in the supersonic solar wind and hot inner heliosheath, respectively. For both the 2 {mu}G and the 3 {mu}G models, the super-fast magnetosonic LISM flow passes through a critical point located where the fast magnetosonic Mach number M = 1 and Q{sub e} = {gamma}/({gamma} - 1)UQ{sub m} , where Q{sub e} and Q{sub m} are the plasma energy and momentum source terms due to charge exchange, U is the LISM flow speed, and {gamma} is the plasma adiabatic index. Because the Mach number is only barely super-fast magnetosonic in the 3 {mu}G case, the hot and fast neutral H can completely mediate the transition and impose a charge exchange length scale on the structure, making the solar-wind-LISM interaction effectively bow-shock-free. The charge exchange of fast and hot heliospheric neutral H therefore provides a primary dissipation mechanism at the weak heliospheric bow shock, in some cases effectively creating a one-shock heliosphere (i.e., a heliospheric termination shock only). Both super-fast magnetosonic models produce a sizeable H-wall. We find that (1) a sub-fast magnetosonic LISM flow cannot model the observed Ly{alpha} absorption profiles along the four sightlines considered ({alpha} Cen, 36 Oph, DK UMa, and {chi}{sup 1} Ori-upwind, sidewind, and downwind respectively); (2) both the super-fast magnetosonic models can account for the Ly{alpha} observations, with possibly the bow-shock-free 3 {mu}G model being slightly favored. Subject to further modeling and comparison against further lines of sight, we conclude with the tantalizing possibility that IBEX may have discovered a class of interstellar shocks mediated by neutral H.« less
Heliospheric structure. The bow wave and the hydrogen wall
Zank, G. P.; Heerikhuisen, J.; Wood, B. E.; ...
2012-12-28
Some recent IBEX observations indicate that the local interstellar medium (LISM) flow speed is less than previously thought (23.2 km s -1 rather than 26 km s -1). Reasonable LISM plasma parameters indicate that the LISM flow may be either marginally super-fast magnetosonic or sub-fast magnetosonic. This raises two challenging questions: (1) Can a LISM model that is barely super-fast or sub-fast magnetosonic account for Lyα observations that rely critically on the additional absorption provided by the hydrogen wall (H-wall)? and (2) If the LISM flow is weakly super-fast magnetosonic, does the transition assume the form of a traditional shockmore » or does neutral hydrogen (H) mediate shock dissipation and hence structure through charge exchange? Both questions are addressed using three three-dimensional self-consistently coupled magnetohydrodynamic plasma—kinetic H models with different LISM magnetic field strengths (2, 3, and 4 μG) as well as plasma and neutral H number densities. The 2 and 3 μG models are fast magnetosonic far upwind of the heliopause whereas the 4 μG model is fully subsonic. The 2 μG model admits a broad (~50-75 AU) bow-shock-like structure. The 3 μG model has a smooth super-fast-sub-fast magnetosonic transition that resembles a very broad, ~200 AU thick, bow wave. A theoretical analysis shows that the transition from a super-fast to a sub-fast magnetosonic downstream state is due to the charge exchange of fast neutral H and hot neutral H created in the supersonic solar wind and hot inner heliosheath, respectively. For both the 2 μG and the 3 μG models, the super-fast magnetosonic LISM flow passes through a critical point located where the fast magnetosonic Mach number M = 1 and Qe = γ/(γ - 1)UQm , where Qe and Qm are the plasma energy and momentum source terms due to charge exchange, U is the LISM flow speed, and γ is the plasma adiabatic index. Because the Mach number is only barely super-fast magnetosonic in the 3 μG case, the hot and fast neutral H can completely mediate the transition and impose a charge exchange length scale on the structure, making the solar-wind-LISM interaction effectively bow-shock-free. The charge exchange of fast and hot heliospheric neutral H therefore provides a primary dissipation mechanism at the weak heliospheric bow shock, in some cases effectively creating a one-shock heliosphere (i.e., a heliospheric termination shock only). Both super-fast magnetosonic models produce a sizeable H-wall. We also found that (1) a sub-fast magnetosonic LISM flow cannot model the observed Lyα absorption profiles along the four sightlines considered (α Cen, 36 Oph, DK UMa, and χ1 Ori—upwind, sidewind, and downwind respectively); (2) both the super-fast magnetosonic models can account for the Lyα observations, with possibly the bow-shock-free 3 μG model being slightly favored. We conclude with the tantalizing possibility that IBEX may have discovered a class of interstellar shocks mediated by neutral H, though this is subject to further modeling and comparison against further lines of sight.« less
NASA Astrophysics Data System (ADS)
Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C.; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P.; Elias, Ana L.; Feng, Simin; Kim, Seon Jeong; Narayanan, N. T.; Ajayan, Pulickel M.; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H.; Chen, Yongsheng
2015-01-01
It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson’s ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson’s ratio.
Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P; Elias, Ana L; Feng, Simin; Kim, Seon Jeong; Narayanan, N T; Ajayan, Pulickel M; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H; Chen, Yongsheng
2015-01-20
It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.
Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.
Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong
2018-06-22
Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.
NASA Astrophysics Data System (ADS)
Feng, Min-nan; Wang, Yu-cong; Wang, Hao; Liu, Guo-quan; Xue, Wei-hua
2017-03-01
Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.
Highly Transparent Water-Repelling Surfaces based on Biomimetic Hierarchical Structure
NASA Astrophysics Data System (ADS)
Wooh, Sanghyuk; Koh, Jai; Yoon, Hyunsik; Char, Kookheon
2013-03-01
Nature is a great source of inspiration for creating unique structures with special functions. The representative examples of water-repelling surfaces in nature, such as lotus leaves, rose petals, and insect wings, consist of an array of bumps (or long hairs) and nanoscale surface features with different dimension scales. Herein, we introduced a method of realizing multi-dimensional hierarchical structures and water-repellancy of the surfaces with different drop impact scenarios. The multi-dimensional hierarchical structures were fabricated by soft imprinting method with TiO2 nanoparticle pastes. In order to achieve the enhanced hydrophobicity, fluorinated moieties were attached to the etched surfaces to lower the surface energy. As a result, super-hydrophobic surfaces with high transparency were realized (over 176° water contact angle), and for further investigation, these hierarchical surfaces with different drop impact scenarios were characterized by varying the impact speed, drop size, and the geometry of the surfaces.
On the influence of atmospheric super-saturation layer on China's heavy haze-fog events
NASA Astrophysics Data System (ADS)
Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang
2017-12-01
With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the change of PM2.5 concentration. The lower the H_PMLs is, the higher the PLAM becomes, and the more conductive the air condition is to aggravation of pollutant aerosol concentration.
Prospects of third-generation femtosecond laser technology in biological spectromicroscopy
NASA Astrophysics Data System (ADS)
Fattahi, Hanieh; Fattahi, Zohreh; Ghorbani, Asghar
2018-05-01
The next generation of biological imaging modalities will be a movement towards super-resolution, label-free approaches to realize subcellular images in a nonperturbative, non-invasive manner and towards new detection metrologies to reach a higher sensitivity and dynamic range. In this paper, we discuss how the third generation femtosecond laser technology in combination with the already existing concepts in time-resolved spectroscopy could fulfill the requirements of these exciting prospects. The expected enhanced specificity and sensitivity of the envisioned super-resolution microscope could lead us to a better understanding of the inter- and intra-cellular molecular transport and DNA-protein interaction.
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
NASA Astrophysics Data System (ADS)
Troisi, Antonio
2017-03-01
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.
A stochastically fully connected conditional random field framework for super resolution OCT
NASA Astrophysics Data System (ADS)
Boroomand, A.; Tan, B.; Wong, A.; Bizheva, K.
2017-02-01
A number of factors can degrade the resolution and contrast of OCT images, such as: (1) changes of the OCT pointspread function (PSF) resulting from wavelength dependent scattering and absorption of light along the imaging depth (2) speckle noise, as well as (3) motion artifacts. We propose a new Super Resolution OCT (SR OCT) imaging framework that takes advantage of a Stochastically Fully Connected Conditional Random Field (SF-CRF) model to generate a Super Resolved OCT (SR OCT) image of higher quality from a set of Low-Resolution OCT (LR OCT) images. The proposed SF-CRF SR OCT imaging is able to simultaneously compensate for all of the factors mentioned above, that degrade the OCT image quality, using a unified computational framework. The proposed SF-CRF SR OCT imaging framework was tested on a set of simulated LR human retinal OCT images generated from a high resolution, high contrast retinal image, and on a set of in-vivo, high resolution, high contrast rat retinal OCT images. The reconstructed SR OCT images show considerably higher spatial resolution, less speckle noise and higher contrast compared to other tested methods. Visual assessment of the results demonstrated the usefulness of the proposed approach in better preservation of fine details and structures of the imaged sample, retaining biological tissue boundaries while reducing speckle noise using a unified computational framework. Quantitative evaluation using both Contrast to Noise Ratio (CNR) and Edge Preservation (EP) parameter also showed superior performance of the proposed SF-CRF SR OCT approach compared to other image processing approaches.
Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis
Hu, Mao-Gui; Wang, Jin-Feng; Ge, Yong
2009-01-01
Satellite remote sensing (RS) is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-urban). In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolution-enhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well in detail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics. PMID:22291530
Cygnus A super-resolved via convex optimization from VLA data
NASA Astrophysics Data System (ADS)
Dabbech, A.; Onose, A.; Abdulaziz, A.; Perley, R. A.; Smirnov, O. M.; Wiaux, Y.
2018-05-01
We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imaging, that is based on convex optimization, for the super-resolution of Cyg A from observations at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high-resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is available online on GitHub.
Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan
2015-12-01
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.
Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas
2015-01-01
Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742
Quality and Quantity of Sorghum Hydroponic Fodder from Different Varieties and Harvest Time
NASA Astrophysics Data System (ADS)
Chrisdiana, R.
2018-02-01
This experiment was designed to compare different varieties and harvest time of sorghum hydroponic fodder based on nutrient content and biomass production. Experimental design for fodder productivity was completely randomized design with 2 x 3 factorial, i.e., sorghum varieties (KD 4 and Super-1) and time of harvesting the sorghum hydroponic fodder (8,12 and 16 d). Total biomass and DM production, were affected significantly (p<0.05) on harvest time. Total biomass and nutrient content were increased in longer harvest time. The nutrient content were increased with decreasing total value of DM. Super-1 varieties produce larger biomass and nutrient content higher than KD4 (p<0.05). Based on sorghum hidroponic fodder quality and quantity, sorghum hidroponic fodder with Super-1 varieties harvested at 12 d had a good quality of fodder and it can be alternative of technology providing quality forage and land saving with a short time planting period and continous production.
NASA Astrophysics Data System (ADS)
Boon, Choong S.; Guleryuz, Onur G.; Kawahara, Toshiro; Suzuki, Yoshinori
2006-08-01
We consider the mobile service scenario where video programming is broadcast to low-resolution wireless terminals. In such a scenario, broadcasters utilize simultaneous data services and bi-directional communications capabilities of the terminals in order to offer substantially enriched viewing experiences to users by allowing user participation and user tuned content. While users immediately benefit from this service when using their phones in mobile environments, the service is less appealing in stationary environments where a regular television provides competing programming at much higher display resolutions. We propose a fast super-resolution technique that allows the mobile terminals to show a much enhanced version of the broadcast video on nearby high-resolution devices, extending the appeal and usefulness of the broadcast service. The proposed single frame super-resolution algorithm uses recent sparse recovery results to provide high quality and high-resolution video reconstructions based solely on individual decoded frames provided by the low-resolution broadcast.
Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution
Bishara, Waheb; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan
2010-01-01
We demonstrate lensfree holographic microscopy on a chip to achieve ~0.6 µm spatial resolution corresponding to a numerical aperture of ~0.5 over a large field-of-view of ~24 mm2. By using partially coherent illumination from a large aperture (~50 µm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans. PMID:20588977
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Yu; Ma, Kai; Pan, Xi-De; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-02-01
In this study, vacuum cold spraying was used as a simple and fast way to prepare transparent super-hydrophobic coatings. Submicrometer-sized Al2O3 powder modified by 1,1,2,2-tetrahydroperfluorodecyltriethoxysilane and mixed with hydrophobic SiO2 aerogel was employed for the coating deposition. The deposition mechanisms of pure Al2O3 powder and Al2O3-SiO2 mixed powder were examined, and the effects of powder structure on the hydrophobicity and light transmittance of the coatings were evaluated. The results showed that appropriate contents of SiO2 aerogel in the mixed powder could provide sufficient cushioning to the deposition of submicrometer Al2O3 powder during spraying. The prepared composite coating surface showed rough structures with a large number of submicrometer convex deposited particles, characterized by being super-hydrophobic. Also, the transmittance of the obtained coating was higher than 80% in the range of visible light.
Haze production in the atmospheres of super-Earths and mini-Neptunes: Insight from PHAZER lab
NASA Astrophysics Data System (ADS)
Horst, Sarah; He, Chao; Kempton, Eliza; Moses, Julianne I.; Vuitton, Veronique; Lewis, Nikole
2017-10-01
Super-Earths and mini-Neptunes (~1.2-3 Earth radii) comprise a large fraction of planets in the universe and TESS (Transiting Exoplanet Survey Satellite) will increase the number that are amenable to atmospheric characterization with observatories like JWST (James Webb Space Telescope). These atmospheres should span a large range of temperature and atmospheric composition phase space, with no solar system analogues. Interpretation of current and future atmospheric observations of super-Earths and mini-Neptunes requires additional knowledge about atmospheric chemistry and photochemical haze production. We have experimentally investigated haze formation for H2, H2O, and CO2 dominated atmospheres (100x, 1000x, and 10000x solar metallicity) for a range of temperatures (300 K, 400 K, and 600 K) using the PHAZER (Planetary Haze Research) experiment at Johns Hopkins University. This is a necessary step in understanding which, if any, super-Earths and mini-Neptunes possess the conditions required for efficient production of photochemical haze in their atmospheres. We find that the production rates vary over a few orders of magnitudes with some higher than our nominal Titan experiments. We therefore expect that planets in this temperature and atmospheric composition phase space will exhibit a range of particle concentrations and some may be as hazy as Titan.
NASA Technical Reports Server (NTRS)
Cartwright, D. C.; Trajmar, S.; Williams, W.
1971-01-01
Use of new electron impact excitation cross sections for the six lowest triplet states (A, B, W, C, E, D) of N2, and solution of the coupled equations of statistical equilibrium to obtain the vibrational population of each electronic state. The results show that cascade from high levels of the A super 3 sigma sub u(+) state and from the W super 3 delta sub u state is significant in populating the lower vibrational levels of the B state and hence the character of its ?apparent' excitation cross sections. For the B state excited under auroral conditions, the fraction of the total population due to cascade processes exceeds 25% for all levels lower than 7 and is greater than 80% for B(v' = 0). For the A state under similar conditions, cascade from the B state contributes 50% or more of the total vibrational population for levels lower than 7, and 80% or more for levels below 4. For levels of the A state greater than 7, the A yields B transitions depopulate the levels rapidly and indicate that the Vegard-Kaplan emissions from these higher levels will be weak or totally absent in normal auroras.
Morales-Sillero, Ana; García, José M
2015-09-01
Super-intensive cultivation facilitates olive mechanized harvesting, allowing substantial savings in the production cost of virgin olive oil (VOO). However, the number of varieties adapted to this type of cultivation is small. This study explores the impact that harvesting with a grape straddle harvester of 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' olives grown in super-intensive cultivation has on the physiology of the fruit and the quality of the oil subsequently extracted. For both cultivars, fruits harvested mechanically showed higher respiration and ethylene production and lower firmness than fruits harvested by hand. Their oils exhibited lower phenol contents, lower oxidative stability and lower presence of positive sensory attributes. However, in these oils the values of parameters used to assess the level of quality of VOO remained within the limits required for the best commercial category. Mechanical harvesting of 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' super-high-density hedgerows induced physiological alterations in the fruits and a reduction in the contents of natural antioxidants and flavour components in the oils, though it did not result in a loss of the 'Extra' level of quality. © 2014 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.
2015-07-21
A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less
Micelle-templated composite quantum dots for super-resolution imaging.
Xu, Jianquan; Fan, Qirui; Mahajan, Kalpesh D; Ruan, Gang; Herrington, Andrew; Tehrani, Kayvan F; Kner, Peter; Winter, Jessica O
2014-05-16
Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging.
The mid-Cretaceous super plume, carbon dioxide, and global warming
NASA Technical Reports Server (NTRS)
Caldeira, Ken; Rampino, Michael R.
1991-01-01
Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.
Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events
NASA Astrophysics Data System (ADS)
Diener, Ross; Burgess, C. P.
2013-05-01
To solve the hierarchy problem, extra-dimensional models must explain why the new dimensions stabilize to the right size, and the known mechanisms for doing so require bulk scalars that couple to the branes. Because of these couplings the energetics of dimensional stabilization competes with the energetics of the Higgs vacuum, with potentially observable effects. These effects are particularly strong for one or two extra dimensions because the bulk-Higgs couplings can then be super-renormalizable or dimensionless. Experimental reach for such extra-dimensional Higgs `portals' are stronger than for gravitational couplings because they are less suppressed at low-energies. We compute how Higgs-bulk coupling through such a portal with two extra dimensions back-reacts onto properties of the Higgs boson. When the KK mass is smaller than the Higgs mass, mixing with KK modes results in an invisible Higgs decay width, missing-energy signals at high-energy colliders, and new mechanisms of energy loss in stars and supernovae. Astrophysical bounds turn out to be complementary to collider measurements, with observable LHC signals allowed by existing constraints. We comment on the changes to the Higgs mass-coupling relationship caused by Higgs-bulk mixing, and how the resulting modifications to the running of Higgs couplings alter vacuum-stability and triviality bounds.
Microspherical photonics: Sorting resonant photonic atoms by using light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu
2014-09-22
A method of sorting microspheres by resonant light forces in vacuum, air, or liquid is proposed. Based on a two-dimensional model, it is shown that the sorting can be realized by allowing spherical particles to traverse a focused beam. Under resonance with the whispering gallery modes, the particles acquire significant velocity along the beam direction. This opens a unique way of large-volume sorting of nearly identical photonic atoms with 1/Q accuracy, where Q is the resonance quality factor. This is an enabling technology for developing super-low-loss coupled-cavity structures and devices.
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; ...
2015-12-30
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less
Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler
NASA Astrophysics Data System (ADS)
Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.
2015-04-01
This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.
Resolution enhancement using simultaneous couple illumination
NASA Astrophysics Data System (ADS)
Hussain, Anwar; Martínez Fuentes, José Luis
2016-10-01
A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.
Universal dynamical properties preclude standard clustering in a large class of biochemical data.
Gomez, Florian; Stoop, Ralph L; Stoop, Ruedi
2014-09-01
Clustering of chemical and biochemical data based on observed features is a central cognitive step in the analysis of chemical substances, in particular in combinatorial chemistry, or of complex biochemical reaction networks. Often, for reasons unknown to the researcher, this step produces disappointing results. Once the sources of the problem are known, improved clustering methods might revitalize the statistical approach of compound and reaction search and analysis. Here, we present a generic mechanism that may be at the origin of many clustering difficulties. The variety of dynamical behaviors that can be exhibited by complex biochemical reactions on variation of the system parameters are fundamental system fingerprints. In parameter space, shrimp-like or swallow-tail structures separate parameter sets that lead to stable periodic dynamical behavior from those leading to irregular behavior. We work out the genericity of this phenomenon and demonstrate novel examples for their occurrence in realistic models of biophysics. Although we elucidate the phenomenon by considering the emergence of periodicity in dependence on system parameters in a low-dimensional parameter space, the conclusions from our simple setting are shown to continue to be valid for features in a higher-dimensional feature space, as long as the feature-generating mechanism is not too extreme and the dimension of this space is not too high compared with the amount of available data. For online versions of super-paramagnetic clustering see http://stoop.ini.uzh.ch/research/clustering. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoneda, M.; Berdyugina, S.; Kuhn, J.
Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Virmore » b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.« less
3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers
NASA Astrophysics Data System (ADS)
Wu, X.; Yang, T.
2013-12-01
In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney vector basis functions are used for spatial discretization within the finite element approach to approximate the electric field. A horizontal electric dipole was used as a source, and an array of the receiver located at the seabed. To capture the presence of the hydrocarbon layer, the forward responses at water depths from 100m to 3000m are calculated. The normalized Magnitude Versus Offset (N-MVO) and Phase Versus Offset (PVO) curve can reflect resistive characteristics of hydrocarbon layers. For future work, Graphics Process Unit (GPU) acceleration algorithm would be carried out to multiply the calculation efficiency greatly.
Solar cycle variations in polar cap area measured by the superDARN radars
NASA Astrophysics Data System (ADS)
Imber, S. M.; Milan, S. E.; Lester, M.
2013-10-01
present a long-term study, from January 1996 to August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere Super Dual Auroral Radar Network (SuperDARN). The HMB represents the equatorward extent of ionospheric convection and is used in this study as a measure of the global magnetospheric dynamics. We find that the yearly distribution of HMB latitudes is single peaked at 64° magnetic latitude for the majority of the 17 year interval. During 2003, the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17 year interval. In contrast, during the period 2008-2011, HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first long-term study of the polar cap area and the results demonstrate that there is a close relationship between the solar activity cycle and the area of the polar cap on a large-scale, statistical basis.
Operations and safety of Super 2 corridors with higher volumes.
DOT National Transportation Integrated Search
2011-06-01
As traffic volumes increase, in both urban and rural areas, the demand on the highway network also : increases. Specifically, as rural traffic volumes rise in Texas, the pressure on the states network of two-lane : highways rises accordingly. Prev...
Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy
NASA Astrophysics Data System (ADS)
Hasebe, Kazuki
2017-07-01
We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Ordering nanoparticles with polymer brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less
Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory.
Brandhuber, Andreas; Kostacińska, Martyna; Penante, Brenda; Travaglini, Gabriele
2017-10-20
Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.
NASA Astrophysics Data System (ADS)
Seuront, Laurent; Duponchel, Anne-Charlotte; Chapperon, Coraline
2007-11-01
The two-dimensional motion behaviour of the common intertidal gastropod Littorina littorea is investigated as a function of the immersion time from three sampling sites on an exposed rocky shore. A total of 90 individuals have been individually marked and tracked over 14 consecutive daylight low tide. Successive displacements show very intermittent behaviour, with a few localised large displacements over a wide range of small displacements. We show that successive displacements are described by flight length l d heavy-tailed distributions with P(ld)∼ld-μ. The very low values of the exponent μ ( μ≈2.22, 2.43 and 2.67) indicate that L. littorea flights fall into the category of super-diffusive processes. These exponents were significantly higher than the special value μ≈2 analytically and theoretically predicted to be the most advantageous in optimising long-term encounter statistics, especially for low-prey-density scenario. As natural selection should favour flexible behaviour, leading to different optimum searching statistics, under different conditions, our results support the idea that the differences in food concentration and distribution encountered at the different sites by L. littorea led to different heavy-tailed distributions observed for the most extreme displacements.
Ordering nanoparticles with polymer brushes
Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.
2017-12-08
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less
ERIC Educational Resources Information Center
Trotter, Andrew
1994-01-01
According to Stanley Pogrow, creator of HOTS program to teach disadvantaged students higher order thinking skills, strong curriculum and pedagogy should accompany every technological marvel. Pogrow believes education departments let schools down by producing philosophy, rather than tools teachers need. His next invention is SuperMath, which will…
Generalized expression for optical source fields
NASA Astrophysics Data System (ADS)
Kamacıoğlu, Canan; Baykal, Yahya
2012-09-01
A generalized optical beam expression is developed that presents the majority of the existing optical source fields such as Bessel, Laguerre-Gaussian, dark hollow, bottle, super Gaussian, Lorentz, super-Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, annular, Gauss-Legendre, vortex, also their higher order modes with their truncated, elegant and elliptical versions. Source intensity profiles derived from the generalized optical source beam fields are checked to match the intensity profiles of many individual known beam types. Source intensities for several interesting beam combinations are presented. Our generalized optical source beam field expression can be used to examine both the source characteristics and the propagation properties of many different optical beams in a single formulation.
The Atmospheric Dynamics of Venus
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David
2017-11-01
We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere. Another conspicuous feature of the atmospheric circulation is the presence of polar vortices. These are present in both hemispheres and are regions of warmer and lower clouds, seen prominently at infrared wavelengths, showing a highly variable morphology and motions. The vortices spin with a period of 2-3 days. The South polar vortex rotates around a geographical point which is itself displaced from the true pole of rotation by ˜ 3 degrees. The polar vortex is surrounded and constrained by the cold collar, an infrared-dark region of lower temperatures. We still lack detailed models of the mechanisms underlying the dynamics of these features and how they couple (or not) to the super-rotation. The nature of the super-rotation relates to the angular momentum stored in the atmosphere and how it is transported between the tropics and higher latitudes, and between the deep atmosphere and upper levels. The role of eddy processes is crucial, but likely involves the complex interaction of a variety of different types of eddy, either forced directly by radiative heating and mechanical interactions with the surface or through various forms of instability. Numerical models have achieved some significant recent success in capturing some aspects of the observed super-rotation, consistent with the scenario discussed by Gierasch (J. Atmos. Sci. 32:1038-1044, 1975) and Rossow and Williams (J. Atmos. Sci. 36:377-389, 1979), but many uncertainties remain, especially in the deep atmosphere. The theoretical framework developed to explain the circulation in Venus's atmosphere is reviewed, as well as the numerical models that have been built to elucidate the super-rotation mechanism. These tools are used to analyze the respective roles of the different waves in the processes driving the observed motions. Their limitations and suggested directions for improvements are discussed.
Kumar, Manoj; Padula, Matthew P.; Davey, Peter; Pernice, Mathieu; Jiang, Zhijian; Sablok, Gaurav; Contreras-Porcia, Loretto; Ralph, Peter J.
2017-01-01
Seagrasses are marine ecosystem engineers that are currently declining in abundance at an alarming rate due to both natural and anthropogenic disturbances in ecological niches. Despite reports on the morphological and physiological adaptations of seagrasses to extreme environments, little is known of the molecular mechanisms underlying photo-acclimation, and/or tolerance in these marine plants. This study applies the two-dimensional isoelectric focusing (2D-IEF) proteomics approach to identify photo-acclimation/tolerance proteins in the marine seagrass Zostera muelleri. For this, Z. muelleri was exposed for 10 days in laboratory mesocosms to saturating (control, 200 μmol photons m−2 s−1), super-saturating (SSL, 600 μmol photons m−2 s−1), and limited light (LL, 20 μmol photons m−2 s−1) irradiance conditions. Using LC-MS/MS analysis, 93 and 40 protein spots were differentially regulated under SSL and LL conditions, respectively, when compared to the control. In contrast to the LL condition, Z. muelleri robustly tolerated super-saturation light than control conditions, evidenced by their higher relative maximum electron transport rate and minimum saturating irradiance values. Proteomic analyses revealed up-regulation and/or appearances of proteins belonging to the Calvin-Benson and Krebs cycle, glycolysis, the glycine cleavage system of photorespiration, and the antioxidant system. These proteins, together with those from the inter-connected glutamate-proline-GABA pathway, shaped Z. muelleri photosynthesis and growth under SSL conditions. In contrast, the LL condition negatively impacted the metabolic activities of Z. muelleri by down-regulating key metabolic enzymes for photosynthesis and the metabolism of carbohydrates and amino acids, which is consistent with the observation with lower photosynthetic performance under LL condition. This study provides novel insights into the underlying molecular photo-acclimation mechanisms in Z. muelleri, in addition to identifying protein-based biomarkers that could be used as early indicators to detect acute/chronic light stress in seagrasses to monitor seagrass health. PMID:28144245
Kumar, Manoj; Padula, Matthew P; Davey, Peter; Pernice, Mathieu; Jiang, Zhijian; Sablok, Gaurav; Contreras-Porcia, Loretto; Ralph, Peter J
2016-01-01
Seagrasses are marine ecosystem engineers that are currently declining in abundance at an alarming rate due to both natural and anthropogenic disturbances in ecological niches. Despite reports on the morphological and physiological adaptations of seagrasses to extreme environments, little is known of the molecular mechanisms underlying photo-acclimation, and/or tolerance in these marine plants. This study applies the two-dimensional isoelectric focusing (2D-IEF) proteomics approach to identify photo-acclimation/tolerance proteins in the marine seagrass Zostera muelleri . For this, Z. muelleri was exposed for 10 days in laboratory mesocosms to saturating (control, 200 μmol photons m -2 s -1 ), super-saturating (SSL, 600 μmol photons m -2 s -1 ), and limited light (LL, 20 μmol photons m -2 s -1 ) irradiance conditions. Using LC-MS/MS analysis, 93 and 40 protein spots were differentially regulated under SSL and LL conditions, respectively, when compared to the control. In contrast to the LL condition, Z. muelleri robustly tolerated super-saturation light than control conditions, evidenced by their higher relative maximum electron transport rate and minimum saturating irradiance values. Proteomic analyses revealed up-regulation and/or appearances of proteins belonging to the Calvin-Benson and Krebs cycle, glycolysis, the glycine cleavage system of photorespiration, and the antioxidant system. These proteins, together with those from the inter-connected glutamate-proline-GABA pathway, shaped Z. muelleri photosynthesis and growth under SSL conditions. In contrast, the LL condition negatively impacted the metabolic activities of Z. muelleri by down-regulating key metabolic enzymes for photosynthesis and the metabolism of carbohydrates and amino acids, which is consistent with the observation with lower photosynthetic performance under LL condition. This study provides novel insights into the underlying molecular photo-acclimation mechanisms in Z. muelleri , in addition to identifying protein-based biomarkers that could be used as early indicators to detect acute/chronic light stress in seagrasses to monitor seagrass health.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemann, Christoph; Gekelman, W.; Winske, D.
We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized bymore » the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Shang-Min; Gu, Pin-Gao; Dobbs-Dixon, Ian
Three-dimensional (3D) equatorial trapped waves excited by stellar isolation and the resulting equatorial super-rotating jet in a vertical stratified atmosphere of a tidally locked hot Jupiter are investigated. Taking the hot Jupiter HD 189733b as a fiducial example, we analytically solve linear equations subject to stationary stellar heating with a uniform zonal-mean flow included. We also extract wave information in the final equilibrium state of the atmosphere from our radiative hydrodynamical simulation for HD 189733b. Our analytic wave solutions are able to qualitatively explain the 3D simulation results. Apart from previous wave studies, investigating the vertical structure of waves allowsmore » us to explore new wave features such as the wavefronts tilts related to the Rossby-wave resonance as well as dispersive equatorial waves. We also attempt to apply our linear wave analysis to explain some numerical features associated with the equatorial jet development seen in the general circulation model by Showman and Polvani. During the spin-up phase of the equatorial jet, the acceleration of the jet can be in principle boosted by the Rossby-wave resonance. However, we also find that as the jet speed increases, the Rossby-wave structure shifts eastward, while the Kelvin-wave structure remains approximately stationary, leading to the decline of the acceleration rate. Our analytic model of jet evolution implies that there exists only one stable equilibrium state of the atmosphere, possibly implying that the final state of the atmosphere is independent of initial conditions in the linear regime. Limitations of our linear model and future improvements are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun
Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicularmore » to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.« less
Tamai, Tsutomu; Taniyama, Oki; Oda, Kohei; Kasai, Ai; Ijyuin, Syo; Sakae, Haruka; Onishi, Hiroka; Tabu, Kazuaki; Kumagai, Kotaro; Mawatari, Seiichi; Moriuchi, Akihiro; Uto, Hirofumi; Ido, Akio
2018-05-01
We confirmed the clinical utility of a three-dimensional navigation system during transarterial chemoembolization. We evaluated 128 tumors in 91 patients enrolled between May 2015 and August 2016. We evaluated the accuracy of the three-dimensional navigation imaging system for all tumors. We compared the patients who were able to undergo route detection using three-dimensional navigation with previously treated patients who underwent transarterial chemoembolization without using three-dimensional navigation (n = 21). For 38 patients who underwent super-selective microcatheter insertion after a feeding artery was identified by three-dimensional navigation, we confirmed the relationship between the tumors and contrasted liver parenchyma and divided the computed tomography hepatic arteriography findings into four grades. Grade 1: an overlap of > 5 mm, grade 2: an overlap between 0 and 5 mm, grade 3: the borders of the tumor within the liver parenchyma but in contact with the edges, and grade 4: a tumor outside the borders of the liver parenchyma. Using the three-dimensional navigation system, we identified a tumor-feeding artery in 125/128 tumors (97.6%). Furthermore, this system allowed us to significantly reduce the volume of contrast media and the radiation exposure dose in patients undergoing an evaluation. We identified 15 grade 1 tumors (39.5%), 3 grade 2 tumors (7.9%), 11 grade 3 tumors (28.9%), and 9 grade 4 tumors (23.7%) according to our definitions. The three-dimensional navigation is useful not only for patients but also for surgeons who have relatively little experience. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Champagne, Bradley J; Nishtala, Madhuri; Brady, Justin T; Crawshaw, Benjamin P; Franklin, Morris E; Delaney, Conor P; Steele, Scott R
2017-10-01
Previous studies have demonstrated that obese patients (BMI >30) undergoing laparoscopic colectomy have longer operative times and increased complications when compared to non-obese cohorts. However, there is little data that specifically evaluates the outcomes of obese patients based on the degree of their obesity. The aim of this study was to evaluate the impact of increasing severity of obesity on patients undergoing laparoscopic colectomy. A retrospective review was performed of all patients undergoing laparoscopic colectomy between 1996 and 2013. Patients were classified according to their BMI as obese (BMI 30.0-39.9), morbidly obese (BMI 40.0-49.9), and super obese (BMI >50). Main outcome measures included conversion rate, operative time, estimated blood loss, post-operative complications, and length of stay. There were 923 patients who met inclusion criteria. Overall, 604 (65.4%), 257 (27.9%), and 62 (6.7%) were classified as obese (O), morbidly obese (MO), and super obese (SO), respectively. Clinicopathologic characteristics were similar among the three groups. The SO group had significantly higher conversion rates (17.7 vs. 7 vs. 4.8%; P = 0.031), longer average hospital stays (7.1 days vs. 4.9 vs. 3.4; P = 0.001), higher morbidity (40.3 vs. 16.3 vs. 12.4%; P = 0.001), and longer operative times (206 min vs. 184 vs. 163; P = 0.04) compared to the MO and O groups, respectively. The anastomotic leak rate in the SO (4.8%; P = 0.027) and MO males (4.1%; P = 0.033) was significantly higher than MO females (2.2%) and all obese patients (1.8%). Increasing severity of obesity is associated with worse perioperative outcomes following laparoscopic colectomy.
Tejo, Sampath Kumar; Kumar, Anil G; Kattimani, Vivekanand S; Desai, Priti D; Nalla, Sandeep; Chaitanya K, Krishna
2012-10-05
The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient's diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study.A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers' instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional stability of these interocclusal recording materials. Total 120 samples were made for observation and results were subjected to statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and then Tukey's Honestly Significant Difference (HSD) test for comparison among groups at the 0.05 level of significance. After statistical analysis of the data, results were obtained and analyzed for interpretation. The results shows significant difference between the dimensional stability of all three material at different intervals with p-value <0.05. Comparatively the polyether bite registration material showed less distortion with good dimensional stability compared to Poly vinyl siloxane bite (Jetbite), Zinc oxide eugenol(ZOE) bite (Super bite) at 1 hour, 24, 48, and 72 hours. The dimensional stability decreased with increase in time and is influenced by both material factor and time factor. Polyether was found to be more dimensionally stable interocclusal recording material, which was followed by Silicone and Zinc oxide eugenol (ZOE). The dimensional stability of Polyether was good. Zinc oxide eugenol is dimensionally more unstable when compared with polyether and polyvinyl siloxane. We recommend that the polyether interocclusal records must be articulated within 48 hours and Polyvinylsiloxane interocclusal records must be articulated within 24 hours and the ZOE should be articulated within 1 hour to get a correct restoration to have very minimum distortion and maximum satisfaction without failure of prosthesis.
2012-01-01
Background The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient’s diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. Purpose of the study The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Materials and method Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study. A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers’ instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional stability of these interocclusal recording materials. Total 120 samples were made for observation and results were subjected to statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and then Tukey’s Honestly Significant Difference (HSD) test for comparison among groups at the 0.05 level of significance. After statistical analysis of the data, results were obtained and analyzed for interpretation. Results The results shows significant difference between the dimensional stability of all three material at different intervals with p-value <0.05. Comparatively the polyether bite registration material showed less distortion with good dimensional stability compared to Poly vinyl siloxane bite (Jetbite), Zinc oxide eugenol(ZOE) bite (Super bite) at 1 hour, 24, 48, and 72 hours. Conclusion The dimensional stability decreased with increase in time and is influenced by both material factor and time factor. Polyether was found to be more dimensionally stable interocclusal recording material, which was followed by Silicone and Zinc oxide eugenol (ZOE). The dimensional stability of Polyether was good. Zinc oxide eugenol is dimensionally more unstable when compared with polyether and polyvinyl siloxane. We recommend that the polyether interocclusal records must be articulated within 48 hours and Polyvinylsiloxane interocclusal records must be articulated within 24 hours and the ZOE should be articulated within 1 hour to get a correct restoration to have very minimum distortion and maximum satisfaction without failure of prosthesis. PMID:23039395
The influence of granulation on super disintegrant performance.
Zhao, Na; Augsburger, Larry L
2006-02-01
The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.
Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei
2014-02-01
Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.
NASA Astrophysics Data System (ADS)
Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.
2013-02-01
A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.
Super-resolved microsphere-assisted Mirau digital holography by oblique illumination
NASA Astrophysics Data System (ADS)
Abbasian, Vahid; Ganjkhani, Yasaman; Akhlaghi, Ehsan A.; Anand, Arun; Javidi, Bahram; Moradi, Ali-Reza
2018-06-01
In this paper, oblique illumination is used to improve the lateral resolution and edge sharpness in microsphere (MS)-assisted Mirau digital holographic microscopy (Mirau-DHM). Abbe showed that tilting the illumination light allows entrance of higher spatial frequencies into the imaging system thus increasing the resolution power. We extended the idea to common-path DHM, based on Mirau objective, toward super-resolved 3D imaging. High magnification Mirau objectives are very expensive and low-magnification ones suffer from low resolution, therefore, any attempt to increase the effective resolution of the system may be of a great interest. We have already demonstrated the effective resolution increasing of a Mirau-DHM system by incorporating a transparent MS within the working distance of the objective. Here, we show that by integrating a MS-assisted Mirau-DHM with the oblique illumination even higher resolutions can be achieved. We have applied the technique for various samples and have shown the increase in the lateral resolution for the both cases of Mirau-DHM with and without the MS.
Simulations of radiation-damaged 3D detectors for the Super-LHC
NASA Astrophysics Data System (ADS)
Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.
2008-07-01
Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.
Effect of different grinding burs on the physical properties of zirconia
2016-01-01
PURPOSE Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. MATERIALS AND METHODS Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. RESULTS After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura- Green showed the lowest strength. CONCLUSION The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding. PMID:27141258
Effect of different grinding burs on the physical properties of zirconia.
Lee, Kyung-Rok; Choe, Han-Cheol; Heo, Yu-Ri; Lee, Jang-Jae; Son, Mee-Kyoung
2016-04-01
Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura- Green showed the lowest strength. The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding.
Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction
Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin
2016-01-01
The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2). SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation. PMID:28773784
Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin
2016-08-06
The effects of CO₂-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO₂ in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO₂. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO₂. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO₂, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO₂). SC-CO₂ causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO₂. The EDS results show that CO₂-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.
Fahmy, M A; Abdalla, E F
1998-01-01
The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.
The Epidemiology of Injuries in Australian Professional Rugby Union 2014 Super Rugby Competition
Whitehouse, Timothy; Orr, Robin; Fitzgerald, Edward; Harries, Simon; McLellan, Christopher P.
2016-01-01
Background: Rugby union is a collision-based ball sport played at the professional level internationally. Rugby union has one of the highest reported incidences of injury of all team sports. Purpose: To identify the characteristics, incidence, and severity of injuries occurring in Australian professional Super Rugby Union. Design: Descriptive epidemiology study. Methods: The present study was a prospective epidemiology study on a cohort of 180 professional players from 5 Australian Super Rugby teams during the 2014 Super Rugby Union Tournament. Team medical staff collected and submitted daily training and match-play injury data through a secure, web-based electronic platform. The injury data included the main anatomic location of the injury, specific anatomic structure of the injury, injury diagnosis, training or match injury occurrence, main player position, mechanism of injury, and the severity of the injury quantified based on the number of days lost from training and/or competition due to injury. Results: The total combined incidence rate for injury during training and match-play across all Australian Super Rugby Union teams was 6.96 per 1000 hours, with a mean injury severity of 37.45 days lost from training and competition. The match-play injury incidence rate was 66.07 per 1000 hours, with a mean severity of 39.80 days lost from training and competition. No significant differences were observed between forward- and back-playing positions for match or training injury incidence rate or severity. Conclusion: The incidence of injury for the present study was lower during match-play than has previously been reported in professional rugby union; however, the overall time loss was higher compared with previous studies in professional rugby union. The high overall time loss was due fundamentally to a high incidence of injuries with greater than 28 days’ severity. PMID:27069947
Knowledge and psychosocial effects of the film super size me on young adults.
Cottone, Ellen; Byrd-Bredbenner, Carol
2007-07-01
The prevalence of overweight and obesity has risen dramatically over the past 2 decades. Among the many contributing factors is increased consumption of fast foods. Mass media outlets have cited the potential of the film Super Size Me to alter this behavior. The purpose of this study was to determine the effect of this film on young adults' fast-food knowledge and psychosocial measures (ie, attitudes, self-efficacy, healthy weight locus of control, and stage of change) and evaluate the effectiveness of this film as a form of emotional arousal and consciousness-raising. A pretest-posttest follow-up control group design with random assignment was used. Young adults (n=135; 54% female) completed the pretest; approximately 10 days later viewed a film then completed the posttest; and about 9 days later completed the follow-up test. The experimental group (n=80) viewed Super Size Me. The control group (n=55) viewed an unrelated film. Unpaired t tests revealed that the study groups did not differ significantly (P>0.05) at pretest on any measure. Analysis of covariance, with pretest score as the covariate, revealed the experimental group scored substantially better than the control group at posttest on knowledge and nearly all psychosocial measures. In addition, the experimental group continued to score substantially higher than the control group at follow-up on knowledge, stage of change, and consciousness-raising and lower on external: chance health locus of control. Super Size Me represents a potentially powerful tool for nutrition education. Nutrition practitioners should consider using Super Size Me as a consciousness-raising and emotional arousal change process with patients in pre-action stages of change for reducing fast-food intake.
Emergent dimensions and branes from large-N confinement
NASA Astrophysics Data System (ADS)
Cherman, Aleksey; Poppitz, Erich
2016-12-01
N =1 S U (N ) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the circle size L . Making L small leads to calculable nonperturbative color confinement, mass gap, and string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy, which takes values in ZN. Furthermore, the low-energy description is given by a nontrivial gapless theory, with a space-like z =2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z =1 , and lead to an emergent Lorentz symmetry at small L . Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.
Three-dimensional nanoscale imaging by plasmonic Brownian microscopy
NASA Astrophysics Data System (ADS)
Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang
2017-12-01
Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.
Injuries in professional Rugby Union.
Targett, S G
1998-10-01
To document injury rates in professional rugby players in the Rugby Super 12 competition and to act as a pilot study for future studies of rugby injuries. Prospective longitudinal study encompassing the 1997 Super 12 rugby season. A New Zealand Super 12 rugby squad. 25 professional rugby players (replacement players were used for unavailable players, so although 30 different players were used during the season, there were only 25 in the squad at any one time). An "injury" was defined as something that prevented a player from taking part in two training sessions, from playing the next week, or something requiring special medical treatment (suturing or special investigations). An injury was "significant" if it prevented the player from being able to play one week after sustaining it (that is, if it made the player miss the next match). The overall injury rate was 120/1000 player hours. The rate of significant injuries was 45/1000 player hours. Those playing the position of "forward" had a higher overall injury rate than other players, but there was no difference in significant injury rate between the forwards and the backs. Injuries that caused players to miss game time occurred almost exclusively during the pre-season program or in the final third of the season. The majority of injuries were musculo-tendinous sprains or strains. The phase of play responsible for the majority of injuries was the tackle. The most frequently injured body part was the head and face. No catastrophic injuries occurred during the study period. Injury rates increase with increasing grade of rugby, injury rates in the Super 12 competition being higher than in first grade rugby. There is very little quality data on rugby injuries, and the few studies available use different methods of data collection and injury definition. There is a pressing need for the collection of accurate ongoing epidemiological data on injuries in rugby.
Varieties of sweet sorghum Super-1 and Super-2 and its equipment for bioethanol in Indonesia
NASA Astrophysics Data System (ADS)
Pabendon, M. B.; Efendi, R.; Santoso, S. B.; Prastowo, B.
2017-05-01
The demands for alternative sources of energy are currently growing because people now are more aware of the many negative impacts fossil fuel gives to the environment. Plant based renewable energy provides potential sources of energy with advantages of cleaner fuel effect and capability of integration with food crop production. Sorghum have been considered to be a highly potential source of food, feed and fuel, especially sweet stalk sorghum that posses both functions as source of food from its grain and fuel made from its stalk juice. Sorghum varieties are well known to have excellent adaptability in marginal areas, especially drought prone areas where other food crops are unable to thrive. The current paper aimed to share ongoing research on many functional uses of sweet stalk sorghum varieties released at Indonesian Cereals Research Institute (ICERI). Among many varieties that had been released were two sweet stalk sorghum varieties SUPER-1 and SUPER-2 released in 2013 that stands out in biomass yield and bioethanol production. Based on various researches conducted at different location and planting season, yield potential of biomass ranged at 30 - 40 t/ha with higher yield occurred during dry season. Stalk juice sugar content in brix were found to be higher in dry season ranged at 13.6 % to 18.4 %, and the amount of juice stalk was obtained at about 30-50 % from total biomass yield. Furthermore, bioethanol production from stalk juice after fermentation was at the range of 8 to 10 % from total stalk juice volume. Modification of processing equipment of bioethanol have also been carried out and was able to increased the concentration of ethanol being distilled from 85% -92% to 90% -95%. Another result obtained was able to decreased fermentation time from 14-21 days to 6-10 days. Furthermore, the yield of ethanol from juice was also from an average of 4.95% to 6.75%.
In vitro comparison of the tensile bond strength of denture adhesives on denture bases.
Kore, Doris R; Kattadiyil, Mathew T; Hall, Dan B; Bahjri, Khaled
2013-12-01
With several denture adhesives available, it is important for dentists to make appropriate patient recommendations. The purpose of this study was to evaluate the tensile bond strength of denture adhesives on denture base materials at time intervals of up to 24 hours. Fixodent, Super Poligrip, Effergrip, and SeaBond denture adhesives were tested with 3 denture base materials: 2 heat-polymerized (Lucitone 199 and SR Ivocap) and 1 visible-light-polymerized (shade-stable Eclipse). Artificial saliva with mucin was used as a control. Tensile bond strength was tested in accordance with American Dental Association specifications at 5 minutes, 3 hours, 6 hours, 12 hours, and 24 hours after applying the adhesive. Maximum forces before failure were recorded in megapascals (MPa), and the data were subjected to a 2-way analysis of variance (α=.05). All 4 adhesives had greater tensile bond strength than the control. Fixodent, Super Poligrip, and SeaBond had higher tensile bond strength values than Effergrip. All adhesives had the greatest tensile bond strength at 5 minutes and the least at 24 hours. The 3 denture bases produced significantly different results with each adhesive (P<.001). Lucitone 199 with the adhesives had the greatest tensile bond strength, followed by Ivocap and Eclipse. All 4 adhesives had greater tensile bond strength than the control, and all 4 adhesives were strongest at the 5-minute interval. On all 3 types of denture bases, Effergrip produced significantly lower tensile bond strength, and Fixodent, Super Poligrip, and SeaBond produced significantly higher tensile bond strength. At 24 hours, the adhesive-base combinations with the highest tensile bond strength were Fixodent on Lucitone 199, Fixodent on Eclipse, Fixodent on Ivocap, and Super Poligrip on Ivocap. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Fundamental techniques for resolution enhancement of average subsampled images
NASA Astrophysics Data System (ADS)
Shen, Day-Fann; Chiu, Chui-Wen
2012-07-01
Although single image resolution enhancement, otherwise known as super-resolution, is widely regarded as an ill-posed inverse problem, we re-examine the fundamental relationship between a high-resolution (HR) image acquisition module and its low-resolution (LR) counterpart. Analysis shows that partial HR information is attenuated but still exists, in its LR version, through the fundamental averaging-and-subsampling process. As a result, we propose a modified Laplacian filter (MLF) and an intensity correction process (ICP) as the pre and post process, respectively, with an interpolation algorithm to partially restore the attenuated information in a super-resolution (SR) enhanced image image. Experiments show that the proposed MLF and ICP provide significant and consistent quality improvements on all 10 test images with three well known interpolation methods including bilinear, bi-cubic, and the SR graphical user interface program provided by Ecole Polytechnique Federale de Lausanne. The proposed MLF and ICP are simple in implementation and generally applicable to all average-subsampled LR images. MLF and ICP, separately or together, can be integrated into most interpolation methods that attempt to restore the original HR contents. Finally, the idea of MLF and ICP can also be applied for average, subsampled one-dimensional signal.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network
Wang, Zhongyuan; Wang, Lei; Ren, Yexian
2018-01-01
Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods. PMID:29652838
NASA Astrophysics Data System (ADS)
Zhang, Song; Zhang, Hong; Xu, Ting; Wang, Wenxin; Zhu, Yuhang; Li, Daimin; Zhang, Zhiyi; Yi, Juemin; Wang, Wei
2018-06-01
In this paper we investigate the strong exciton-plasmon coupling in a hybrid system consisting of an atomic thick WS2 monolayer and a gold nanogroove array. We theoretically identify the coexistence of two damping pathways: a coherent damping pathway resulting from the resonant dipole-dipole interaction and a coupling-induced incoherent damping pathway due to the spontaneous emissions of a photon by one subsystem and its subsequent reabsorption by the other. We show that the interplay between both interaction processes not only determines the optical property of the hybrid system, but also results in a pronounced modification of the radiative damping due to the formation of super- and subradiant polariton states. Importantly, we reveal that the radiative damping property of the polariton modes is determined only by the effect of coupling-induced sub- and super-radiance, which is distinctly different from that previously observed in a metal-molecular hybrid system where pure dephasing of J-aggregate excitons dominates the polariton dynamics. Our findings may pave the way towards active manipulation of polariton dynamics and offer possibilities for realizing coherent active control in novel plasmonic devices.
Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.
Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian
2018-04-13
Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.
Super DIOS: Future X-ray Spectroscopic Mission to Search for Dark Baryons
NASA Astrophysics Data System (ADS)
Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Ichinohe, Y.; Kitazawa, S.; Kosaka, K.; Hayakawa, R.; Nunomura, K.; Mitsuda, K.; Yamasaki, N. Y.; Kikuchi, T.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Seki, D.; Otsuka, K.; Ishihara, M.; Osato, K.; Ota, N.; Tomariguchi, M.; Nagai, D.; Lau, E.; Sato, K.
2018-04-01
The updated program of the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS), called as Super DIOS, is planned to search for dark baryons in the form of warm-hot intergalactic medium (WHIM) with high-resolution X-ray spectroscopy. The mission will detect redshifted emission lines from OVII, OVIII and other ions, leading to an overall understanding of the physical nature and spatial distribution of dark baryons as a function of cosmological timescale. We have started the conceptual design of the satellite and onboard instruments, focusing on the era of 2030s. The major change will be an improved angular resolution of the X-ray telescope. Super DIOS will have a 10-arcsec resolution, which is an improvement by a factor of about 20 over DIOS. With this resolution, most of the contaminating X-ray sources will be separated, and the level of the diffuse X-ray background will be much reduced after subtraction of point sources. This will give us higher sensitivity to map out the WHIM in emission.
Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging
Chen, Guanqun; Zou, Ningmu; Chen, Bo; ...
2017-11-01
Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less
ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori
2014-01-01
Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and themore » efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.« less
Lee, Seungjong; Park, Kyoungyoon; Kim, Hyuntai; Vazquez-Zuniga, Luis Alonso; Kim, Jinseob; Jeong, Yoonchan
2018-04-30
We report the intermittent burst of a super rogue wave in the multi-soliton (MS) regime of an anomalous-dispersion fiber ring cavity. We exploit the spatio-temporal measurement technique to log and capture the shot-to-shot wave dynamics of various pulse events in the cavity, and obtain the corresponding intensity probability density function, which eventually unveils the inherent nature of the extreme events encompassed therein. In the breathing MS regime, a specific MS regime with heavy soliton population, the natural probability of pulse interaction among solitons and dispersive waves exponentially increases owing to the extraordinarily high soliton population density. Combination of the probabilistically started soliton interactions and subsequently accompanying dispersive waves in their vicinity triggers an avalanche of extreme events with even higher intensities, culminating to a burst of a super rogue wave nearly ten times stronger than the average solitons observed in the cavity. Without any cavity modification or control, the process naturally and intermittently recurs within a time scale in the order of ten seconds.
Modelling of Divertor Detachment in MAST Upgrade
NASA Astrophysics Data System (ADS)
Moulton, David; Carr, Matthew; Harrison, James; Meakins, Alex
2017-10-01
MAST Upgrade will have extensive capabilities to explore the benefits of alternative divertor configurations such as the conventional, Super-X, x divertor, snowflake and variants in a single device with closed divertors. Initial experiments will concentrate on exploring the Super-X and conventional configurations, in terms of power and particle loads to divertor surfaces, access to detachment and its control. Simulations have been carried out with the SOLPS5.0 code validated against MAST experiments. The simulations predict that the Super-X configuration has significant advantages over the conventional, such as lower detachment threshold (2-3x lower in terms of upstream density and 4x higher in terms of PSOL). Synthetic spectroscopy diagnostics from these simulations have been created using the Raysect ray tracing code to produce synthetic filtered camera images, spectra and foil bolometer data. Forward modelling of the current set of divertor diagnostics will be presented, together with a discussion of future diagnostics and analysis to improve estimates of the plasma conditions. Work supported by the RCUK Energy Programme [Grant Number EP/P012450/1] and EURATOM.
Bolger, P G; Stewart-Brown, S L; Newcombe, E; Starbuck, A
1991-01-01
OBJECTIVE--To see if there were differences in referral rates and abnormalities detected from two areas that were operating different preschool vision screening programmes. DESIGN--Cohort study using case notes of referrals. SETTING--Community based secondary referral centres in the county of Avon. PATIENTS--263 referrals from a child population of 7105 in Southmead district, an area that used orthoptists as primary vision screeners; 111 referrals from a child population of 2977 in Weston-super-Mare, an area that used clinical medical officers for screening. MAIN OUTCOME MEASURES--Amblyopia and squint detection rates, together with false positive referral rates. RESULTS--The amblyopia detection rate in Southmead district was significantly higher than in Weston-super-Mare (11/1000 children v 5/1000), as was the detection rate of squint (11/1000 v 3/1000). However, the false positive referral rate from Southmead was significantly lower than that from Weston-super-Mare (9/1000 v 23/1000). CONCLUSION--Preschool vision screening using orthoptists as primary screeners offers a more effective method of detecting visual abnormalities than using clinical medical officers. PMID:1747671
Fear of the human 'super predator' reduces feeding time in large carnivores.
Smith, Justine A; Suraci, Justin P; Clinchy, Michael; Crawford, Ayana; Roberts, Devin; Zanette, Liana Y; Wilmers, Christopher C
2017-06-28
Large carnivores' fear of the human 'super predator' has the potential to alter their feeding behaviour and result in human-induced trophic cascades. However, it has yet to be experimentally tested if large carnivores perceive humans as predators and react strongly enough to have cascading effects on their prey. We conducted a predator playback experiment exposing pumas to predator (human) and non-predator control (frog) sounds at puma feeding sites to measure immediate fear responses to humans and the subsequent impacts on feeding. We found that pumas fled more frequently, took longer to return, and reduced their overall feeding time by more than half in response to hearing the human 'super predator'. Combined with our previous work showing higher kill rates of deer in more urbanized landscapes, this study reveals that fear is the mechanism driving an ecological cascade from humans to increased puma predation on deer. By demonstrating that the fear of humans can cause a strong reduction in feeding by pumas, our results support that non-consumptive forms of human disturbance may alter the ecological role of large carnivores. © 2017 The Author(s).
Conformal supergravity in five dimensions: new approach and applications
NASA Astrophysics Data System (ADS)
Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph; Tartaglino-Mazzucchelli, Gabriele
2015-02-01
We develop a new off-shell formulation for five-dimensional (5D) conformal supergravity obtained by gauging the 5D superconformal algebra in superspace. An important property of the conformal superspace introduced is that it reduces to the super-conformal tensor calculus (formulated in the early 2000's) upon gauging away a number of superfluous fields. On the other hand, a different gauge fixing reduces our formulation to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most general off-shell supergravity-matter couplings. Using the conformal superspace approach, we show how to reproduce practically all off-shell constructions derived so far, including he supersymmetric extensions of R 2 terms, thus demonstrating the power of our formulation. Furthermore, we construct for the first time a supersymmetric completion of the Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vector multiplet. In addition, we present several procedures to generate higher-order off-shell invariants in supergravity, including higher-derivative ones. The covariant projective multiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly superconformal action principle is given. We also introduce unconstrained prepotentials for the vector multiplet, the multiplet (i.e., the linear multiplet without central charge) and multiplets, with n = 0 , 1 , . . . Superform formulations are given for the BF action and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric theories with gauged central charge in conformal superspace.
Effects of diet on rate of body mass gain by wintering canvasbacks
Jorde, Dennis G.; Haramis, G.M.; Bunck, C.M.; Pendleton, G.W.
1995-01-01
Because habitat degradation has led to the loss of submerged vegetation in Chesapeake Bay, wintering canvasbacks (Aythya valisineria) have shifted from a plant diet of American wildcelery (Vallisneria americana) to an animal diet of Baltic clams (Macoma balthica). We conducted experiments with pen-reared canvasbacks (n = 32, 1990; n = 32, 1991) to assess the effect of this diet change on mass recovery rate following a simulated period of food deprivation. During the recovery phase, canvasbacks were fed ad libitum either (1) Baltic clams (1991 only), (2) tubers of wildcelery, 3) corn, or (4) commercial control diet. Initial body mass of ducks did not differ between years (P = 0.754) or among pens (P > 0.264) or diets within years (1990, P = 0.520; 1991, P = 0.684). Body mass decline during food deprivation (x super(-) = 26.0 g/day plus or minus 0.6 SE) did not differ among diets (1990, P = 0.239; 1991, P = 0.062) or between sexes in 1990 (P = 0.197), but was greater (P = 0.039) for males (x super(-) = 28 g/day plus or minus 0.8 SE) than females (x super(-) = 25 g/day plus or minus 0.9) in 1991. Mass recovery rate differed between diets (clams excluded) in 1990 (P = 0.003) and 1991 (clams included) (P = 0.011); mean = 42 g/bird super(-1)/day super(-1) plus or minus 3.8 (SE) control diet, mean = 32 g/bird super(-1)/day super(-1) plus or minus 2.8 wildcelery tubers, mean = 24 g/bird super(-1)/day super(-1) plus or minus 4.9 whole corn, and mean = 23 g/bird super(-1)/day super(-1) plus or minus 1.0 Baltic clams. Canvasbacks consumed an average of 2,169 g/bird super(-1)/day super(-1) of Baltic clams, 1,158 g/bird super(-1)/day super(-1) of wildcelery tubers, 152 g/bird super(-1)/day super(-1) whole corn, and 208 g/bird super(-1)/day super(-1) (dry mass) control diet during recovery. Managers should restore and maintain aquatic plant foods that enhance winter survival of canvasbacks and other waterfowl in response to declining habitat quality.
[Super sweet corn hybrids adaptability for industrial processing. I freezing].
Alfonzo, Braunnier; Camacho, Candelario; Ortiz de Bertorelli, Ligia; De Venanzi, Frank
2002-09-01
With the purpose of evaluating adaptability to the freezing process of super sweet corn sh2 hybrids Krispy King, Victor and 324, 100 cobs of each type were frozen at -18 degrees C. After 120 days of storage, their chemical, microbiological and sensorial characteristics were compared with a sweet corn su. Industrial quality of the process of freezing and length and number of rows in cobs were also determined. Results revealed yields above 60% in frozen corns. Length and number of rows in cobs were acceptable. Most of the chemical characteristics of super sweet hybrids were not different from the sweet corn assayed at the 5% significance level. Moisture content and soluble solids of hybrid Victor, as well as total sugars of hybrid 324 were statistically different. All sh2 corns had higher pH values. During freezing, soluble solids concentration, sugars and acids decreased whereas pH increased. Frozen cobs exhibited acceptable microbiological rank, with low activities of mesophiles and total coliforms, absence of psychrophiles and fecal coliforms, and an appreciable amount of molds. In conclusion, sh2 hybrids adapted with no problems to the freezing process, they had lower contents of soluble solids and higher contents of total sugars, which almost doubled the amount of su corn; flavor, texture, sweetness and appearance of kernels were also better. Hybrid Victor was preferred by the evaluating panel and had an outstanding performance due to its yield and sensorial characteristics.
Golner, Thomas M.; Mehta, Shirish P.
2005-07-26
A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.
NASA Astrophysics Data System (ADS)
Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing
2013-08-01
The method of directly printing liquid metal films as highly conductive and super compliant electrodes for dielectric elastomer actuator (DEA) was proposed and experimentally demonstrated with working mechanisms interpreted. Such soft electrodes enable DE film to approach its maximum strain and stress at relatively low voltages. Further, its unique capability of achieving two-dimensional in-plane self-healing by merely actuating the DEA was disclosed, which would allow actuators more tolerant to fault and resilient to abusive environments. This high performance actuator has important value in a wide spectrum of situations ranging from artificial muscle, flexible electronics to smart clothing etc.
Convection vortex at dayside of high latitude ionosphere
NASA Astrophysics Data System (ADS)
Alexeev, I. I.; Feldstein, Y. I.; Greenwald, R. A.
Investigation of mesoscale convection in the dayside sector by SuperDARN radars has revealed the existence in afternoon sector a convection vortex whose location, intensity and convection direction coincide with the polar cap geomagnetic disturbances (DPC), which is reviewed thoroughly. Possible mechanism of the DPC generation are also described. Importance of the Earth's co-rotation potential is discussed. The existence of DPC vortex is interpreted in the framework of three dimensional current system with the field-aligned currents of coaxial cable type. In the vortex focus, the current outflowing from the ionosphere is concentrated whereas the inflowing current is distributed along the current system periphery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giveon, Amit; Kutasov, David
We show that in any two dimensional conformal field theory with (2, 2) super-symmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit n → 1 it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in stringmore » theory on AdS3.« less
Three-dimensional wide-field pump-probe structured illumination microscopy
Kim, Yang-Hyo; So, Peter T.C.
2017-01-01
We propose a new structured illumination scheme for achieving depth resolved wide-field pump-probe microscopy with sub-diffraction limit resolution. By acquiring coherent pump-probe images using a set of 3D structured light illumination patterns, a 3D super-resolution pump-probe image can be reconstructed. We derive the theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination pump-probe imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate a lateral resolution improvement by a factor of three and providing 0.5 µm level axial optical sectioning. PMID:28380860
All Aboard the Information Super...Railway!
ERIC Educational Resources Information Center
Klassen, Frank, Jr.
1994-01-01
New information technology is viewed as analogous to a railway network that serves many, in diverse areas, and leads users to new frontiers. It is suggested that higher education can contribute to this system by developing useful new applications, providing guidelines for appropriate "passenger" behavior, and enhancing quality. (MSE)
Taguchi, Masayuki; Namikawa, Kazuhiko; Maruo, Takuya; Saito, Miyoko; Lynch, Jonathan; Sahara, Hiroeki
2012-10-01
The objective of this study was to determine whether post-vaccination antibody titers vary according to body weight in adult dogs. Antibody titers against canine parvovirus type 2 (CPV-2), canine distemper virus (CDV), and canine adenovirus type 1 (CAdV-1) were measured for 978 domestic adult dogs from 2 to 6 y of age. The dogs had been vaccinated approximately 12 mo earlier with a commercial combination vaccine. The dogs were divided into groups according to their weight. It was found that mean antibody titers in all weight groups were sufficient to prevent infection. Intergroup comparison, however, revealed that CPV-2 antibody titers were significantly higher in the Super Light (< 5 kg) group than in the Medium (10 to 19.9 kg) and Heavy (> 20 kg) groups and were also significantly higher in the Light (5 to 9.9 kg) group than in the Heavy group. Antibody titers against CDV were significantly higher in the Super Light, Light, and Medium groups than in the Heavy group. There were no significant differences among the groups for the CAdV-1 antibody titers.
A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
NASA Astrophysics Data System (ADS)
Han-yu, Wei; Tie-cheng, Xia
2016-01-01
A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11547175, 11271008 and 61072147), the First-class Discipline of University in Shanghai, China, and the Science and Technology Department of Henan Province, China (Grant No. 152300410230).
Anwer, Shoaib; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng
2017-04-05
Low cycling stability and poor rate performance are two of the distinctive drawbacks of most electrode materials for sodium-ion batteries (SIBs). Here, inspired by natural flower structures, we take advantage of the three-dimensional (3D) hierarchical flower-like stable microstructures formed by two-dimensional (2D) nanosheets to solve these problems. By precise control of the hydrothermal synthesis conditions, a novel three-dimensional (3D) flower-like architecture consisting of 2D Na 2 Ti 3 O 7 nanosheets (Na-TNSs) has been successfully synthesized. The arbitrarily arranged but closely interlinked thin nanosheets in carnation-shaped 3D Na 2 Ti 3 O 7 microflowers (Na-TMFs) originate a good network of electrically conductive paths in an electrode. Thus, Na-TMFs can get electrons from all directions and be fully utilized for sodium-ion insertion and extraction reactions, which can improve sodium storage properties with enhanced rate capability and super cycling performance. Furthermore, the large specific surface area provides a high capacity, which can be ascribed to the pseudo-capacitance effect. The wettability of the electrolyte was also improved by the porous and crumpled structure. The remarkably improved cycling performance and rate capability of Na-TMFs make a captivating case for its development as an advanced anode material for SIBs.
NASA Astrophysics Data System (ADS)
Fang, Nong-Yu; Wu, Fu-Gen; Zhang, Xin
2008-08-01
We present the acoustic band gaps (ABGs) for a geometry of three-dimensional complex acoustic crystals: the NaCl-type structure. By using the super cell method based on the plane-wave expansion method (PWE), we study the three configurations formed by water objects (either a sphere of different sizes or a cube) located at the vertices of simple cubic (SC) lattice and surrounded by mercury background. The numerical results show that ABGs larger than the original SC structure for all the three configurations can be obtained by adjusting the length-diameter ratio of adjacent objects but keeping the filling fraction (f = 0.25) of the unit cell unchanged. We also compare our results with that of 3D solid composites and find that the ABGs in liquid composites are insensitive to the shapes as that in the solid composites. We further prove that the decrease of the translation group symmetry is more efficient in creating the ABGs in 3D water-mercury systems.
All Chern-Simons invariants of 4D, N = 1 gauged superform hierarchies
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Linch, William D.; Randall, Stephen; Robbins, Daniel
2017-04-01
We give a geometric description of supersymmetric gravity/(non-)abelian p-form hierarchies in superspaces with 4D, N = 1 super-Poincaré invariance. These hierarchies give rise to Chern-Simons-like invariants, such as those of the 5D, N = 1 graviphoton and the eleven-dimensional 3-form but also generalizations such as Green-Schwarz-like/ BF -type couplings. Previous constructions based on prepotential superfields are reinterpreted in terms of p-forms in superspace thereby elucidating the underlying geometry. This vastly simplifies the calculations of superspace field-strengths, Bianchi identities, and Chern-Simons invariants. Using this, we prove the validity of a recursive formula for the conditions defining these actions for any such tensor hierarchy. Solving it at quadratic and cubic orders, we recover the known results for the BF -type and cubic Chern-Simons actions. As an application, we compute the quartic invariant ˜ AdAdAdA + . . . relevant, for example, to seven-dimensional supergravity compactifications.
Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects.
Sidorenko, Pavel; Kfir, Ofer; Shechtman, Yoav; Fleischer, Avner; Eldar, Yonina C; Segev, Mordechai; Cohen, Oren
2015-09-08
Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa.
Lidke, Diane S; Lidke, Keith A
2012-06-01
A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.
A review of the magnetic properties, synthesis methods and applications of maghemite
NASA Astrophysics Data System (ADS)
Shokrollahi, H.
2017-03-01
It must be pointed out that maghemite (γ-Fe2O3) with a cubic spinel structure is a crucial material for various applications, including spin electronic devices, high-density magnetic recording, nano-medicines and biosensors. This paper has to do with a review study on the synthesis methods, magnetic properties and application of maghemite in the form of one-dimensional (1D) nanostructured materials, such as nanoparticles, nanotubes, nano-rods, and nanowires, as well as two-dimensional (2D) thin films. The results revealed that maghemite is widely used in the biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) and magnetic recording devices. The unmodified and Co/Mn modified maghemite thin films prepared by the dc-reactive magnetron sputtering show the excellent values of coercivity 2100 Oe and 3900 Oe, respectively, for the magnetic storage application. The super-paramagnetic particles with 7 nm size and the saturation magnetization of 80 emu/g prepared by the established thermolysis method are good candidates for bio-medical applications.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Konstantinos N.; Azuma, Takehiro; Ito, Yuta; Nishimura, Jun; Papadoudis, Stratos Kovalkov
2018-02-01
In recent years the complex Langevin method (CLM) has proven a powerful method in studying statistical systems which suffer from the sign problem. Here we show that it can also be applied to an important problem concerning why we live in four-dimensional spacetime. Our target system is the type IIB matrix model, which is conjectured to be a nonperturbative definition of type IIB superstring theory in ten dimensions. The fermion determinant of the model becomes complex upon Euclideanization, which causes a severe sign problem in its Monte Carlo studies. It is speculated that the phase of the fermion determinant actually induces the spontaneous breaking of the SO(10) rotational symmetry, which has direct consequences on the aforementioned question. In this paper, we apply the CLM to the 6D version of the type IIB matrix model and show clear evidence that the SO(6) symmetry is broken down to SO(3). Our results are consistent with those obtained previously by the Gaussian expansion method.
Behavioral Effects of Enrichment and Nicotine in Female Sprague Dawley Rats
2009-05-01
consumption, has increased 15% over the past two decades, where restaurants and fast foods have higher caloric density, higher saturated fasts, and...SUPER condition). The amount of food consumed was calculated based on the change of weight in food measures on subsequent days. (Therefore, while...food consumption data analyses used the Day 3 values as covariates. There was a significant effect for time, such that all animals consumed more food
A low-cost microwell device for high-resolution imaging of neurite outgrowth in 3D
NASA Astrophysics Data System (ADS)
Ren, Yuan; Mlodzianoski, Michael J.; Cheun Lee, Aih; Huang, Fang; Suter, Daniel M.
2018-06-01
Objective. Current neuronal cell culture is mostly performed on two-dimensional (2D) surfaces, which lack many of the important features of the native environment of neurons, including topographical cues, deformable extracellular matrix, and spatial isotropy or anisotropy in three dimensions. Although three-dimensional (3D) cell culture systems provide a more physiologically relevant environment than 2D systems, their popularity is greatly hampered by the lack of easy-to-make-and-use devices. We aim to develop a widely applicable 3D culture procedure to facilitate the transition of neuronal cultures from 2D to 3D. Approach. We made a simple microwell device for 3D neuronal cell culture that is inexpensive, easy to assemble, and fully compatible with commonly used imaging techniques, including super-resolution microscopy. Main results. We developed a novel gel mixture to support 3D neurite regeneration of Aplysia bag cell neurons, a system that has been extensively used for quantitative analysis of growth cone dynamics in 2D. We found that the morphology and growth pattern of bag cell growth cones in 3D culture closely resemble the ones of growth cones observed in vivo. We demonstrated the capability of our device for high-resolution imaging of cytoskeletal and signaling proteins as well as organelles. Significance. Neuronal cell culture has been a valuable tool for neuroscientists to study the behavior of neurons in a controlled environment. Compared to 2D, neurons cultured in 3D retain the majority of their native characteristics, while offering higher accessibility, control, and repeatability. We expect that our microwell device will facilitate a wider adoption of 3D neuronal cultures to study the mechanisms of neurite regeneration.
Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S
2014-01-01
Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.
On the Application of Multimedia in Economics Teaching
ERIC Educational Resources Information Center
Ding, Mengchun; Li, Hongxin
2011-01-01
Multimedia has become an important teaching technology in higher education inside and outside, with its advantages of super-media, strong expression, and interaction. The application of multimedia teaching connects closely with teaching reform and innovation. In this paper, authors conclude the defects of traditional economics teaching and the…
Higher Education Research Digest
ERIC Educational Resources Information Center
ACT, Inc., 2017
2017-01-01
This new ACT publication is an annual report offering meaningful research insights for some of the most pressing questions impacting admissions and enrollment practice. In the first release of this report, ACT research sheds light on the following topics: (1) the practice of super-scoring; (2) STEM major choice; (3) factors impacting retention and…
Luo, Xiaomin; Gu, Shengfeng; Lou, Yidong; Xiong, Chao; Chen, Biyan; Jin, Xueyuan
2018-06-01
The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP). However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF) and single-frequency (SF) PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS) stations. The global root mean square (RMS) maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D) RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI) maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Lance J.; /SLAC; Drummond, James M.
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less
dbSUPER: a database of super-enhancers in mouse and human genome
Khan, Aziz; Zhang, Xuegong
2016-01-01
Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities. PMID:26438538
Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture
NASA Astrophysics Data System (ADS)
Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro
Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.
Rise of the First Super-Massive Stars
NASA Astrophysics Data System (ADS)
Regan, John A.; Downes, Turlough P.
2018-05-01
We use high resolution adaptive mesh refinement simulations to model the formation of massive metal-free stars in the early Universe. By applying Lyman-Werner (LW) backgrounds of 100 J21 and 1000 J21 respectively we construct environments conducive to the formation of massive stars. We find that only in the case of the higher LW backgrounds are super-critical accretion rates realised that are necessary for super-massive star (SMS) formation. Mild fragmentation is observed for both backgrounds. Violent dynamical interactions between the stars that form in the more massive halo formed (1000 J21 background) results in the eventual expulsion of the two most massive stars from the halo. In the smaller mass halo (100 J21 background) mergers of stars occur before any multibody interactions and a single massive Pop III star is left at the centre of the halo at the end of our simulation. Feedback from the very massive Pop III stars is not effective in generating a large HII region with ionising photons absorbed within a few thousand AU of the star. In all cases a massive black hole seed is the expected final fate of the most massive objects. The seed of the massive Pop III star which remained at the centre of the less massive halo experiences steady accretion rates of almost 10-2M_{⊙}/yr and if these rates continue could potentially experience super-Eddington accretion rates in the immediate aftermath of collapsing into a black hole.
Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations
NASA Technical Reports Server (NTRS)
Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.
1996-01-01
Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.
NASA Astrophysics Data System (ADS)
Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng
2017-04-01
Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.
Fernando, Sudarshan; Günaydin, Murat
2014-11-28
We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less
The Solution Construction of Heterotic Super-Liouville Model
NASA Astrophysics Data System (ADS)
Yang, Zhan-Ying; Zhen, Yi
2001-12-01
We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.
Thermodynamics of higher dimensional black holes with higher order thermal fluctuations
NASA Astrophysics Data System (ADS)
Pourhassan, B.; Kokabi, K.; Rangyan, S.
2017-12-01
In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.
Impact of Inflow Conditions on Coherent Structures in an Aneurysm
NASA Astrophysics Data System (ADS)
Yu, Paulo; Durgesh, Vibhav; Johari, Hamid
2017-11-01
An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Chengguang; Drinkwater, Bruce W.
In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method.more » However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.« less
Global Contexts of Higher Education
ERIC Educational Resources Information Center
Lovett, Clara M.
2013-01-01
In his 2008 bestseller, "The Post-American World," Fareed Zakaria argued that the most significant development of the early 21st century is not, as others have predicted, the inevitable decline of the United States as the world's super-power but rather "the rise of the rest." In subsequent works, Zakaria and many others,…
Sublimation of Iodine at Various Pressures
ERIC Educational Resources Information Center
Leenson, Ilya A.
2005-01-01
Various phenomena that are observed in the process of heating solid iodine in closed vessels at different pressures and temperatures are described. When solid iodine is heated in an evacuated ampoule where the pressure is less than 10(super -3), no noticeable color appears and immediate condensation of tiny iodine crystals is visible higher up on…
Experts on Super Innovators: Understanding Staff Adoption of Learning Management Systems
ERIC Educational Resources Information Center
Sinclair, Jane; Aho, Anne-Maria
2018-01-01
Learning management systems (LMSs) are widely used in higher education and offer a gateway to innovative, technology-enhanced teaching and learning. However, many university staff still choose not to adopt them or do not explore the more creative functionality. Previous research has developed models of technology adoption which map observed…
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer
Kim, Jong-Myon
2018-01-01
An effective bearing fault detection and diagnosis (FDD) model is important for ensuring the normal and safe operation of machines. This paper presents a reliable model-reference observer technique for FDD based on modeling of a bearing’s vibration data by analyzing the dynamic properties of the bearing and a higher-order super-twisting sliding mode observation (HOSTSMO) technique for making diagnostic decisions using these data models. The HOSTSMO technique can adaptively improve the performance of estimating nonlinear failures in rolling element bearings (REBs) over a linear approach by modeling 5 degrees of freedom under normal and faulty conditions. The effectiveness of the proposed technique is evaluated using a vibration dataset provided by Case Western Reserve University, which consists of vibration acceleration signals recorded for REBs with inner, outer, ball, and no faults, i.e., normal. Experimental results indicate that the proposed technique outperforms the ARX-Laguerre proportional integral observation (ALPIO) technique, yielding 18.82%, 16.825%, and 17.44% performance improvements for three levels of crack severity of 0.007, 0.014, and 0.021 inches, respectively. PMID:29642459
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer.
Piltan, Farzin; Kim, Jong-Myon
2018-04-07
An effective bearing fault detection and diagnosis (FDD) model is important for ensuring the normal and safe operation of machines. This paper presents a reliable model-reference observer technique for FDD based on modeling of a bearing's vibration data by analyzing the dynamic properties of the bearing and a higher-order super-twisting sliding mode observation (HOSTSMO) technique for making diagnostic decisions using these data models. The HOSTSMO technique can adaptively improve the performance of estimating nonlinear failures in rolling element bearings (REBs) over a linear approach by modeling 5 degrees of freedom under normal and faulty conditions. The effectiveness of the proposed technique is evaluated using a vibration dataset provided by Case Western Reserve University, which consists of vibration acceleration signals recorded for REBs with inner, outer, ball, and no faults, i.e., normal. Experimental results indicate that the proposed technique outperforms the ARX-Laguerre proportional integral observation (ALPIO) technique, yielding 18.82%, 16.825%, and 17.44% performance improvements for three levels of crack severity of 0.007, 0.014, and 0.021 inches, respectively.
Higher-order assembly of BRCC36–KIAA0157 is required for DUB activity and biological function
Zeqiraj, Elton; Tian, Lei; Piggott, Christopher A.; ...
2015-09-03
BRCC36 is a Zn 2+-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN + domain protein BRCC36 associates with pseudo DUB MPN– proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. Here, to understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer ofmore » heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. Lastly, these data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.« less
Black holes in higher spin supergravity
NASA Astrophysics Data System (ADS)
Datta, Shouvik; David, Justin R.
2013-07-01
We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3|2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3|2). Using the relation between the bulk field equations and the Ward identities of a CFT with {N} = 2 super- {{{W}}_3} symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the {N} = 2 super- {{{W}}_3} algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.
Higher-dimensional Bianchi type-VIh cosmologies
NASA Astrophysics Data System (ADS)
Lorenz-Petzold, D.
1985-09-01
The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.
Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
Buelens, Lukas C; Galvita, Vladimir V; Poelman, Hilde; Detavernier, Christophe; Marin, Guy B
2016-10-28
Efficient CO 2 transformation from a waste product to a carbon source for chemicals and fuels will require reaction conditions that effect its reduction. We developed a "super-dry" CH 4 reforming reaction for enhanced CO production from CH 4 and CO 2 We used Ni/MgAl 2 O 4 as a CH 4 -reforming catalyst, Fe 2 O 3 /MgAl 2 O 4 as a solid oxygen carrier, and CaO/Al 2 O 3 as a CO 2 sorbent. The isothermal coupling of these three different processes resulted in higher CO production as compared with that of conventional dry reforming, by avoiding back reactions with water. The reduction of iron oxide was intensified through CH 4 conversion to syngas over Ni and CO 2 extraction and storage as CaCO 3 CO 2 is then used for iron reoxidation and CO production, exploiting equilibrium shifts effected with inert gas sweeping (Le Chatelier's principle). Super-dry reforming uses up to three CO 2 molecules per CH 4 and offers a high CO space-time yield of 7.5 millimole CO per second per kilogram of iron at 1023 kelvin. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
2007-01-01
This Mars Exploration Rover Opportunity Pancam 'super resolution' mosaic of the approximately 6 m (20 foot) high cliff face of the Cape Verde promontory was taken by the rover from inside Victoria Crater, during the rover's descent into Duck Bay. Super-resolution is an imaging technique which utilizes information from multiple pictures of the same target in order to generate an image with a higher resolution than any of the individual images. Cape Verde is a geologically rich outcrop and is teaching scientists about how rocks at Victoria crater were modified since they were deposited long ago. This image complements super resolution mosaics obtained at Cape St. Mary and Cape St. Vincent and is consistent with the hypothesis that Victoria crater is located in the middle of what used to be an ancient sand dune field. Many rover team scientists are hoping to be able to eventually drive the rover closer to these layered rocks in the hopes of measuring their chemistry and mineralogy. This is a Mars Exploration Rover Opportunity Panoramic Camera image mosaic acquired on sols 1342 and 1356 (November 2 and 17, 2007), and was constructed from a mathematical combination of 64 different blue filter (480 nm) images.Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R
2016-06-01
The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching. Copyright © 2016. Published by Elsevier B.V.
Super-atmospheric pressure chemical ionization mass spectrometry.
Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo
2013-03-01
Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.
Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui
2015-01-19
Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.
2012-01-01
Background Cattle shedding at least 104 CFU Escherichia coli O157:H7/g feces are described as super-shedders and have been shown to increase transmission of E. coli O157:H7 to other cattle in feedlots. This study investigated relationships among fecal isolates from super-shedders (n = 162), perineal hide swab isolates (PS) from super-shedders (n = 137) and fecal isolates from low-shedder (< 104 CFU/g feces) pen-mates (n = 496) using pulsed-field gel electrophoresis (PFGE). A subsample of these fecal isolates (n = 474) was tested for antimicrobial resistance. Isolates of E. coli O157:H7 were obtained from cattle in pens (avg. 181 head) at 2 commercial feedlots in southern Alberta with each steer sampled at entry to the feedlot and prior to slaughter. Results Only 1 steer maintained super-shedder status at both samplings, although approximately 30% of super-shedders in sampling 1 had low-shedder status at sampling 2. A total of 85 restriction endonuclease digestion clusters (REPC; 90% or greater similarity) and 86 unique isolates (< 90% similarity) were detected, with the predominant REPC (30% of isolates) being isolated from cattle in all feedlot pens, although it was not associated with shedding status (super- or low-shedder; P = 0.94). Only 2/21 super-shedders had fecal isolates in the same REPC at both samplings. Fecal and PS isolates from individual super-shedders generally belonged to different REPCs, although fecal isolates of E. coli O157:H7 from super- and low-shedders showed greater similarity (P < 0.001) than those from PS. For 77% of super-shedders, PFGE profiles of super-shedder fecal and PS isolates were distinct from all low-shedder fecal isolates collected in the same pen. A low level of antimicrobial resistance (3.7%) was detected and prevalence of antimicrobial resistance did not differ among super- and low-shedder isolates (P = 0.69), although all super-shedder isolates with antimicrobial resistance (n = 3) were resistant to multiple antimicrobials. Conclusions Super-shedders did not have increased antimicrobial resistance compared to low-shedder pen mates. Our data demonstrated that PFGE profiles of individual super-shedders varied over time and that only 1/162 steers remained a super-shedder at 2 samplings. In these two commercial feedlots, PFGE subtypes of E. coli O157:H7 from fecal isolates of super- and low-shedders were frequently different as were subtypes of fecal and perineal hide isolates from super-shedders. PMID:23014060
Supersymmetric Renyi entropy in CFT 2 and AdS 3
Giveon, Amit; Kutasov, David
2016-01-01
We show that in any two dimensional conformal field theory with (2, 2) super-symmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit n → 1 it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in stringmore » theory on AdS3.« less
Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)
2001-01-01
In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.
Imaging of sub-wavelength structures radiating coherently near microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu
2016-02-01
Using a two-dimensional model, we show that the optical images of a sub-wavelength object depend strongly on the excitation of its electromagnetic modes. There exist modes that enable the resolution of the object features smaller than the classical diffraction limit, in particular, due to the destructive interference. We propose to use such modes for super-resolution of resonant structures such as coupled cavities, metal dimers, or bowties. A dielectric microsphere in contact with the object forms its magnified image in a wide range of the virtual image plane positions. It is also suggested that the resonances may significantly affect the resolutionmore » quantification in recent experimental studies.« less
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media
NASA Astrophysics Data System (ADS)
Edrei, Eitan; Scarcelli, Giuliano
2016-09-01
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
Edrei, Eitan; Scarcelli, Giuliano
2016-09-16
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
[Veneer computer aided design based on reverse engineering technology].
Liu, Ming-li; Chen, Xiao-dong; Wang, Yong
2012-03-01
To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2018-02-01
The problem of the radiation gas dynamics of super-orbital entry into dense layers of the Earth's atmosphere of the command module of Apollo 4 is solved numerically in the two-dimensional formulation of the flow around an aerodynamic frontal shield at the velocity V∞= 10.7 km/s in the altitude range H = 91.5‒76.2 km. The density distributions of the spectral and integral radiation heat fluxes on the surface flowed around are obtained. The considerable role of atomic spectral lines in the radiation heating of the surface is shown. The results of calculations are compared with the flight experimental data and the calculated data of other authors.
Notes on wall crossing and instanton in compactified gauge theory with matter
NASA Astrophysics Data System (ADS)
Chen, Heng-Yu; Petunin, Kirill
2010-10-01
We study the quantum effects on the Coulomb branch of mathcal{N} = 2 SU(2) super-symmetric Yang-Mills with fundamental matters compactified on {mathbb{R}^3} × {S^1} , and extract the explicit perturbative and leading non-perturbative corrections to the moduli space metric predicted from the recent work of Gaiotto, Moore and Neitzke on wall-crossing [1]. We verify the predicted metric by computing the leading weak coupling instanton contribution to the four fermion correlation using standard field theory techniques, and demonstrate perfect agreement. We also demonstrate how previously known three dimensional quantities can be recovered in appropriate small radius limit, and provide a simple geometric picture from brane construction.
Super-spiral structures of bi-stable spiral waves and a new instability of spiral waves
NASA Astrophysics Data System (ADS)
Gao, Jian; Wang, Qun; Lü, Huaping
2017-10-01
A new type of super-spiral structure and instability of spiral waves (in numerical simulation) are investigated. Before the period-doubling bifurcation of this system, the super-spiral structure occurs caused by phase trajectory selection. This type of super-spiral structure is totally different from the super-spiral structure observed early. Although the spiral rotates, the super-spiral structure is stationary. Observably, fully turbulence of the system occurs suddenly which has no process of instability. The forming principle of this instability may have applications in cardiology.
Trottmann, M; Rübenthaler, J; Marcon, J; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
To investigate the difference of standard values of Supersonic shear imaging (SSI) and Acoustic Radiation Force Impulse (ARFI) technique in the evaluation of testicular tissue stiffness in vivo. 58 healthy male testes were examined using B-mode sonography and ARFI and SSI. B-mode sonography was performed in order to scan the testis for pathologies followed by performance of real-time elastography in three predefined areas (upper pole, central portion and lower pole) using the SuperSonic® Aixplorer ultrasound device (SuperSonic Imagine, Aix-en-Provence, France). Afterwards a second assessment of the same testicular regions by elastography followed using the ARFI technique of the Siemens Acuson 2000™ ultrasound device (Siemens Health Care, Germany). Values of shear wave velocity were described in m/s. Parameters of elastography techniques were compared using paired sample t-test. The values of SSI were all significantly higher in all measured areas compared to ARFI (p < 0.001 to p = 0.015). Quantitatively there was a higher mean SSI wave velocity value of 1,1 compared to 0.8 m/s measured by ARFI. SSI values are significantly higher than ARFI values when measuring the stiffness of testicular tissue and should only be compared with caution.
Are super-shedder feedlot cattle really super?
Munns, Krysty D; Selinger, Lorna; Stanford, Kim; Selinger, L Brent; McAllister, Tim A
2014-04-01
The objective of this study was to determine the frequency and duration of super-shedding in cattle by enumerating Escherichia coli O157:H7 in feces and to compare lineage and pulsed-field gel electrophoresis (PFGE) subtypes from super- and low-shedders. E. coli O157:H7 was enumerated from fecal samples obtained from the rectums of 400 feedlot cattle. Super-shedding steers (N=11) were identified, transported, and penned individually. Freshly voided fecal pats were sampled 2 h before and 6 h after feeding for 7 d, then once daily for an additional 19 d. Isolates (N=126) were subtyped using PFGE, and lineage was typed using a lineage-specific polymorphism assay. Of the 11 super-shedders identified at the commercial feedlot, only five were confirmed as super-shedders at the research feedlot, with no super-shedders identified 6 d after sampling at the commercial feedlot. Super-shedding was not consistent in fecal pats collected from the same individual at different times of the day. Isolates exhibited three distinct PFGE subtypes, with most isolates (97.6%) displaying the same subtype, including those obtained from steers that transitioned from super- to low-shedding. The short duration of super-shedding and its lack of continuance suggest that these individuals may not play as great a role in the dissemination of E. coli O157:H7 within the feedlot as previously proposed.
Deformations of super Riemann surfaces
NASA Astrophysics Data System (ADS)
Ninnemann, Holger
1992-11-01
Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.
The formation of quantum images and their transformation and super-resolution reading
NASA Astrophysics Data System (ADS)
Balakin, D. A.; Belinsky, A. V.
2016-05-01
Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.
NASA Technical Reports Server (NTRS)
Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen
2005-01-01
Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.
Efficiency of super-Eddington magnetically-arrested accretion
NASA Astrophysics Data System (ADS)
McKinney, Jonathan C.; Dai, Lixin; Avara, Mark J.
2015-11-01
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested discs, where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin a/M = 0.8) accreting at ˜50 times Eddington shows a total efficiency ˜50 per cent when time-averaged and total efficiency ≳ 100 per cent in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disc, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency ˜40 per cent on the horizon and BZ efficiency ˜5 per cent by r ˜ 400rg (gravitational radii) via absorption by the wind. Importantly, radiation escapes at r ˜ 400rg with efficiency η ≈ 15 per cent (luminosity L ˜ 50LEdd), similar to η ≈ 12 per cent for a Novikov-Thorne thin disc and beyond η ≲ 1 per cent seen in prior GRRMHD simulations or slim disc theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect these radiative and jet efficiencies.
Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures
NASA Astrophysics Data System (ADS)
Sharma Pyakurel, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T. N.; Drake, J. F.; Cassak, P. A.; Gary, S. Peter
2018-01-01
The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x line is not well understood. In this study, this damping is examined using kinetic particle-in-cell simulations of antiparallel symmetric magnetic reconnection in a one-dimensional current sheet equilibrium. In the reconnection simulations, the KAW wave vector has a typical magnitude comparable to an inverse fluid Larmor radius (effectively an inverse ion Larmor radius) and a direction of 85-89° relative to the local magnetic field. We find that the damping of the reconnection KAW is consistent with linear Landau damping results from a numerical Vlasov dispersion solver. This knowledge allows us to generalize our damping predictions to regions in the magnetotail and solar corona where the magnetic geometry can be approximated as a current sheet. For the magnetotail, the KAW from reconnection will not damp away before propagating the approximately 20 Earth radii associated with global magnetotail distances. For the solar corona, on the other hand, these KAWs will completely damp before reaching the distances comparable to the flare loop length.
He, Jian; Zhao, Hangyuan; Li, Xiaolei; Su, Dong; Zhang, Fengrui; Ji, Huiming; Liu, Rui
2018-03-15
Bacterial cellulose aerogels/silica aerogels (BCAs/SAs) are prepared using three-dimensional self-assembled BC skeleton as reinforcement and methyltriethoxysilane derived silica aerogels as filler through vacuum infiltration and freeze drying. The BCAs/SAs possess a hierarchical cellular structure giving them superelasticity and recyclable compressibility. The BCAs/SAs can bear a compressive strain up to 80% and recover their original shapes after the release of the stress. The BCAs/SAs exhibit super-hydrophobicity with a contact angle of 152° and super-oleophilicity resulting from the methyl groups on the surface of silica aerogel filler. This endows the BCAs/SAs outstanding oil absorbing capability with the quality factor Q from 8 to 14 for organic solvents and oils. Moreover, the absorbed oil can be retrieved by mechanically squeezed with a recovery of 88% related to the superelastic ability of the composites. In addition, the oil absorbing of BS/SAs could be well maintained with the quality factor Q about 11 for gasoline after harsh conditional treatment down to -200 °C and up to 300 °C. Such outstanding elastic and oleophilic properties make the BC/SAs tremendous potential for applications of oil absorbing, recovery and oil-water separation. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Panagiotopoulou, Antigoni; Bratsolis, Emmanuel; Charou, Eleni; Perantonis, Stavros
2017-10-01
The detailed three-dimensional modeling of buildings utilizing elevation data, such as those provided by light detection and ranging (LiDAR) airborne scanners, is increasingly demanded today. There are certain application requirements and available datasets to which any research effort has to be adapted. Our dataset includes aerial orthophotos, with a spatial resolution 20 cm, and a digital surface model generated from LiDAR, with a spatial resolution 1 m and an elevation resolution 20 cm, from an area of Athens, Greece. The aerial images are fused with LiDAR, and we classify these data with a multilayer feedforward neural network for building block extraction. The innovation of our approach lies in the preprocessing step in which the original LiDAR data are super-resolution (SR) reconstructed by means of a stochastic regularized technique before their fusion with the aerial images takes place. The Lorentzian estimator combined with the bilateral total variation regularization performs the SR reconstruction. We evaluate the performance of our approach against that of fusing unprocessed LiDAR data with aerial images. We present the classified images and the statistical measures confusion matrix, kappa coefficient, and overall accuracy. The results demonstrate that our approach predominates over that of fusing unprocessed LiDAR data with aerial images.
Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging
Manley, Suliana
2015-01-01
Three-dimensional (3D) localization-based super-resolution microscopy (SR) requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope’s pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE) at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample. PMID:26600467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, Charlie T.; Zacharias, Norbert; Henry, Todd J., E-mail: finch@usno.navy.mi
2010-09-15
This paper presents 442 new proper motion stellar systems in the southern sky between declinations -90{sup 0} and -47{sup 0} with 0.''40 yr{sup -1} > {mu} {>=} 0.''18 yr{sup -1}. These systems constitute a 25.3% increase in new systems for the same region of the sky covered by previous SuperCOSMOS RECONS (SCR) searches that used Schmidt plates as the primary source of discovery. Among the new systems are 25 multiples, plus an additional 7 new common proper motion (CPM) companions to previously known primaries. All stars have been discovered using the third U.S. Naval Observatory (USNO) CCD Astrograph Catalog (UCAC3).more » A comparison of the UCAC3 proper motions to those from the Hipparcos, Tycho-2, Southern Proper Motion (SPM4), and SuperCOSMOS efforts is presented and shows that UCAC3 provides similar values and precision to the first three surveys. The comparison between UCAC3 and SuperCOSMOS indicates that proper motions in R.A. are systematically shifted in the SuperCOSMOS data but are consistent in decl. data, while overall showing a significantly higher scatter. Distance estimates are derived for stars having SuperCOSMOS Sky Survey B{sub J} , R{sub 59F}, and I{sub IVN} plate magnitudes and Two-Micron All Sky Survey infrared photometry. We find 15 systems estimated to be within 25 pc, including UPM 1710-5300 our closest new discovery estimated at 13.5 pc. Such new discoveries suggest that more nearby stars are yet to be found in these slower proper motion regimes, indicating that more work is needed to develop a complete map of the solar neighborhood.« less
Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS. PMID:25111805
Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha-1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha-1) was generally lower than TP (8.58 t ha-1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.
Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157.
Chase-Topping, Margo; Gally, David; Low, Chris; Matthews, Louise; Woolhouse, Mark
2008-12-01
Cattle that excrete more Escherichia coli O157 than others are known as super-shedders. Super-shedding has important consequences for the epidemiology of E. coli O157 in cattle--its main reservoir--and for the risk of human infection, particularly owing to environmental exposure. Ultimately, control measures targeted at super-shedders may prove to be highly effective. We currently have only a limited understanding of both the nature and the determinants of super-shedding. However, super-shedding has been observed to be associated with colonization at the terminal rectum and might also occur more often with certain pathogen phage types. More generally, epidemiological evidence suggests that super-shedding might be important in other bacterial and viral infections.
Future sensor system needs for staring arrays
NASA Astrophysics Data System (ADS)
Miller, John Lester
2011-05-01
This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.
Coding Strategies and Implementations of Compressive Sensing
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Han
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.
Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for the region in the central portion in the superior part of the coronal plane (p = 0.03). Testicular volume was significanty higher by a mean of 1.72 ml when measured with 3D SWE (p = 0.001). 3D SWE proved to be a feasible diagnostic tool in the assessment of testicular tissue, providing the examiner with a fully accessible three-dimensional map in a multiplanar or multislice view. With this technique a more precise testicular imaging - especially if combined with the display of tissue stiffness in SWE - is available and therefore could improve the diagnostic work-up of scrotal masses or the routine investigation of infertile men. Further studies for a better understanding in the context of various testicular pathologies will be required.